TailDuplicator.cpp revision 341825
1//===- TailDuplicator.cpp - Duplicate blocks into predecessors' tails -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This utility class duplicates basic blocks ending in unconditional branches
11// into the tails of their predecessors.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/CodeGen/TailDuplicator.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SetVector.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/MachineBasicBlock.h"
24#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineInstr.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineOperand.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/MachineSSAUpdater.h"
31#include "llvm/CodeGen/TargetInstrInfo.h"
32#include "llvm/CodeGen/TargetRegisterInfo.h"
33#include "llvm/CodeGen/TargetSubtargetInfo.h"
34#include "llvm/IR/DebugLoc.h"
35#include "llvm/IR/Function.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/raw_ostream.h"
40#include "llvm/Target/TargetMachine.h"
41#include <algorithm>
42#include <cassert>
43#include <iterator>
44#include <utility>
45
46using namespace llvm;
47
48#define DEBUG_TYPE "tailduplication"
49
50STATISTIC(NumTails, "Number of tails duplicated");
51STATISTIC(NumTailDups, "Number of tail duplicated blocks");
52STATISTIC(NumTailDupAdded,
53          "Number of instructions added due to tail duplication");
54STATISTIC(NumTailDupRemoved,
55          "Number of instructions removed due to tail duplication");
56STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
57STATISTIC(NumAddedPHIs, "Number of phis added");
58
59// Heuristic for tail duplication.
60static cl::opt<unsigned> TailDuplicateSize(
61    "tail-dup-size",
62    cl::desc("Maximum instructions to consider tail duplicating"), cl::init(2),
63    cl::Hidden);
64
65static cl::opt<unsigned> TailDupIndirectBranchSize(
66    "tail-dup-indirect-size",
67    cl::desc("Maximum instructions to consider tail duplicating blocks that "
68             "end with indirect branches."), cl::init(20),
69    cl::Hidden);
70
71static cl::opt<bool>
72    TailDupVerify("tail-dup-verify",
73                  cl::desc("Verify sanity of PHI instructions during taildup"),
74                  cl::init(false), cl::Hidden);
75
76static cl::opt<unsigned> TailDupLimit("tail-dup-limit", cl::init(~0U),
77                                      cl::Hidden);
78
79void TailDuplicator::initMF(MachineFunction &MFin, bool PreRegAlloc,
80                            const MachineBranchProbabilityInfo *MBPIin,
81                            bool LayoutModeIn, unsigned TailDupSizeIn) {
82  MF = &MFin;
83  TII = MF->getSubtarget().getInstrInfo();
84  TRI = MF->getSubtarget().getRegisterInfo();
85  MRI = &MF->getRegInfo();
86  MMI = &MF->getMMI();
87  MBPI = MBPIin;
88  TailDupSize = TailDupSizeIn;
89
90  assert(MBPI != nullptr && "Machine Branch Probability Info required");
91
92  LayoutMode = LayoutModeIn;
93  this->PreRegAlloc = PreRegAlloc;
94}
95
96static void VerifyPHIs(MachineFunction &MF, bool CheckExtra) {
97  for (MachineFunction::iterator I = ++MF.begin(), E = MF.end(); I != E; ++I) {
98    MachineBasicBlock *MBB = &*I;
99    SmallSetVector<MachineBasicBlock *, 8> Preds(MBB->pred_begin(),
100                                                 MBB->pred_end());
101    MachineBasicBlock::iterator MI = MBB->begin();
102    while (MI != MBB->end()) {
103      if (!MI->isPHI())
104        break;
105      for (MachineBasicBlock *PredBB : Preds) {
106        bool Found = false;
107        for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
108          MachineBasicBlock *PHIBB = MI->getOperand(i + 1).getMBB();
109          if (PHIBB == PredBB) {
110            Found = true;
111            break;
112          }
113        }
114        if (!Found) {
115          dbgs() << "Malformed PHI in " << printMBBReference(*MBB) << ": "
116                 << *MI;
117          dbgs() << "  missing input from predecessor "
118                 << printMBBReference(*PredBB) << '\n';
119          llvm_unreachable(nullptr);
120        }
121      }
122
123      for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
124        MachineBasicBlock *PHIBB = MI->getOperand(i + 1).getMBB();
125        if (CheckExtra && !Preds.count(PHIBB)) {
126          dbgs() << "Warning: malformed PHI in " << printMBBReference(*MBB)
127                 << ": " << *MI;
128          dbgs() << "  extra input from predecessor "
129                 << printMBBReference(*PHIBB) << '\n';
130          llvm_unreachable(nullptr);
131        }
132        if (PHIBB->getNumber() < 0) {
133          dbgs() << "Malformed PHI in " << printMBBReference(*MBB) << ": "
134                 << *MI;
135          dbgs() << "  non-existing " << printMBBReference(*PHIBB) << '\n';
136          llvm_unreachable(nullptr);
137        }
138      }
139      ++MI;
140    }
141  }
142}
143
144/// Tail duplicate the block and cleanup.
145/// \p IsSimple - return value of isSimpleBB
146/// \p MBB - block to be duplicated
147/// \p ForcedLayoutPred - If non-null, treat this block as the layout
148///     predecessor, instead of using the ordering in MF
149/// \p DuplicatedPreds - if non-null, \p DuplicatedPreds will contain a list of
150///     all Preds that received a copy of \p MBB.
151/// \p RemovalCallback - if non-null, called just before MBB is deleted.
152bool TailDuplicator::tailDuplicateAndUpdate(
153    bool IsSimple, MachineBasicBlock *MBB,
154    MachineBasicBlock *ForcedLayoutPred,
155    SmallVectorImpl<MachineBasicBlock*> *DuplicatedPreds,
156    function_ref<void(MachineBasicBlock *)> *RemovalCallback) {
157  // Save the successors list.
158  SmallSetVector<MachineBasicBlock *, 8> Succs(MBB->succ_begin(),
159                                               MBB->succ_end());
160
161  SmallVector<MachineBasicBlock *, 8> TDBBs;
162  SmallVector<MachineInstr *, 16> Copies;
163  if (!tailDuplicate(IsSimple, MBB, ForcedLayoutPred, TDBBs, Copies))
164    return false;
165
166  ++NumTails;
167
168  SmallVector<MachineInstr *, 8> NewPHIs;
169  MachineSSAUpdater SSAUpdate(*MF, &NewPHIs);
170
171  // TailBB's immediate successors are now successors of those predecessors
172  // which duplicated TailBB. Add the predecessors as sources to the PHI
173  // instructions.
174  bool isDead = MBB->pred_empty() && !MBB->hasAddressTaken();
175  if (PreRegAlloc)
176    updateSuccessorsPHIs(MBB, isDead, TDBBs, Succs);
177
178  // If it is dead, remove it.
179  if (isDead) {
180    NumTailDupRemoved += MBB->size();
181    removeDeadBlock(MBB, RemovalCallback);
182    ++NumDeadBlocks;
183  }
184
185  // Update SSA form.
186  if (!SSAUpdateVRs.empty()) {
187    for (unsigned i = 0, e = SSAUpdateVRs.size(); i != e; ++i) {
188      unsigned VReg = SSAUpdateVRs[i];
189      SSAUpdate.Initialize(VReg);
190
191      // If the original definition is still around, add it as an available
192      // value.
193      MachineInstr *DefMI = MRI->getVRegDef(VReg);
194      MachineBasicBlock *DefBB = nullptr;
195      if (DefMI) {
196        DefBB = DefMI->getParent();
197        SSAUpdate.AddAvailableValue(DefBB, VReg);
198      }
199
200      // Add the new vregs as available values.
201      DenseMap<unsigned, AvailableValsTy>::iterator LI =
202          SSAUpdateVals.find(VReg);
203      for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) {
204        MachineBasicBlock *SrcBB = LI->second[j].first;
205        unsigned SrcReg = LI->second[j].second;
206        SSAUpdate.AddAvailableValue(SrcBB, SrcReg);
207      }
208
209      // Rewrite uses that are outside of the original def's block.
210      MachineRegisterInfo::use_iterator UI = MRI->use_begin(VReg);
211      while (UI != MRI->use_end()) {
212        MachineOperand &UseMO = *UI;
213        MachineInstr *UseMI = UseMO.getParent();
214        ++UI;
215        if (UseMI->isDebugValue()) {
216          // SSAUpdate can replace the use with an undef. That creates
217          // a debug instruction that is a kill.
218          // FIXME: Should it SSAUpdate job to delete debug instructions
219          // instead of replacing the use with undef?
220          UseMI->eraseFromParent();
221          continue;
222        }
223        if (UseMI->getParent() == DefBB && !UseMI->isPHI())
224          continue;
225        SSAUpdate.RewriteUse(UseMO);
226      }
227    }
228
229    SSAUpdateVRs.clear();
230    SSAUpdateVals.clear();
231  }
232
233  // Eliminate some of the copies inserted by tail duplication to maintain
234  // SSA form.
235  for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
236    MachineInstr *Copy = Copies[i];
237    if (!Copy->isCopy())
238      continue;
239    unsigned Dst = Copy->getOperand(0).getReg();
240    unsigned Src = Copy->getOperand(1).getReg();
241    if (MRI->hasOneNonDBGUse(Src) &&
242        MRI->constrainRegClass(Src, MRI->getRegClass(Dst))) {
243      // Copy is the only use. Do trivial copy propagation here.
244      MRI->replaceRegWith(Dst, Src);
245      Copy->eraseFromParent();
246    }
247  }
248
249  if (NewPHIs.size())
250    NumAddedPHIs += NewPHIs.size();
251
252  if (DuplicatedPreds)
253    *DuplicatedPreds = std::move(TDBBs);
254
255  return true;
256}
257
258/// Look for small blocks that are unconditionally branched to and do not fall
259/// through. Tail-duplicate their instructions into their predecessors to
260/// eliminate (dynamic) branches.
261bool TailDuplicator::tailDuplicateBlocks() {
262  bool MadeChange = false;
263
264  if (PreRegAlloc && TailDupVerify) {
265    LLVM_DEBUG(dbgs() << "\n*** Before tail-duplicating\n");
266    VerifyPHIs(*MF, true);
267  }
268
269  for (MachineFunction::iterator I = ++MF->begin(), E = MF->end(); I != E;) {
270    MachineBasicBlock *MBB = &*I++;
271
272    if (NumTails == TailDupLimit)
273      break;
274
275    bool IsSimple = isSimpleBB(MBB);
276
277    if (!shouldTailDuplicate(IsSimple, *MBB))
278      continue;
279
280    MadeChange |= tailDuplicateAndUpdate(IsSimple, MBB, nullptr);
281  }
282
283  if (PreRegAlloc && TailDupVerify)
284    VerifyPHIs(*MF, false);
285
286  return MadeChange;
287}
288
289static bool isDefLiveOut(unsigned Reg, MachineBasicBlock *BB,
290                         const MachineRegisterInfo *MRI) {
291  for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
292    if (UseMI.isDebugValue())
293      continue;
294    if (UseMI.getParent() != BB)
295      return true;
296  }
297  return false;
298}
299
300static unsigned getPHISrcRegOpIdx(MachineInstr *MI, MachineBasicBlock *SrcBB) {
301  for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2)
302    if (MI->getOperand(i + 1).getMBB() == SrcBB)
303      return i;
304  return 0;
305}
306
307// Remember which registers are used by phis in this block. This is
308// used to determine which registers are liveout while modifying the
309// block (which is why we need to copy the information).
310static void getRegsUsedByPHIs(const MachineBasicBlock &BB,
311                              DenseSet<unsigned> *UsedByPhi) {
312  for (const auto &MI : BB) {
313    if (!MI.isPHI())
314      break;
315    for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
316      unsigned SrcReg = MI.getOperand(i).getReg();
317      UsedByPhi->insert(SrcReg);
318    }
319  }
320}
321
322/// Add a definition and source virtual registers pair for SSA update.
323void TailDuplicator::addSSAUpdateEntry(unsigned OrigReg, unsigned NewReg,
324                                       MachineBasicBlock *BB) {
325  DenseMap<unsigned, AvailableValsTy>::iterator LI =
326      SSAUpdateVals.find(OrigReg);
327  if (LI != SSAUpdateVals.end())
328    LI->second.push_back(std::make_pair(BB, NewReg));
329  else {
330    AvailableValsTy Vals;
331    Vals.push_back(std::make_pair(BB, NewReg));
332    SSAUpdateVals.insert(std::make_pair(OrigReg, Vals));
333    SSAUpdateVRs.push_back(OrigReg);
334  }
335}
336
337/// Process PHI node in TailBB by turning it into a copy in PredBB. Remember the
338/// source register that's contributed by PredBB and update SSA update map.
339void TailDuplicator::processPHI(
340    MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB,
341    DenseMap<unsigned, RegSubRegPair> &LocalVRMap,
342    SmallVectorImpl<std::pair<unsigned, RegSubRegPair>> &Copies,
343    const DenseSet<unsigned> &RegsUsedByPhi, bool Remove) {
344  unsigned DefReg = MI->getOperand(0).getReg();
345  unsigned SrcOpIdx = getPHISrcRegOpIdx(MI, PredBB);
346  assert(SrcOpIdx && "Unable to find matching PHI source?");
347  unsigned SrcReg = MI->getOperand(SrcOpIdx).getReg();
348  unsigned SrcSubReg = MI->getOperand(SrcOpIdx).getSubReg();
349  const TargetRegisterClass *RC = MRI->getRegClass(DefReg);
350  LocalVRMap.insert(std::make_pair(DefReg, RegSubRegPair(SrcReg, SrcSubReg)));
351
352  // Insert a copy from source to the end of the block. The def register is the
353  // available value liveout of the block.
354  unsigned NewDef = MRI->createVirtualRegister(RC);
355  Copies.push_back(std::make_pair(NewDef, RegSubRegPair(SrcReg, SrcSubReg)));
356  if (isDefLiveOut(DefReg, TailBB, MRI) || RegsUsedByPhi.count(DefReg))
357    addSSAUpdateEntry(DefReg, NewDef, PredBB);
358
359  if (!Remove)
360    return;
361
362  // Remove PredBB from the PHI node.
363  MI->RemoveOperand(SrcOpIdx + 1);
364  MI->RemoveOperand(SrcOpIdx);
365  if (MI->getNumOperands() == 1)
366    MI->eraseFromParent();
367}
368
369/// Duplicate a TailBB instruction to PredBB and update
370/// the source operands due to earlier PHI translation.
371void TailDuplicator::duplicateInstruction(
372    MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB,
373    DenseMap<unsigned, RegSubRegPair> &LocalVRMap,
374    const DenseSet<unsigned> &UsedByPhi) {
375  // Allow duplication of CFI instructions.
376  if (MI->isCFIInstruction()) {
377    BuildMI(*PredBB, PredBB->end(), PredBB->findDebugLoc(PredBB->begin()),
378      TII->get(TargetOpcode::CFI_INSTRUCTION)).addCFIIndex(
379      MI->getOperand(0).getCFIIndex());
380    return;
381  }
382  MachineInstr &NewMI = TII->duplicate(*PredBB, PredBB->end(), *MI);
383  if (PreRegAlloc) {
384    for (unsigned i = 0, e = NewMI.getNumOperands(); i != e; ++i) {
385      MachineOperand &MO = NewMI.getOperand(i);
386      if (!MO.isReg())
387        continue;
388      unsigned Reg = MO.getReg();
389      if (!TargetRegisterInfo::isVirtualRegister(Reg))
390        continue;
391      if (MO.isDef()) {
392        const TargetRegisterClass *RC = MRI->getRegClass(Reg);
393        unsigned NewReg = MRI->createVirtualRegister(RC);
394        MO.setReg(NewReg);
395        LocalVRMap.insert(std::make_pair(Reg, RegSubRegPair(NewReg, 0)));
396        if (isDefLiveOut(Reg, TailBB, MRI) || UsedByPhi.count(Reg))
397          addSSAUpdateEntry(Reg, NewReg, PredBB);
398      } else {
399        auto VI = LocalVRMap.find(Reg);
400        if (VI != LocalVRMap.end()) {
401          // Need to make sure that the register class of the mapped register
402          // will satisfy the constraints of the class of the register being
403          // replaced.
404          auto *OrigRC = MRI->getRegClass(Reg);
405          auto *MappedRC = MRI->getRegClass(VI->second.Reg);
406          const TargetRegisterClass *ConstrRC;
407          if (VI->second.SubReg != 0) {
408            ConstrRC = TRI->getMatchingSuperRegClass(MappedRC, OrigRC,
409                                                     VI->second.SubReg);
410            if (ConstrRC) {
411              // The actual constraining (as in "find appropriate new class")
412              // is done by getMatchingSuperRegClass, so now we only need to
413              // change the class of the mapped register.
414              MRI->setRegClass(VI->second.Reg, ConstrRC);
415            }
416          } else {
417            // For mapped registers that do not have sub-registers, simply
418            // restrict their class to match the original one.
419            ConstrRC = MRI->constrainRegClass(VI->second.Reg, OrigRC);
420          }
421
422          if (ConstrRC) {
423            // If the class constraining succeeded, we can simply replace
424            // the old register with the mapped one.
425            MO.setReg(VI->second.Reg);
426            // We have Reg -> VI.Reg:VI.SubReg, so if Reg is used with a
427            // sub-register, we need to compose the sub-register indices.
428            MO.setSubReg(TRI->composeSubRegIndices(MO.getSubReg(),
429                                                   VI->second.SubReg));
430          } else {
431            // The direct replacement is not possible, due to failing register
432            // class constraints. An explicit COPY is necessary. Create one
433            // that can be reused
434            auto *NewRC = MI->getRegClassConstraint(i, TII, TRI);
435            if (NewRC == nullptr)
436              NewRC = OrigRC;
437            unsigned NewReg = MRI->createVirtualRegister(NewRC);
438            BuildMI(*PredBB, MI, MI->getDebugLoc(),
439                    TII->get(TargetOpcode::COPY), NewReg)
440                .addReg(VI->second.Reg, 0, VI->second.SubReg);
441            LocalVRMap.erase(VI);
442            LocalVRMap.insert(std::make_pair(Reg, RegSubRegPair(NewReg, 0)));
443            MO.setReg(NewReg);
444            // The composed VI.Reg:VI.SubReg is replaced with NewReg, which
445            // is equivalent to the whole register Reg. Hence, Reg:subreg
446            // is same as NewReg:subreg, so keep the sub-register index
447            // unchanged.
448          }
449          // Clear any kill flags from this operand.  The new register could
450          // have uses after this one, so kills are not valid here.
451          MO.setIsKill(false);
452        }
453      }
454    }
455  }
456}
457
458/// After FromBB is tail duplicated into its predecessor blocks, the successors
459/// have gained new predecessors. Update the PHI instructions in them
460/// accordingly.
461void TailDuplicator::updateSuccessorsPHIs(
462    MachineBasicBlock *FromBB, bool isDead,
463    SmallVectorImpl<MachineBasicBlock *> &TDBBs,
464    SmallSetVector<MachineBasicBlock *, 8> &Succs) {
465  for (MachineBasicBlock *SuccBB : Succs) {
466    for (MachineInstr &MI : *SuccBB) {
467      if (!MI.isPHI())
468        break;
469      MachineInstrBuilder MIB(*FromBB->getParent(), MI);
470      unsigned Idx = 0;
471      for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
472        MachineOperand &MO = MI.getOperand(i + 1);
473        if (MO.getMBB() == FromBB) {
474          Idx = i;
475          break;
476        }
477      }
478
479      assert(Idx != 0);
480      MachineOperand &MO0 = MI.getOperand(Idx);
481      unsigned Reg = MO0.getReg();
482      if (isDead) {
483        // Folded into the previous BB.
484        // There could be duplicate phi source entries. FIXME: Should sdisel
485        // or earlier pass fixed this?
486        for (unsigned i = MI.getNumOperands() - 2; i != Idx; i -= 2) {
487          MachineOperand &MO = MI.getOperand(i + 1);
488          if (MO.getMBB() == FromBB) {
489            MI.RemoveOperand(i + 1);
490            MI.RemoveOperand(i);
491          }
492        }
493      } else
494        Idx = 0;
495
496      // If Idx is set, the operands at Idx and Idx+1 must be removed.
497      // We reuse the location to avoid expensive RemoveOperand calls.
498
499      DenseMap<unsigned, AvailableValsTy>::iterator LI =
500          SSAUpdateVals.find(Reg);
501      if (LI != SSAUpdateVals.end()) {
502        // This register is defined in the tail block.
503        for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) {
504          MachineBasicBlock *SrcBB = LI->second[j].first;
505          // If we didn't duplicate a bb into a particular predecessor, we
506          // might still have added an entry to SSAUpdateVals to correcly
507          // recompute SSA. If that case, avoid adding a dummy extra argument
508          // this PHI.
509          if (!SrcBB->isSuccessor(SuccBB))
510            continue;
511
512          unsigned SrcReg = LI->second[j].second;
513          if (Idx != 0) {
514            MI.getOperand(Idx).setReg(SrcReg);
515            MI.getOperand(Idx + 1).setMBB(SrcBB);
516            Idx = 0;
517          } else {
518            MIB.addReg(SrcReg).addMBB(SrcBB);
519          }
520        }
521      } else {
522        // Live in tail block, must also be live in predecessors.
523        for (unsigned j = 0, ee = TDBBs.size(); j != ee; ++j) {
524          MachineBasicBlock *SrcBB = TDBBs[j];
525          if (Idx != 0) {
526            MI.getOperand(Idx).setReg(Reg);
527            MI.getOperand(Idx + 1).setMBB(SrcBB);
528            Idx = 0;
529          } else {
530            MIB.addReg(Reg).addMBB(SrcBB);
531          }
532        }
533      }
534      if (Idx != 0) {
535        MI.RemoveOperand(Idx + 1);
536        MI.RemoveOperand(Idx);
537      }
538    }
539  }
540}
541
542/// Determine if it is profitable to duplicate this block.
543bool TailDuplicator::shouldTailDuplicate(bool IsSimple,
544                                         MachineBasicBlock &TailBB) {
545  // When doing tail-duplication during layout, the block ordering is in flux,
546  // so canFallThrough returns a result based on incorrect information and
547  // should just be ignored.
548  if (!LayoutMode && TailBB.canFallThrough())
549    return false;
550
551  // Don't try to tail-duplicate single-block loops.
552  if (TailBB.isSuccessor(&TailBB))
553    return false;
554
555  // Set the limit on the cost to duplicate. When optimizing for size,
556  // duplicate only one, because one branch instruction can be eliminated to
557  // compensate for the duplication.
558  unsigned MaxDuplicateCount;
559  if (TailDupSize == 0 &&
560      TailDuplicateSize.getNumOccurrences() == 0 &&
561      MF->getFunction().optForSize())
562    MaxDuplicateCount = 1;
563  else if (TailDupSize == 0)
564    MaxDuplicateCount = TailDuplicateSize;
565  else
566    MaxDuplicateCount = TailDupSize;
567
568  // If the block to be duplicated ends in an unanalyzable fallthrough, don't
569  // duplicate it.
570  // A similar check is necessary in MachineBlockPlacement to make sure pairs of
571  // blocks with unanalyzable fallthrough get layed out contiguously.
572  MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
573  SmallVector<MachineOperand, 4> PredCond;
574  if (TII->analyzeBranch(TailBB, PredTBB, PredFBB, PredCond) &&
575      TailBB.canFallThrough())
576    return false;
577
578  // If the target has hardware branch prediction that can handle indirect
579  // branches, duplicating them can often make them predictable when there
580  // are common paths through the code.  The limit needs to be high enough
581  // to allow undoing the effects of tail merging and other optimizations
582  // that rearrange the predecessors of the indirect branch.
583
584  bool HasIndirectbr = false;
585  if (!TailBB.empty())
586    HasIndirectbr = TailBB.back().isIndirectBranch();
587
588  if (HasIndirectbr && PreRegAlloc)
589    MaxDuplicateCount = TailDupIndirectBranchSize;
590
591  // Check the instructions in the block to determine whether tail-duplication
592  // is invalid or unlikely to be profitable.
593  unsigned InstrCount = 0;
594  for (MachineInstr &MI : TailBB) {
595    // Non-duplicable things shouldn't be tail-duplicated.
596    // CFI instructions are marked as non-duplicable, because Darwin compact
597    // unwind info emission can't handle multiple prologue setups. In case of
598    // DWARF, allow them be duplicated, so that their existence doesn't prevent
599    // tail duplication of some basic blocks, that would be duplicated otherwise.
600    if (MI.isNotDuplicable() &&
601        (TailBB.getParent()->getTarget().getTargetTriple().isOSDarwin() ||
602        !MI.isCFIInstruction()))
603      return false;
604
605    // Convergent instructions can be duplicated only if doing so doesn't add
606    // new control dependencies, which is what we're going to do here.
607    if (MI.isConvergent())
608      return false;
609
610    // Do not duplicate 'return' instructions if this is a pre-regalloc run.
611    // A return may expand into a lot more instructions (e.g. reload of callee
612    // saved registers) after PEI.
613    if (PreRegAlloc && MI.isReturn())
614      return false;
615
616    // Avoid duplicating calls before register allocation. Calls presents a
617    // barrier to register allocation so duplicating them may end up increasing
618    // spills.
619    if (PreRegAlloc && MI.isCall())
620      return false;
621
622    if (!MI.isPHI() && !MI.isMetaInstruction())
623      InstrCount += 1;
624
625    if (InstrCount > MaxDuplicateCount)
626      return false;
627  }
628
629  // Check if any of the successors of TailBB has a PHI node in which the
630  // value corresponding to TailBB uses a subregister.
631  // If a phi node uses a register paired with a subregister, the actual
632  // "value type" of the phi may differ from the type of the register without
633  // any subregisters. Due to a bug, tail duplication may add a new operand
634  // without a necessary subregister, producing an invalid code. This is
635  // demonstrated by test/CodeGen/Hexagon/tail-dup-subreg-abort.ll.
636  // Disable tail duplication for this case for now, until the problem is
637  // fixed.
638  for (auto SB : TailBB.successors()) {
639    for (auto &I : *SB) {
640      if (!I.isPHI())
641        break;
642      unsigned Idx = getPHISrcRegOpIdx(&I, &TailBB);
643      assert(Idx != 0);
644      MachineOperand &PU = I.getOperand(Idx);
645      if (PU.getSubReg() != 0)
646        return false;
647    }
648  }
649
650  if (HasIndirectbr && PreRegAlloc)
651    return true;
652
653  if (IsSimple)
654    return true;
655
656  if (!PreRegAlloc)
657    return true;
658
659  return canCompletelyDuplicateBB(TailBB);
660}
661
662/// True if this BB has only one unconditional jump.
663bool TailDuplicator::isSimpleBB(MachineBasicBlock *TailBB) {
664  if (TailBB->succ_size() != 1)
665    return false;
666  if (TailBB->pred_empty())
667    return false;
668  MachineBasicBlock::iterator I = TailBB->getFirstNonDebugInstr();
669  if (I == TailBB->end())
670    return true;
671  return I->isUnconditionalBranch();
672}
673
674static bool bothUsedInPHI(const MachineBasicBlock &A,
675                          const SmallPtrSet<MachineBasicBlock *, 8> &SuccsB) {
676  for (MachineBasicBlock *BB : A.successors())
677    if (SuccsB.count(BB) && !BB->empty() && BB->begin()->isPHI())
678      return true;
679
680  return false;
681}
682
683bool TailDuplicator::canCompletelyDuplicateBB(MachineBasicBlock &BB) {
684  for (MachineBasicBlock *PredBB : BB.predecessors()) {
685    if (PredBB->succ_size() > 1)
686      return false;
687
688    MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
689    SmallVector<MachineOperand, 4> PredCond;
690    if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
691      return false;
692
693    if (!PredCond.empty())
694      return false;
695  }
696  return true;
697}
698
699bool TailDuplicator::duplicateSimpleBB(
700    MachineBasicBlock *TailBB, SmallVectorImpl<MachineBasicBlock *> &TDBBs,
701    const DenseSet<unsigned> &UsedByPhi,
702    SmallVectorImpl<MachineInstr *> &Copies) {
703  SmallPtrSet<MachineBasicBlock *, 8> Succs(TailBB->succ_begin(),
704                                            TailBB->succ_end());
705  SmallVector<MachineBasicBlock *, 8> Preds(TailBB->pred_begin(),
706                                            TailBB->pred_end());
707  bool Changed = false;
708  for (MachineBasicBlock *PredBB : Preds) {
709    if (PredBB->hasEHPadSuccessor())
710      continue;
711
712    if (bothUsedInPHI(*PredBB, Succs))
713      continue;
714
715    MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
716    SmallVector<MachineOperand, 4> PredCond;
717    if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
718      continue;
719
720    Changed = true;
721    LLVM_DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
722                      << "From simple Succ: " << *TailBB);
723
724    MachineBasicBlock *NewTarget = *TailBB->succ_begin();
725    MachineBasicBlock *NextBB = PredBB->getNextNode();
726
727    // Make PredFBB explicit.
728    if (PredCond.empty())
729      PredFBB = PredTBB;
730
731    // Make fall through explicit.
732    if (!PredTBB)
733      PredTBB = NextBB;
734    if (!PredFBB)
735      PredFBB = NextBB;
736
737    // Redirect
738    if (PredFBB == TailBB)
739      PredFBB = NewTarget;
740    if (PredTBB == TailBB)
741      PredTBB = NewTarget;
742
743    // Make the branch unconditional if possible
744    if (PredTBB == PredFBB) {
745      PredCond.clear();
746      PredFBB = nullptr;
747    }
748
749    // Avoid adding fall through branches.
750    if (PredFBB == NextBB)
751      PredFBB = nullptr;
752    if (PredTBB == NextBB && PredFBB == nullptr)
753      PredTBB = nullptr;
754
755    auto DL = PredBB->findBranchDebugLoc();
756    TII->removeBranch(*PredBB);
757
758    if (!PredBB->isSuccessor(NewTarget))
759      PredBB->replaceSuccessor(TailBB, NewTarget);
760    else {
761      PredBB->removeSuccessor(TailBB, true);
762      assert(PredBB->succ_size() <= 1);
763    }
764
765    if (PredTBB)
766      TII->insertBranch(*PredBB, PredTBB, PredFBB, PredCond, DL);
767
768    TDBBs.push_back(PredBB);
769  }
770  return Changed;
771}
772
773bool TailDuplicator::canTailDuplicate(MachineBasicBlock *TailBB,
774                                      MachineBasicBlock *PredBB) {
775  // EH edges are ignored by analyzeBranch.
776  if (PredBB->succ_size() > 1)
777    return false;
778
779  MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
780  SmallVector<MachineOperand, 4> PredCond;
781  if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
782    return false;
783  if (!PredCond.empty())
784    return false;
785  return true;
786}
787
788/// If it is profitable, duplicate TailBB's contents in each
789/// of its predecessors.
790/// \p IsSimple result of isSimpleBB
791/// \p TailBB   Block to be duplicated.
792/// \p ForcedLayoutPred  When non-null, use this block as the layout predecessor
793///                      instead of the previous block in MF's order.
794/// \p TDBBs             A vector to keep track of all blocks tail-duplicated
795///                      into.
796/// \p Copies            A vector of copy instructions inserted. Used later to
797///                      walk all the inserted copies and remove redundant ones.
798bool TailDuplicator::tailDuplicate(bool IsSimple, MachineBasicBlock *TailBB,
799                                   MachineBasicBlock *ForcedLayoutPred,
800                                   SmallVectorImpl<MachineBasicBlock *> &TDBBs,
801                                   SmallVectorImpl<MachineInstr *> &Copies) {
802  LLVM_DEBUG(dbgs() << "\n*** Tail-duplicating " << printMBBReference(*TailBB)
803                    << '\n');
804
805  DenseSet<unsigned> UsedByPhi;
806  getRegsUsedByPHIs(*TailBB, &UsedByPhi);
807
808  if (IsSimple)
809    return duplicateSimpleBB(TailBB, TDBBs, UsedByPhi, Copies);
810
811  // Iterate through all the unique predecessors and tail-duplicate this
812  // block into them, if possible. Copying the list ahead of time also
813  // avoids trouble with the predecessor list reallocating.
814  bool Changed = false;
815  SmallSetVector<MachineBasicBlock *, 8> Preds(TailBB->pred_begin(),
816                                               TailBB->pred_end());
817  for (MachineBasicBlock *PredBB : Preds) {
818    assert(TailBB != PredBB &&
819           "Single-block loop should have been rejected earlier!");
820
821    if (!canTailDuplicate(TailBB, PredBB))
822      continue;
823
824    // Don't duplicate into a fall-through predecessor (at least for now).
825    bool IsLayoutSuccessor = false;
826    if (ForcedLayoutPred)
827      IsLayoutSuccessor = (ForcedLayoutPred == PredBB);
828    else if (PredBB->isLayoutSuccessor(TailBB) && PredBB->canFallThrough())
829      IsLayoutSuccessor = true;
830    if (IsLayoutSuccessor)
831      continue;
832
833    LLVM_DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
834                      << "From Succ: " << *TailBB);
835
836    TDBBs.push_back(PredBB);
837
838    // Remove PredBB's unconditional branch.
839    TII->removeBranch(*PredBB);
840
841    // Clone the contents of TailBB into PredBB.
842    DenseMap<unsigned, RegSubRegPair> LocalVRMap;
843    SmallVector<std::pair<unsigned, RegSubRegPair>, 4> CopyInfos;
844    for (MachineBasicBlock::iterator I = TailBB->begin(), E = TailBB->end();
845         I != E; /* empty */) {
846      MachineInstr *MI = &*I;
847      ++I;
848      if (MI->isPHI()) {
849        // Replace the uses of the def of the PHI with the register coming
850        // from PredBB.
851        processPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, true);
852      } else {
853        // Replace def of virtual registers with new registers, and update
854        // uses with PHI source register or the new registers.
855        duplicateInstruction(MI, TailBB, PredBB, LocalVRMap, UsedByPhi);
856      }
857    }
858    appendCopies(PredBB, CopyInfos, Copies);
859
860    // Simplify
861    MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
862    SmallVector<MachineOperand, 4> PredCond;
863    TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond);
864
865    NumTailDupAdded += TailBB->size() - 1; // subtract one for removed branch
866
867    // Update the CFG.
868    PredBB->removeSuccessor(PredBB->succ_begin());
869    assert(PredBB->succ_empty() &&
870           "TailDuplicate called on block with multiple successors!");
871    for (MachineBasicBlock *Succ : TailBB->successors())
872      PredBB->addSuccessor(Succ, MBPI->getEdgeProbability(TailBB, Succ));
873
874    Changed = true;
875    ++NumTailDups;
876  }
877
878  // If TailBB was duplicated into all its predecessors except for the prior
879  // block, which falls through unconditionally, move the contents of this
880  // block into the prior block.
881  MachineBasicBlock *PrevBB = ForcedLayoutPred;
882  if (!PrevBB)
883    PrevBB = &*std::prev(TailBB->getIterator());
884  MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
885  SmallVector<MachineOperand, 4> PriorCond;
886  // This has to check PrevBB->succ_size() because EH edges are ignored by
887  // analyzeBranch.
888  if (PrevBB->succ_size() == 1 &&
889      // Layout preds are not always CFG preds. Check.
890      *PrevBB->succ_begin() == TailBB &&
891      !TII->analyzeBranch(*PrevBB, PriorTBB, PriorFBB, PriorCond) &&
892      PriorCond.empty() &&
893      (!PriorTBB || PriorTBB == TailBB) &&
894      TailBB->pred_size() == 1 &&
895      !TailBB->hasAddressTaken()) {
896    LLVM_DEBUG(dbgs() << "\nMerging into block: " << *PrevBB
897                      << "From MBB: " << *TailBB);
898    // There may be a branch to the layout successor. This is unlikely but it
899    // happens. The correct thing to do is to remove the branch before
900    // duplicating the instructions in all cases.
901    TII->removeBranch(*PrevBB);
902    if (PreRegAlloc) {
903      DenseMap<unsigned, RegSubRegPair> LocalVRMap;
904      SmallVector<std::pair<unsigned, RegSubRegPair>, 4> CopyInfos;
905      MachineBasicBlock::iterator I = TailBB->begin();
906      // Process PHI instructions first.
907      while (I != TailBB->end() && I->isPHI()) {
908        // Replace the uses of the def of the PHI with the register coming
909        // from PredBB.
910        MachineInstr *MI = &*I++;
911        processPHI(MI, TailBB, PrevBB, LocalVRMap, CopyInfos, UsedByPhi, true);
912      }
913
914      // Now copy the non-PHI instructions.
915      while (I != TailBB->end()) {
916        // Replace def of virtual registers with new registers, and update
917        // uses with PHI source register or the new registers.
918        MachineInstr *MI = &*I++;
919        assert(!MI->isBundle() && "Not expecting bundles before regalloc!");
920        duplicateInstruction(MI, TailBB, PrevBB, LocalVRMap, UsedByPhi);
921        MI->eraseFromParent();
922      }
923      appendCopies(PrevBB, CopyInfos, Copies);
924    } else {
925      TII->removeBranch(*PrevBB);
926      // No PHIs to worry about, just splice the instructions over.
927      PrevBB->splice(PrevBB->end(), TailBB, TailBB->begin(), TailBB->end());
928    }
929    PrevBB->removeSuccessor(PrevBB->succ_begin());
930    assert(PrevBB->succ_empty());
931    PrevBB->transferSuccessors(TailBB);
932    TDBBs.push_back(PrevBB);
933    Changed = true;
934  }
935
936  // If this is after register allocation, there are no phis to fix.
937  if (!PreRegAlloc)
938    return Changed;
939
940  // If we made no changes so far, we are safe.
941  if (!Changed)
942    return Changed;
943
944  // Handle the nasty case in that we duplicated a block that is part of a loop
945  // into some but not all of its predecessors. For example:
946  //    1 -> 2 <-> 3                 |
947  //          \                      |
948  //           \---> rest            |
949  // if we duplicate 2 into 1 but not into 3, we end up with
950  // 12 -> 3 <-> 2 -> rest           |
951  //   \             /               |
952  //    \----->-----/                |
953  // If there was a "var = phi(1, 3)" in 2, it has to be ultimately replaced
954  // with a phi in 3 (which now dominates 2).
955  // What we do here is introduce a copy in 3 of the register defined by the
956  // phi, just like when we are duplicating 2 into 3, but we don't copy any
957  // real instructions or remove the 3 -> 2 edge from the phi in 2.
958  for (MachineBasicBlock *PredBB : Preds) {
959    if (is_contained(TDBBs, PredBB))
960      continue;
961
962    // EH edges
963    if (PredBB->succ_size() != 1)
964      continue;
965
966    DenseMap<unsigned, RegSubRegPair> LocalVRMap;
967    SmallVector<std::pair<unsigned, RegSubRegPair>, 4> CopyInfos;
968    MachineBasicBlock::iterator I = TailBB->begin();
969    // Process PHI instructions first.
970    while (I != TailBB->end() && I->isPHI()) {
971      // Replace the uses of the def of the PHI with the register coming
972      // from PredBB.
973      MachineInstr *MI = &*I++;
974      processPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, false);
975    }
976    appendCopies(PredBB, CopyInfos, Copies);
977  }
978
979  return Changed;
980}
981
982/// At the end of the block \p MBB generate COPY instructions between registers
983/// described by \p CopyInfos. Append resulting instructions to \p Copies.
984void TailDuplicator::appendCopies(MachineBasicBlock *MBB,
985      SmallVectorImpl<std::pair<unsigned,RegSubRegPair>> &CopyInfos,
986      SmallVectorImpl<MachineInstr*> &Copies) {
987  MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
988  const MCInstrDesc &CopyD = TII->get(TargetOpcode::COPY);
989  for (auto &CI : CopyInfos) {
990    auto C = BuildMI(*MBB, Loc, DebugLoc(), CopyD, CI.first)
991                .addReg(CI.second.Reg, 0, CI.second.SubReg);
992    Copies.push_back(C);
993  }
994}
995
996/// Remove the specified dead machine basic block from the function, updating
997/// the CFG.
998void TailDuplicator::removeDeadBlock(
999    MachineBasicBlock *MBB,
1000    function_ref<void(MachineBasicBlock *)> *RemovalCallback) {
1001  assert(MBB->pred_empty() && "MBB must be dead!");
1002  LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
1003
1004  if (RemovalCallback)
1005    (*RemovalCallback)(MBB);
1006
1007  // Remove all successors.
1008  while (!MBB->succ_empty())
1009    MBB->removeSuccessor(MBB->succ_end() - 1);
1010
1011  // Remove the block.
1012  MBB->eraseFromParent();
1013}
1014