SelectionDAGISel.cpp revision 327952
1//===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAGISel.h"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/APInt.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/PostOrderIterator.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/SmallSet.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/StringRef.h"
27#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/Analysis/BranchProbabilityInfo.h"
29#include "llvm/Analysis/CFG.h"
30#include "llvm/Analysis/OptimizationRemarkEmitter.h"
31#include "llvm/Analysis/TargetLibraryInfo.h"
32#include "llvm/CodeGen/FastISel.h"
33#include "llvm/CodeGen/FunctionLoweringInfo.h"
34#include "llvm/CodeGen/GCMetadata.h"
35#include "llvm/CodeGen/ISDOpcodes.h"
36#include "llvm/CodeGen/MachineBasicBlock.h"
37#include "llvm/CodeGen/MachineFrameInfo.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFunctionPass.h"
40#include "llvm/CodeGen/MachineInstr.h"
41#include "llvm/CodeGen/MachineInstrBuilder.h"
42#include "llvm/CodeGen/MachineMemOperand.h"
43#include "llvm/CodeGen/MachineOperand.h"
44#include "llvm/CodeGen/MachinePassRegistry.h"
45#include "llvm/CodeGen/MachineRegisterInfo.h"
46#include "llvm/CodeGen/MachineValueType.h"
47#include "llvm/CodeGen/SchedulerRegistry.h"
48#include "llvm/CodeGen/SelectionDAG.h"
49#include "llvm/CodeGen/SelectionDAGNodes.h"
50#include "llvm/CodeGen/StackProtector.h"
51#include "llvm/CodeGen/TargetInstrInfo.h"
52#include "llvm/CodeGen/TargetLowering.h"
53#include "llvm/CodeGen/TargetRegisterInfo.h"
54#include "llvm/CodeGen/TargetSubtargetInfo.h"
55#include "llvm/CodeGen/ValueTypes.h"
56#include "llvm/IR/BasicBlock.h"
57#include "llvm/IR/Constants.h"
58#include "llvm/IR/DataLayout.h"
59#include "llvm/IR/DebugInfoMetadata.h"
60#include "llvm/IR/DebugLoc.h"
61#include "llvm/IR/DiagnosticInfo.h"
62#include "llvm/IR/Dominators.h"
63#include "llvm/IR/Function.h"
64#include "llvm/IR/InlineAsm.h"
65#include "llvm/IR/InstrTypes.h"
66#include "llvm/IR/Instruction.h"
67#include "llvm/IR/Instructions.h"
68#include "llvm/IR/IntrinsicInst.h"
69#include "llvm/IR/Intrinsics.h"
70#include "llvm/IR/Metadata.h"
71#include "llvm/IR/Type.h"
72#include "llvm/IR/User.h"
73#include "llvm/IR/Value.h"
74#include "llvm/MC/MCInstrDesc.h"
75#include "llvm/MC/MCRegisterInfo.h"
76#include "llvm/Pass.h"
77#include "llvm/Support/BranchProbability.h"
78#include "llvm/Support/Casting.h"
79#include "llvm/Support/CodeGen.h"
80#include "llvm/Support/CommandLine.h"
81#include "llvm/Support/Compiler.h"
82#include "llvm/Support/Debug.h"
83#include "llvm/Support/ErrorHandling.h"
84#include "llvm/Support/KnownBits.h"
85#include "llvm/Support/Timer.h"
86#include "llvm/Support/raw_ostream.h"
87#include "llvm/Target/TargetIntrinsicInfo.h"
88#include "llvm/Target/TargetMachine.h"
89#include "llvm/Target/TargetOptions.h"
90#include "llvm/Transforms/Utils/BasicBlockUtils.h"
91#include <algorithm>
92#include <cassert>
93#include <cstdint>
94#include <iterator>
95#include <limits>
96#include <memory>
97#include <string>
98#include <utility>
99#include <vector>
100
101using namespace llvm;
102
103#define DEBUG_TYPE "isel"
104
105STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
106STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
107STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
108STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
109STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
110STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
111STATISTIC(NumFastIselFailLowerArguments,
112          "Number of entry blocks where fast isel failed to lower arguments");
113
114static cl::opt<int> EnableFastISelAbort(
115    "fast-isel-abort", cl::Hidden,
116    cl::desc("Enable abort calls when \"fast\" instruction selection "
117             "fails to lower an instruction: 0 disable the abort, 1 will "
118             "abort but for args, calls and terminators, 2 will also "
119             "abort for argument lowering, and 3 will never fallback "
120             "to SelectionDAG."));
121
122static cl::opt<bool> EnableFastISelFallbackReport(
123    "fast-isel-report-on-fallback", cl::Hidden,
124    cl::desc("Emit a diagnostic when \"fast\" instruction selection "
125             "falls back to SelectionDAG."));
126
127static cl::opt<bool>
128UseMBPI("use-mbpi",
129        cl::desc("use Machine Branch Probability Info"),
130        cl::init(true), cl::Hidden);
131
132#ifndef NDEBUG
133static cl::opt<std::string>
134FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
135                        cl::desc("Only display the basic block whose name "
136                                 "matches this for all view-*-dags options"));
137static cl::opt<bool>
138ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
139          cl::desc("Pop up a window to show dags before the first "
140                   "dag combine pass"));
141static cl::opt<bool>
142ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
143          cl::desc("Pop up a window to show dags before legalize types"));
144static cl::opt<bool>
145ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
146          cl::desc("Pop up a window to show dags before legalize"));
147static cl::opt<bool>
148ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
149          cl::desc("Pop up a window to show dags before the second "
150                   "dag combine pass"));
151static cl::opt<bool>
152ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
153          cl::desc("Pop up a window to show dags before the post legalize types"
154                   " dag combine pass"));
155static cl::opt<bool>
156ViewISelDAGs("view-isel-dags", cl::Hidden,
157          cl::desc("Pop up a window to show isel dags as they are selected"));
158static cl::opt<bool>
159ViewSchedDAGs("view-sched-dags", cl::Hidden,
160          cl::desc("Pop up a window to show sched dags as they are processed"));
161static cl::opt<bool>
162ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
163      cl::desc("Pop up a window to show SUnit dags after they are processed"));
164#else
165static const bool ViewDAGCombine1 = false,
166                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
167                  ViewDAGCombine2 = false,
168                  ViewDAGCombineLT = false,
169                  ViewISelDAGs = false, ViewSchedDAGs = false,
170                  ViewSUnitDAGs = false;
171#endif
172
173//===---------------------------------------------------------------------===//
174///
175/// RegisterScheduler class - Track the registration of instruction schedulers.
176///
177//===---------------------------------------------------------------------===//
178MachinePassRegistry RegisterScheduler::Registry;
179
180//===---------------------------------------------------------------------===//
181///
182/// ISHeuristic command line option for instruction schedulers.
183///
184//===---------------------------------------------------------------------===//
185static cl::opt<RegisterScheduler::FunctionPassCtor, false,
186               RegisterPassParser<RegisterScheduler>>
187ISHeuristic("pre-RA-sched",
188            cl::init(&createDefaultScheduler), cl::Hidden,
189            cl::desc("Instruction schedulers available (before register"
190                     " allocation):"));
191
192static RegisterScheduler
193defaultListDAGScheduler("default", "Best scheduler for the target",
194                        createDefaultScheduler);
195
196namespace llvm {
197
198  //===--------------------------------------------------------------------===//
199  /// \brief This class is used by SelectionDAGISel to temporarily override
200  /// the optimization level on a per-function basis.
201  class OptLevelChanger {
202    SelectionDAGISel &IS;
203    CodeGenOpt::Level SavedOptLevel;
204    bool SavedFastISel;
205
206  public:
207    OptLevelChanger(SelectionDAGISel &ISel,
208                    CodeGenOpt::Level NewOptLevel) : IS(ISel) {
209      SavedOptLevel = IS.OptLevel;
210      if (NewOptLevel == SavedOptLevel)
211        return;
212      IS.OptLevel = NewOptLevel;
213      IS.TM.setOptLevel(NewOptLevel);
214      DEBUG(dbgs() << "\nChanging optimization level for Function "
215            << IS.MF->getFunction().getName() << "\n");
216      DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel
217            << " ; After: -O" << NewOptLevel << "\n");
218      SavedFastISel = IS.TM.Options.EnableFastISel;
219      if (NewOptLevel == CodeGenOpt::None) {
220        IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
221        DEBUG(dbgs() << "\tFastISel is "
222              << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
223              << "\n");
224      }
225    }
226
227    ~OptLevelChanger() {
228      if (IS.OptLevel == SavedOptLevel)
229        return;
230      DEBUG(dbgs() << "\nRestoring optimization level for Function "
231            << IS.MF->getFunction().getName() << "\n");
232      DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel
233            << " ; After: -O" << SavedOptLevel << "\n");
234      IS.OptLevel = SavedOptLevel;
235      IS.TM.setOptLevel(SavedOptLevel);
236      IS.TM.setFastISel(SavedFastISel);
237    }
238  };
239
240  //===--------------------------------------------------------------------===//
241  /// createDefaultScheduler - This creates an instruction scheduler appropriate
242  /// for the target.
243  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
244                                             CodeGenOpt::Level OptLevel) {
245    const TargetLowering *TLI = IS->TLI;
246    const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
247
248    // Try first to see if the Target has its own way of selecting a scheduler
249    if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
250      return SchedulerCtor(IS, OptLevel);
251    }
252
253    if (OptLevel == CodeGenOpt::None ||
254        (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
255        TLI->getSchedulingPreference() == Sched::Source)
256      return createSourceListDAGScheduler(IS, OptLevel);
257    if (TLI->getSchedulingPreference() == Sched::RegPressure)
258      return createBURRListDAGScheduler(IS, OptLevel);
259    if (TLI->getSchedulingPreference() == Sched::Hybrid)
260      return createHybridListDAGScheduler(IS, OptLevel);
261    if (TLI->getSchedulingPreference() == Sched::VLIW)
262      return createVLIWDAGScheduler(IS, OptLevel);
263    assert(TLI->getSchedulingPreference() == Sched::ILP &&
264           "Unknown sched type!");
265    return createILPListDAGScheduler(IS, OptLevel);
266  }
267
268} // end namespace llvm
269
270// EmitInstrWithCustomInserter - This method should be implemented by targets
271// that mark instructions with the 'usesCustomInserter' flag.  These
272// instructions are special in various ways, which require special support to
273// insert.  The specified MachineInstr is created but not inserted into any
274// basic blocks, and this method is called to expand it into a sequence of
275// instructions, potentially also creating new basic blocks and control flow.
276// When new basic blocks are inserted and the edges from MBB to its successors
277// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
278// DenseMap.
279MachineBasicBlock *
280TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
281                                            MachineBasicBlock *MBB) const {
282#ifndef NDEBUG
283  dbgs() << "If a target marks an instruction with "
284          "'usesCustomInserter', it must implement "
285          "TargetLowering::EmitInstrWithCustomInserter!";
286#endif
287  llvm_unreachable(nullptr);
288}
289
290void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
291                                                   SDNode *Node) const {
292  assert(!MI.hasPostISelHook() &&
293         "If a target marks an instruction with 'hasPostISelHook', "
294         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
295}
296
297//===----------------------------------------------------------------------===//
298// SelectionDAGISel code
299//===----------------------------------------------------------------------===//
300
301SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
302                                   CodeGenOpt::Level OL) :
303  MachineFunctionPass(ID), TM(tm),
304  FuncInfo(new FunctionLoweringInfo()),
305  CurDAG(new SelectionDAG(tm, OL)),
306  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
307  AA(), GFI(),
308  OptLevel(OL),
309  DAGSize(0) {
310    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
311    initializeBranchProbabilityInfoWrapperPassPass(
312        *PassRegistry::getPassRegistry());
313    initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
314    initializeTargetLibraryInfoWrapperPassPass(
315        *PassRegistry::getPassRegistry());
316  }
317
318SelectionDAGISel::~SelectionDAGISel() {
319  delete SDB;
320  delete CurDAG;
321  delete FuncInfo;
322}
323
324void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
325  if (OptLevel != CodeGenOpt::None)
326    AU.addRequired<AAResultsWrapperPass>();
327  AU.addRequired<GCModuleInfo>();
328  AU.addRequired<StackProtector>();
329  AU.addPreserved<StackProtector>();
330  AU.addPreserved<GCModuleInfo>();
331  AU.addRequired<TargetLibraryInfoWrapperPass>();
332  if (UseMBPI && OptLevel != CodeGenOpt::None)
333    AU.addRequired<BranchProbabilityInfoWrapperPass>();
334  MachineFunctionPass::getAnalysisUsage(AU);
335}
336
337/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
338/// may trap on it.  In this case we have to split the edge so that the path
339/// through the predecessor block that doesn't go to the phi block doesn't
340/// execute the possibly trapping instruction. If available, we pass domtree
341/// and loop info to be updated when we split critical edges. This is because
342/// SelectionDAGISel preserves these analyses.
343/// This is required for correctness, so it must be done at -O0.
344///
345static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
346                                         LoopInfo *LI) {
347  // Loop for blocks with phi nodes.
348  for (BasicBlock &BB : Fn) {
349    PHINode *PN = dyn_cast<PHINode>(BB.begin());
350    if (!PN) continue;
351
352  ReprocessBlock:
353    // For each block with a PHI node, check to see if any of the input values
354    // are potentially trapping constant expressions.  Constant expressions are
355    // the only potentially trapping value that can occur as the argument to a
356    // PHI.
357    for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
358      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
359        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
360        if (!CE || !CE->canTrap()) continue;
361
362        // The only case we have to worry about is when the edge is critical.
363        // Since this block has a PHI Node, we assume it has multiple input
364        // edges: check to see if the pred has multiple successors.
365        BasicBlock *Pred = PN->getIncomingBlock(i);
366        if (Pred->getTerminator()->getNumSuccessors() == 1)
367          continue;
368
369        // Okay, we have to split this edge.
370        SplitCriticalEdge(
371            Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
372            CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
373        goto ReprocessBlock;
374      }
375  }
376}
377
378bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
379  // If we already selected that function, we do not need to run SDISel.
380  if (mf.getProperties().hasProperty(
381          MachineFunctionProperties::Property::Selected))
382    return false;
383  // Do some sanity-checking on the command-line options.
384  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
385         "-fast-isel-abort > 0 requires -fast-isel");
386
387  const Function &Fn = mf.getFunction();
388  MF = &mf;
389
390  // Reset the target options before resetting the optimization
391  // level below.
392  // FIXME: This is a horrible hack and should be processed via
393  // codegen looking at the optimization level explicitly when
394  // it wants to look at it.
395  TM.resetTargetOptions(Fn);
396  // Reset OptLevel to None for optnone functions.
397  CodeGenOpt::Level NewOptLevel = OptLevel;
398  if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
399    NewOptLevel = CodeGenOpt::None;
400  OptLevelChanger OLC(*this, NewOptLevel);
401
402  TII = MF->getSubtarget().getInstrInfo();
403  TLI = MF->getSubtarget().getTargetLowering();
404  RegInfo = &MF->getRegInfo();
405  LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
406  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
407  ORE = make_unique<OptimizationRemarkEmitter>(&Fn);
408  auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
409  DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
410  auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
411  LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
412
413  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
414
415  SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);
416
417  CurDAG->init(*MF, *ORE, this);
418  FuncInfo->set(Fn, *MF, CurDAG);
419
420  // Now get the optional analyzes if we want to.
421  // This is based on the possibly changed OptLevel (after optnone is taken
422  // into account).  That's unfortunate but OK because it just means we won't
423  // ask for passes that have been required anyway.
424
425  if (UseMBPI && OptLevel != CodeGenOpt::None)
426    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
427  else
428    FuncInfo->BPI = nullptr;
429
430  if (OptLevel != CodeGenOpt::None)
431    AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
432  else
433    AA = nullptr;
434
435  SDB->init(GFI, AA, LibInfo);
436
437  MF->setHasInlineAsm(false);
438
439  FuncInfo->SplitCSR = false;
440
441  // We split CSR if the target supports it for the given function
442  // and the function has only return exits.
443  if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
444    FuncInfo->SplitCSR = true;
445
446    // Collect all the return blocks.
447    for (const BasicBlock &BB : Fn) {
448      if (!succ_empty(&BB))
449        continue;
450
451      const TerminatorInst *Term = BB.getTerminator();
452      if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
453        continue;
454
455      // Bail out if the exit block is not Return nor Unreachable.
456      FuncInfo->SplitCSR = false;
457      break;
458    }
459  }
460
461  MachineBasicBlock *EntryMBB = &MF->front();
462  if (FuncInfo->SplitCSR)
463    // This performs initialization so lowering for SplitCSR will be correct.
464    TLI->initializeSplitCSR(EntryMBB);
465
466  SelectAllBasicBlocks(Fn);
467  if (FastISelFailed && EnableFastISelFallbackReport) {
468    DiagnosticInfoISelFallback DiagFallback(Fn);
469    Fn.getContext().diagnose(DiagFallback);
470  }
471
472  // If the first basic block in the function has live ins that need to be
473  // copied into vregs, emit the copies into the top of the block before
474  // emitting the code for the block.
475  const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
476  RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
477
478  // Insert copies in the entry block and the return blocks.
479  if (FuncInfo->SplitCSR) {
480    SmallVector<MachineBasicBlock*, 4> Returns;
481    // Collect all the return blocks.
482    for (MachineBasicBlock &MBB : mf) {
483      if (!MBB.succ_empty())
484        continue;
485
486      MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
487      if (Term != MBB.end() && Term->isReturn()) {
488        Returns.push_back(&MBB);
489        continue;
490      }
491    }
492    TLI->insertCopiesSplitCSR(EntryMBB, Returns);
493  }
494
495  DenseMap<unsigned, unsigned> LiveInMap;
496  if (!FuncInfo->ArgDbgValues.empty())
497    for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
498      if (LI.second)
499        LiveInMap.insert(LI);
500
501  // Insert DBG_VALUE instructions for function arguments to the entry block.
502  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
503    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
504    bool hasFI = MI->getOperand(0).isFI();
505    unsigned Reg =
506        hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
507    if (TargetRegisterInfo::isPhysicalRegister(Reg))
508      EntryMBB->insert(EntryMBB->begin(), MI);
509    else {
510      MachineInstr *Def = RegInfo->getVRegDef(Reg);
511      if (Def) {
512        MachineBasicBlock::iterator InsertPos = Def;
513        // FIXME: VR def may not be in entry block.
514        Def->getParent()->insert(std::next(InsertPos), MI);
515      } else
516        DEBUG(dbgs() << "Dropping debug info for dead vreg"
517              << TargetRegisterInfo::virtReg2Index(Reg) << "\n");
518    }
519
520    // If Reg is live-in then update debug info to track its copy in a vreg.
521    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
522    if (LDI != LiveInMap.end()) {
523      assert(!hasFI && "There's no handling of frame pointer updating here yet "
524                       "- add if needed");
525      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
526      MachineBasicBlock::iterator InsertPos = Def;
527      const MDNode *Variable = MI->getDebugVariable();
528      const MDNode *Expr = MI->getDebugExpression();
529      DebugLoc DL = MI->getDebugLoc();
530      bool IsIndirect = MI->isIndirectDebugValue();
531      if (IsIndirect)
532        assert(MI->getOperand(1).getImm() == 0 &&
533               "DBG_VALUE with nonzero offset");
534      assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
535             "Expected inlined-at fields to agree");
536      // Def is never a terminator here, so it is ok to increment InsertPos.
537      BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
538              IsIndirect, LDI->second, Variable, Expr);
539
540      // If this vreg is directly copied into an exported register then
541      // that COPY instructions also need DBG_VALUE, if it is the only
542      // user of LDI->second.
543      MachineInstr *CopyUseMI = nullptr;
544      for (MachineRegisterInfo::use_instr_iterator
545           UI = RegInfo->use_instr_begin(LDI->second),
546           E = RegInfo->use_instr_end(); UI != E; ) {
547        MachineInstr *UseMI = &*(UI++);
548        if (UseMI->isDebugValue()) continue;
549        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
550          CopyUseMI = UseMI; continue;
551        }
552        // Otherwise this is another use or second copy use.
553        CopyUseMI = nullptr; break;
554      }
555      if (CopyUseMI) {
556        // Use MI's debug location, which describes where Variable was
557        // declared, rather than whatever is attached to CopyUseMI.
558        MachineInstr *NewMI =
559            BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
560                    CopyUseMI->getOperand(0).getReg(), Variable, Expr);
561        MachineBasicBlock::iterator Pos = CopyUseMI;
562        EntryMBB->insertAfter(Pos, NewMI);
563      }
564    }
565  }
566
567  // Determine if there are any calls in this machine function.
568  MachineFrameInfo &MFI = MF->getFrameInfo();
569  for (const auto &MBB : *MF) {
570    if (MFI.hasCalls() && MF->hasInlineAsm())
571      break;
572
573    for (const auto &MI : MBB) {
574      const MCInstrDesc &MCID = TII->get(MI.getOpcode());
575      if ((MCID.isCall() && !MCID.isReturn()) ||
576          MI.isStackAligningInlineAsm()) {
577        MFI.setHasCalls(true);
578      }
579      if (MI.isInlineAsm()) {
580        MF->setHasInlineAsm(true);
581      }
582    }
583  }
584
585  // Determine if there is a call to setjmp in the machine function.
586  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
587
588  // Replace forward-declared registers with the registers containing
589  // the desired value.
590  MachineRegisterInfo &MRI = MF->getRegInfo();
591  for (DenseMap<unsigned, unsigned>::iterator
592       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
593       I != E; ++I) {
594    unsigned From = I->first;
595    unsigned To = I->second;
596    // If To is also scheduled to be replaced, find what its ultimate
597    // replacement is.
598    while (true) {
599      DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
600      if (J == E) break;
601      To = J->second;
602    }
603    // Make sure the new register has a sufficiently constrained register class.
604    if (TargetRegisterInfo::isVirtualRegister(From) &&
605        TargetRegisterInfo::isVirtualRegister(To))
606      MRI.constrainRegClass(To, MRI.getRegClass(From));
607    // Replace it.
608
609
610    // Replacing one register with another won't touch the kill flags.
611    // We need to conservatively clear the kill flags as a kill on the old
612    // register might dominate existing uses of the new register.
613    if (!MRI.use_empty(To))
614      MRI.clearKillFlags(From);
615    MRI.replaceRegWith(From, To);
616  }
617
618  TLI->finalizeLowering(*MF);
619
620  // Release function-specific state. SDB and CurDAG are already cleared
621  // at this point.
622  FuncInfo->clear();
623
624  DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
625  DEBUG(MF->print(dbgs()));
626
627  return true;
628}
629
630static void reportFastISelFailure(MachineFunction &MF,
631                                  OptimizationRemarkEmitter &ORE,
632                                  OptimizationRemarkMissed &R,
633                                  bool ShouldAbort) {
634  // Print the function name explicitly if we don't have a debug location (which
635  // makes the diagnostic less useful) or if we're going to emit a raw error.
636  if (!R.getLocation().isValid() || ShouldAbort)
637    R << (" (in function: " + MF.getName() + ")").str();
638
639  if (ShouldAbort)
640    report_fatal_error(R.getMsg());
641
642  ORE.emit(R);
643}
644
645void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
646                                        BasicBlock::const_iterator End,
647                                        bool &HadTailCall) {
648  // Allow creating illegal types during DAG building for the basic block.
649  CurDAG->NewNodesMustHaveLegalTypes = false;
650
651  // Lower the instructions. If a call is emitted as a tail call, cease emitting
652  // nodes for this block.
653  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
654    if (!ElidedArgCopyInstrs.count(&*I))
655      SDB->visit(*I);
656  }
657
658  // Make sure the root of the DAG is up-to-date.
659  CurDAG->setRoot(SDB->getControlRoot());
660  HadTailCall = SDB->HasTailCall;
661  SDB->clear();
662
663  // Final step, emit the lowered DAG as machine code.
664  CodeGenAndEmitDAG();
665}
666
667void SelectionDAGISel::ComputeLiveOutVRegInfo() {
668  SmallPtrSet<SDNode*, 16> VisitedNodes;
669  SmallVector<SDNode*, 128> Worklist;
670
671  Worklist.push_back(CurDAG->getRoot().getNode());
672
673  KnownBits Known;
674
675  do {
676    SDNode *N = Worklist.pop_back_val();
677
678    // If we've already seen this node, ignore it.
679    if (!VisitedNodes.insert(N).second)
680      continue;
681
682    // Otherwise, add all chain operands to the worklist.
683    for (const SDValue &Op : N->op_values())
684      if (Op.getValueType() == MVT::Other)
685        Worklist.push_back(Op.getNode());
686
687    // If this is a CopyToReg with a vreg dest, process it.
688    if (N->getOpcode() != ISD::CopyToReg)
689      continue;
690
691    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
692    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
693      continue;
694
695    // Ignore non-scalar or non-integer values.
696    SDValue Src = N->getOperand(2);
697    EVT SrcVT = Src.getValueType();
698    if (!SrcVT.isInteger() || SrcVT.isVector())
699      continue;
700
701    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
702    CurDAG->computeKnownBits(Src, Known);
703    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
704  } while (!Worklist.empty());
705}
706
707void SelectionDAGISel::CodeGenAndEmitDAG() {
708  StringRef GroupName = "sdag";
709  StringRef GroupDescription = "Instruction Selection and Scheduling";
710  std::string BlockName;
711  int BlockNumber = -1;
712  (void)BlockNumber;
713  bool MatchFilterBB = false; (void)MatchFilterBB;
714
715  // Pre-type legalization allow creation of any node types.
716  CurDAG->NewNodesMustHaveLegalTypes = false;
717
718#ifndef NDEBUG
719  MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
720                   FilterDAGBasicBlockName ==
721                       FuncInfo->MBB->getBasicBlock()->getName().str());
722#endif
723#ifdef NDEBUG
724  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
725      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
726      ViewSUnitDAGs)
727#endif
728  {
729    BlockNumber = FuncInfo->MBB->getNumber();
730    BlockName =
731        (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
732  }
733  DEBUG(dbgs() << "Initial selection DAG: " << printMBBReference(*FuncInfo->MBB)
734               << " '" << BlockName << "'\n";
735        CurDAG->dump());
736
737  if (ViewDAGCombine1 && MatchFilterBB)
738    CurDAG->viewGraph("dag-combine1 input for " + BlockName);
739
740  // Run the DAG combiner in pre-legalize mode.
741  {
742    NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
743                       GroupDescription, TimePassesIsEnabled);
744    CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
745  }
746
747  DEBUG(dbgs() << "Optimized lowered selection DAG: "
748               << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
749               << "'\n";
750        CurDAG->dump());
751
752  // Second step, hack on the DAG until it only uses operations and types that
753  // the target supports.
754  if (ViewLegalizeTypesDAGs && MatchFilterBB)
755    CurDAG->viewGraph("legalize-types input for " + BlockName);
756
757  bool Changed;
758  {
759    NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
760                       GroupDescription, TimePassesIsEnabled);
761    Changed = CurDAG->LegalizeTypes();
762  }
763
764  DEBUG(dbgs() << "Type-legalized selection DAG: "
765               << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
766               << "'\n";
767        CurDAG->dump());
768
769  // Only allow creation of legal node types.
770  CurDAG->NewNodesMustHaveLegalTypes = true;
771
772  if (Changed) {
773    if (ViewDAGCombineLT && MatchFilterBB)
774      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
775
776    // Run the DAG combiner in post-type-legalize mode.
777    {
778      NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
779                         GroupName, GroupDescription, TimePassesIsEnabled);
780      CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
781    }
782
783    DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
784                 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
785                 << "'\n";
786          CurDAG->dump());
787  }
788
789  {
790    NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
791                       GroupDescription, TimePassesIsEnabled);
792    Changed = CurDAG->LegalizeVectors();
793  }
794
795  if (Changed) {
796    DEBUG(dbgs() << "Vector-legalized selection DAG: "
797                 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
798                 << "'\n";
799          CurDAG->dump());
800
801    {
802      NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
803                         GroupDescription, TimePassesIsEnabled);
804      CurDAG->LegalizeTypes();
805    }
806
807    DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
808                 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
809                 << "'\n";
810          CurDAG->dump());
811
812    if (ViewDAGCombineLT && MatchFilterBB)
813      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
814
815    // Run the DAG combiner in post-type-legalize mode.
816    {
817      NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
818                         GroupName, GroupDescription, TimePassesIsEnabled);
819      CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
820    }
821
822    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
823                 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
824                 << "'\n";
825          CurDAG->dump());
826  }
827
828  if (ViewLegalizeDAGs && MatchFilterBB)
829    CurDAG->viewGraph("legalize input for " + BlockName);
830
831  {
832    NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
833                       GroupDescription, TimePassesIsEnabled);
834    CurDAG->Legalize();
835  }
836
837  DEBUG(dbgs() << "Legalized selection DAG: "
838               << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
839               << "'\n";
840        CurDAG->dump());
841
842  if (ViewDAGCombine2 && MatchFilterBB)
843    CurDAG->viewGraph("dag-combine2 input for " + BlockName);
844
845  // Run the DAG combiner in post-legalize mode.
846  {
847    NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
848                       GroupDescription, TimePassesIsEnabled);
849    CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
850  }
851
852  DEBUG(dbgs() << "Optimized legalized selection DAG: "
853               << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
854               << "'\n";
855        CurDAG->dump());
856
857  if (OptLevel != CodeGenOpt::None)
858    ComputeLiveOutVRegInfo();
859
860  if (ViewISelDAGs && MatchFilterBB)
861    CurDAG->viewGraph("isel input for " + BlockName);
862
863  // Third, instruction select all of the operations to machine code, adding the
864  // code to the MachineBasicBlock.
865  {
866    NamedRegionTimer T("isel", "Instruction Selection", GroupName,
867                       GroupDescription, TimePassesIsEnabled);
868    DoInstructionSelection();
869  }
870
871  DEBUG(dbgs() << "Selected selection DAG: "
872               << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
873               << "'\n";
874        CurDAG->dump());
875
876  if (ViewSchedDAGs && MatchFilterBB)
877    CurDAG->viewGraph("scheduler input for " + BlockName);
878
879  // Schedule machine code.
880  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
881  {
882    NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
883                       GroupDescription, TimePassesIsEnabled);
884    Scheduler->Run(CurDAG, FuncInfo->MBB);
885  }
886
887  if (ViewSUnitDAGs && MatchFilterBB)
888    Scheduler->viewGraph();
889
890  // Emit machine code to BB.  This can change 'BB' to the last block being
891  // inserted into.
892  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
893  {
894    NamedRegionTimer T("emit", "Instruction Creation", GroupName,
895                       GroupDescription, TimePassesIsEnabled);
896
897    // FuncInfo->InsertPt is passed by reference and set to the end of the
898    // scheduled instructions.
899    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
900  }
901
902  // If the block was split, make sure we update any references that are used to
903  // update PHI nodes later on.
904  if (FirstMBB != LastMBB)
905    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
906
907  // Free the scheduler state.
908  {
909    NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
910                       GroupDescription, TimePassesIsEnabled);
911    delete Scheduler;
912  }
913
914  // Free the SelectionDAG state, now that we're finished with it.
915  CurDAG->clear();
916}
917
918namespace {
919
920/// ISelUpdater - helper class to handle updates of the instruction selection
921/// graph.
922class ISelUpdater : public SelectionDAG::DAGUpdateListener {
923  SelectionDAG::allnodes_iterator &ISelPosition;
924
925public:
926  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
927    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
928
929  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
930  /// deleted is the current ISelPosition node, update ISelPosition.
931  ///
932  void NodeDeleted(SDNode *N, SDNode *E) override {
933    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
934      ++ISelPosition;
935  }
936};
937
938} // end anonymous namespace
939
940void SelectionDAGISel::DoInstructionSelection() {
941  DEBUG(dbgs() << "===== Instruction selection begins: "
942               << printMBBReference(*FuncInfo->MBB) << " '"
943               << FuncInfo->MBB->getName() << "'\n");
944
945  PreprocessISelDAG();
946
947  // Select target instructions for the DAG.
948  {
949    // Number all nodes with a topological order and set DAGSize.
950    DAGSize = CurDAG->AssignTopologicalOrder();
951
952    // Create a dummy node (which is not added to allnodes), that adds
953    // a reference to the root node, preventing it from being deleted,
954    // and tracking any changes of the root.
955    HandleSDNode Dummy(CurDAG->getRoot());
956    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
957    ++ISelPosition;
958
959    // Make sure that ISelPosition gets properly updated when nodes are deleted
960    // in calls made from this function.
961    ISelUpdater ISU(*CurDAG, ISelPosition);
962
963    // The AllNodes list is now topological-sorted. Visit the
964    // nodes by starting at the end of the list (the root of the
965    // graph) and preceding back toward the beginning (the entry
966    // node).
967    while (ISelPosition != CurDAG->allnodes_begin()) {
968      SDNode *Node = &*--ISelPosition;
969      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
970      // but there are currently some corner cases that it misses. Also, this
971      // makes it theoretically possible to disable the DAGCombiner.
972      if (Node->use_empty())
973        continue;
974
975      // When we are using non-default rounding modes or FP exception behavior
976      // FP operations are represented by StrictFP pseudo-operations.  They
977      // need to be simplified here so that the target-specific instruction
978      // selectors know how to handle them.
979      //
980      // If the current node is a strict FP pseudo-op, the isStrictFPOp()
981      // function will provide the corresponding normal FP opcode to which the
982      // node should be mutated.
983      //
984      // FIXME: The backends need a way to handle FP constraints.
985      if (Node->isStrictFPOpcode())
986        Node = CurDAG->mutateStrictFPToFP(Node);
987
988      Select(Node);
989    }
990
991    CurDAG->setRoot(Dummy.getValue());
992  }
993
994  DEBUG(dbgs() << "===== Instruction selection ends:\n");
995
996  PostprocessISelDAG();
997}
998
999static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
1000  for (const User *U : CPI->users()) {
1001    if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1002      Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1003      if (IID == Intrinsic::eh_exceptionpointer ||
1004          IID == Intrinsic::eh_exceptioncode)
1005        return true;
1006    }
1007  }
1008  return false;
1009}
1010
1011/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1012/// do other setup for EH landing-pad blocks.
1013bool SelectionDAGISel::PrepareEHLandingPad() {
1014  MachineBasicBlock *MBB = FuncInfo->MBB;
1015  const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1016  const BasicBlock *LLVMBB = MBB->getBasicBlock();
1017  const TargetRegisterClass *PtrRC =
1018      TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1019
1020  // Catchpads have one live-in register, which typically holds the exception
1021  // pointer or code.
1022  if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1023    if (hasExceptionPointerOrCodeUser(CPI)) {
1024      // Get or create the virtual register to hold the pointer or code.  Mark
1025      // the live in physreg and copy into the vreg.
1026      MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1027      assert(EHPhysReg && "target lacks exception pointer register");
1028      MBB->addLiveIn(EHPhysReg);
1029      unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1030      BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1031              TII->get(TargetOpcode::COPY), VReg)
1032          .addReg(EHPhysReg, RegState::Kill);
1033    }
1034    return true;
1035  }
1036
1037  if (!LLVMBB->isLandingPad())
1038    return true;
1039
1040  // Add a label to mark the beginning of the landing pad.  Deletion of the
1041  // landing pad can thus be detected via the MachineModuleInfo.
1042  MCSymbol *Label = MF->addLandingPad(MBB);
1043
1044  // Assign the call site to the landing pad's begin label.
1045  MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1046
1047  const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1048  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1049    .addSym(Label);
1050
1051  // Mark exception register as live in.
1052  if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1053    FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1054
1055  // Mark exception selector register as live in.
1056  if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1057    FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1058
1059  return true;
1060}
1061
1062/// isFoldedOrDeadInstruction - Return true if the specified instruction is
1063/// side-effect free and is either dead or folded into a generated instruction.
1064/// Return false if it needs to be emitted.
1065static bool isFoldedOrDeadInstruction(const Instruction *I,
1066                                      FunctionLoweringInfo *FuncInfo) {
1067  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1068         !isa<TerminatorInst>(I) &&    // Terminators aren't folded.
1069         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
1070         !I->isEHPad() &&              // EH pad instructions aren't folded.
1071         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
1072}
1073
1074/// Set up SwiftErrorVals by going through the function. If the function has
1075/// swifterror argument, it will be the first entry.
1076static void setupSwiftErrorVals(const Function &Fn, const TargetLowering *TLI,
1077                                FunctionLoweringInfo *FuncInfo) {
1078  if (!TLI->supportSwiftError())
1079    return;
1080
1081  FuncInfo->SwiftErrorVals.clear();
1082  FuncInfo->SwiftErrorVRegDefMap.clear();
1083  FuncInfo->SwiftErrorVRegUpwardsUse.clear();
1084  FuncInfo->SwiftErrorVRegDefUses.clear();
1085  FuncInfo->SwiftErrorArg = nullptr;
1086
1087  // Check if function has a swifterror argument.
1088  bool HaveSeenSwiftErrorArg = false;
1089  for (Function::const_arg_iterator AI = Fn.arg_begin(), AE = Fn.arg_end();
1090       AI != AE; ++AI)
1091    if (AI->hasSwiftErrorAttr()) {
1092      assert(!HaveSeenSwiftErrorArg &&
1093             "Must have only one swifterror parameter");
1094      (void)HaveSeenSwiftErrorArg; // silence warning.
1095      HaveSeenSwiftErrorArg = true;
1096      FuncInfo->SwiftErrorArg = &*AI;
1097      FuncInfo->SwiftErrorVals.push_back(&*AI);
1098    }
1099
1100  for (const auto &LLVMBB : Fn)
1101    for (const auto &Inst : LLVMBB) {
1102      if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(&Inst))
1103        if (Alloca->isSwiftError())
1104          FuncInfo->SwiftErrorVals.push_back(Alloca);
1105    }
1106}
1107
1108static void createSwiftErrorEntriesInEntryBlock(FunctionLoweringInfo *FuncInfo,
1109                                                FastISel *FastIS,
1110                                                const TargetLowering *TLI,
1111                                                const TargetInstrInfo *TII,
1112                                                SelectionDAGBuilder *SDB) {
1113  if (!TLI->supportSwiftError())
1114    return;
1115
1116  // We only need to do this when we have swifterror parameter or swifterror
1117  // alloc.
1118  if (FuncInfo->SwiftErrorVals.empty())
1119    return;
1120
1121  assert(FuncInfo->MBB == &*FuncInfo->MF->begin() &&
1122         "expected to insert into entry block");
1123  auto &DL = FuncInfo->MF->getDataLayout();
1124  auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
1125  for (const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) {
1126    // We will always generate a copy from the argument. It is always used at
1127    // least by the 'return' of the swifterror.
1128    if (FuncInfo->SwiftErrorArg && FuncInfo->SwiftErrorArg == SwiftErrorVal)
1129      continue;
1130    unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
1131    // Assign Undef to Vreg. We construct MI directly to make sure it works
1132    // with FastISel.
1133    BuildMI(*FuncInfo->MBB, FuncInfo->MBB->getFirstNonPHI(),
1134            SDB->getCurDebugLoc(), TII->get(TargetOpcode::IMPLICIT_DEF),
1135            VReg);
1136
1137    // Keep FastIS informed about the value we just inserted.
1138    if (FastIS)
1139      FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1140
1141    FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorVal, VReg);
1142  }
1143}
1144
1145/// Collect llvm.dbg.declare information. This is done after argument lowering
1146/// in case the declarations refer to arguments.
1147static void processDbgDeclares(FunctionLoweringInfo *FuncInfo) {
1148  MachineFunction *MF = FuncInfo->MF;
1149  const DataLayout &DL = MF->getDataLayout();
1150  for (const BasicBlock &BB : *FuncInfo->Fn) {
1151    for (const Instruction &I : BB) {
1152      const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
1153      if (!DI)
1154        continue;
1155
1156      assert(DI->getVariable() && "Missing variable");
1157      assert(DI->getDebugLoc() && "Missing location");
1158      const Value *Address = DI->getAddress();
1159      if (!Address)
1160        continue;
1161
1162      // Look through casts and constant offset GEPs. These mostly come from
1163      // inalloca.
1164      APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
1165      Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1166
1167      // Check if the variable is a static alloca or a byval or inalloca
1168      // argument passed in memory. If it is not, then we will ignore this
1169      // intrinsic and handle this during isel like dbg.value.
1170      int FI = std::numeric_limits<int>::max();
1171      if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1172        auto SI = FuncInfo->StaticAllocaMap.find(AI);
1173        if (SI != FuncInfo->StaticAllocaMap.end())
1174          FI = SI->second;
1175      } else if (const auto *Arg = dyn_cast<Argument>(Address))
1176        FI = FuncInfo->getArgumentFrameIndex(Arg);
1177
1178      if (FI == std::numeric_limits<int>::max())
1179        continue;
1180
1181      DIExpression *Expr = DI->getExpression();
1182      if (Offset.getBoolValue())
1183        Expr = DIExpression::prepend(Expr, DIExpression::NoDeref,
1184                                     Offset.getZExtValue());
1185      MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
1186    }
1187  }
1188}
1189
1190/// Propagate swifterror values through the machine function CFG.
1191static void propagateSwiftErrorVRegs(FunctionLoweringInfo *FuncInfo) {
1192  auto *TLI = FuncInfo->TLI;
1193  if (!TLI->supportSwiftError())
1194    return;
1195
1196  // We only need to do this when we have swifterror parameter or swifterror
1197  // alloc.
1198  if (FuncInfo->SwiftErrorVals.empty())
1199    return;
1200
1201  // For each machine basic block in reverse post order.
1202  ReversePostOrderTraversal<MachineFunction *> RPOT(FuncInfo->MF);
1203  for (MachineBasicBlock *MBB : RPOT) {
1204    // For each swifterror value in the function.
1205    for(const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) {
1206      auto Key = std::make_pair(MBB, SwiftErrorVal);
1207      auto UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key);
1208      auto VRegDefIt = FuncInfo->SwiftErrorVRegDefMap.find(Key);
1209      bool UpwardsUse = UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end();
1210      unsigned UUseVReg = UpwardsUse ? UUseIt->second : 0;
1211      bool DownwardDef = VRegDefIt != FuncInfo->SwiftErrorVRegDefMap.end();
1212      assert(!(UpwardsUse && !DownwardDef) &&
1213             "We can't have an upwards use but no downwards def");
1214
1215      // If there is no upwards exposed use and an entry for the swifterror in
1216      // the def map for this value we don't need to do anything: We already
1217      // have a downward def for this basic block.
1218      if (!UpwardsUse && DownwardDef)
1219        continue;
1220
1221      // Otherwise we either have an upwards exposed use vreg that we need to
1222      // materialize or need to forward the downward def from predecessors.
1223
1224      // Check whether we have a single vreg def from all predecessors.
1225      // Otherwise we need a phi.
1226      SmallVector<std::pair<MachineBasicBlock *, unsigned>, 4> VRegs;
1227      SmallSet<const MachineBasicBlock*, 8> Visited;
1228      for (auto *Pred : MBB->predecessors()) {
1229        if (!Visited.insert(Pred).second)
1230          continue;
1231        VRegs.push_back(std::make_pair(
1232            Pred, FuncInfo->getOrCreateSwiftErrorVReg(Pred, SwiftErrorVal)));
1233        if (Pred != MBB)
1234          continue;
1235        // We have a self-edge.
1236        // If there was no upwards use in this basic block there is now one: the
1237        // phi needs to use it self.
1238        if (!UpwardsUse) {
1239          UpwardsUse = true;
1240          UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key);
1241          assert(UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end());
1242          UUseVReg = UUseIt->second;
1243        }
1244      }
1245
1246      // We need a phi node if we have more than one predecessor with different
1247      // downward defs.
1248      bool needPHI =
1249          VRegs.size() >= 1 &&
1250          std::find_if(
1251              VRegs.begin(), VRegs.end(),
1252              [&](const std::pair<const MachineBasicBlock *, unsigned> &V)
1253                  -> bool { return V.second != VRegs[0].second; }) !=
1254              VRegs.end();
1255
1256      // If there is no upwards exposed used and we don't need a phi just
1257      // forward the swifterror vreg from the predecessor(s).
1258      if (!UpwardsUse && !needPHI) {
1259        assert(!VRegs.empty() &&
1260               "No predecessors? The entry block should bail out earlier");
1261        // Just forward the swifterror vreg from the predecessor(s).
1262        FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, VRegs[0].second);
1263        continue;
1264      }
1265
1266      auto DLoc = isa<Instruction>(SwiftErrorVal)
1267                      ? dyn_cast<Instruction>(SwiftErrorVal)->getDebugLoc()
1268                      : DebugLoc();
1269      const auto *TII = FuncInfo->MF->getSubtarget().getInstrInfo();
1270
1271      // If we don't need a phi create a copy to the upward exposed vreg.
1272      if (!needPHI) {
1273        assert(UpwardsUse);
1274        assert(!VRegs.empty() &&
1275               "No predecessors?  Is the Calling Convention correct?");
1276        unsigned DestReg = UUseVReg;
1277        BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc, TII->get(TargetOpcode::COPY),
1278                DestReg)
1279            .addReg(VRegs[0].second);
1280        continue;
1281      }
1282
1283      // We need a phi: if there is an upwards exposed use we already have a
1284      // destination virtual register number otherwise we generate a new one.
1285      auto &DL = FuncInfo->MF->getDataLayout();
1286      auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
1287      unsigned PHIVReg =
1288          UpwardsUse ? UUseVReg
1289                     : FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
1290      MachineInstrBuilder SwiftErrorPHI =
1291          BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc,
1292                  TII->get(TargetOpcode::PHI), PHIVReg);
1293      for (auto BBRegPair : VRegs) {
1294        SwiftErrorPHI.addReg(BBRegPair.second).addMBB(BBRegPair.first);
1295      }
1296
1297      // We did not have a definition in this block before: store the phi's vreg
1298      // as this block downward exposed def.
1299      if (!UpwardsUse)
1300        FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, PHIVReg);
1301    }
1302  }
1303}
1304
1305static void preassignSwiftErrorRegs(const TargetLowering *TLI,
1306                                    FunctionLoweringInfo *FuncInfo,
1307                                    BasicBlock::const_iterator Begin,
1308                                    BasicBlock::const_iterator End) {
1309  if (!TLI->supportSwiftError() || FuncInfo->SwiftErrorVals.empty())
1310    return;
1311
1312  // Iterator over instructions and assign vregs to swifterror defs and uses.
1313  for (auto It = Begin; It != End; ++It) {
1314    ImmutableCallSite CS(&*It);
1315    if (CS) {
1316      // A call-site with a swifterror argument is both use and def.
1317      const Value *SwiftErrorAddr = nullptr;
1318      for (auto &Arg : CS.args()) {
1319        if (!Arg->isSwiftError())
1320          continue;
1321        // Use of swifterror.
1322        assert(!SwiftErrorAddr && "Cannot have multiple swifterror arguments");
1323        SwiftErrorAddr = &*Arg;
1324        assert(SwiftErrorAddr->isSwiftError() &&
1325               "Must have a swifterror value argument");
1326        unsigned VReg; bool CreatedReg;
1327        std::tie(VReg, CreatedReg) = FuncInfo->getOrCreateSwiftErrorVRegUseAt(
1328          &*It, FuncInfo->MBB, SwiftErrorAddr);
1329        assert(CreatedReg);
1330      }
1331      if (!SwiftErrorAddr)
1332        continue;
1333
1334      // Def of swifterror.
1335      unsigned VReg; bool CreatedReg;
1336      std::tie(VReg, CreatedReg) =
1337          FuncInfo->getOrCreateSwiftErrorVRegDefAt(&*It);
1338      assert(CreatedReg);
1339      FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorAddr, VReg);
1340
1341    // A load is a use.
1342    } else if (const LoadInst *LI = dyn_cast<const LoadInst>(&*It)) {
1343      const Value *V = LI->getOperand(0);
1344      if (!V->isSwiftError())
1345        continue;
1346
1347      unsigned VReg; bool CreatedReg;
1348      std::tie(VReg, CreatedReg) =
1349          FuncInfo->getOrCreateSwiftErrorVRegUseAt(LI, FuncInfo->MBB, V);
1350      assert(CreatedReg);
1351
1352    // A store is a def.
1353    } else if (const StoreInst *SI = dyn_cast<const StoreInst>(&*It)) {
1354      const Value *SwiftErrorAddr = SI->getOperand(1);
1355      if (!SwiftErrorAddr->isSwiftError())
1356        continue;
1357
1358      // Def of swifterror.
1359      unsigned VReg; bool CreatedReg;
1360      std::tie(VReg, CreatedReg) =
1361          FuncInfo->getOrCreateSwiftErrorVRegDefAt(&*It);
1362      assert(CreatedReg);
1363      FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorAddr, VReg);
1364
1365    // A return in a swiferror returning function is a use.
1366    } else if (const ReturnInst *R = dyn_cast<const ReturnInst>(&*It)) {
1367      const Function *F = R->getParent()->getParent();
1368      if(!F->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1369        continue;
1370
1371      unsigned VReg; bool CreatedReg;
1372      std::tie(VReg, CreatedReg) = FuncInfo->getOrCreateSwiftErrorVRegUseAt(
1373          R, FuncInfo->MBB, FuncInfo->SwiftErrorArg);
1374      assert(CreatedReg);
1375    }
1376  }
1377}
1378
1379void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1380  FastISelFailed = false;
1381  // Initialize the Fast-ISel state, if needed.
1382  FastISel *FastIS = nullptr;
1383  if (TM.Options.EnableFastISel)
1384    FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1385
1386  setupSwiftErrorVals(Fn, TLI, FuncInfo);
1387
1388  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1389
1390  // Lower arguments up front. An RPO iteration always visits the entry block
1391  // first.
1392  assert(*RPOT.begin() == &Fn.getEntryBlock());
1393  ++NumEntryBlocks;
1394
1395  // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1396  FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
1397  FuncInfo->InsertPt = FuncInfo->MBB->begin();
1398
1399  if (!FastIS) {
1400    LowerArguments(Fn);
1401  } else {
1402    // See if fast isel can lower the arguments.
1403    FastIS->startNewBlock();
1404    if (!FastIS->lowerArguments()) {
1405      FastISelFailed = true;
1406      // Fast isel failed to lower these arguments
1407      ++NumFastIselFailLowerArguments;
1408
1409      OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1410                                 Fn.getSubprogram(),
1411                                 &Fn.getEntryBlock());
1412      R << "FastISel didn't lower all arguments: "
1413        << ore::NV("Prototype", Fn.getType());
1414      reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1415
1416      // Use SelectionDAG argument lowering
1417      LowerArguments(Fn);
1418      CurDAG->setRoot(SDB->getControlRoot());
1419      SDB->clear();
1420      CodeGenAndEmitDAG();
1421    }
1422
1423    // If we inserted any instructions at the beginning, make a note of
1424    // where they are, so we can be sure to emit subsequent instructions
1425    // after them.
1426    if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1427      FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1428    else
1429      FastIS->setLastLocalValue(nullptr);
1430  }
1431  createSwiftErrorEntriesInEntryBlock(FuncInfo, FastIS, TLI, TII, SDB);
1432
1433  processDbgDeclares(FuncInfo);
1434
1435  // Iterate over all basic blocks in the function.
1436  for (const BasicBlock *LLVMBB : RPOT) {
1437    if (OptLevel != CodeGenOpt::None) {
1438      bool AllPredsVisited = true;
1439      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1440           PI != PE; ++PI) {
1441        if (!FuncInfo->VisitedBBs.count(*PI)) {
1442          AllPredsVisited = false;
1443          break;
1444        }
1445      }
1446
1447      if (AllPredsVisited) {
1448        for (const PHINode &PN : LLVMBB->phis())
1449          FuncInfo->ComputePHILiveOutRegInfo(&PN);
1450      } else {
1451        for (const PHINode &PN : LLVMBB->phis())
1452          FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1453      }
1454
1455      FuncInfo->VisitedBBs.insert(LLVMBB);
1456    }
1457
1458    BasicBlock::const_iterator const Begin =
1459        LLVMBB->getFirstNonPHI()->getIterator();
1460    BasicBlock::const_iterator const End = LLVMBB->end();
1461    BasicBlock::const_iterator BI = End;
1462
1463    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1464    if (!FuncInfo->MBB)
1465      continue; // Some blocks like catchpads have no code or MBB.
1466
1467    // Insert new instructions after any phi or argument setup code.
1468    FuncInfo->InsertPt = FuncInfo->MBB->end();
1469
1470    // Setup an EH landing-pad block.
1471    FuncInfo->ExceptionPointerVirtReg = 0;
1472    FuncInfo->ExceptionSelectorVirtReg = 0;
1473    if (LLVMBB->isEHPad())
1474      if (!PrepareEHLandingPad())
1475        continue;
1476
1477    // Before doing SelectionDAG ISel, see if FastISel has been requested.
1478    if (FastIS) {
1479      if (LLVMBB != &Fn.getEntryBlock())
1480        FastIS->startNewBlock();
1481
1482      unsigned NumFastIselRemaining = std::distance(Begin, End);
1483
1484      // Pre-assign swifterror vregs.
1485      preassignSwiftErrorRegs(TLI, FuncInfo, Begin, End);
1486
1487      // Do FastISel on as many instructions as possible.
1488      for (; BI != Begin; --BI) {
1489        const Instruction *Inst = &*std::prev(BI);
1490
1491        // If we no longer require this instruction, skip it.
1492        if (isFoldedOrDeadInstruction(Inst, FuncInfo) ||
1493            ElidedArgCopyInstrs.count(Inst)) {
1494          --NumFastIselRemaining;
1495          continue;
1496        }
1497
1498        // Bottom-up: reset the insert pos at the top, after any local-value
1499        // instructions.
1500        FastIS->recomputeInsertPt();
1501
1502        // Try to select the instruction with FastISel.
1503        if (FastIS->selectInstruction(Inst)) {
1504          --NumFastIselRemaining;
1505          ++NumFastIselSuccess;
1506          // If fast isel succeeded, skip over all the folded instructions, and
1507          // then see if there is a load right before the selected instructions.
1508          // Try to fold the load if so.
1509          const Instruction *BeforeInst = Inst;
1510          while (BeforeInst != &*Begin) {
1511            BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1512            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1513              break;
1514          }
1515          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1516              BeforeInst->hasOneUse() &&
1517              FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1518            // If we succeeded, don't re-select the load.
1519            BI = std::next(BasicBlock::const_iterator(BeforeInst));
1520            --NumFastIselRemaining;
1521            ++NumFastIselSuccess;
1522          }
1523          continue;
1524        }
1525
1526        FastISelFailed = true;
1527
1528        // Then handle certain instructions as single-LLVM-Instruction blocks.
1529        // We cannot separate out GCrelocates to their own blocks since we need
1530        // to keep track of gc-relocates for a particular gc-statepoint. This is
1531        // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1532        // visitGCRelocate.
1533        if (isa<CallInst>(Inst) && !isStatepoint(Inst) && !isGCRelocate(Inst)) {
1534          OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1535                                     Inst->getDebugLoc(), LLVMBB);
1536
1537          R << "FastISel missed call";
1538
1539          if (R.isEnabled() || EnableFastISelAbort) {
1540            std::string InstStrStorage;
1541            raw_string_ostream InstStr(InstStrStorage);
1542            InstStr << *Inst;
1543
1544            R << ": " << InstStr.str();
1545          }
1546
1547          reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1548
1549          if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1550              !Inst->use_empty()) {
1551            unsigned &R = FuncInfo->ValueMap[Inst];
1552            if (!R)
1553              R = FuncInfo->CreateRegs(Inst->getType());
1554          }
1555
1556          bool HadTailCall = false;
1557          MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1558          SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1559
1560          // If the call was emitted as a tail call, we're done with the block.
1561          // We also need to delete any previously emitted instructions.
1562          if (HadTailCall) {
1563            FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1564            --BI;
1565            break;
1566          }
1567
1568          // Recompute NumFastIselRemaining as Selection DAG instruction
1569          // selection may have handled the call, input args, etc.
1570          unsigned RemainingNow = std::distance(Begin, BI);
1571          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1572          NumFastIselRemaining = RemainingNow;
1573          continue;
1574        }
1575
1576        OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1577                                   Inst->getDebugLoc(), LLVMBB);
1578
1579        bool ShouldAbort = EnableFastISelAbort;
1580        if (isa<TerminatorInst>(Inst)) {
1581          // Use a different message for terminator misses.
1582          R << "FastISel missed terminator";
1583          // Don't abort for terminator unless the level is really high
1584          ShouldAbort = (EnableFastISelAbort > 2);
1585        } else {
1586          R << "FastISel missed";
1587        }
1588
1589        if (R.isEnabled() || EnableFastISelAbort) {
1590          std::string InstStrStorage;
1591          raw_string_ostream InstStr(InstStrStorage);
1592          InstStr << *Inst;
1593          R << ": " << InstStr.str();
1594        }
1595
1596        reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1597
1598        NumFastIselFailures += NumFastIselRemaining;
1599        break;
1600      }
1601
1602      FastIS->recomputeInsertPt();
1603    }
1604
1605    if (getAnalysis<StackProtector>().shouldEmitSDCheck(*LLVMBB)) {
1606      bool FunctionBasedInstrumentation =
1607          TLI->getSSPStackGuardCheck(*Fn.getParent());
1608      SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1609                                   FunctionBasedInstrumentation);
1610    }
1611
1612    if (Begin != BI)
1613      ++NumDAGBlocks;
1614    else
1615      ++NumFastIselBlocks;
1616
1617    if (Begin != BI) {
1618      // Run SelectionDAG instruction selection on the remainder of the block
1619      // not handled by FastISel. If FastISel is not run, this is the entire
1620      // block.
1621      bool HadTailCall;
1622      SelectBasicBlock(Begin, BI, HadTailCall);
1623
1624      // But if FastISel was run, we already selected some of the block.
1625      // If we emitted a tail-call, we need to delete any previously emitted
1626      // instruction that follows it.
1627      if (HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1628        FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1629    }
1630
1631    FinishBasicBlock();
1632    FuncInfo->PHINodesToUpdate.clear();
1633    ElidedArgCopyInstrs.clear();
1634  }
1635
1636  propagateSwiftErrorVRegs(FuncInfo);
1637
1638  delete FastIS;
1639  SDB->clearDanglingDebugInfo();
1640  SDB->SPDescriptor.resetPerFunctionState();
1641}
1642
1643/// Given that the input MI is before a partial terminator sequence TSeq, return
1644/// true if M + TSeq also a partial terminator sequence.
1645///
1646/// A Terminator sequence is a sequence of MachineInstrs which at this point in
1647/// lowering copy vregs into physical registers, which are then passed into
1648/// terminator instructors so we can satisfy ABI constraints. A partial
1649/// terminator sequence is an improper subset of a terminator sequence (i.e. it
1650/// may be the whole terminator sequence).
1651static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
1652  // If we do not have a copy or an implicit def, we return true if and only if
1653  // MI is a debug value.
1654  if (!MI.isCopy() && !MI.isImplicitDef())
1655    // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1656    // physical registers if there is debug info associated with the terminator
1657    // of our mbb. We want to include said debug info in our terminator
1658    // sequence, so we return true in that case.
1659    return MI.isDebugValue();
1660
1661  // We have left the terminator sequence if we are not doing one of the
1662  // following:
1663  //
1664  // 1. Copying a vreg into a physical register.
1665  // 2. Copying a vreg into a vreg.
1666  // 3. Defining a register via an implicit def.
1667
1668  // OPI should always be a register definition...
1669  MachineInstr::const_mop_iterator OPI = MI.operands_begin();
1670  if (!OPI->isReg() || !OPI->isDef())
1671    return false;
1672
1673  // Defining any register via an implicit def is always ok.
1674  if (MI.isImplicitDef())
1675    return true;
1676
1677  // Grab the copy source...
1678  MachineInstr::const_mop_iterator OPI2 = OPI;
1679  ++OPI2;
1680  assert(OPI2 != MI.operands_end()
1681         && "Should have a copy implying we should have 2 arguments.");
1682
1683  // Make sure that the copy dest is not a vreg when the copy source is a
1684  // physical register.
1685  if (!OPI2->isReg() ||
1686      (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
1687       TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
1688    return false;
1689
1690  return true;
1691}
1692
1693/// Find the split point at which to splice the end of BB into its success stack
1694/// protector check machine basic block.
1695///
1696/// On many platforms, due to ABI constraints, terminators, even before register
1697/// allocation, use physical registers. This creates an issue for us since
1698/// physical registers at this point can not travel across basic
1699/// blocks. Luckily, selectiondag always moves physical registers into vregs
1700/// when they enter functions and moves them through a sequence of copies back
1701/// into the physical registers right before the terminator creating a
1702/// ``Terminator Sequence''. This function is searching for the beginning of the
1703/// terminator sequence so that we can ensure that we splice off not just the
1704/// terminator, but additionally the copies that move the vregs into the
1705/// physical registers.
1706static MachineBasicBlock::iterator
1707FindSplitPointForStackProtector(MachineBasicBlock *BB) {
1708  MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1709  //
1710  if (SplitPoint == BB->begin())
1711    return SplitPoint;
1712
1713  MachineBasicBlock::iterator Start = BB->begin();
1714  MachineBasicBlock::iterator Previous = SplitPoint;
1715  --Previous;
1716
1717  while (MIIsInTerminatorSequence(*Previous)) {
1718    SplitPoint = Previous;
1719    if (Previous == Start)
1720      break;
1721    --Previous;
1722  }
1723
1724  return SplitPoint;
1725}
1726
1727void
1728SelectionDAGISel::FinishBasicBlock() {
1729  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1730               << FuncInfo->PHINodesToUpdate.size() << "\n";
1731        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1732          dbgs() << "Node " << i << " : ("
1733                 << FuncInfo->PHINodesToUpdate[i].first
1734                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1735
1736  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1737  // PHI nodes in successors.
1738  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1739    MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1740    assert(PHI->isPHI() &&
1741           "This is not a machine PHI node that we are updating!");
1742    if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1743      continue;
1744    PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1745  }
1746
1747  // Handle stack protector.
1748  if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1749    // The target provides a guard check function. There is no need to
1750    // generate error handling code or to split current basic block.
1751    MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1752
1753    // Add load and check to the basicblock.
1754    FuncInfo->MBB = ParentMBB;
1755    FuncInfo->InsertPt =
1756        FindSplitPointForStackProtector(ParentMBB);
1757    SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1758    CurDAG->setRoot(SDB->getRoot());
1759    SDB->clear();
1760    CodeGenAndEmitDAG();
1761
1762    // Clear the Per-BB State.
1763    SDB->SPDescriptor.resetPerBBState();
1764  } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1765    MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1766    MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1767
1768    // Find the split point to split the parent mbb. At the same time copy all
1769    // physical registers used in the tail of parent mbb into virtual registers
1770    // before the split point and back into physical registers after the split
1771    // point. This prevents us needing to deal with Live-ins and many other
1772    // register allocation issues caused by us splitting the parent mbb. The
1773    // register allocator will clean up said virtual copies later on.
1774    MachineBasicBlock::iterator SplitPoint =
1775        FindSplitPointForStackProtector(ParentMBB);
1776
1777    // Splice the terminator of ParentMBB into SuccessMBB.
1778    SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1779                       SplitPoint,
1780                       ParentMBB->end());
1781
1782    // Add compare/jump on neq/jump to the parent BB.
1783    FuncInfo->MBB = ParentMBB;
1784    FuncInfo->InsertPt = ParentMBB->end();
1785    SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1786    CurDAG->setRoot(SDB->getRoot());
1787    SDB->clear();
1788    CodeGenAndEmitDAG();
1789
1790    // CodeGen Failure MBB if we have not codegened it yet.
1791    MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1792    if (FailureMBB->empty()) {
1793      FuncInfo->MBB = FailureMBB;
1794      FuncInfo->InsertPt = FailureMBB->end();
1795      SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1796      CurDAG->setRoot(SDB->getRoot());
1797      SDB->clear();
1798      CodeGenAndEmitDAG();
1799    }
1800
1801    // Clear the Per-BB State.
1802    SDB->SPDescriptor.resetPerBBState();
1803  }
1804
1805  // Lower each BitTestBlock.
1806  for (auto &BTB : SDB->BitTestCases) {
1807    // Lower header first, if it wasn't already lowered
1808    if (!BTB.Emitted) {
1809      // Set the current basic block to the mbb we wish to insert the code into
1810      FuncInfo->MBB = BTB.Parent;
1811      FuncInfo->InsertPt = FuncInfo->MBB->end();
1812      // Emit the code
1813      SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
1814      CurDAG->setRoot(SDB->getRoot());
1815      SDB->clear();
1816      CodeGenAndEmitDAG();
1817    }
1818
1819    BranchProbability UnhandledProb = BTB.Prob;
1820    for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
1821      UnhandledProb -= BTB.Cases[j].ExtraProb;
1822      // Set the current basic block to the mbb we wish to insert the code into
1823      FuncInfo->MBB = BTB.Cases[j].ThisBB;
1824      FuncInfo->InsertPt = FuncInfo->MBB->end();
1825      // Emit the code
1826
1827      // If all cases cover a contiguous range, it is not necessary to jump to
1828      // the default block after the last bit test fails. This is because the
1829      // range check during bit test header creation has guaranteed that every
1830      // case here doesn't go outside the range. In this case, there is no need
1831      // to perform the last bit test, as it will always be true. Instead, make
1832      // the second-to-last bit-test fall through to the target of the last bit
1833      // test, and delete the last bit test.
1834
1835      MachineBasicBlock *NextMBB;
1836      if (BTB.ContiguousRange && j + 2 == ej) {
1837        // Second-to-last bit-test with contiguous range: fall through to the
1838        // target of the final bit test.
1839        NextMBB = BTB.Cases[j + 1].TargetBB;
1840      } else if (j + 1 == ej) {
1841        // For the last bit test, fall through to Default.
1842        NextMBB = BTB.Default;
1843      } else {
1844        // Otherwise, fall through to the next bit test.
1845        NextMBB = BTB.Cases[j + 1].ThisBB;
1846      }
1847
1848      SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
1849                            FuncInfo->MBB);
1850
1851      CurDAG->setRoot(SDB->getRoot());
1852      SDB->clear();
1853      CodeGenAndEmitDAG();
1854
1855      if (BTB.ContiguousRange && j + 2 == ej) {
1856        // Since we're not going to use the final bit test, remove it.
1857        BTB.Cases.pop_back();
1858        break;
1859      }
1860    }
1861
1862    // Update PHI Nodes
1863    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1864         pi != pe; ++pi) {
1865      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1866      MachineBasicBlock *PHIBB = PHI->getParent();
1867      assert(PHI->isPHI() &&
1868             "This is not a machine PHI node that we are updating!");
1869      // This is "default" BB. We have two jumps to it. From "header" BB and
1870      // from last "case" BB, unless the latter was skipped.
1871      if (PHIBB == BTB.Default) {
1872        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
1873        if (!BTB.ContiguousRange) {
1874          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1875              .addMBB(BTB.Cases.back().ThisBB);
1876         }
1877      }
1878      // One of "cases" BB.
1879      for (unsigned j = 0, ej = BTB.Cases.size();
1880           j != ej; ++j) {
1881        MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
1882        if (cBB->isSuccessor(PHIBB))
1883          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1884      }
1885    }
1886  }
1887  SDB->BitTestCases.clear();
1888
1889  // If the JumpTable record is filled in, then we need to emit a jump table.
1890  // Updating the PHI nodes is tricky in this case, since we need to determine
1891  // whether the PHI is a successor of the range check MBB or the jump table MBB
1892  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1893    // Lower header first, if it wasn't already lowered
1894    if (!SDB->JTCases[i].first.Emitted) {
1895      // Set the current basic block to the mbb we wish to insert the code into
1896      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1897      FuncInfo->InsertPt = FuncInfo->MBB->end();
1898      // Emit the code
1899      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1900                                FuncInfo->MBB);
1901      CurDAG->setRoot(SDB->getRoot());
1902      SDB->clear();
1903      CodeGenAndEmitDAG();
1904    }
1905
1906    // Set the current basic block to the mbb we wish to insert the code into
1907    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1908    FuncInfo->InsertPt = FuncInfo->MBB->end();
1909    // Emit the code
1910    SDB->visitJumpTable(SDB->JTCases[i].second);
1911    CurDAG->setRoot(SDB->getRoot());
1912    SDB->clear();
1913    CodeGenAndEmitDAG();
1914
1915    // Update PHI Nodes
1916    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1917         pi != pe; ++pi) {
1918      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1919      MachineBasicBlock *PHIBB = PHI->getParent();
1920      assert(PHI->isPHI() &&
1921             "This is not a machine PHI node that we are updating!");
1922      // "default" BB. We can go there only from header BB.
1923      if (PHIBB == SDB->JTCases[i].second.Default)
1924        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1925           .addMBB(SDB->JTCases[i].first.HeaderBB);
1926      // JT BB. Just iterate over successors here
1927      if (FuncInfo->MBB->isSuccessor(PHIBB))
1928        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1929    }
1930  }
1931  SDB->JTCases.clear();
1932
1933  // If we generated any switch lowering information, build and codegen any
1934  // additional DAGs necessary.
1935  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1936    // Set the current basic block to the mbb we wish to insert the code into
1937    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1938    FuncInfo->InsertPt = FuncInfo->MBB->end();
1939
1940    // Determine the unique successors.
1941    SmallVector<MachineBasicBlock *, 2> Succs;
1942    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1943    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1944      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1945
1946    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1947    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1948    CurDAG->setRoot(SDB->getRoot());
1949    SDB->clear();
1950    CodeGenAndEmitDAG();
1951
1952    // Remember the last block, now that any splitting is done, for use in
1953    // populating PHI nodes in successors.
1954    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1955
1956    // Handle any PHI nodes in successors of this chunk, as if we were coming
1957    // from the original BB before switch expansion.  Note that PHI nodes can
1958    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1959    // handle them the right number of times.
1960    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1961      FuncInfo->MBB = Succs[i];
1962      FuncInfo->InsertPt = FuncInfo->MBB->end();
1963      // FuncInfo->MBB may have been removed from the CFG if a branch was
1964      // constant folded.
1965      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1966        for (MachineBasicBlock::iterator
1967             MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1968             MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1969          MachineInstrBuilder PHI(*MF, MBBI);
1970          // This value for this PHI node is recorded in PHINodesToUpdate.
1971          for (unsigned pn = 0; ; ++pn) {
1972            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1973                   "Didn't find PHI entry!");
1974            if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1975              PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1976              break;
1977            }
1978          }
1979        }
1980      }
1981    }
1982  }
1983  SDB->SwitchCases.clear();
1984}
1985
1986/// Create the scheduler. If a specific scheduler was specified
1987/// via the SchedulerRegistry, use it, otherwise select the
1988/// one preferred by the target.
1989///
1990ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1991  return ISHeuristic(this, OptLevel);
1992}
1993
1994//===----------------------------------------------------------------------===//
1995// Helper functions used by the generated instruction selector.
1996//===----------------------------------------------------------------------===//
1997// Calls to these methods are generated by tblgen.
1998
1999/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
2000/// the dag combiner simplified the 255, we still want to match.  RHS is the
2001/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
2002/// specified in the .td file (e.g. 255).
2003bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
2004                                    int64_t DesiredMaskS) const {
2005  const APInt &ActualMask = RHS->getAPIntValue();
2006  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2007
2008  // If the actual mask exactly matches, success!
2009  if (ActualMask == DesiredMask)
2010    return true;
2011
2012  // If the actual AND mask is allowing unallowed bits, this doesn't match.
2013  if (ActualMask.intersects(~DesiredMask))
2014    return false;
2015
2016  // Otherwise, the DAG Combiner may have proven that the value coming in is
2017  // either already zero or is not demanded.  Check for known zero input bits.
2018  APInt NeededMask = DesiredMask & ~ActualMask;
2019  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
2020    return true;
2021
2022  // TODO: check to see if missing bits are just not demanded.
2023
2024  // Otherwise, this pattern doesn't match.
2025  return false;
2026}
2027
2028/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
2029/// the dag combiner simplified the 255, we still want to match.  RHS is the
2030/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
2031/// specified in the .td file (e.g. 255).
2032bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
2033                                   int64_t DesiredMaskS) const {
2034  const APInt &ActualMask = RHS->getAPIntValue();
2035  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2036
2037  // If the actual mask exactly matches, success!
2038  if (ActualMask == DesiredMask)
2039    return true;
2040
2041  // If the actual AND mask is allowing unallowed bits, this doesn't match.
2042  if (ActualMask.intersects(~DesiredMask))
2043    return false;
2044
2045  // Otherwise, the DAG Combiner may have proven that the value coming in is
2046  // either already zero or is not demanded.  Check for known zero input bits.
2047  APInt NeededMask = DesiredMask & ~ActualMask;
2048
2049  KnownBits Known;
2050  CurDAG->computeKnownBits(LHS, Known);
2051
2052  // If all the missing bits in the or are already known to be set, match!
2053  if (NeededMask.isSubsetOf(Known.One))
2054    return true;
2055
2056  // TODO: check to see if missing bits are just not demanded.
2057
2058  // Otherwise, this pattern doesn't match.
2059  return false;
2060}
2061
2062/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2063/// by tblgen.  Others should not call it.
2064void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
2065                                                     const SDLoc &DL) {
2066  std::vector<SDValue> InOps;
2067  std::swap(InOps, Ops);
2068
2069  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
2070  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
2071  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
2072  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
2073
2074  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
2075  if (InOps[e-1].getValueType() == MVT::Glue)
2076    --e;  // Don't process a glue operand if it is here.
2077
2078  while (i != e) {
2079    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
2080    if (!InlineAsm::isMemKind(Flags)) {
2081      // Just skip over this operand, copying the operands verbatim.
2082      Ops.insert(Ops.end(), InOps.begin()+i,
2083                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
2084      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
2085    } else {
2086      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
2087             "Memory operand with multiple values?");
2088
2089      unsigned TiedToOperand;
2090      if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
2091        // We need the constraint ID from the operand this is tied to.
2092        unsigned CurOp = InlineAsm::Op_FirstOperand;
2093        Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2094        for (; TiedToOperand; --TiedToOperand) {
2095          CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
2096          Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2097        }
2098      }
2099
2100      // Otherwise, this is a memory operand.  Ask the target to select it.
2101      std::vector<SDValue> SelOps;
2102      unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
2103      if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
2104        report_fatal_error("Could not match memory address.  Inline asm"
2105                           " failure!");
2106
2107      // Add this to the output node.
2108      unsigned NewFlags =
2109        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
2110      NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
2111      Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
2112      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
2113      i += 2;
2114    }
2115  }
2116
2117  // Add the glue input back if present.
2118  if (e != InOps.size())
2119    Ops.push_back(InOps.back());
2120}
2121
2122/// findGlueUse - Return use of MVT::Glue value produced by the specified
2123/// SDNode.
2124///
2125static SDNode *findGlueUse(SDNode *N) {
2126  unsigned FlagResNo = N->getNumValues()-1;
2127  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2128    SDUse &Use = I.getUse();
2129    if (Use.getResNo() == FlagResNo)
2130      return Use.getUser();
2131  }
2132  return nullptr;
2133}
2134
2135/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
2136/// This function iteratively traverses up the operand chain, ignoring
2137/// certain nodes.
2138static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
2139                          SDNode *Root, SmallPtrSetImpl<SDNode*> &Visited,
2140                          bool IgnoreChains) {
2141  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
2142  // greater than all of its (recursive) operands.  If we scan to a point where
2143  // 'use' is smaller than the node we're scanning for, then we know we will
2144  // never find it.
2145  //
2146  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
2147  // happen because we scan down to newly selected nodes in the case of glue
2148  // uses.
2149  std::vector<SDNode *> WorkList;
2150  WorkList.push_back(Use);
2151
2152  while (!WorkList.empty()) {
2153    Use = WorkList.back();
2154    WorkList.pop_back();
2155    if (Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1)
2156      continue;
2157
2158    // Don't revisit nodes if we already scanned it and didn't fail, we know we
2159    // won't fail if we scan it again.
2160    if (!Visited.insert(Use).second)
2161      continue;
2162
2163    for (const SDValue &Op : Use->op_values()) {
2164      // Ignore chain uses, they are validated by HandleMergeInputChains.
2165      if (Op.getValueType() == MVT::Other && IgnoreChains)
2166        continue;
2167
2168      SDNode *N = Op.getNode();
2169      if (N == Def) {
2170        if (Use == ImmedUse || Use == Root)
2171          continue;  // We are not looking for immediate use.
2172        assert(N != Root);
2173        return true;
2174      }
2175
2176      // Traverse up the operand chain.
2177      WorkList.push_back(N);
2178    }
2179  }
2180  return false;
2181}
2182
2183/// IsProfitableToFold - Returns true if it's profitable to fold the specific
2184/// operand node N of U during instruction selection that starts at Root.
2185bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2186                                          SDNode *Root) const {
2187  if (OptLevel == CodeGenOpt::None) return false;
2188  return N.hasOneUse();
2189}
2190
2191/// IsLegalToFold - Returns true if the specific operand node N of
2192/// U can be folded during instruction selection that starts at Root.
2193bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2194                                     CodeGenOpt::Level OptLevel,
2195                                     bool IgnoreChains) {
2196  if (OptLevel == CodeGenOpt::None) return false;
2197
2198  // If Root use can somehow reach N through a path that that doesn't contain
2199  // U then folding N would create a cycle. e.g. In the following
2200  // diagram, Root can reach N through X. If N is folded into into Root, then
2201  // X is both a predecessor and a successor of U.
2202  //
2203  //          [N*]           //
2204  //         ^   ^           //
2205  //        /     \          //
2206  //      [U*]    [X]?       //
2207  //        ^     ^          //
2208  //         \   /           //
2209  //          \ /            //
2210  //         [Root*]         //
2211  //
2212  // * indicates nodes to be folded together.
2213  //
2214  // If Root produces glue, then it gets (even more) interesting. Since it
2215  // will be "glued" together with its glue use in the scheduler, we need to
2216  // check if it might reach N.
2217  //
2218  //          [N*]           //
2219  //         ^   ^           //
2220  //        /     \          //
2221  //      [U*]    [X]?       //
2222  //        ^       ^        //
2223  //         \       \       //
2224  //          \      |       //
2225  //         [Root*] |       //
2226  //          ^      |       //
2227  //          f      |       //
2228  //          |      /       //
2229  //         [Y]    /        //
2230  //           ^   /         //
2231  //           f  /          //
2232  //           | /           //
2233  //          [GU]           //
2234  //
2235  // If GU (glue use) indirectly reaches N (the load), and Root folds N
2236  // (call it Fold), then X is a predecessor of GU and a successor of
2237  // Fold. But since Fold and GU are glued together, this will create
2238  // a cycle in the scheduling graph.
2239
2240  // If the node has glue, walk down the graph to the "lowest" node in the
2241  // glueged set.
2242  EVT VT = Root->getValueType(Root->getNumValues()-1);
2243  while (VT == MVT::Glue) {
2244    SDNode *GU = findGlueUse(Root);
2245    if (!GU)
2246      break;
2247    Root = GU;
2248    VT = Root->getValueType(Root->getNumValues()-1);
2249
2250    // If our query node has a glue result with a use, we've walked up it.  If
2251    // the user (which has already been selected) has a chain or indirectly uses
2252    // the chain, our WalkChainUsers predicate will not consider it.  Because of
2253    // this, we cannot ignore chains in this predicate.
2254    IgnoreChains = false;
2255  }
2256
2257  SmallPtrSet<SDNode*, 16> Visited;
2258  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
2259}
2260
2261void SelectionDAGISel::Select_INLINEASM(SDNode *N) {
2262  SDLoc DL(N);
2263
2264  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2265  SelectInlineAsmMemoryOperands(Ops, DL);
2266
2267  const EVT VTs[] = {MVT::Other, MVT::Glue};
2268  SDValue New = CurDAG->getNode(ISD::INLINEASM, DL, VTs, Ops);
2269  New->setNodeId(-1);
2270  ReplaceUses(N, New.getNode());
2271  CurDAG->RemoveDeadNode(N);
2272}
2273
2274void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2275  SDLoc dl(Op);
2276  MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
2277  const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2278  unsigned Reg =
2279      TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0),
2280                             *CurDAG);
2281  SDValue New = CurDAG->getCopyFromReg(
2282                        Op->getOperand(0), dl, Reg, Op->getValueType(0));
2283  New->setNodeId(-1);
2284  ReplaceUses(Op, New.getNode());
2285  CurDAG->RemoveDeadNode(Op);
2286}
2287
2288void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2289  SDLoc dl(Op);
2290  MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
2291  const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2292  unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(),
2293                                        Op->getOperand(2).getValueType(),
2294                                        *CurDAG);
2295  SDValue New = CurDAG->getCopyToReg(
2296                        Op->getOperand(0), dl, Reg, Op->getOperand(2));
2297  New->setNodeId(-1);
2298  ReplaceUses(Op, New.getNode());
2299  CurDAG->RemoveDeadNode(Op);
2300}
2301
2302void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2303  CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2304}
2305
2306/// GetVBR - decode a vbr encoding whose top bit is set.
2307LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
2308GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2309  assert(Val >= 128 && "Not a VBR");
2310  Val &= 127;  // Remove first vbr bit.
2311
2312  unsigned Shift = 7;
2313  uint64_t NextBits;
2314  do {
2315    NextBits = MatcherTable[Idx++];
2316    Val |= (NextBits&127) << Shift;
2317    Shift += 7;
2318  } while (NextBits & 128);
2319
2320  return Val;
2321}
2322
2323/// When a match is complete, this method updates uses of interior chain results
2324/// to use the new results.
2325void SelectionDAGISel::UpdateChains(
2326    SDNode *NodeToMatch, SDValue InputChain,
2327    SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2328  SmallVector<SDNode*, 4> NowDeadNodes;
2329
2330  // Now that all the normal results are replaced, we replace the chain and
2331  // glue results if present.
2332  if (!ChainNodesMatched.empty()) {
2333    assert(InputChain.getNode() &&
2334           "Matched input chains but didn't produce a chain");
2335    // Loop over all of the nodes we matched that produced a chain result.
2336    // Replace all the chain results with the final chain we ended up with.
2337    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2338      SDNode *ChainNode = ChainNodesMatched[i];
2339      // If ChainNode is null, it's because we replaced it on a previous
2340      // iteration and we cleared it out of the map. Just skip it.
2341      if (!ChainNode)
2342        continue;
2343
2344      assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2345             "Deleted node left in chain");
2346
2347      // Don't replace the results of the root node if we're doing a
2348      // MorphNodeTo.
2349      if (ChainNode == NodeToMatch && isMorphNodeTo)
2350        continue;
2351
2352      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2353      if (ChainVal.getValueType() == MVT::Glue)
2354        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2355      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2356      SelectionDAG::DAGNodeDeletedListener NDL(
2357          *CurDAG, [&](SDNode *N, SDNode *E) {
2358            std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2359                         static_cast<SDNode *>(nullptr));
2360          });
2361      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
2362
2363      // If the node became dead and we haven't already seen it, delete it.
2364      if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2365          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
2366        NowDeadNodes.push_back(ChainNode);
2367    }
2368  }
2369
2370  if (!NowDeadNodes.empty())
2371    CurDAG->RemoveDeadNodes(NowDeadNodes);
2372
2373  DEBUG(dbgs() << "ISEL: Match complete!\n");
2374}
2375
2376enum ChainResult {
2377  CR_Simple,
2378  CR_InducesCycle,
2379  CR_LeadsToInteriorNode
2380};
2381
2382/// WalkChainUsers - Walk down the users of the specified chained node that is
2383/// part of the pattern we're matching, looking at all of the users we find.
2384/// This determines whether something is an interior node, whether we have a
2385/// non-pattern node in between two pattern nodes (which prevent folding because
2386/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
2387/// between pattern nodes (in which case the TF becomes part of the pattern).
2388///
2389/// The walk we do here is guaranteed to be small because we quickly get down to
2390/// already selected nodes "below" us.
2391static ChainResult
2392WalkChainUsers(const SDNode *ChainedNode,
2393               SmallVectorImpl<SDNode *> &ChainedNodesInPattern,
2394               DenseMap<const SDNode *, ChainResult> &TokenFactorResult,
2395               SmallVectorImpl<SDNode *> &InteriorChainedNodes) {
2396  ChainResult Result = CR_Simple;
2397
2398  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
2399         E = ChainedNode->use_end(); UI != E; ++UI) {
2400    // Make sure the use is of the chain, not some other value we produce.
2401    if (UI.getUse().getValueType() != MVT::Other) continue;
2402
2403    SDNode *User = *UI;
2404
2405    if (User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
2406      continue;
2407
2408    // If we see an already-selected machine node, then we've gone beyond the
2409    // pattern that we're selecting down into the already selected chunk of the
2410    // DAG.
2411    unsigned UserOpcode = User->getOpcode();
2412    if (User->isMachineOpcode() ||
2413        UserOpcode == ISD::CopyToReg ||
2414        UserOpcode == ISD::CopyFromReg ||
2415        UserOpcode == ISD::INLINEASM ||
2416        UserOpcode == ISD::EH_LABEL ||
2417        UserOpcode == ISD::LIFETIME_START ||
2418        UserOpcode == ISD::LIFETIME_END) {
2419      // If their node ID got reset to -1 then they've already been selected.
2420      // Treat them like a MachineOpcode.
2421      if (User->getNodeId() == -1)
2422        continue;
2423    }
2424
2425    // If we have a TokenFactor, we handle it specially.
2426    if (User->getOpcode() != ISD::TokenFactor) {
2427      // If the node isn't a token factor and isn't part of our pattern, then it
2428      // must be a random chained node in between two nodes we're selecting.
2429      // This happens when we have something like:
2430      //   x = load ptr
2431      //   call
2432      //   y = x+4
2433      //   store y -> ptr
2434      // Because we structurally match the load/store as a read/modify/write,
2435      // but the call is chained between them.  We cannot fold in this case
2436      // because it would induce a cycle in the graph.
2437      if (!std::count(ChainedNodesInPattern.begin(),
2438                      ChainedNodesInPattern.end(), User))
2439        return CR_InducesCycle;
2440
2441      // Otherwise we found a node that is part of our pattern.  For example in:
2442      //   x = load ptr
2443      //   y = x+4
2444      //   store y -> ptr
2445      // This would happen when we're scanning down from the load and see the
2446      // store as a user.  Record that there is a use of ChainedNode that is
2447      // part of the pattern and keep scanning uses.
2448      Result = CR_LeadsToInteriorNode;
2449      InteriorChainedNodes.push_back(User);
2450      continue;
2451    }
2452
2453    // If we found a TokenFactor, there are two cases to consider: first if the
2454    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
2455    // uses of the TF are in our pattern) we just want to ignore it.  Second,
2456    // the TokenFactor can be sandwiched in between two chained nodes, like so:
2457    //     [Load chain]
2458    //         ^
2459    //         |
2460    //       [Load]
2461    //       ^    ^
2462    //       |    \                    DAG's like cheese
2463    //      /       \                       do you?
2464    //     /         |
2465    // [TokenFactor] [Op]
2466    //     ^          ^
2467    //     |          |
2468    //      \        /
2469    //       \      /
2470    //       [Store]
2471    //
2472    // In this case, the TokenFactor becomes part of our match and we rewrite it
2473    // as a new TokenFactor.
2474    //
2475    // To distinguish these two cases, do a recursive walk down the uses.
2476    auto MemoizeResult = TokenFactorResult.find(User);
2477    bool Visited = MemoizeResult != TokenFactorResult.end();
2478    // Recursively walk chain users only if the result is not memoized.
2479    if (!Visited) {
2480      auto Res = WalkChainUsers(User, ChainedNodesInPattern, TokenFactorResult,
2481                                InteriorChainedNodes);
2482      MemoizeResult = TokenFactorResult.insert(std::make_pair(User, Res)).first;
2483    }
2484    switch (MemoizeResult->second) {
2485    case CR_Simple:
2486      // If the uses of the TokenFactor are just already-selected nodes, ignore
2487      // it, it is "below" our pattern.
2488      continue;
2489    case CR_InducesCycle:
2490      // If the uses of the TokenFactor lead to nodes that are not part of our
2491      // pattern that are not selected, folding would turn this into a cycle,
2492      // bail out now.
2493      return CR_InducesCycle;
2494    case CR_LeadsToInteriorNode:
2495      break;  // Otherwise, keep processing.
2496    }
2497
2498    // Okay, we know we're in the interesting interior case.  The TokenFactor
2499    // is now going to be considered part of the pattern so that we rewrite its
2500    // uses (it may have uses that are not part of the pattern) with the
2501    // ultimate chain result of the generated code.  We will also add its chain
2502    // inputs as inputs to the ultimate TokenFactor we create.
2503    Result = CR_LeadsToInteriorNode;
2504    if (!Visited) {
2505      ChainedNodesInPattern.push_back(User);
2506      InteriorChainedNodes.push_back(User);
2507    }
2508  }
2509
2510  return Result;
2511}
2512
2513/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2514/// operation for when the pattern matched at least one node with a chains.  The
2515/// input vector contains a list of all of the chained nodes that we match.  We
2516/// must determine if this is a valid thing to cover (i.e. matching it won't
2517/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2518/// be used as the input node chain for the generated nodes.
2519static SDValue
2520HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2521                       SelectionDAG *CurDAG) {
2522  // Used for memoization. Without it WalkChainUsers could take exponential
2523  // time to run.
2524  DenseMap<const SDNode *, ChainResult> TokenFactorResult;
2525  // Walk all of the chained nodes we've matched, recursively scanning down the
2526  // users of the chain result. This adds any TokenFactor nodes that are caught
2527  // in between chained nodes to the chained and interior nodes list.
2528  SmallVector<SDNode*, 3> InteriorChainedNodes;
2529  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2530    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
2531                       TokenFactorResult,
2532                       InteriorChainedNodes) == CR_InducesCycle)
2533      return SDValue(); // Would induce a cycle.
2534  }
2535
2536  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
2537  // that we are interested in.  Form our input TokenFactor node.
2538  SmallVector<SDValue, 3> InputChains;
2539  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2540    // Add the input chain of this node to the InputChains list (which will be
2541    // the operands of the generated TokenFactor) if it's not an interior node.
2542    SDNode *N = ChainNodesMatched[i];
2543    if (N->getOpcode() != ISD::TokenFactor) {
2544      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
2545        continue;
2546
2547      // Otherwise, add the input chain.
2548      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
2549      assert(InChain.getValueType() == MVT::Other && "Not a chain");
2550      InputChains.push_back(InChain);
2551      continue;
2552    }
2553
2554    // If we have a token factor, we want to add all inputs of the token factor
2555    // that are not part of the pattern we're matching.
2556    for (const SDValue &Op : N->op_values()) {
2557      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
2558                      Op.getNode()))
2559        InputChains.push_back(Op);
2560    }
2561  }
2562
2563  if (InputChains.size() == 1)
2564    return InputChains[0];
2565  return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2566                         MVT::Other, InputChains);
2567}
2568
2569/// MorphNode - Handle morphing a node in place for the selector.
2570SDNode *SelectionDAGISel::
2571MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2572          ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2573  // It is possible we're using MorphNodeTo to replace a node with no
2574  // normal results with one that has a normal result (or we could be
2575  // adding a chain) and the input could have glue and chains as well.
2576  // In this case we need to shift the operands down.
2577  // FIXME: This is a horrible hack and broken in obscure cases, no worse
2578  // than the old isel though.
2579  int OldGlueResultNo = -1, OldChainResultNo = -1;
2580
2581  unsigned NTMNumResults = Node->getNumValues();
2582  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2583    OldGlueResultNo = NTMNumResults-1;
2584    if (NTMNumResults != 1 &&
2585        Node->getValueType(NTMNumResults-2) == MVT::Other)
2586      OldChainResultNo = NTMNumResults-2;
2587  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2588    OldChainResultNo = NTMNumResults-1;
2589
2590  // Call the underlying SelectionDAG routine to do the transmogrification. Note
2591  // that this deletes operands of the old node that become dead.
2592  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2593
2594  // MorphNodeTo can operate in two ways: if an existing node with the
2595  // specified operands exists, it can just return it.  Otherwise, it
2596  // updates the node in place to have the requested operands.
2597  if (Res == Node) {
2598    // If we updated the node in place, reset the node ID.  To the isel,
2599    // this should be just like a newly allocated machine node.
2600    Res->setNodeId(-1);
2601  }
2602
2603  unsigned ResNumResults = Res->getNumValues();
2604  // Move the glue if needed.
2605  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2606      (unsigned)OldGlueResultNo != ResNumResults-1)
2607    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
2608                                      SDValue(Res, ResNumResults-1));
2609
2610  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2611    --ResNumResults;
2612
2613  // Move the chain reference if needed.
2614  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2615      (unsigned)OldChainResultNo != ResNumResults-1)
2616    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
2617                                      SDValue(Res, ResNumResults-1));
2618
2619  // Otherwise, no replacement happened because the node already exists. Replace
2620  // Uses of the old node with the new one.
2621  if (Res != Node) {
2622    CurDAG->ReplaceAllUsesWith(Node, Res);
2623    CurDAG->RemoveDeadNode(Node);
2624  }
2625
2626  return Res;
2627}
2628
2629/// CheckSame - Implements OP_CheckSame.
2630LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2631CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2632          SDValue N,
2633          const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2634  // Accept if it is exactly the same as a previously recorded node.
2635  unsigned RecNo = MatcherTable[MatcherIndex++];
2636  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2637  return N == RecordedNodes[RecNo].first;
2638}
2639
2640/// CheckChildSame - Implements OP_CheckChildXSame.
2641LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2642CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2643              SDValue N,
2644              const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes,
2645              unsigned ChildNo) {
2646  if (ChildNo >= N.getNumOperands())
2647    return false;  // Match fails if out of range child #.
2648  return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2649                     RecordedNodes);
2650}
2651
2652/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2653LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2654CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2655                      const SelectionDAGISel &SDISel) {
2656  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2657}
2658
2659/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2660LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2661CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2662                   const SelectionDAGISel &SDISel, SDNode *N) {
2663  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2664}
2665
2666LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2667CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2668            SDNode *N) {
2669  uint16_t Opc = MatcherTable[MatcherIndex++];
2670  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2671  return N->getOpcode() == Opc;
2672}
2673
2674LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2675CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2676          const TargetLowering *TLI, const DataLayout &DL) {
2677  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2678  if (N.getValueType() == VT) return true;
2679
2680  // Handle the case when VT is iPTR.
2681  return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2682}
2683
2684LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2685CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2686               SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2687               unsigned ChildNo) {
2688  if (ChildNo >= N.getNumOperands())
2689    return false;  // Match fails if out of range child #.
2690  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2691                     DL);
2692}
2693
2694LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2695CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2696              SDValue N) {
2697  return cast<CondCodeSDNode>(N)->get() ==
2698      (ISD::CondCode)MatcherTable[MatcherIndex++];
2699}
2700
2701LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2702CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2703               SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2704  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2705  if (cast<VTSDNode>(N)->getVT() == VT)
2706    return true;
2707
2708  // Handle the case when VT is iPTR.
2709  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2710}
2711
2712LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2713CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2714             SDValue N) {
2715  int64_t Val = MatcherTable[MatcherIndex++];
2716  if (Val & 128)
2717    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2718
2719  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2720  return C && C->getSExtValue() == Val;
2721}
2722
2723LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2724CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2725                  SDValue N, unsigned ChildNo) {
2726  if (ChildNo >= N.getNumOperands())
2727    return false;  // Match fails if out of range child #.
2728  return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2729}
2730
2731LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2732CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2733            SDValue N, const SelectionDAGISel &SDISel) {
2734  int64_t Val = MatcherTable[MatcherIndex++];
2735  if (Val & 128)
2736    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2737
2738  if (N->getOpcode() != ISD::AND) return false;
2739
2740  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2741  return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2742}
2743
2744LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2745CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2746           SDValue N, const SelectionDAGISel &SDISel) {
2747  int64_t Val = MatcherTable[MatcherIndex++];
2748  if (Val & 128)
2749    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2750
2751  if (N->getOpcode() != ISD::OR) return false;
2752
2753  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2754  return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2755}
2756
2757/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2758/// scope, evaluate the current node.  If the current predicate is known to
2759/// fail, set Result=true and return anything.  If the current predicate is
2760/// known to pass, set Result=false and return the MatcherIndex to continue
2761/// with.  If the current predicate is unknown, set Result=false and return the
2762/// MatcherIndex to continue with.
2763static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2764                                       unsigned Index, SDValue N,
2765                                       bool &Result,
2766                                       const SelectionDAGISel &SDISel,
2767                  SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2768  switch (Table[Index++]) {
2769  default:
2770    Result = false;
2771    return Index-1;  // Could not evaluate this predicate.
2772  case SelectionDAGISel::OPC_CheckSame:
2773    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2774    return Index;
2775  case SelectionDAGISel::OPC_CheckChild0Same:
2776  case SelectionDAGISel::OPC_CheckChild1Same:
2777  case SelectionDAGISel::OPC_CheckChild2Same:
2778  case SelectionDAGISel::OPC_CheckChild3Same:
2779    Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2780                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2781    return Index;
2782  case SelectionDAGISel::OPC_CheckPatternPredicate:
2783    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2784    return Index;
2785  case SelectionDAGISel::OPC_CheckPredicate:
2786    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2787    return Index;
2788  case SelectionDAGISel::OPC_CheckOpcode:
2789    Result = !::CheckOpcode(Table, Index, N.getNode());
2790    return Index;
2791  case SelectionDAGISel::OPC_CheckType:
2792    Result = !::CheckType(Table, Index, N, SDISel.TLI,
2793                          SDISel.CurDAG->getDataLayout());
2794    return Index;
2795  case SelectionDAGISel::OPC_CheckTypeRes: {
2796    unsigned Res = Table[Index++];
2797    Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
2798                          SDISel.CurDAG->getDataLayout());
2799    return Index;
2800  }
2801  case SelectionDAGISel::OPC_CheckChild0Type:
2802  case SelectionDAGISel::OPC_CheckChild1Type:
2803  case SelectionDAGISel::OPC_CheckChild2Type:
2804  case SelectionDAGISel::OPC_CheckChild3Type:
2805  case SelectionDAGISel::OPC_CheckChild4Type:
2806  case SelectionDAGISel::OPC_CheckChild5Type:
2807  case SelectionDAGISel::OPC_CheckChild6Type:
2808  case SelectionDAGISel::OPC_CheckChild7Type:
2809    Result = !::CheckChildType(
2810                 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2811                 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2812    return Index;
2813  case SelectionDAGISel::OPC_CheckCondCode:
2814    Result = !::CheckCondCode(Table, Index, N);
2815    return Index;
2816  case SelectionDAGISel::OPC_CheckValueType:
2817    Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2818                               SDISel.CurDAG->getDataLayout());
2819    return Index;
2820  case SelectionDAGISel::OPC_CheckInteger:
2821    Result = !::CheckInteger(Table, Index, N);
2822    return Index;
2823  case SelectionDAGISel::OPC_CheckChild0Integer:
2824  case SelectionDAGISel::OPC_CheckChild1Integer:
2825  case SelectionDAGISel::OPC_CheckChild2Integer:
2826  case SelectionDAGISel::OPC_CheckChild3Integer:
2827  case SelectionDAGISel::OPC_CheckChild4Integer:
2828    Result = !::CheckChildInteger(Table, Index, N,
2829                     Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2830    return Index;
2831  case SelectionDAGISel::OPC_CheckAndImm:
2832    Result = !::CheckAndImm(Table, Index, N, SDISel);
2833    return Index;
2834  case SelectionDAGISel::OPC_CheckOrImm:
2835    Result = !::CheckOrImm(Table, Index, N, SDISel);
2836    return Index;
2837  }
2838}
2839
2840namespace {
2841
2842struct MatchScope {
2843  /// FailIndex - If this match fails, this is the index to continue with.
2844  unsigned FailIndex;
2845
2846  /// NodeStack - The node stack when the scope was formed.
2847  SmallVector<SDValue, 4> NodeStack;
2848
2849  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2850  unsigned NumRecordedNodes;
2851
2852  /// NumMatchedMemRefs - The number of matched memref entries.
2853  unsigned NumMatchedMemRefs;
2854
2855  /// InputChain/InputGlue - The current chain/glue
2856  SDValue InputChain, InputGlue;
2857
2858  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2859  bool HasChainNodesMatched;
2860};
2861
2862/// \\brief A DAG update listener to keep the matching state
2863/// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2864/// change the DAG while matching.  X86 addressing mode matcher is an example
2865/// for this.
2866class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2867{
2868  SDNode **NodeToMatch;
2869  SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
2870  SmallVectorImpl<MatchScope> &MatchScopes;
2871
2872public:
2873  MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
2874                    SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
2875                    SmallVectorImpl<MatchScope> &MS)
2876      : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
2877        RecordedNodes(RN), MatchScopes(MS) {}
2878
2879  void NodeDeleted(SDNode *N, SDNode *E) override {
2880    // Some early-returns here to avoid the search if we deleted the node or
2881    // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2882    // do, so it's unnecessary to update matching state at that point).
2883    // Neither of these can occur currently because we only install this
2884    // update listener during matching a complex patterns.
2885    if (!E || E->isMachineOpcode())
2886      return;
2887    // Check if NodeToMatch was updated.
2888    if (N == *NodeToMatch)
2889      *NodeToMatch = E;
2890    // Performing linear search here does not matter because we almost never
2891    // run this code.  You'd have to have a CSE during complex pattern
2892    // matching.
2893    for (auto &I : RecordedNodes)
2894      if (I.first.getNode() == N)
2895        I.first.setNode(E);
2896
2897    for (auto &I : MatchScopes)
2898      for (auto &J : I.NodeStack)
2899        if (J.getNode() == N)
2900          J.setNode(E);
2901  }
2902};
2903
2904} // end anonymous namespace
2905
2906void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
2907                                        const unsigned char *MatcherTable,
2908                                        unsigned TableSize) {
2909  // FIXME: Should these even be selected?  Handle these cases in the caller?
2910  switch (NodeToMatch->getOpcode()) {
2911  default:
2912    break;
2913  case ISD::EntryToken:       // These nodes remain the same.
2914  case ISD::BasicBlock:
2915  case ISD::Register:
2916  case ISD::RegisterMask:
2917  case ISD::HANDLENODE:
2918  case ISD::MDNODE_SDNODE:
2919  case ISD::TargetConstant:
2920  case ISD::TargetConstantFP:
2921  case ISD::TargetConstantPool:
2922  case ISD::TargetFrameIndex:
2923  case ISD::TargetExternalSymbol:
2924  case ISD::MCSymbol:
2925  case ISD::TargetBlockAddress:
2926  case ISD::TargetJumpTable:
2927  case ISD::TargetGlobalTLSAddress:
2928  case ISD::TargetGlobalAddress:
2929  case ISD::TokenFactor:
2930  case ISD::CopyFromReg:
2931  case ISD::CopyToReg:
2932  case ISD::EH_LABEL:
2933  case ISD::ANNOTATION_LABEL:
2934  case ISD::LIFETIME_START:
2935  case ISD::LIFETIME_END:
2936    NodeToMatch->setNodeId(-1); // Mark selected.
2937    return;
2938  case ISD::AssertSext:
2939  case ISD::AssertZext:
2940    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2941                                      NodeToMatch->getOperand(0));
2942    CurDAG->RemoveDeadNode(NodeToMatch);
2943    return;
2944  case ISD::INLINEASM:
2945    Select_INLINEASM(NodeToMatch);
2946    return;
2947  case ISD::READ_REGISTER:
2948    Select_READ_REGISTER(NodeToMatch);
2949    return;
2950  case ISD::WRITE_REGISTER:
2951    Select_WRITE_REGISTER(NodeToMatch);
2952    return;
2953  case ISD::UNDEF:
2954    Select_UNDEF(NodeToMatch);
2955    return;
2956  }
2957
2958  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2959
2960  // Set up the node stack with NodeToMatch as the only node on the stack.
2961  SmallVector<SDValue, 8> NodeStack;
2962  SDValue N = SDValue(NodeToMatch, 0);
2963  NodeStack.push_back(N);
2964
2965  // MatchScopes - Scopes used when matching, if a match failure happens, this
2966  // indicates where to continue checking.
2967  SmallVector<MatchScope, 8> MatchScopes;
2968
2969  // RecordedNodes - This is the set of nodes that have been recorded by the
2970  // state machine.  The second value is the parent of the node, or null if the
2971  // root is recorded.
2972  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2973
2974  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2975  // pattern.
2976  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2977
2978  // These are the current input chain and glue for use when generating nodes.
2979  // Various Emit operations change these.  For example, emitting a copytoreg
2980  // uses and updates these.
2981  SDValue InputChain, InputGlue;
2982
2983  // ChainNodesMatched - If a pattern matches nodes that have input/output
2984  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2985  // which ones they are.  The result is captured into this list so that we can
2986  // update the chain results when the pattern is complete.
2987  SmallVector<SDNode*, 3> ChainNodesMatched;
2988
2989  DEBUG(dbgs() << "ISEL: Starting pattern match on root node: ";
2990        NodeToMatch->dump(CurDAG);
2991        dbgs() << '\n');
2992
2993  // Determine where to start the interpreter.  Normally we start at opcode #0,
2994  // but if the state machine starts with an OPC_SwitchOpcode, then we
2995  // accelerate the first lookup (which is guaranteed to be hot) with the
2996  // OpcodeOffset table.
2997  unsigned MatcherIndex = 0;
2998
2999  if (!OpcodeOffset.empty()) {
3000    // Already computed the OpcodeOffset table, just index into it.
3001    if (N.getOpcode() < OpcodeOffset.size())
3002      MatcherIndex = OpcodeOffset[N.getOpcode()];
3003    DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
3004
3005  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
3006    // Otherwise, the table isn't computed, but the state machine does start
3007    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
3008    // is the first time we're selecting an instruction.
3009    unsigned Idx = 1;
3010    while (true) {
3011      // Get the size of this case.
3012      unsigned CaseSize = MatcherTable[Idx++];
3013      if (CaseSize & 128)
3014        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
3015      if (CaseSize == 0) break;
3016
3017      // Get the opcode, add the index to the table.
3018      uint16_t Opc = MatcherTable[Idx++];
3019      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
3020      if (Opc >= OpcodeOffset.size())
3021        OpcodeOffset.resize((Opc+1)*2);
3022      OpcodeOffset[Opc] = Idx;
3023      Idx += CaseSize;
3024    }
3025
3026    // Okay, do the lookup for the first opcode.
3027    if (N.getOpcode() < OpcodeOffset.size())
3028      MatcherIndex = OpcodeOffset[N.getOpcode()];
3029  }
3030
3031  while (true) {
3032    assert(MatcherIndex < TableSize && "Invalid index");
3033#ifndef NDEBUG
3034    unsigned CurrentOpcodeIndex = MatcherIndex;
3035#endif
3036    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
3037    switch (Opcode) {
3038    case OPC_Scope: {
3039      // Okay, the semantics of this operation are that we should push a scope
3040      // then evaluate the first child.  However, pushing a scope only to have
3041      // the first check fail (which then pops it) is inefficient.  If we can
3042      // determine immediately that the first check (or first several) will
3043      // immediately fail, don't even bother pushing a scope for them.
3044      unsigned FailIndex;
3045
3046      while (true) {
3047        unsigned NumToSkip = MatcherTable[MatcherIndex++];
3048        if (NumToSkip & 128)
3049          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3050        // Found the end of the scope with no match.
3051        if (NumToSkip == 0) {
3052          FailIndex = 0;
3053          break;
3054        }
3055
3056        FailIndex = MatcherIndex+NumToSkip;
3057
3058        unsigned MatcherIndexOfPredicate = MatcherIndex;
3059        (void)MatcherIndexOfPredicate; // silence warning.
3060
3061        // If we can't evaluate this predicate without pushing a scope (e.g. if
3062        // it is a 'MoveParent') or if the predicate succeeds on this node, we
3063        // push the scope and evaluate the full predicate chain.
3064        bool Result;
3065        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
3066                                              Result, *this, RecordedNodes);
3067        if (!Result)
3068          break;
3069
3070        DEBUG(dbgs() << "  Skipped scope entry (due to false predicate) at "
3071                     << "index " << MatcherIndexOfPredicate
3072                     << ", continuing at " << FailIndex << "\n");
3073        ++NumDAGIselRetries;
3074
3075        // Otherwise, we know that this case of the Scope is guaranteed to fail,
3076        // move to the next case.
3077        MatcherIndex = FailIndex;
3078      }
3079
3080      // If the whole scope failed to match, bail.
3081      if (FailIndex == 0) break;
3082
3083      // Push a MatchScope which indicates where to go if the first child fails
3084      // to match.
3085      MatchScope NewEntry;
3086      NewEntry.FailIndex = FailIndex;
3087      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
3088      NewEntry.NumRecordedNodes = RecordedNodes.size();
3089      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
3090      NewEntry.InputChain = InputChain;
3091      NewEntry.InputGlue = InputGlue;
3092      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
3093      MatchScopes.push_back(NewEntry);
3094      continue;
3095    }
3096    case OPC_RecordNode: {
3097      // Remember this node, it may end up being an operand in the pattern.
3098      SDNode *Parent = nullptr;
3099      if (NodeStack.size() > 1)
3100        Parent = NodeStack[NodeStack.size()-2].getNode();
3101      RecordedNodes.push_back(std::make_pair(N, Parent));
3102      continue;
3103    }
3104
3105    case OPC_RecordChild0: case OPC_RecordChild1:
3106    case OPC_RecordChild2: case OPC_RecordChild3:
3107    case OPC_RecordChild4: case OPC_RecordChild5:
3108    case OPC_RecordChild6: case OPC_RecordChild7: {
3109      unsigned ChildNo = Opcode-OPC_RecordChild0;
3110      if (ChildNo >= N.getNumOperands())
3111        break;  // Match fails if out of range child #.
3112
3113      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
3114                                             N.getNode()));
3115      continue;
3116    }
3117    case OPC_RecordMemRef:
3118      if (auto *MN = dyn_cast<MemSDNode>(N))
3119        MatchedMemRefs.push_back(MN->getMemOperand());
3120      else {
3121        DEBUG(
3122          dbgs() << "Expected MemSDNode ";
3123          N->dump(CurDAG);
3124          dbgs() << '\n'
3125        );
3126      }
3127
3128      continue;
3129
3130    case OPC_CaptureGlueInput:
3131      // If the current node has an input glue, capture it in InputGlue.
3132      if (N->getNumOperands() != 0 &&
3133          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
3134        InputGlue = N->getOperand(N->getNumOperands()-1);
3135      continue;
3136
3137    case OPC_MoveChild: {
3138      unsigned ChildNo = MatcherTable[MatcherIndex++];
3139      if (ChildNo >= N.getNumOperands())
3140        break;  // Match fails if out of range child #.
3141      N = N.getOperand(ChildNo);
3142      NodeStack.push_back(N);
3143      continue;
3144    }
3145
3146    case OPC_MoveChild0: case OPC_MoveChild1:
3147    case OPC_MoveChild2: case OPC_MoveChild3:
3148    case OPC_MoveChild4: case OPC_MoveChild5:
3149    case OPC_MoveChild6: case OPC_MoveChild7: {
3150      unsigned ChildNo = Opcode-OPC_MoveChild0;
3151      if (ChildNo >= N.getNumOperands())
3152        break;  // Match fails if out of range child #.
3153      N = N.getOperand(ChildNo);
3154      NodeStack.push_back(N);
3155      continue;
3156    }
3157
3158    case OPC_MoveParent:
3159      // Pop the current node off the NodeStack.
3160      NodeStack.pop_back();
3161      assert(!NodeStack.empty() && "Node stack imbalance!");
3162      N = NodeStack.back();
3163      continue;
3164
3165    case OPC_CheckSame:
3166      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3167      continue;
3168
3169    case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3170    case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3171      if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3172                            Opcode-OPC_CheckChild0Same))
3173        break;
3174      continue;
3175
3176    case OPC_CheckPatternPredicate:
3177      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
3178      continue;
3179    case OPC_CheckPredicate:
3180      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
3181                                N.getNode()))
3182        break;
3183      continue;
3184    case OPC_CheckComplexPat: {
3185      unsigned CPNum = MatcherTable[MatcherIndex++];
3186      unsigned RecNo = MatcherTable[MatcherIndex++];
3187      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3188
3189      // If target can modify DAG during matching, keep the matching state
3190      // consistent.
3191      std::unique_ptr<MatchStateUpdater> MSU;
3192      if (ComplexPatternFuncMutatesDAG())
3193        MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3194                                        MatchScopes));
3195
3196      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3197                               RecordedNodes[RecNo].first, CPNum,
3198                               RecordedNodes))
3199        break;
3200      continue;
3201    }
3202    case OPC_CheckOpcode:
3203      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3204      continue;
3205
3206    case OPC_CheckType:
3207      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
3208                       CurDAG->getDataLayout()))
3209        break;
3210      continue;
3211
3212    case OPC_CheckTypeRes: {
3213      unsigned Res = MatcherTable[MatcherIndex++];
3214      if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
3215                       CurDAG->getDataLayout()))
3216        break;
3217      continue;
3218    }
3219
3220    case OPC_SwitchOpcode: {
3221      unsigned CurNodeOpcode = N.getOpcode();
3222      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3223      unsigned CaseSize;
3224      while (true) {
3225        // Get the size of this case.
3226        CaseSize = MatcherTable[MatcherIndex++];
3227        if (CaseSize & 128)
3228          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3229        if (CaseSize == 0) break;
3230
3231        uint16_t Opc = MatcherTable[MatcherIndex++];
3232        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3233
3234        // If the opcode matches, then we will execute this case.
3235        if (CurNodeOpcode == Opc)
3236          break;
3237
3238        // Otherwise, skip over this case.
3239        MatcherIndex += CaseSize;
3240      }
3241
3242      // If no cases matched, bail out.
3243      if (CaseSize == 0) break;
3244
3245      // Otherwise, execute the case we found.
3246      DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart
3247                   << " to " << MatcherIndex << "\n");
3248      continue;
3249    }
3250
3251    case OPC_SwitchType: {
3252      MVT CurNodeVT = N.getSimpleValueType();
3253      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3254      unsigned CaseSize;
3255      while (true) {
3256        // Get the size of this case.
3257        CaseSize = MatcherTable[MatcherIndex++];
3258        if (CaseSize & 128)
3259          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3260        if (CaseSize == 0) break;
3261
3262        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3263        if (CaseVT == MVT::iPTR)
3264          CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3265
3266        // If the VT matches, then we will execute this case.
3267        if (CurNodeVT == CaseVT)
3268          break;
3269
3270        // Otherwise, skip over this case.
3271        MatcherIndex += CaseSize;
3272      }
3273
3274      // If no cases matched, bail out.
3275      if (CaseSize == 0) break;
3276
3277      // Otherwise, execute the case we found.
3278      DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
3279                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
3280      continue;
3281    }
3282    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
3283    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
3284    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
3285    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
3286      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
3287                            CurDAG->getDataLayout(),
3288                            Opcode - OPC_CheckChild0Type))
3289        break;
3290      continue;
3291    case OPC_CheckCondCode:
3292      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3293      continue;
3294    case OPC_CheckValueType:
3295      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3296                            CurDAG->getDataLayout()))
3297        break;
3298      continue;
3299    case OPC_CheckInteger:
3300      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3301      continue;
3302    case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3303    case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3304    case OPC_CheckChild4Integer:
3305      if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3306                               Opcode-OPC_CheckChild0Integer)) break;
3307      continue;
3308    case OPC_CheckAndImm:
3309      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3310      continue;
3311    case OPC_CheckOrImm:
3312      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3313      continue;
3314
3315    case OPC_CheckFoldableChainNode: {
3316      assert(NodeStack.size() != 1 && "No parent node");
3317      // Verify that all intermediate nodes between the root and this one have
3318      // a single use.
3319      bool HasMultipleUses = false;
3320      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
3321        if (!NodeStack[i].getNode()->hasOneUse()) {
3322          HasMultipleUses = true;
3323          break;
3324        }
3325      if (HasMultipleUses) break;
3326
3327      // Check to see that the target thinks this is profitable to fold and that
3328      // we can fold it without inducing cycles in the graph.
3329      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3330                              NodeToMatch) ||
3331          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3332                         NodeToMatch, OptLevel,
3333                         true/*We validate our own chains*/))
3334        break;
3335
3336      continue;
3337    }
3338    case OPC_EmitInteger: {
3339      MVT::SimpleValueType VT =
3340        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3341      int64_t Val = MatcherTable[MatcherIndex++];
3342      if (Val & 128)
3343        Val = GetVBR(Val, MatcherTable, MatcherIndex);
3344      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3345                              CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
3346                                                        VT), nullptr));
3347      continue;
3348    }
3349    case OPC_EmitRegister: {
3350      MVT::SimpleValueType VT =
3351        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3352      unsigned RegNo = MatcherTable[MatcherIndex++];
3353      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3354                              CurDAG->getRegister(RegNo, VT), nullptr));
3355      continue;
3356    }
3357    case OPC_EmitRegister2: {
3358      // For targets w/ more than 256 register names, the register enum
3359      // values are stored in two bytes in the matcher table (just like
3360      // opcodes).
3361      MVT::SimpleValueType VT =
3362        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3363      unsigned RegNo = MatcherTable[MatcherIndex++];
3364      RegNo |= MatcherTable[MatcherIndex++] << 8;
3365      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3366                              CurDAG->getRegister(RegNo, VT), nullptr));
3367      continue;
3368    }
3369
3370    case OPC_EmitConvertToTarget:  {
3371      // Convert from IMM/FPIMM to target version.
3372      unsigned RecNo = MatcherTable[MatcherIndex++];
3373      assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3374      SDValue Imm = RecordedNodes[RecNo].first;
3375
3376      if (Imm->getOpcode() == ISD::Constant) {
3377        const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3378        Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3379                                        Imm.getValueType());
3380      } else if (Imm->getOpcode() == ISD::ConstantFP) {
3381        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3382        Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3383                                          Imm.getValueType());
3384      }
3385
3386      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3387      continue;
3388    }
3389
3390    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
3391    case OPC_EmitMergeInputChains1_1:    // OPC_EmitMergeInputChains, 1, 1
3392    case OPC_EmitMergeInputChains1_2: {  // OPC_EmitMergeInputChains, 1, 2
3393      // These are space-optimized forms of OPC_EmitMergeInputChains.
3394      assert(!InputChain.getNode() &&
3395             "EmitMergeInputChains should be the first chain producing node");
3396      assert(ChainNodesMatched.empty() &&
3397             "Should only have one EmitMergeInputChains per match");
3398
3399      // Read all of the chained nodes.
3400      unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3401      assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3402      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3403
3404      // FIXME: What if other value results of the node have uses not matched
3405      // by this pattern?
3406      if (ChainNodesMatched.back() != NodeToMatch &&
3407          !RecordedNodes[RecNo].first.hasOneUse()) {
3408        ChainNodesMatched.clear();
3409        break;
3410      }
3411
3412      // Merge the input chains if they are not intra-pattern references.
3413      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3414
3415      if (!InputChain.getNode())
3416        break;  // Failed to merge.
3417      continue;
3418    }
3419
3420    case OPC_EmitMergeInputChains: {
3421      assert(!InputChain.getNode() &&
3422             "EmitMergeInputChains should be the first chain producing node");
3423      // This node gets a list of nodes we matched in the input that have
3424      // chains.  We want to token factor all of the input chains to these nodes
3425      // together.  However, if any of the input chains is actually one of the
3426      // nodes matched in this pattern, then we have an intra-match reference.
3427      // Ignore these because the newly token factored chain should not refer to
3428      // the old nodes.
3429      unsigned NumChains = MatcherTable[MatcherIndex++];
3430      assert(NumChains != 0 && "Can't TF zero chains");
3431
3432      assert(ChainNodesMatched.empty() &&
3433             "Should only have one EmitMergeInputChains per match");
3434
3435      // Read all of the chained nodes.
3436      for (unsigned i = 0; i != NumChains; ++i) {
3437        unsigned RecNo = MatcherTable[MatcherIndex++];
3438        assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3439        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3440
3441        // FIXME: What if other value results of the node have uses not matched
3442        // by this pattern?
3443        if (ChainNodesMatched.back() != NodeToMatch &&
3444            !RecordedNodes[RecNo].first.hasOneUse()) {
3445          ChainNodesMatched.clear();
3446          break;
3447        }
3448      }
3449
3450      // If the inner loop broke out, the match fails.
3451      if (ChainNodesMatched.empty())
3452        break;
3453
3454      // Merge the input chains if they are not intra-pattern references.
3455      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3456
3457      if (!InputChain.getNode())
3458        break;  // Failed to merge.
3459
3460      continue;
3461    }
3462
3463    case OPC_EmitCopyToReg: {
3464      unsigned RecNo = MatcherTable[MatcherIndex++];
3465      assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3466      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3467
3468      if (!InputChain.getNode())
3469        InputChain = CurDAG->getEntryNode();
3470
3471      InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3472                                        DestPhysReg, RecordedNodes[RecNo].first,
3473                                        InputGlue);
3474
3475      InputGlue = InputChain.getValue(1);
3476      continue;
3477    }
3478
3479    case OPC_EmitNodeXForm: {
3480      unsigned XFormNo = MatcherTable[MatcherIndex++];
3481      unsigned RecNo = MatcherTable[MatcherIndex++];
3482      assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3483      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3484      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3485      continue;
3486    }
3487    case OPC_Coverage: {
3488      // This is emitted right before MorphNode/EmitNode.
3489      // So it should be safe to assume that this node has been selected
3490      unsigned index = MatcherTable[MatcherIndex++];
3491      index |= (MatcherTable[MatcherIndex++] << 8);
3492      dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
3493      dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
3494      continue;
3495    }
3496
3497    case OPC_EmitNode:     case OPC_MorphNodeTo:
3498    case OPC_EmitNode0:    case OPC_EmitNode1:    case OPC_EmitNode2:
3499    case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
3500      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3501      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3502      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3503      // Get the result VT list.
3504      unsigned NumVTs;
3505      // If this is one of the compressed forms, get the number of VTs based
3506      // on the Opcode. Otherwise read the next byte from the table.
3507      if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3508        NumVTs = Opcode - OPC_MorphNodeTo0;
3509      else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3510        NumVTs = Opcode - OPC_EmitNode0;
3511      else
3512        NumVTs = MatcherTable[MatcherIndex++];
3513      SmallVector<EVT, 4> VTs;
3514      for (unsigned i = 0; i != NumVTs; ++i) {
3515        MVT::SimpleValueType VT =
3516          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3517        if (VT == MVT::iPTR)
3518          VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3519        VTs.push_back(VT);
3520      }
3521
3522      if (EmitNodeInfo & OPFL_Chain)
3523        VTs.push_back(MVT::Other);
3524      if (EmitNodeInfo & OPFL_GlueOutput)
3525        VTs.push_back(MVT::Glue);
3526
3527      // This is hot code, so optimize the two most common cases of 1 and 2
3528      // results.
3529      SDVTList VTList;
3530      if (VTs.size() == 1)
3531        VTList = CurDAG->getVTList(VTs[0]);
3532      else if (VTs.size() == 2)
3533        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3534      else
3535        VTList = CurDAG->getVTList(VTs);
3536
3537      // Get the operand list.
3538      unsigned NumOps = MatcherTable[MatcherIndex++];
3539      SmallVector<SDValue, 8> Ops;
3540      for (unsigned i = 0; i != NumOps; ++i) {
3541        unsigned RecNo = MatcherTable[MatcherIndex++];
3542        if (RecNo & 128)
3543          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3544
3545        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3546        Ops.push_back(RecordedNodes[RecNo].first);
3547      }
3548
3549      // If there are variadic operands to add, handle them now.
3550      if (EmitNodeInfo & OPFL_VariadicInfo) {
3551        // Determine the start index to copy from.
3552        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3553        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3554        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3555               "Invalid variadic node");
3556        // Copy all of the variadic operands, not including a potential glue
3557        // input.
3558        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3559             i != e; ++i) {
3560          SDValue V = NodeToMatch->getOperand(i);
3561          if (V.getValueType() == MVT::Glue) break;
3562          Ops.push_back(V);
3563        }
3564      }
3565
3566      // If this has chain/glue inputs, add them.
3567      if (EmitNodeInfo & OPFL_Chain)
3568        Ops.push_back(InputChain);
3569      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3570        Ops.push_back(InputGlue);
3571
3572      // Create the node.
3573      MachineSDNode *Res = nullptr;
3574      bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
3575                     (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
3576      if (!IsMorphNodeTo) {
3577        // If this is a normal EmitNode command, just create the new node and
3578        // add the results to the RecordedNodes list.
3579        Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3580                                     VTList, Ops);
3581
3582        // Add all the non-glue/non-chain results to the RecordedNodes list.
3583        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3584          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3585          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3586                                                             nullptr));
3587        }
3588      } else {
3589        assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
3590               "NodeToMatch was removed partway through selection");
3591        SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
3592                                                              SDNode *E) {
3593          CurDAG->salvageDebugInfo(*N);
3594          auto &Chain = ChainNodesMatched;
3595          assert((!E || !is_contained(Chain, N)) &&
3596                 "Chain node replaced during MorphNode");
3597          Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end());
3598        });
3599        Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
3600                                            Ops, EmitNodeInfo));
3601      }
3602
3603      // If the node had chain/glue results, update our notion of the current
3604      // chain and glue.
3605      if (EmitNodeInfo & OPFL_GlueOutput) {
3606        InputGlue = SDValue(Res, VTs.size()-1);
3607        if (EmitNodeInfo & OPFL_Chain)
3608          InputChain = SDValue(Res, VTs.size()-2);
3609      } else if (EmitNodeInfo & OPFL_Chain)
3610        InputChain = SDValue(Res, VTs.size()-1);
3611
3612      // If the OPFL_MemRefs glue is set on this node, slap all of the
3613      // accumulated memrefs onto it.
3614      //
3615      // FIXME: This is vastly incorrect for patterns with multiple outputs
3616      // instructions that access memory and for ComplexPatterns that match
3617      // loads.
3618      if (EmitNodeInfo & OPFL_MemRefs) {
3619        // Only attach load or store memory operands if the generated
3620        // instruction may load or store.
3621        const MCInstrDesc &MCID = TII->get(TargetOpc);
3622        bool mayLoad = MCID.mayLoad();
3623        bool mayStore = MCID.mayStore();
3624
3625        unsigned NumMemRefs = 0;
3626        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
3627               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
3628          if ((*I)->isLoad()) {
3629            if (mayLoad)
3630              ++NumMemRefs;
3631          } else if ((*I)->isStore()) {
3632            if (mayStore)
3633              ++NumMemRefs;
3634          } else {
3635            ++NumMemRefs;
3636          }
3637        }
3638
3639        MachineSDNode::mmo_iterator MemRefs =
3640          MF->allocateMemRefsArray(NumMemRefs);
3641
3642        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
3643        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
3644               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
3645          if ((*I)->isLoad()) {
3646            if (mayLoad)
3647              *MemRefsPos++ = *I;
3648          } else if ((*I)->isStore()) {
3649            if (mayStore)
3650              *MemRefsPos++ = *I;
3651          } else {
3652            *MemRefsPos++ = *I;
3653          }
3654        }
3655
3656        Res->setMemRefs(MemRefs, MemRefs + NumMemRefs);
3657      }
3658
3659      DEBUG(
3660        if (!MatchedMemRefs.empty() && Res->memoperands_empty())
3661          dbgs() << "  Dropping mem operands\n";
3662        dbgs() << "  "
3663               << (IsMorphNodeTo ? "Morphed" : "Created")
3664               << " node: ";
3665        Res->dump(CurDAG);
3666
3667        dbgs() << '\n';
3668      );
3669
3670      // If this was a MorphNodeTo then we're completely done!
3671      if (IsMorphNodeTo) {
3672        // Update chain uses.
3673        UpdateChains(Res, InputChain, ChainNodesMatched, true);
3674        return;
3675      }
3676      continue;
3677    }
3678
3679    case OPC_CompleteMatch: {
3680      // The match has been completed, and any new nodes (if any) have been
3681      // created.  Patch up references to the matched dag to use the newly
3682      // created nodes.
3683      unsigned NumResults = MatcherTable[MatcherIndex++];
3684
3685      for (unsigned i = 0; i != NumResults; ++i) {
3686        unsigned ResSlot = MatcherTable[MatcherIndex++];
3687        if (ResSlot & 128)
3688          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3689
3690        assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3691        SDValue Res = RecordedNodes[ResSlot].first;
3692
3693        assert(i < NodeToMatch->getNumValues() &&
3694               NodeToMatch->getValueType(i) != MVT::Other &&
3695               NodeToMatch->getValueType(i) != MVT::Glue &&
3696               "Invalid number of results to complete!");
3697        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3698                NodeToMatch->getValueType(i) == MVT::iPTR ||
3699                Res.getValueType() == MVT::iPTR ||
3700                NodeToMatch->getValueType(i).getSizeInBits() ==
3701                    Res.getValueSizeInBits()) &&
3702               "invalid replacement");
3703        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
3704      }
3705
3706      // Update chain uses.
3707      UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
3708
3709      // If the root node defines glue, we need to update it to the glue result.
3710      // TODO: This never happens in our tests and I think it can be removed /
3711      // replaced with an assert, but if we do it this the way the change is
3712      // NFC.
3713      if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
3714              MVT::Glue &&
3715          InputGlue.getNode())
3716        CurDAG->ReplaceAllUsesOfValueWith(
3717            SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1), InputGlue);
3718
3719      assert(NodeToMatch->use_empty() &&
3720             "Didn't replace all uses of the node?");
3721      CurDAG->RemoveDeadNode(NodeToMatch);
3722
3723      return;
3724    }
3725    }
3726
3727    // If the code reached this point, then the match failed.  See if there is
3728    // another child to try in the current 'Scope', otherwise pop it until we
3729    // find a case to check.
3730    DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
3731    ++NumDAGIselRetries;
3732    while (true) {
3733      if (MatchScopes.empty()) {
3734        CannotYetSelect(NodeToMatch);
3735        return;
3736      }
3737
3738      // Restore the interpreter state back to the point where the scope was
3739      // formed.
3740      MatchScope &LastScope = MatchScopes.back();
3741      RecordedNodes.resize(LastScope.NumRecordedNodes);
3742      NodeStack.clear();
3743      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3744      N = NodeStack.back();
3745
3746      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3747        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3748      MatcherIndex = LastScope.FailIndex;
3749
3750      DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
3751
3752      InputChain = LastScope.InputChain;
3753      InputGlue = LastScope.InputGlue;
3754      if (!LastScope.HasChainNodesMatched)
3755        ChainNodesMatched.clear();
3756
3757      // Check to see what the offset is at the new MatcherIndex.  If it is zero
3758      // we have reached the end of this scope, otherwise we have another child
3759      // in the current scope to try.
3760      unsigned NumToSkip = MatcherTable[MatcherIndex++];
3761      if (NumToSkip & 128)
3762        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3763
3764      // If we have another child in this scope to match, update FailIndex and
3765      // try it.
3766      if (NumToSkip != 0) {
3767        LastScope.FailIndex = MatcherIndex+NumToSkip;
3768        break;
3769      }
3770
3771      // End of this scope, pop it and try the next child in the containing
3772      // scope.
3773      MatchScopes.pop_back();
3774    }
3775  }
3776}
3777
3778bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
3779  assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
3780  auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3781  if (!C)
3782    return false;
3783
3784  // Detect when "or" is used to add an offset to a stack object.
3785  if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
3786    MachineFrameInfo &MFI = MF->getFrameInfo();
3787    unsigned A = MFI.getObjectAlignment(FN->getIndex());
3788    assert(isPowerOf2_32(A) && "Unexpected alignment");
3789    int32_t Off = C->getSExtValue();
3790    // If the alleged offset fits in the zero bits guaranteed by
3791    // the alignment, then this or is really an add.
3792    return (Off >= 0) && (((A - 1) & Off) == unsigned(Off));
3793  }
3794  return false;
3795}
3796
3797void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3798  std::string msg;
3799  raw_string_ostream Msg(msg);
3800  Msg << "Cannot select: ";
3801
3802  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3803      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3804      N->getOpcode() != ISD::INTRINSIC_VOID) {
3805    N->printrFull(Msg, CurDAG);
3806    Msg << "\nIn function: " << MF->getName();
3807  } else {
3808    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3809    unsigned iid =
3810      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3811    if (iid < Intrinsic::num_intrinsics)
3812      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None);
3813    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3814      Msg << "target intrinsic %" << TII->getName(iid);
3815    else
3816      Msg << "unknown intrinsic #" << iid;
3817  }
3818  report_fatal_error(Msg.str());
3819}
3820
3821char SelectionDAGISel::ID = 0;
3822