ExecutionEngine.cpp revision 360784
1//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the common interface used by the various execution engine
10// subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/ExecutionEngine/ExecutionEngine.h"
15#include "llvm/ADT/STLExtras.h"
16#include "llvm/ADT/SmallString.h"
17#include "llvm/ADT/Statistic.h"
18#include "llvm/ExecutionEngine/GenericValue.h"
19#include "llvm/ExecutionEngine/JITEventListener.h"
20#include "llvm/ExecutionEngine/ObjectCache.h"
21#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/DerivedTypes.h"
25#include "llvm/IR/Mangler.h"
26#include "llvm/IR/Module.h"
27#include "llvm/IR/Operator.h"
28#include "llvm/IR/ValueHandle.h"
29#include "llvm/Object/Archive.h"
30#include "llvm/Object/ObjectFile.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/DynamicLibrary.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/Host.h"
35#include "llvm/Support/TargetRegistry.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/Target/TargetMachine.h"
38#include <cmath>
39#include <cstring>
40#include <mutex>
41using namespace llvm;
42
43#define DEBUG_TYPE "jit"
44
45STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
46STATISTIC(NumGlobals  , "Number of global vars initialized");
47
48ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
49    std::unique_ptr<Module> M, std::string *ErrorStr,
50    std::shared_ptr<MCJITMemoryManager> MemMgr,
51    std::shared_ptr<LegacyJITSymbolResolver> Resolver,
52    std::unique_ptr<TargetMachine> TM) = nullptr;
53
54ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)(
55    std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MemMgr,
56    std::shared_ptr<LegacyJITSymbolResolver> Resolver,
57    std::unique_ptr<TargetMachine> TM) = nullptr;
58
59ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M,
60                                                std::string *ErrorStr) =nullptr;
61
62void JITEventListener::anchor() {}
63
64void ObjectCache::anchor() {}
65
66void ExecutionEngine::Init(std::unique_ptr<Module> M) {
67  CompilingLazily         = false;
68  GVCompilationDisabled   = false;
69  SymbolSearchingDisabled = false;
70
71  // IR module verification is enabled by default in debug builds, and disabled
72  // by default in release builds.
73#ifndef NDEBUG
74  VerifyModules = true;
75#else
76  VerifyModules = false;
77#endif
78
79  assert(M && "Module is null?");
80  Modules.push_back(std::move(M));
81}
82
83ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M)
84    : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) {
85  Init(std::move(M));
86}
87
88ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M)
89    : DL(std::move(DL)), LazyFunctionCreator(nullptr) {
90  Init(std::move(M));
91}
92
93ExecutionEngine::~ExecutionEngine() {
94  clearAllGlobalMappings();
95}
96
97namespace {
98/// Helper class which uses a value handler to automatically deletes the
99/// memory block when the GlobalVariable is destroyed.
100class GVMemoryBlock final : public CallbackVH {
101  GVMemoryBlock(const GlobalVariable *GV)
102    : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
103
104public:
105  /// Returns the address the GlobalVariable should be written into.  The
106  /// GVMemoryBlock object prefixes that.
107  static char *Create(const GlobalVariable *GV, const DataLayout& TD) {
108    Type *ElTy = GV->getValueType();
109    size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
110    void *RawMemory = ::operator new(
111        alignTo(sizeof(GVMemoryBlock), TD.getPreferredAlignment(GV)) + GVSize);
112    new(RawMemory) GVMemoryBlock(GV);
113    return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
114  }
115
116  void deleted() override {
117    // We allocated with operator new and with some extra memory hanging off the
118    // end, so don't just delete this.  I'm not sure if this is actually
119    // required.
120    this->~GVMemoryBlock();
121    ::operator delete(this);
122  }
123};
124}  // anonymous namespace
125
126char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
127  return GVMemoryBlock::Create(GV, getDataLayout());
128}
129
130void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) {
131  llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
132}
133
134void
135ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) {
136  llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
137}
138
139void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) {
140  llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive.");
141}
142
143bool ExecutionEngine::removeModule(Module *M) {
144  for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) {
145    Module *Found = I->get();
146    if (Found == M) {
147      I->release();
148      Modules.erase(I);
149      clearGlobalMappingsFromModule(M);
150      return true;
151    }
152  }
153  return false;
154}
155
156Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) {
157  for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
158    Function *F = Modules[i]->getFunction(FnName);
159    if (F && !F->isDeclaration())
160      return F;
161  }
162  return nullptr;
163}
164
165GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) {
166  for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
167    GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal);
168    if (GV && !GV->isDeclaration())
169      return GV;
170  }
171  return nullptr;
172}
173
174uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) {
175  GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name);
176  uint64_t OldVal;
177
178  // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
179  // GlobalAddressMap.
180  if (I == GlobalAddressMap.end())
181    OldVal = 0;
182  else {
183    GlobalAddressReverseMap.erase(I->second);
184    OldVal = I->second;
185    GlobalAddressMap.erase(I);
186  }
187
188  return OldVal;
189}
190
191std::string ExecutionEngine::getMangledName(const GlobalValue *GV) {
192  assert(GV->hasName() && "Global must have name.");
193
194  std::lock_guard<sys::Mutex> locked(lock);
195  SmallString<128> FullName;
196
197  const DataLayout &DL =
198    GV->getParent()->getDataLayout().isDefault()
199      ? getDataLayout()
200      : GV->getParent()->getDataLayout();
201
202  Mangler::getNameWithPrefix(FullName, GV->getName(), DL);
203  return FullName.str();
204}
205
206void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
207  std::lock_guard<sys::Mutex> locked(lock);
208  addGlobalMapping(getMangledName(GV), (uint64_t) Addr);
209}
210
211void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) {
212  std::lock_guard<sys::Mutex> locked(lock);
213
214  assert(!Name.empty() && "Empty GlobalMapping symbol name!");
215
216  LLVM_DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";);
217  uint64_t &CurVal = EEState.getGlobalAddressMap()[Name];
218  assert((!CurVal || !Addr) && "GlobalMapping already established!");
219  CurVal = Addr;
220
221  // If we are using the reverse mapping, add it too.
222  if (!EEState.getGlobalAddressReverseMap().empty()) {
223    std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
224    assert((!V.empty() || !Name.empty()) &&
225           "GlobalMapping already established!");
226    V = Name;
227  }
228}
229
230void ExecutionEngine::clearAllGlobalMappings() {
231  std::lock_guard<sys::Mutex> locked(lock);
232
233  EEState.getGlobalAddressMap().clear();
234  EEState.getGlobalAddressReverseMap().clear();
235}
236
237void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
238  std::lock_guard<sys::Mutex> locked(lock);
239
240  for (GlobalObject &GO : M->global_objects())
241    EEState.RemoveMapping(getMangledName(&GO));
242}
243
244uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV,
245                                              void *Addr) {
246  std::lock_guard<sys::Mutex> locked(lock);
247  return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr);
248}
249
250uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) {
251  std::lock_guard<sys::Mutex> locked(lock);
252
253  ExecutionEngineState::GlobalAddressMapTy &Map =
254    EEState.getGlobalAddressMap();
255
256  // Deleting from the mapping?
257  if (!Addr)
258    return EEState.RemoveMapping(Name);
259
260  uint64_t &CurVal = Map[Name];
261  uint64_t OldVal = CurVal;
262
263  if (CurVal && !EEState.getGlobalAddressReverseMap().empty())
264    EEState.getGlobalAddressReverseMap().erase(CurVal);
265  CurVal = Addr;
266
267  // If we are using the reverse mapping, add it too.
268  if (!EEState.getGlobalAddressReverseMap().empty()) {
269    std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
270    assert((!V.empty() || !Name.empty()) &&
271           "GlobalMapping already established!");
272    V = Name;
273  }
274  return OldVal;
275}
276
277uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) {
278  std::lock_guard<sys::Mutex> locked(lock);
279  uint64_t Address = 0;
280  ExecutionEngineState::GlobalAddressMapTy::iterator I =
281    EEState.getGlobalAddressMap().find(S);
282  if (I != EEState.getGlobalAddressMap().end())
283    Address = I->second;
284  return Address;
285}
286
287
288void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) {
289  std::lock_guard<sys::Mutex> locked(lock);
290  if (void* Address = (void *) getAddressToGlobalIfAvailable(S))
291    return Address;
292  return nullptr;
293}
294
295void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
296  std::lock_guard<sys::Mutex> locked(lock);
297  return getPointerToGlobalIfAvailable(getMangledName(GV));
298}
299
300const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
301  std::lock_guard<sys::Mutex> locked(lock);
302
303  // If we haven't computed the reverse mapping yet, do so first.
304  if (EEState.getGlobalAddressReverseMap().empty()) {
305    for (ExecutionEngineState::GlobalAddressMapTy::iterator
306           I = EEState.getGlobalAddressMap().begin(),
307           E = EEState.getGlobalAddressMap().end(); I != E; ++I) {
308      StringRef Name = I->first();
309      uint64_t Addr = I->second;
310      EEState.getGlobalAddressReverseMap().insert(std::make_pair(
311                                                          Addr, Name));
312    }
313  }
314
315  std::map<uint64_t, std::string>::iterator I =
316    EEState.getGlobalAddressReverseMap().find((uint64_t) Addr);
317
318  if (I != EEState.getGlobalAddressReverseMap().end()) {
319    StringRef Name = I->second;
320    for (unsigned i = 0, e = Modules.size(); i != e; ++i)
321      if (GlobalValue *GV = Modules[i]->getNamedValue(Name))
322        return GV;
323  }
324  return nullptr;
325}
326
327namespace {
328class ArgvArray {
329  std::unique_ptr<char[]> Array;
330  std::vector<std::unique_ptr<char[]>> Values;
331public:
332  /// Turn a vector of strings into a nice argv style array of pointers to null
333  /// terminated strings.
334  void *reset(LLVMContext &C, ExecutionEngine *EE,
335              const std::vector<std::string> &InputArgv);
336};
337}  // anonymous namespace
338void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
339                       const std::vector<std::string> &InputArgv) {
340  Values.clear();  // Free the old contents.
341  Values.reserve(InputArgv.size());
342  unsigned PtrSize = EE->getDataLayout().getPointerSize();
343  Array = std::make_unique<char[]>((InputArgv.size()+1)*PtrSize);
344
345  LLVM_DEBUG(dbgs() << "JIT: ARGV = " << (void *)Array.get() << "\n");
346  Type *SBytePtr = Type::getInt8PtrTy(C);
347
348  for (unsigned i = 0; i != InputArgv.size(); ++i) {
349    unsigned Size = InputArgv[i].size()+1;
350    auto Dest = std::make_unique<char[]>(Size);
351    LLVM_DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void *)Dest.get()
352                      << "\n");
353
354    std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get());
355    Dest[Size-1] = 0;
356
357    // Endian safe: Array[i] = (PointerTy)Dest;
358    EE->StoreValueToMemory(PTOGV(Dest.get()),
359                           (GenericValue*)(&Array[i*PtrSize]), SBytePtr);
360    Values.push_back(std::move(Dest));
361  }
362
363  // Null terminate it
364  EE->StoreValueToMemory(PTOGV(nullptr),
365                         (GenericValue*)(&Array[InputArgv.size()*PtrSize]),
366                         SBytePtr);
367  return Array.get();
368}
369
370void ExecutionEngine::runStaticConstructorsDestructors(Module &module,
371                                                       bool isDtors) {
372  StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors");
373  GlobalVariable *GV = module.getNamedGlobal(Name);
374
375  // If this global has internal linkage, or if it has a use, then it must be
376  // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
377  // this is the case, don't execute any of the global ctors, __main will do
378  // it.
379  if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
380
381  // Should be an array of '{ i32, void ()* }' structs.  The first value is
382  // the init priority, which we ignore.
383  ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
384  if (!InitList)
385    return;
386  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
387    ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
388    if (!CS) continue;
389
390    Constant *FP = CS->getOperand(1);
391    if (FP->isNullValue())
392      continue;  // Found a sentinal value, ignore.
393
394    // Strip off constant expression casts.
395    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
396      if (CE->isCast())
397        FP = CE->getOperand(0);
398
399    // Execute the ctor/dtor function!
400    if (Function *F = dyn_cast<Function>(FP))
401      runFunction(F, None);
402
403    // FIXME: It is marginally lame that we just do nothing here if we see an
404    // entry we don't recognize. It might not be unreasonable for the verifier
405    // to not even allow this and just assert here.
406  }
407}
408
409void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
410  // Execute global ctors/dtors for each module in the program.
411  for (std::unique_ptr<Module> &M : Modules)
412    runStaticConstructorsDestructors(*M, isDtors);
413}
414
415#ifndef NDEBUG
416/// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
417static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
418  unsigned PtrSize = EE->getDataLayout().getPointerSize();
419  for (unsigned i = 0; i < PtrSize; ++i)
420    if (*(i + (uint8_t*)Loc))
421      return false;
422  return true;
423}
424#endif
425
426int ExecutionEngine::runFunctionAsMain(Function *Fn,
427                                       const std::vector<std::string> &argv,
428                                       const char * const * envp) {
429  std::vector<GenericValue> GVArgs;
430  GenericValue GVArgc;
431  GVArgc.IntVal = APInt(32, argv.size());
432
433  // Check main() type
434  unsigned NumArgs = Fn->getFunctionType()->getNumParams();
435  FunctionType *FTy = Fn->getFunctionType();
436  Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
437
438  // Check the argument types.
439  if (NumArgs > 3)
440    report_fatal_error("Invalid number of arguments of main() supplied");
441  if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
442    report_fatal_error("Invalid type for third argument of main() supplied");
443  if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
444    report_fatal_error("Invalid type for second argument of main() supplied");
445  if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
446    report_fatal_error("Invalid type for first argument of main() supplied");
447  if (!FTy->getReturnType()->isIntegerTy() &&
448      !FTy->getReturnType()->isVoidTy())
449    report_fatal_error("Invalid return type of main() supplied");
450
451  ArgvArray CArgv;
452  ArgvArray CEnv;
453  if (NumArgs) {
454    GVArgs.push_back(GVArgc); // Arg #0 = argc.
455    if (NumArgs > 1) {
456      // Arg #1 = argv.
457      GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
458      assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
459             "argv[0] was null after CreateArgv");
460      if (NumArgs > 2) {
461        std::vector<std::string> EnvVars;
462        for (unsigned i = 0; envp[i]; ++i)
463          EnvVars.emplace_back(envp[i]);
464        // Arg #2 = envp.
465        GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
466      }
467    }
468  }
469
470  return runFunction(Fn, GVArgs).IntVal.getZExtValue();
471}
472
473EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {}
474
475EngineBuilder::EngineBuilder(std::unique_ptr<Module> M)
476    : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr),
477      OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr),
478      UseOrcMCJITReplacement(false) {
479// IR module verification is enabled by default in debug builds, and disabled
480// by default in release builds.
481#ifndef NDEBUG
482  VerifyModules = true;
483#else
484  VerifyModules = false;
485#endif
486}
487
488EngineBuilder::~EngineBuilder() = default;
489
490EngineBuilder &EngineBuilder::setMCJITMemoryManager(
491                                   std::unique_ptr<RTDyldMemoryManager> mcjmm) {
492  auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm));
493  MemMgr = SharedMM;
494  Resolver = SharedMM;
495  return *this;
496}
497
498EngineBuilder&
499EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) {
500  MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM));
501  return *this;
502}
503
504EngineBuilder &
505EngineBuilder::setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR) {
506  Resolver = std::shared_ptr<LegacyJITSymbolResolver>(std::move(SR));
507  return *this;
508}
509
510ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
511  std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership.
512
513  // Make sure we can resolve symbols in the program as well. The zero arg
514  // to the function tells DynamicLibrary to load the program, not a library.
515  if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr))
516    return nullptr;
517
518  // If the user specified a memory manager but didn't specify which engine to
519  // create, we assume they only want the JIT, and we fail if they only want
520  // the interpreter.
521  if (MemMgr) {
522    if (WhichEngine & EngineKind::JIT)
523      WhichEngine = EngineKind::JIT;
524    else {
525      if (ErrorStr)
526        *ErrorStr = "Cannot create an interpreter with a memory manager.";
527      return nullptr;
528    }
529  }
530
531  // Unless the interpreter was explicitly selected or the JIT is not linked,
532  // try making a JIT.
533  if ((WhichEngine & EngineKind::JIT) && TheTM) {
534    if (!TM->getTarget().hasJIT()) {
535      errs() << "WARNING: This target JIT is not designed for the host"
536             << " you are running.  If bad things happen, please choose"
537             << " a different -march switch.\n";
538    }
539
540    ExecutionEngine *EE = nullptr;
541    if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) {
542      EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MemMgr),
543                                                    std::move(Resolver),
544                                                    std::move(TheTM));
545      EE->addModule(std::move(M));
546    } else if (ExecutionEngine::MCJITCtor)
547      EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr),
548                                      std::move(Resolver), std::move(TheTM));
549
550    if (EE) {
551      EE->setVerifyModules(VerifyModules);
552      return EE;
553    }
554  }
555
556  // If we can't make a JIT and we didn't request one specifically, try making
557  // an interpreter instead.
558  if (WhichEngine & EngineKind::Interpreter) {
559    if (ExecutionEngine::InterpCtor)
560      return ExecutionEngine::InterpCtor(std::move(M), ErrorStr);
561    if (ErrorStr)
562      *ErrorStr = "Interpreter has not been linked in.";
563    return nullptr;
564  }
565
566  if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) {
567    if (ErrorStr)
568      *ErrorStr = "JIT has not been linked in.";
569  }
570
571  return nullptr;
572}
573
574void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
575  if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
576    return getPointerToFunction(F);
577
578  std::lock_guard<sys::Mutex> locked(lock);
579  if (void* P = getPointerToGlobalIfAvailable(GV))
580    return P;
581
582  // Global variable might have been added since interpreter started.
583  if (GlobalVariable *GVar =
584          const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
585    EmitGlobalVariable(GVar);
586  else
587    llvm_unreachable("Global hasn't had an address allocated yet!");
588
589  return getPointerToGlobalIfAvailable(GV);
590}
591
592/// Converts a Constant* into a GenericValue, including handling of
593/// ConstantExpr values.
594GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
595  // If its undefined, return the garbage.
596  if (isa<UndefValue>(C)) {
597    GenericValue Result;
598    switch (C->getType()->getTypeID()) {
599    default:
600      break;
601    case Type::IntegerTyID:
602    case Type::X86_FP80TyID:
603    case Type::FP128TyID:
604    case Type::PPC_FP128TyID:
605      // Although the value is undefined, we still have to construct an APInt
606      // with the correct bit width.
607      Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
608      break;
609    case Type::StructTyID: {
610      // if the whole struct is 'undef' just reserve memory for the value.
611      if(StructType *STy = dyn_cast<StructType>(C->getType())) {
612        unsigned int elemNum = STy->getNumElements();
613        Result.AggregateVal.resize(elemNum);
614        for (unsigned int i = 0; i < elemNum; ++i) {
615          Type *ElemTy = STy->getElementType(i);
616          if (ElemTy->isIntegerTy())
617            Result.AggregateVal[i].IntVal =
618              APInt(ElemTy->getPrimitiveSizeInBits(), 0);
619          else if (ElemTy->isAggregateType()) {
620              const Constant *ElemUndef = UndefValue::get(ElemTy);
621              Result.AggregateVal[i] = getConstantValue(ElemUndef);
622            }
623          }
624        }
625      }
626      break;
627    case Type::VectorTyID:
628      // if the whole vector is 'undef' just reserve memory for the value.
629      auto* VTy = cast<VectorType>(C->getType());
630      Type *ElemTy = VTy->getElementType();
631      unsigned int elemNum = VTy->getNumElements();
632      Result.AggregateVal.resize(elemNum);
633      if (ElemTy->isIntegerTy())
634        for (unsigned int i = 0; i < elemNum; ++i)
635          Result.AggregateVal[i].IntVal =
636            APInt(ElemTy->getPrimitiveSizeInBits(), 0);
637      break;
638    }
639    return Result;
640  }
641
642  // Otherwise, if the value is a ConstantExpr...
643  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
644    Constant *Op0 = CE->getOperand(0);
645    switch (CE->getOpcode()) {
646    case Instruction::GetElementPtr: {
647      // Compute the index
648      GenericValue Result = getConstantValue(Op0);
649      APInt Offset(DL.getPointerSizeInBits(), 0);
650      cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset);
651
652      char* tmp = (char*) Result.PointerVal;
653      Result = PTOGV(tmp + Offset.getSExtValue());
654      return Result;
655    }
656    case Instruction::Trunc: {
657      GenericValue GV = getConstantValue(Op0);
658      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
659      GV.IntVal = GV.IntVal.trunc(BitWidth);
660      return GV;
661    }
662    case Instruction::ZExt: {
663      GenericValue GV = getConstantValue(Op0);
664      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
665      GV.IntVal = GV.IntVal.zext(BitWidth);
666      return GV;
667    }
668    case Instruction::SExt: {
669      GenericValue GV = getConstantValue(Op0);
670      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
671      GV.IntVal = GV.IntVal.sext(BitWidth);
672      return GV;
673    }
674    case Instruction::FPTrunc: {
675      // FIXME long double
676      GenericValue GV = getConstantValue(Op0);
677      GV.FloatVal = float(GV.DoubleVal);
678      return GV;
679    }
680    case Instruction::FPExt:{
681      // FIXME long double
682      GenericValue GV = getConstantValue(Op0);
683      GV.DoubleVal = double(GV.FloatVal);
684      return GV;
685    }
686    case Instruction::UIToFP: {
687      GenericValue GV = getConstantValue(Op0);
688      if (CE->getType()->isFloatTy())
689        GV.FloatVal = float(GV.IntVal.roundToDouble());
690      else if (CE->getType()->isDoubleTy())
691        GV.DoubleVal = GV.IntVal.roundToDouble();
692      else if (CE->getType()->isX86_FP80Ty()) {
693        APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended());
694        (void)apf.convertFromAPInt(GV.IntVal,
695                                   false,
696                                   APFloat::rmNearestTiesToEven);
697        GV.IntVal = apf.bitcastToAPInt();
698      }
699      return GV;
700    }
701    case Instruction::SIToFP: {
702      GenericValue GV = getConstantValue(Op0);
703      if (CE->getType()->isFloatTy())
704        GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
705      else if (CE->getType()->isDoubleTy())
706        GV.DoubleVal = GV.IntVal.signedRoundToDouble();
707      else if (CE->getType()->isX86_FP80Ty()) {
708        APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended());
709        (void)apf.convertFromAPInt(GV.IntVal,
710                                   true,
711                                   APFloat::rmNearestTiesToEven);
712        GV.IntVal = apf.bitcastToAPInt();
713      }
714      return GV;
715    }
716    case Instruction::FPToUI: // double->APInt conversion handles sign
717    case Instruction::FPToSI: {
718      GenericValue GV = getConstantValue(Op0);
719      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
720      if (Op0->getType()->isFloatTy())
721        GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
722      else if (Op0->getType()->isDoubleTy())
723        GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
724      else if (Op0->getType()->isX86_FP80Ty()) {
725        APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal);
726        uint64_t v;
727        bool ignored;
728        (void)apf.convertToInteger(makeMutableArrayRef(v), BitWidth,
729                                   CE->getOpcode()==Instruction::FPToSI,
730                                   APFloat::rmTowardZero, &ignored);
731        GV.IntVal = v; // endian?
732      }
733      return GV;
734    }
735    case Instruction::PtrToInt: {
736      GenericValue GV = getConstantValue(Op0);
737      uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType());
738      assert(PtrWidth <= 64 && "Bad pointer width");
739      GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
740      uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType());
741      GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth);
742      return GV;
743    }
744    case Instruction::IntToPtr: {
745      GenericValue GV = getConstantValue(Op0);
746      uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType());
747      GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
748      assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
749      GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
750      return GV;
751    }
752    case Instruction::BitCast: {
753      GenericValue GV = getConstantValue(Op0);
754      Type* DestTy = CE->getType();
755      switch (Op0->getType()->getTypeID()) {
756        default: llvm_unreachable("Invalid bitcast operand");
757        case Type::IntegerTyID:
758          assert(DestTy->isFloatingPointTy() && "invalid bitcast");
759          if (DestTy->isFloatTy())
760            GV.FloatVal = GV.IntVal.bitsToFloat();
761          else if (DestTy->isDoubleTy())
762            GV.DoubleVal = GV.IntVal.bitsToDouble();
763          break;
764        case Type::FloatTyID:
765          assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
766          GV.IntVal = APInt::floatToBits(GV.FloatVal);
767          break;
768        case Type::DoubleTyID:
769          assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
770          GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
771          break;
772        case Type::PointerTyID:
773          assert(DestTy->isPointerTy() && "Invalid bitcast");
774          break; // getConstantValue(Op0)  above already converted it
775      }
776      return GV;
777    }
778    case Instruction::Add:
779    case Instruction::FAdd:
780    case Instruction::Sub:
781    case Instruction::FSub:
782    case Instruction::Mul:
783    case Instruction::FMul:
784    case Instruction::UDiv:
785    case Instruction::SDiv:
786    case Instruction::URem:
787    case Instruction::SRem:
788    case Instruction::And:
789    case Instruction::Or:
790    case Instruction::Xor: {
791      GenericValue LHS = getConstantValue(Op0);
792      GenericValue RHS = getConstantValue(CE->getOperand(1));
793      GenericValue GV;
794      switch (CE->getOperand(0)->getType()->getTypeID()) {
795      default: llvm_unreachable("Bad add type!");
796      case Type::IntegerTyID:
797        switch (CE->getOpcode()) {
798          default: llvm_unreachable("Invalid integer opcode");
799          case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
800          case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
801          case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
802          case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
803          case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
804          case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
805          case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
806          case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
807          case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
808          case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
809        }
810        break;
811      case Type::FloatTyID:
812        switch (CE->getOpcode()) {
813          default: llvm_unreachable("Invalid float opcode");
814          case Instruction::FAdd:
815            GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
816          case Instruction::FSub:
817            GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
818          case Instruction::FMul:
819            GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
820          case Instruction::FDiv:
821            GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
822          case Instruction::FRem:
823            GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
824        }
825        break;
826      case Type::DoubleTyID:
827        switch (CE->getOpcode()) {
828          default: llvm_unreachable("Invalid double opcode");
829          case Instruction::FAdd:
830            GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
831          case Instruction::FSub:
832            GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
833          case Instruction::FMul:
834            GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
835          case Instruction::FDiv:
836            GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
837          case Instruction::FRem:
838            GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
839        }
840        break;
841      case Type::X86_FP80TyID:
842      case Type::PPC_FP128TyID:
843      case Type::FP128TyID: {
844        const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics();
845        APFloat apfLHS = APFloat(Sem, LHS.IntVal);
846        switch (CE->getOpcode()) {
847          default: llvm_unreachable("Invalid long double opcode");
848          case Instruction::FAdd:
849            apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven);
850            GV.IntVal = apfLHS.bitcastToAPInt();
851            break;
852          case Instruction::FSub:
853            apfLHS.subtract(APFloat(Sem, RHS.IntVal),
854                            APFloat::rmNearestTiesToEven);
855            GV.IntVal = apfLHS.bitcastToAPInt();
856            break;
857          case Instruction::FMul:
858            apfLHS.multiply(APFloat(Sem, RHS.IntVal),
859                            APFloat::rmNearestTiesToEven);
860            GV.IntVal = apfLHS.bitcastToAPInt();
861            break;
862          case Instruction::FDiv:
863            apfLHS.divide(APFloat(Sem, RHS.IntVal),
864                          APFloat::rmNearestTiesToEven);
865            GV.IntVal = apfLHS.bitcastToAPInt();
866            break;
867          case Instruction::FRem:
868            apfLHS.mod(APFloat(Sem, RHS.IntVal));
869            GV.IntVal = apfLHS.bitcastToAPInt();
870            break;
871          }
872        }
873        break;
874      }
875      return GV;
876    }
877    default:
878      break;
879    }
880
881    SmallString<256> Msg;
882    raw_svector_ostream OS(Msg);
883    OS << "ConstantExpr not handled: " << *CE;
884    report_fatal_error(OS.str());
885  }
886
887  // Otherwise, we have a simple constant.
888  GenericValue Result;
889  switch (C->getType()->getTypeID()) {
890  case Type::FloatTyID:
891    Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
892    break;
893  case Type::DoubleTyID:
894    Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
895    break;
896  case Type::X86_FP80TyID:
897  case Type::FP128TyID:
898  case Type::PPC_FP128TyID:
899    Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
900    break;
901  case Type::IntegerTyID:
902    Result.IntVal = cast<ConstantInt>(C)->getValue();
903    break;
904  case Type::PointerTyID:
905    while (auto *A = dyn_cast<GlobalAlias>(C)) {
906      C = A->getAliasee();
907    }
908    if (isa<ConstantPointerNull>(C))
909      Result.PointerVal = nullptr;
910    else if (const Function *F = dyn_cast<Function>(C))
911      Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
912    else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
913      Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
914    else
915      llvm_unreachable("Unknown constant pointer type!");
916    break;
917  case Type::VectorTyID: {
918    unsigned elemNum;
919    Type* ElemTy;
920    const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
921    const ConstantVector *CV = dyn_cast<ConstantVector>(C);
922    const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C);
923
924    if (CDV) {
925        elemNum = CDV->getNumElements();
926        ElemTy = CDV->getElementType();
927    } else if (CV || CAZ) {
928        auto* VTy = cast<VectorType>(C->getType());
929        elemNum = VTy->getNumElements();
930        ElemTy = VTy->getElementType();
931    } else {
932        llvm_unreachable("Unknown constant vector type!");
933    }
934
935    Result.AggregateVal.resize(elemNum);
936    // Check if vector holds floats.
937    if(ElemTy->isFloatTy()) {
938      if (CAZ) {
939        GenericValue floatZero;
940        floatZero.FloatVal = 0.f;
941        std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
942                  floatZero);
943        break;
944      }
945      if(CV) {
946        for (unsigned i = 0; i < elemNum; ++i)
947          if (!isa<UndefValue>(CV->getOperand(i)))
948            Result.AggregateVal[i].FloatVal = cast<ConstantFP>(
949              CV->getOperand(i))->getValueAPF().convertToFloat();
950        break;
951      }
952      if(CDV)
953        for (unsigned i = 0; i < elemNum; ++i)
954          Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i);
955
956      break;
957    }
958    // Check if vector holds doubles.
959    if (ElemTy->isDoubleTy()) {
960      if (CAZ) {
961        GenericValue doubleZero;
962        doubleZero.DoubleVal = 0.0;
963        std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
964                  doubleZero);
965        break;
966      }
967      if(CV) {
968        for (unsigned i = 0; i < elemNum; ++i)
969          if (!isa<UndefValue>(CV->getOperand(i)))
970            Result.AggregateVal[i].DoubleVal = cast<ConstantFP>(
971              CV->getOperand(i))->getValueAPF().convertToDouble();
972        break;
973      }
974      if(CDV)
975        for (unsigned i = 0; i < elemNum; ++i)
976          Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i);
977
978      break;
979    }
980    // Check if vector holds integers.
981    if (ElemTy->isIntegerTy()) {
982      if (CAZ) {
983        GenericValue intZero;
984        intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull);
985        std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
986                  intZero);
987        break;
988      }
989      if(CV) {
990        for (unsigned i = 0; i < elemNum; ++i)
991          if (!isa<UndefValue>(CV->getOperand(i)))
992            Result.AggregateVal[i].IntVal = cast<ConstantInt>(
993                                            CV->getOperand(i))->getValue();
994          else {
995            Result.AggregateVal[i].IntVal =
996              APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0);
997          }
998        break;
999      }
1000      if(CDV)
1001        for (unsigned i = 0; i < elemNum; ++i)
1002          Result.AggregateVal[i].IntVal = APInt(
1003            CDV->getElementType()->getPrimitiveSizeInBits(),
1004            CDV->getElementAsInteger(i));
1005
1006      break;
1007    }
1008    llvm_unreachable("Unknown constant pointer type!");
1009  }
1010  break;
1011
1012  default:
1013    SmallString<256> Msg;
1014    raw_svector_ostream OS(Msg);
1015    OS << "ERROR: Constant unimplemented for type: " << *C->getType();
1016    report_fatal_error(OS.str());
1017  }
1018
1019  return Result;
1020}
1021
1022void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
1023                                         GenericValue *Ptr, Type *Ty) {
1024  const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty);
1025
1026  switch (Ty->getTypeID()) {
1027  default:
1028    dbgs() << "Cannot store value of type " << *Ty << "!\n";
1029    break;
1030  case Type::IntegerTyID:
1031    StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
1032    break;
1033  case Type::FloatTyID:
1034    *((float*)Ptr) = Val.FloatVal;
1035    break;
1036  case Type::DoubleTyID:
1037    *((double*)Ptr) = Val.DoubleVal;
1038    break;
1039  case Type::X86_FP80TyID:
1040    memcpy(Ptr, Val.IntVal.getRawData(), 10);
1041    break;
1042  case Type::PointerTyID:
1043    // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
1044    if (StoreBytes != sizeof(PointerTy))
1045      memset(&(Ptr->PointerVal), 0, StoreBytes);
1046
1047    *((PointerTy*)Ptr) = Val.PointerVal;
1048    break;
1049  case Type::VectorTyID:
1050    for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) {
1051      if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
1052        *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal;
1053      if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
1054        *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal;
1055      if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) {
1056        unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8;
1057        StoreIntToMemory(Val.AggregateVal[i].IntVal,
1058          (uint8_t*)Ptr + numOfBytes*i, numOfBytes);
1059      }
1060    }
1061    break;
1062  }
1063
1064  if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian())
1065    // Host and target are different endian - reverse the stored bytes.
1066    std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
1067}
1068
1069/// FIXME: document
1070///
1071void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
1072                                          GenericValue *Ptr,
1073                                          Type *Ty) {
1074  const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty);
1075
1076  switch (Ty->getTypeID()) {
1077  case Type::IntegerTyID:
1078    // An APInt with all words initially zero.
1079    Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
1080    LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
1081    break;
1082  case Type::FloatTyID:
1083    Result.FloatVal = *((float*)Ptr);
1084    break;
1085  case Type::DoubleTyID:
1086    Result.DoubleVal = *((double*)Ptr);
1087    break;
1088  case Type::PointerTyID:
1089    Result.PointerVal = *((PointerTy*)Ptr);
1090    break;
1091  case Type::X86_FP80TyID: {
1092    // This is endian dependent, but it will only work on x86 anyway.
1093    // FIXME: Will not trap if loading a signaling NaN.
1094    uint64_t y[2];
1095    memcpy(y, Ptr, 10);
1096    Result.IntVal = APInt(80, y);
1097    break;
1098  }
1099  case Type::VectorTyID: {
1100    auto *VT = cast<VectorType>(Ty);
1101    Type *ElemT = VT->getElementType();
1102    const unsigned numElems = VT->getNumElements();
1103    if (ElemT->isFloatTy()) {
1104      Result.AggregateVal.resize(numElems);
1105      for (unsigned i = 0; i < numElems; ++i)
1106        Result.AggregateVal[i].FloatVal = *((float*)Ptr+i);
1107    }
1108    if (ElemT->isDoubleTy()) {
1109      Result.AggregateVal.resize(numElems);
1110      for (unsigned i = 0; i < numElems; ++i)
1111        Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i);
1112    }
1113    if (ElemT->isIntegerTy()) {
1114      GenericValue intZero;
1115      const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth();
1116      intZero.IntVal = APInt(elemBitWidth, 0);
1117      Result.AggregateVal.resize(numElems, intZero);
1118      for (unsigned i = 0; i < numElems; ++i)
1119        LoadIntFromMemory(Result.AggregateVal[i].IntVal,
1120          (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8);
1121    }
1122  break;
1123  }
1124  default:
1125    SmallString<256> Msg;
1126    raw_svector_ostream OS(Msg);
1127    OS << "Cannot load value of type " << *Ty << "!";
1128    report_fatal_error(OS.str());
1129  }
1130}
1131
1132void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
1133  LLVM_DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
1134  LLVM_DEBUG(Init->dump());
1135  if (isa<UndefValue>(Init))
1136    return;
1137
1138  if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
1139    unsigned ElementSize =
1140        getDataLayout().getTypeAllocSize(CP->getType()->getElementType());
1141    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
1142      InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
1143    return;
1144  }
1145
1146  if (isa<ConstantAggregateZero>(Init)) {
1147    memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType()));
1148    return;
1149  }
1150
1151  if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
1152    unsigned ElementSize =
1153        getDataLayout().getTypeAllocSize(CPA->getType()->getElementType());
1154    for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
1155      InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
1156    return;
1157  }
1158
1159  if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
1160    const StructLayout *SL =
1161        getDataLayout().getStructLayout(cast<StructType>(CPS->getType()));
1162    for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
1163      InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
1164    return;
1165  }
1166
1167  if (const ConstantDataSequential *CDS =
1168               dyn_cast<ConstantDataSequential>(Init)) {
1169    // CDS is already laid out in host memory order.
1170    StringRef Data = CDS->getRawDataValues();
1171    memcpy(Addr, Data.data(), Data.size());
1172    return;
1173  }
1174
1175  if (Init->getType()->isFirstClassType()) {
1176    GenericValue Val = getConstantValue(Init);
1177    StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
1178    return;
1179  }
1180
1181  LLVM_DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
1182  llvm_unreachable("Unknown constant type to initialize memory with!");
1183}
1184
1185/// EmitGlobals - Emit all of the global variables to memory, storing their
1186/// addresses into GlobalAddress.  This must make sure to copy the contents of
1187/// their initializers into the memory.
1188void ExecutionEngine::emitGlobals() {
1189  // Loop over all of the global variables in the program, allocating the memory
1190  // to hold them.  If there is more than one module, do a prepass over globals
1191  // to figure out how the different modules should link together.
1192  std::map<std::pair<std::string, Type*>,
1193           const GlobalValue*> LinkedGlobalsMap;
1194
1195  if (Modules.size() != 1) {
1196    for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1197      Module &M = *Modules[m];
1198      for (const auto &GV : M.globals()) {
1199        if (GV.hasLocalLinkage() || GV.isDeclaration() ||
1200            GV.hasAppendingLinkage() || !GV.hasName())
1201          continue;// Ignore external globals and globals with internal linkage.
1202
1203        const GlobalValue *&GVEntry =
1204          LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())];
1205
1206        // If this is the first time we've seen this global, it is the canonical
1207        // version.
1208        if (!GVEntry) {
1209          GVEntry = &GV;
1210          continue;
1211        }
1212
1213        // If the existing global is strong, never replace it.
1214        if (GVEntry->hasExternalLinkage())
1215          continue;
1216
1217        // Otherwise, we know it's linkonce/weak, replace it if this is a strong
1218        // symbol.  FIXME is this right for common?
1219        if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
1220          GVEntry = &GV;
1221      }
1222    }
1223  }
1224
1225  std::vector<const GlobalValue*> NonCanonicalGlobals;
1226  for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1227    Module &M = *Modules[m];
1228    for (const auto &GV : M.globals()) {
1229      // In the multi-module case, see what this global maps to.
1230      if (!LinkedGlobalsMap.empty()) {
1231        if (const GlobalValue *GVEntry =
1232              LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) {
1233          // If something else is the canonical global, ignore this one.
1234          if (GVEntry != &GV) {
1235            NonCanonicalGlobals.push_back(&GV);
1236            continue;
1237          }
1238        }
1239      }
1240
1241      if (!GV.isDeclaration()) {
1242        addGlobalMapping(&GV, getMemoryForGV(&GV));
1243      } else {
1244        // External variable reference. Try to use the dynamic loader to
1245        // get a pointer to it.
1246        if (void *SymAddr =
1247            sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName()))
1248          addGlobalMapping(&GV, SymAddr);
1249        else {
1250          report_fatal_error("Could not resolve external global address: "
1251                            +GV.getName());
1252        }
1253      }
1254    }
1255
1256    // If there are multiple modules, map the non-canonical globals to their
1257    // canonical location.
1258    if (!NonCanonicalGlobals.empty()) {
1259      for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
1260        const GlobalValue *GV = NonCanonicalGlobals[i];
1261        const GlobalValue *CGV =
1262          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1263        void *Ptr = getPointerToGlobalIfAvailable(CGV);
1264        assert(Ptr && "Canonical global wasn't codegen'd!");
1265        addGlobalMapping(GV, Ptr);
1266      }
1267    }
1268
1269    // Now that all of the globals are set up in memory, loop through them all
1270    // and initialize their contents.
1271    for (const auto &GV : M.globals()) {
1272      if (!GV.isDeclaration()) {
1273        if (!LinkedGlobalsMap.empty()) {
1274          if (const GlobalValue *GVEntry =
1275                LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())])
1276            if (GVEntry != &GV)  // Not the canonical variable.
1277              continue;
1278        }
1279        EmitGlobalVariable(&GV);
1280      }
1281    }
1282  }
1283}
1284
1285// EmitGlobalVariable - This method emits the specified global variable to the
1286// address specified in GlobalAddresses, or allocates new memory if it's not
1287// already in the map.
1288void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
1289  void *GA = getPointerToGlobalIfAvailable(GV);
1290
1291  if (!GA) {
1292    // If it's not already specified, allocate memory for the global.
1293    GA = getMemoryForGV(GV);
1294
1295    // If we failed to allocate memory for this global, return.
1296    if (!GA) return;
1297
1298    addGlobalMapping(GV, GA);
1299  }
1300
1301  // Don't initialize if it's thread local, let the client do it.
1302  if (!GV->isThreadLocal())
1303    InitializeMemory(GV->getInitializer(), GA);
1304
1305  Type *ElTy = GV->getValueType();
1306  size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy);
1307  NumInitBytes += (unsigned)GVSize;
1308  ++NumGlobals;
1309}
1310