SelectionDAGISel.cpp revision 208599
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetIntrinsicInfo.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/Support/Compiler.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/Timer.h"
50#include "llvm/Support/raw_ostream.h"
51#include "llvm/ADT/Statistic.h"
52#include <algorithm>
53using namespace llvm;
54
55STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
56STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
57
58static cl::opt<bool>
59EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
60          cl::desc("Enable verbose messages in the \"fast\" "
61                   "instruction selector"));
62static cl::opt<bool>
63EnableFastISelAbort("fast-isel-abort", cl::Hidden,
64          cl::desc("Enable abort calls when \"fast\" instruction fails"));
65
66#ifndef NDEBUG
67static cl::opt<bool>
68ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
69          cl::desc("Pop up a window to show dags before the first "
70                   "dag combine pass"));
71static cl::opt<bool>
72ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
73          cl::desc("Pop up a window to show dags before legalize types"));
74static cl::opt<bool>
75ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
76          cl::desc("Pop up a window to show dags before legalize"));
77static cl::opt<bool>
78ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
79          cl::desc("Pop up a window to show dags before the second "
80                   "dag combine pass"));
81static cl::opt<bool>
82ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
83          cl::desc("Pop up a window to show dags before the post legalize types"
84                   " dag combine pass"));
85static cl::opt<bool>
86ViewISelDAGs("view-isel-dags", cl::Hidden,
87          cl::desc("Pop up a window to show isel dags as they are selected"));
88static cl::opt<bool>
89ViewSchedDAGs("view-sched-dags", cl::Hidden,
90          cl::desc("Pop up a window to show sched dags as they are processed"));
91static cl::opt<bool>
92ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
93      cl::desc("Pop up a window to show SUnit dags after they are processed"));
94#else
95static const bool ViewDAGCombine1 = false,
96                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
97                  ViewDAGCombine2 = false,
98                  ViewDAGCombineLT = false,
99                  ViewISelDAGs = false, ViewSchedDAGs = false,
100                  ViewSUnitDAGs = false;
101#endif
102
103//===---------------------------------------------------------------------===//
104///
105/// RegisterScheduler class - Track the registration of instruction schedulers.
106///
107//===---------------------------------------------------------------------===//
108MachinePassRegistry RegisterScheduler::Registry;
109
110//===---------------------------------------------------------------------===//
111///
112/// ISHeuristic command line option for instruction schedulers.
113///
114//===---------------------------------------------------------------------===//
115static cl::opt<RegisterScheduler::FunctionPassCtor, false,
116               RegisterPassParser<RegisterScheduler> >
117ISHeuristic("pre-RA-sched",
118            cl::init(&createDefaultScheduler),
119            cl::desc("Instruction schedulers available (before register"
120                     " allocation):"));
121
122static RegisterScheduler
123defaultListDAGScheduler("default", "Best scheduler for the target",
124                        createDefaultScheduler);
125
126namespace llvm {
127  //===--------------------------------------------------------------------===//
128  /// createDefaultScheduler - This creates an instruction scheduler appropriate
129  /// for the target.
130  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
131                                             CodeGenOpt::Level OptLevel) {
132    const TargetLowering &TLI = IS->getTargetLowering();
133
134    if (OptLevel == CodeGenOpt::None)
135      return createFastDAGScheduler(IS, OptLevel);
136    if (TLI.getSchedulingPreference() == Sched::Latency)
137      return createTDListDAGScheduler(IS, OptLevel);
138    if (TLI.getSchedulingPreference() == Sched::RegPressure)
139      return createBURRListDAGScheduler(IS, OptLevel);
140    assert(TLI.getSchedulingPreference() == Sched::Hybrid &&
141           "Unknown sched type!");
142    return createHybridListDAGScheduler(IS, OptLevel);
143  }
144}
145
146// EmitInstrWithCustomInserter - This method should be implemented by targets
147// that mark instructions with the 'usesCustomInserter' flag.  These
148// instructions are special in various ways, which require special support to
149// insert.  The specified MachineInstr is created but not inserted into any
150// basic blocks, and this method is called to expand it into a sequence of
151// instructions, potentially also creating new basic blocks and control flow.
152// When new basic blocks are inserted and the edges from MBB to its successors
153// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
154// DenseMap.
155MachineBasicBlock *
156TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
157                                            MachineBasicBlock *MBB) const {
158#ifndef NDEBUG
159  dbgs() << "If a target marks an instruction with "
160          "'usesCustomInserter', it must implement "
161          "TargetLowering::EmitInstrWithCustomInserter!";
162#endif
163  llvm_unreachable(0);
164  return 0;
165}
166
167//===----------------------------------------------------------------------===//
168// SelectionDAGISel code
169//===----------------------------------------------------------------------===//
170
171SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm, CodeGenOpt::Level OL) :
172  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
173  FuncInfo(new FunctionLoweringInfo(TLI)),
174  CurDAG(new SelectionDAG(tm, *FuncInfo)),
175  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
176  GFI(),
177  OptLevel(OL),
178  DAGSize(0)
179{}
180
181SelectionDAGISel::~SelectionDAGISel() {
182  delete SDB;
183  delete CurDAG;
184  delete FuncInfo;
185}
186
187void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
188  AU.addRequired<AliasAnalysis>();
189  AU.addPreserved<AliasAnalysis>();
190  AU.addRequired<GCModuleInfo>();
191  AU.addPreserved<GCModuleInfo>();
192  MachineFunctionPass::getAnalysisUsage(AU);
193}
194
195/// FunctionCallsSetJmp - Return true if the function has a call to setjmp or
196/// other function that gcc recognizes as "returning twice". This is used to
197/// limit code-gen optimizations on the machine function.
198///
199/// FIXME: Remove after <rdar://problem/8031714> is fixed.
200static bool FunctionCallsSetJmp(const Function *F) {
201  const Module *M = F->getParent();
202  static const char *ReturnsTwiceFns[] = {
203    "setjmp",
204    "sigsetjmp",
205    "setjmp_syscall",
206    "savectx",
207    "qsetjmp",
208    "vfork",
209    "getcontext"
210  };
211#define NUM_RETURNS_TWICE_FNS sizeof(ReturnsTwiceFns) / sizeof(const char *)
212
213  for (unsigned I = 0; I < NUM_RETURNS_TWICE_FNS; ++I)
214    if (const Function *Callee = M->getFunction(ReturnsTwiceFns[I])) {
215      if (!Callee->use_empty())
216        for (Value::const_use_iterator
217               I = Callee->use_begin(), E = Callee->use_end();
218             I != E; ++I)
219          if (const CallInst *CI = dyn_cast<CallInst>(I))
220            if (CI->getParent()->getParent() == F)
221              return true;
222    }
223
224  return false;
225#undef NUM_RETURNS_TWICE_FNS
226}
227
228bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
229  // Do some sanity-checking on the command-line options.
230  assert((!EnableFastISelVerbose || EnableFastISel) &&
231         "-fast-isel-verbose requires -fast-isel");
232  assert((!EnableFastISelAbort || EnableFastISel) &&
233         "-fast-isel-abort requires -fast-isel");
234
235  const Function &Fn = *mf.getFunction();
236  const TargetInstrInfo &TII = *TM.getInstrInfo();
237  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
238
239  MF = &mf;
240  RegInfo = &MF->getRegInfo();
241  AA = &getAnalysis<AliasAnalysis>();
242  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
243
244  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
245
246  CurDAG->init(*MF);
247  FuncInfo->set(Fn, *MF, EnableFastISel);
248  SDB->init(GFI, *AA);
249
250  SelectAllBasicBlocks(Fn);
251
252  // If the first basic block in the function has live ins that need to be
253  // copied into vregs, emit the copies into the top of the block before
254  // emitting the code for the block.
255  MachineBasicBlock *EntryMBB = MF->begin();
256  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
257
258  DenseMap<unsigned, unsigned> LiveInMap;
259  if (!FuncInfo->ArgDbgValues.empty())
260    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
261           E = RegInfo->livein_end(); LI != E; ++LI)
262      if (LI->second)
263        LiveInMap.insert(std::make_pair(LI->first, LI->second));
264
265  // Insert DBG_VALUE instructions for function arguments to the entry block.
266  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
267    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
268    unsigned Reg = MI->getOperand(0).getReg();
269    if (TargetRegisterInfo::isPhysicalRegister(Reg))
270      EntryMBB->insert(EntryMBB->begin(), MI);
271    else {
272      MachineInstr *Def = RegInfo->getVRegDef(Reg);
273      MachineBasicBlock::iterator InsertPos = Def;
274      // FIXME: VR def may not be in entry block.
275      Def->getParent()->insert(llvm::next(InsertPos), MI);
276    }
277
278    // If Reg is live-in then update debug info to track its copy in a vreg.
279    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
280    if (LDI != LiveInMap.end()) {
281      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
282      MachineBasicBlock::iterator InsertPos = Def;
283      const MDNode *Variable =
284        MI->getOperand(MI->getNumOperands()-1).getMetadata();
285      unsigned Offset = MI->getOperand(1).getImm();
286      // Def is never a terminator here, so it is ok to increment InsertPos.
287      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
288              TII.get(TargetOpcode::DBG_VALUE))
289        .addReg(LDI->second, RegState::Debug)
290        .addImm(Offset).addMetadata(Variable);
291    }
292  }
293
294  // Determine if there are any calls in this machine function.
295  MachineFrameInfo *MFI = MF->getFrameInfo();
296  if (!MFI->hasCalls()) {
297    for (MachineFunction::const_iterator
298           I = MF->begin(), E = MF->end(); I != E; ++I) {
299      const MachineBasicBlock *MBB = I;
300      for (MachineBasicBlock::const_iterator
301             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
302        const TargetInstrDesc &TID = TM.getInstrInfo()->get(II->getOpcode());
303        if (II->isInlineAsm() || (TID.isCall() && !TID.isReturn())) {
304          MFI->setHasCalls(true);
305          goto done;
306        }
307      }
308    }
309  done:;
310  }
311
312  // Determine if there is a call to setjmp in the machine function.
313  MF->setCallsSetJmp(FunctionCallsSetJmp(&Fn));
314
315  // Release function-specific state. SDB and CurDAG are already cleared
316  // at this point.
317  FuncInfo->clear();
318
319  return true;
320}
321
322MachineBasicBlock *
323SelectionDAGISel::SelectBasicBlock(MachineBasicBlock *BB,
324                                   const BasicBlock *LLVMBB,
325                                   BasicBlock::const_iterator Begin,
326                                   BasicBlock::const_iterator End,
327                                   bool &HadTailCall) {
328  // Lower all of the non-terminator instructions. If a call is emitted
329  // as a tail call, cease emitting nodes for this block. Terminators
330  // are handled below.
331  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
332    SDB->visit(*I);
333
334  // Make sure the root of the DAG is up-to-date.
335  CurDAG->setRoot(SDB->getControlRoot());
336  HadTailCall = SDB->HasTailCall;
337  SDB->clear();
338
339  // Final step, emit the lowered DAG as machine code.
340  return CodeGenAndEmitDAG(BB);
341}
342
343namespace {
344/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
345/// nodes from the worklist.
346class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
347  SmallVector<SDNode*, 128> &Worklist;
348  SmallPtrSet<SDNode*, 128> &InWorklist;
349public:
350  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl,
351                       SmallPtrSet<SDNode*, 128> &inwl)
352    : Worklist(wl), InWorklist(inwl) {}
353
354  void RemoveFromWorklist(SDNode *N) {
355    if (!InWorklist.erase(N)) return;
356
357    SmallVector<SDNode*, 128>::iterator I =
358    std::find(Worklist.begin(), Worklist.end(), N);
359    assert(I != Worklist.end() && "Not in worklist");
360
361    *I = Worklist.back();
362    Worklist.pop_back();
363  }
364
365  virtual void NodeDeleted(SDNode *N, SDNode *E) {
366    RemoveFromWorklist(N);
367  }
368
369  virtual void NodeUpdated(SDNode *N) {
370    // Ignore updates.
371  }
372};
373}
374
375/// TrivialTruncElim - Eliminate some trivial nops that can result from
376/// ShrinkDemandedOps: (trunc (ext n)) -> n.
377static bool TrivialTruncElim(SDValue Op,
378                             TargetLowering::TargetLoweringOpt &TLO) {
379  SDValue N0 = Op.getOperand(0);
380  EVT VT = Op.getValueType();
381  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
382       N0.getOpcode() == ISD::SIGN_EXTEND ||
383       N0.getOpcode() == ISD::ANY_EXTEND) &&
384      N0.getOperand(0).getValueType() == VT) {
385    return TLO.CombineTo(Op, N0.getOperand(0));
386  }
387  return false;
388}
389
390/// ShrinkDemandedOps - A late transformation pass that shrink expressions
391/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
392/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
393void SelectionDAGISel::ShrinkDemandedOps() {
394  SmallVector<SDNode*, 128> Worklist;
395  SmallPtrSet<SDNode*, 128> InWorklist;
396
397  // Add all the dag nodes to the worklist.
398  Worklist.reserve(CurDAG->allnodes_size());
399  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
400       E = CurDAG->allnodes_end(); I != E; ++I) {
401    Worklist.push_back(I);
402    InWorklist.insert(I);
403  }
404
405  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true, true, true);
406  while (!Worklist.empty()) {
407    SDNode *N = Worklist.pop_back_val();
408    InWorklist.erase(N);
409
410    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
411      // Deleting this node may make its operands dead, add them to the worklist
412      // if they aren't already there.
413      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
414        if (InWorklist.insert(N->getOperand(i).getNode()))
415          Worklist.push_back(N->getOperand(i).getNode());
416
417      CurDAG->DeleteNode(N);
418      continue;
419    }
420
421    // Run ShrinkDemandedOp on scalar binary operations.
422    if (N->getNumValues() != 1 ||
423        !N->getValueType(0).isSimple() || !N->getValueType(0).isInteger())
424      continue;
425
426    unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
427    APInt Demanded = APInt::getAllOnesValue(BitWidth);
428    APInt KnownZero, KnownOne;
429    if (!TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
430                                  KnownZero, KnownOne, TLO) &&
431        (N->getOpcode() != ISD::TRUNCATE ||
432         !TrivialTruncElim(SDValue(N, 0), TLO)))
433      continue;
434
435    // Revisit the node.
436    assert(!InWorklist.count(N) && "Already in worklist");
437    Worklist.push_back(N);
438    InWorklist.insert(N);
439
440    // Replace the old value with the new one.
441    DEBUG(errs() << "\nShrinkDemandedOps replacing ";
442          TLO.Old.getNode()->dump(CurDAG);
443          errs() << "\nWith: ";
444          TLO.New.getNode()->dump(CurDAG);
445          errs() << '\n');
446
447    if (InWorklist.insert(TLO.New.getNode()))
448      Worklist.push_back(TLO.New.getNode());
449
450    SDOPsWorkListRemover DeadNodes(Worklist, InWorklist);
451    CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
452
453    if (!TLO.Old.getNode()->use_empty()) continue;
454
455    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
456         i != e; ++i) {
457      SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
458      if (OpNode->hasOneUse()) {
459        // Add OpNode to the end of the list to revisit.
460        DeadNodes.RemoveFromWorklist(OpNode);
461        Worklist.push_back(OpNode);
462        InWorklist.insert(OpNode);
463      }
464    }
465
466    DeadNodes.RemoveFromWorklist(TLO.Old.getNode());
467    CurDAG->DeleteNode(TLO.Old.getNode());
468  }
469}
470
471void SelectionDAGISel::ComputeLiveOutVRegInfo() {
472  SmallPtrSet<SDNode*, 128> VisitedNodes;
473  SmallVector<SDNode*, 128> Worklist;
474
475  Worklist.push_back(CurDAG->getRoot().getNode());
476
477  APInt Mask;
478  APInt KnownZero;
479  APInt KnownOne;
480
481  do {
482    SDNode *N = Worklist.pop_back_val();
483
484    // If we've already seen this node, ignore it.
485    if (!VisitedNodes.insert(N))
486      continue;
487
488    // Otherwise, add all chain operands to the worklist.
489    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
490      if (N->getOperand(i).getValueType() == MVT::Other)
491        Worklist.push_back(N->getOperand(i).getNode());
492
493    // If this is a CopyToReg with a vreg dest, process it.
494    if (N->getOpcode() != ISD::CopyToReg)
495      continue;
496
497    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
498    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
499      continue;
500
501    // Ignore non-scalar or non-integer values.
502    SDValue Src = N->getOperand(2);
503    EVT SrcVT = Src.getValueType();
504    if (!SrcVT.isInteger() || SrcVT.isVector())
505      continue;
506
507    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
508    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
509    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
510
511    // Only install this information if it tells us something.
512    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
513      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
514      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
515        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
516      FunctionLoweringInfo::LiveOutInfo &LOI =
517        FuncInfo->LiveOutRegInfo[DestReg];
518      LOI.NumSignBits = NumSignBits;
519      LOI.KnownOne = KnownOne;
520      LOI.KnownZero = KnownZero;
521    }
522  } while (!Worklist.empty());
523}
524
525MachineBasicBlock *SelectionDAGISel::CodeGenAndEmitDAG(MachineBasicBlock *BB) {
526  std::string GroupName;
527  if (TimePassesIsEnabled)
528    GroupName = "Instruction Selection and Scheduling";
529  std::string BlockName;
530  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
531      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
532      ViewSUnitDAGs)
533    BlockName = MF->getFunction()->getNameStr() + ":" +
534                BB->getBasicBlock()->getNameStr();
535
536  DEBUG(dbgs() << "Initial selection DAG:\n");
537  DEBUG(CurDAG->dump());
538
539  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
540
541  // Run the DAG combiner in pre-legalize mode.
542  if (TimePassesIsEnabled) {
543    NamedRegionTimer T("DAG Combining 1", GroupName);
544    CurDAG->Combine(Unrestricted, *AA, OptLevel);
545  } else {
546    CurDAG->Combine(Unrestricted, *AA, OptLevel);
547  }
548
549  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
550  DEBUG(CurDAG->dump());
551
552  // Second step, hack on the DAG until it only uses operations and types that
553  // the target supports.
554  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
555                                               BlockName);
556
557  bool Changed;
558  if (TimePassesIsEnabled) {
559    NamedRegionTimer T("Type Legalization", GroupName);
560    Changed = CurDAG->LegalizeTypes();
561  } else {
562    Changed = CurDAG->LegalizeTypes();
563  }
564
565  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
566  DEBUG(CurDAG->dump());
567
568  if (Changed) {
569    if (ViewDAGCombineLT)
570      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
571
572    // Run the DAG combiner in post-type-legalize mode.
573    if (TimePassesIsEnabled) {
574      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
575      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
576    } else {
577      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
578    }
579
580    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
581    DEBUG(CurDAG->dump());
582  }
583
584  if (TimePassesIsEnabled) {
585    NamedRegionTimer T("Vector Legalization", GroupName);
586    Changed = CurDAG->LegalizeVectors();
587  } else {
588    Changed = CurDAG->LegalizeVectors();
589  }
590
591  if (Changed) {
592    if (TimePassesIsEnabled) {
593      NamedRegionTimer T("Type Legalization 2", GroupName);
594      CurDAG->LegalizeTypes();
595    } else {
596      CurDAG->LegalizeTypes();
597    }
598
599    if (ViewDAGCombineLT)
600      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
601
602    // Run the DAG combiner in post-type-legalize mode.
603    if (TimePassesIsEnabled) {
604      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
605      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
606    } else {
607      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
608    }
609
610    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
611    DEBUG(CurDAG->dump());
612  }
613
614  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
615
616  if (TimePassesIsEnabled) {
617    NamedRegionTimer T("DAG Legalization", GroupName);
618    CurDAG->Legalize(OptLevel);
619  } else {
620    CurDAG->Legalize(OptLevel);
621  }
622
623  DEBUG(dbgs() << "Legalized selection DAG:\n");
624  DEBUG(CurDAG->dump());
625
626  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
627
628  // Run the DAG combiner in post-legalize mode.
629  if (TimePassesIsEnabled) {
630    NamedRegionTimer T("DAG Combining 2", GroupName);
631    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
632  } else {
633    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
634  }
635
636  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
637  DEBUG(CurDAG->dump());
638
639  if (OptLevel != CodeGenOpt::None) {
640    ShrinkDemandedOps();
641    ComputeLiveOutVRegInfo();
642  }
643
644  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
645
646  // Third, instruction select all of the operations to machine code, adding the
647  // code to the MachineBasicBlock.
648  if (TimePassesIsEnabled) {
649    NamedRegionTimer T("Instruction Selection", GroupName);
650    DoInstructionSelection();
651  } else {
652    DoInstructionSelection();
653  }
654
655  DEBUG(dbgs() << "Selected selection DAG:\n");
656  DEBUG(CurDAG->dump());
657
658  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
659
660  // Schedule machine code.
661  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
662  if (TimePassesIsEnabled) {
663    NamedRegionTimer T("Instruction Scheduling", GroupName);
664    Scheduler->Run(CurDAG, BB, BB->end());
665  } else {
666    Scheduler->Run(CurDAG, BB, BB->end());
667  }
668
669  if (ViewSUnitDAGs) Scheduler->viewGraph();
670
671  // Emit machine code to BB.  This can change 'BB' to the last block being
672  // inserted into.
673  if (TimePassesIsEnabled) {
674    NamedRegionTimer T("Instruction Creation", GroupName);
675    BB = Scheduler->EmitSchedule();
676  } else {
677    BB = Scheduler->EmitSchedule();
678  }
679
680  // Free the scheduler state.
681  if (TimePassesIsEnabled) {
682    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
683    delete Scheduler;
684  } else {
685    delete Scheduler;
686  }
687
688  // Free the SelectionDAG state, now that we're finished with it.
689  CurDAG->clear();
690
691  return BB;
692}
693
694void SelectionDAGISel::DoInstructionSelection() {
695  DEBUG(errs() << "===== Instruction selection begins:\n");
696
697  PreprocessISelDAG();
698
699  // Select target instructions for the DAG.
700  {
701    // Number all nodes with a topological order and set DAGSize.
702    DAGSize = CurDAG->AssignTopologicalOrder();
703
704    // Create a dummy node (which is not added to allnodes), that adds
705    // a reference to the root node, preventing it from being deleted,
706    // and tracking any changes of the root.
707    HandleSDNode Dummy(CurDAG->getRoot());
708    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
709    ++ISelPosition;
710
711    // The AllNodes list is now topological-sorted. Visit the
712    // nodes by starting at the end of the list (the root of the
713    // graph) and preceding back toward the beginning (the entry
714    // node).
715    while (ISelPosition != CurDAG->allnodes_begin()) {
716      SDNode *Node = --ISelPosition;
717      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
718      // but there are currently some corner cases that it misses. Also, this
719      // makes it theoretically possible to disable the DAGCombiner.
720      if (Node->use_empty())
721        continue;
722
723      SDNode *ResNode = Select(Node);
724
725      // FIXME: This is pretty gross.  'Select' should be changed to not return
726      // anything at all and this code should be nuked with a tactical strike.
727
728      // If node should not be replaced, continue with the next one.
729      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
730        continue;
731      // Replace node.
732      if (ResNode)
733        ReplaceUses(Node, ResNode);
734
735      // If after the replacement this node is not used any more,
736      // remove this dead node.
737      if (Node->use_empty()) { // Don't delete EntryToken, etc.
738        ISelUpdater ISU(ISelPosition);
739        CurDAG->RemoveDeadNode(Node, &ISU);
740      }
741    }
742
743    CurDAG->setRoot(Dummy.getValue());
744  }
745
746  DEBUG(errs() << "===== Instruction selection ends:\n");
747
748  PostprocessISelDAG();
749}
750
751/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
752/// do other setup for EH landing-pad blocks.
753void SelectionDAGISel::PrepareEHLandingPad(MachineBasicBlock *BB) {
754  // Add a label to mark the beginning of the landing pad.  Deletion of the
755  // landing pad can thus be detected via the MachineModuleInfo.
756  MCSymbol *Label = MF->getMMI().addLandingPad(BB);
757
758  const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
759  BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label);
760
761  // Mark exception register as live in.
762  unsigned Reg = TLI.getExceptionAddressRegister();
763  if (Reg) BB->addLiveIn(Reg);
764
765  // Mark exception selector register as live in.
766  Reg = TLI.getExceptionSelectorRegister();
767  if (Reg) BB->addLiveIn(Reg);
768
769  // FIXME: Hack around an exception handling flaw (PR1508): the personality
770  // function and list of typeids logically belong to the invoke (or, if you
771  // like, the basic block containing the invoke), and need to be associated
772  // with it in the dwarf exception handling tables.  Currently however the
773  // information is provided by an intrinsic (eh.selector) that can be moved
774  // to unexpected places by the optimizers: if the unwind edge is critical,
775  // then breaking it can result in the intrinsics being in the successor of
776  // the landing pad, not the landing pad itself.  This results
777  // in exceptions not being caught because no typeids are associated with
778  // the invoke.  This may not be the only way things can go wrong, but it
779  // is the only way we try to work around for the moment.
780  const BasicBlock *LLVMBB = BB->getBasicBlock();
781  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
782
783  if (Br && Br->isUnconditional()) { // Critical edge?
784    BasicBlock::const_iterator I, E;
785    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
786      if (isa<EHSelectorInst>(I))
787        break;
788
789    if (I == E)
790      // No catch info found - try to extract some from the successor.
791      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
792  }
793}
794
795void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
796  // Initialize the Fast-ISel state, if needed.
797  FastISel *FastIS = 0;
798  if (EnableFastISel)
799    FastIS = TLI.createFastISel(*MF, FuncInfo->ValueMap, FuncInfo->MBBMap,
800                                FuncInfo->StaticAllocaMap,
801                                FuncInfo->PHINodesToUpdate
802#ifndef NDEBUG
803                                , FuncInfo->CatchInfoLost
804#endif
805                                );
806
807  // Iterate over all basic blocks in the function.
808  for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
809    const BasicBlock *LLVMBB = &*I;
810    MachineBasicBlock *BB = FuncInfo->MBBMap[LLVMBB];
811
812    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
813    BasicBlock::const_iterator const End = LLVMBB->end();
814    BasicBlock::const_iterator BI = Begin;
815
816    // Lower any arguments needed in this block if this is the entry block.
817    if (LLVMBB == &Fn.getEntryBlock())
818      LowerArguments(LLVMBB);
819
820    // Setup an EH landing-pad block.
821    if (BB->isLandingPad())
822      PrepareEHLandingPad(BB);
823
824    // Before doing SelectionDAG ISel, see if FastISel has been requested.
825    if (FastIS) {
826      // Emit code for any incoming arguments. This must happen before
827      // beginning FastISel on the entry block.
828      if (LLVMBB == &Fn.getEntryBlock()) {
829        CurDAG->setRoot(SDB->getControlRoot());
830        SDB->clear();
831        BB = CodeGenAndEmitDAG(BB);
832      }
833      FastIS->startNewBlock(BB);
834      // Do FastISel on as many instructions as possible.
835      for (; BI != End; ++BI) {
836        // Try to select the instruction with FastISel.
837        if (FastIS->SelectInstruction(BI))
838          continue;
839
840        // Then handle certain instructions as single-LLVM-Instruction blocks.
841        if (isa<CallInst>(BI)) {
842          ++NumFastIselFailures;
843          if (EnableFastISelVerbose || EnableFastISelAbort) {
844            dbgs() << "FastISel missed call: ";
845            BI->dump();
846          }
847
848          if (!BI->getType()->isVoidTy() && !BI->use_empty()) {
849            unsigned &R = FuncInfo->ValueMap[BI];
850            if (!R)
851              R = FuncInfo->CreateRegForValue(BI);
852          }
853
854          bool HadTailCall = false;
855          BB = SelectBasicBlock(BB, LLVMBB, BI, llvm::next(BI), HadTailCall);
856
857          // If the call was emitted as a tail call, we're done with the block.
858          if (HadTailCall) {
859            BI = End;
860            break;
861          }
862
863          // If the instruction was codegen'd with multiple blocks,
864          // inform the FastISel object where to resume inserting.
865          FastIS->setCurrentBlock(BB);
866          continue;
867        }
868
869        // Otherwise, give up on FastISel for the rest of the block.
870        // For now, be a little lenient about non-branch terminators.
871        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
872          ++NumFastIselFailures;
873          if (EnableFastISelVerbose || EnableFastISelAbort) {
874            dbgs() << "FastISel miss: ";
875            BI->dump();
876          }
877          if (EnableFastISelAbort)
878            // The "fast" selector couldn't handle something and bailed.
879            // For the purpose of debugging, just abort.
880            llvm_unreachable("FastISel didn't select the entire block");
881        }
882        break;
883      }
884    }
885
886    // Run SelectionDAG instruction selection on the remainder of the block
887    // not handled by FastISel. If FastISel is not run, this is the entire
888    // block.
889    if (BI != End) {
890      bool HadTailCall;
891      BB = SelectBasicBlock(BB, LLVMBB, BI, End, HadTailCall);
892    }
893
894    FinishBasicBlock(BB);
895    FuncInfo->PHINodesToUpdate.clear();
896  }
897
898  delete FastIS;
899}
900
901void
902SelectionDAGISel::FinishBasicBlock(MachineBasicBlock *BB) {
903
904  DEBUG(dbgs() << "Total amount of phi nodes to update: "
905               << FuncInfo->PHINodesToUpdate.size() << "\n");
906  DEBUG(for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
907          dbgs() << "Node " << i << " : ("
908                 << FuncInfo->PHINodesToUpdate[i].first
909                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
910
911  // Next, now that we know what the last MBB the LLVM BB expanded is, update
912  // PHI nodes in successors.
913  if (SDB->SwitchCases.empty() &&
914      SDB->JTCases.empty() &&
915      SDB->BitTestCases.empty()) {
916    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
917      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
918      assert(PHI->isPHI() &&
919             "This is not a machine PHI node that we are updating!");
920      if (!BB->isSuccessor(PHI->getParent()))
921        continue;
922      PHI->addOperand(
923        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
924      PHI->addOperand(MachineOperand::CreateMBB(BB));
925    }
926    return;
927  }
928
929  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
930    // Lower header first, if it wasn't already lowered
931    if (!SDB->BitTestCases[i].Emitted) {
932      // Set the current basic block to the mbb we wish to insert the code into
933      BB = SDB->BitTestCases[i].Parent;
934      // Emit the code
935      SDB->visitBitTestHeader(SDB->BitTestCases[i], BB);
936      CurDAG->setRoot(SDB->getRoot());
937      SDB->clear();
938      BB = CodeGenAndEmitDAG(BB);
939    }
940
941    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
942      // Set the current basic block to the mbb we wish to insert the code into
943      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
944      // Emit the code
945      if (j+1 != ej)
946        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
947                              SDB->BitTestCases[i].Reg,
948                              SDB->BitTestCases[i].Cases[j],
949                              BB);
950      else
951        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
952                              SDB->BitTestCases[i].Reg,
953                              SDB->BitTestCases[i].Cases[j],
954                              BB);
955
956
957      CurDAG->setRoot(SDB->getRoot());
958      SDB->clear();
959      BB = CodeGenAndEmitDAG(BB);
960    }
961
962    // Update PHI Nodes
963    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
964         pi != pe; ++pi) {
965      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
966      MachineBasicBlock *PHIBB = PHI->getParent();
967      assert(PHI->isPHI() &&
968             "This is not a machine PHI node that we are updating!");
969      // This is "default" BB. We have two jumps to it. From "header" BB and
970      // from last "case" BB.
971      if (PHIBB == SDB->BitTestCases[i].Default) {
972        PHI->addOperand(MachineOperand::
973                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
974                                  false));
975        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
976        PHI->addOperand(MachineOperand::
977                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
978                                  false));
979        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
980                                                  back().ThisBB));
981      }
982      // One of "cases" BB.
983      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
984           j != ej; ++j) {
985        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
986        if (cBB->isSuccessor(PHIBB)) {
987          PHI->addOperand(MachineOperand::
988                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
989                                    false));
990          PHI->addOperand(MachineOperand::CreateMBB(cBB));
991        }
992      }
993    }
994  }
995  SDB->BitTestCases.clear();
996
997  // If the JumpTable record is filled in, then we need to emit a jump table.
998  // Updating the PHI nodes is tricky in this case, since we need to determine
999  // whether the PHI is a successor of the range check MBB or the jump table MBB
1000  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1001    // Lower header first, if it wasn't already lowered
1002    if (!SDB->JTCases[i].first.Emitted) {
1003      // Set the current basic block to the mbb we wish to insert the code into
1004      BB = SDB->JTCases[i].first.HeaderBB;
1005      // Emit the code
1006      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1007                                BB);
1008      CurDAG->setRoot(SDB->getRoot());
1009      SDB->clear();
1010      BB = CodeGenAndEmitDAG(BB);
1011    }
1012
1013    // Set the current basic block to the mbb we wish to insert the code into
1014    BB = SDB->JTCases[i].second.MBB;
1015    // Emit the code
1016    SDB->visitJumpTable(SDB->JTCases[i].second);
1017    CurDAG->setRoot(SDB->getRoot());
1018    SDB->clear();
1019    BB = CodeGenAndEmitDAG(BB);
1020
1021    // Update PHI Nodes
1022    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1023         pi != pe; ++pi) {
1024      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1025      MachineBasicBlock *PHIBB = PHI->getParent();
1026      assert(PHI->isPHI() &&
1027             "This is not a machine PHI node that we are updating!");
1028      // "default" BB. We can go there only from header BB.
1029      if (PHIBB == SDB->JTCases[i].second.Default) {
1030        PHI->addOperand
1031          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1032                                     false));
1033        PHI->addOperand
1034          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1035      }
1036      // JT BB. Just iterate over successors here
1037      if (BB->isSuccessor(PHIBB)) {
1038        PHI->addOperand
1039          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1040                                     false));
1041        PHI->addOperand(MachineOperand::CreateMBB(BB));
1042      }
1043    }
1044  }
1045  SDB->JTCases.clear();
1046
1047  // If the switch block involved a branch to one of the actual successors, we
1048  // need to update PHI nodes in that block.
1049  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1050    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1051    assert(PHI->isPHI() &&
1052           "This is not a machine PHI node that we are updating!");
1053    if (BB->isSuccessor(PHI->getParent())) {
1054      PHI->addOperand(
1055        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1056      PHI->addOperand(MachineOperand::CreateMBB(BB));
1057    }
1058  }
1059
1060  // If we generated any switch lowering information, build and codegen any
1061  // additional DAGs necessary.
1062  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1063    // Set the current basic block to the mbb we wish to insert the code into
1064    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1065
1066    // Determine the unique successors.
1067    SmallVector<MachineBasicBlock *, 2> Succs;
1068    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1069    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1070      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1071
1072    // Emit the code. Note that this could result in ThisBB being split, so
1073    // we need to check for updates.
1074    SDB->visitSwitchCase(SDB->SwitchCases[i], BB);
1075    CurDAG->setRoot(SDB->getRoot());
1076    SDB->clear();
1077    ThisBB = CodeGenAndEmitDAG(BB);
1078
1079    // Handle any PHI nodes in successors of this chunk, as if we were coming
1080    // from the original BB before switch expansion.  Note that PHI nodes can
1081    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1082    // handle them the right number of times.
1083    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1084      BB = Succs[i];
1085      // BB may have been removed from the CFG if a branch was constant folded.
1086      if (ThisBB->isSuccessor(BB)) {
1087        for (MachineBasicBlock::iterator Phi = BB->begin();
1088             Phi != BB->end() && Phi->isPHI();
1089             ++Phi) {
1090          // This value for this PHI node is recorded in PHINodesToUpdate.
1091          for (unsigned pn = 0; ; ++pn) {
1092            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1093                   "Didn't find PHI entry!");
1094            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1095              Phi->addOperand(MachineOperand::
1096                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1097                                        false));
1098              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1099              break;
1100            }
1101          }
1102        }
1103      }
1104    }
1105  }
1106  SDB->SwitchCases.clear();
1107}
1108
1109
1110/// Create the scheduler. If a specific scheduler was specified
1111/// via the SchedulerRegistry, use it, otherwise select the
1112/// one preferred by the target.
1113///
1114ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1115  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1116
1117  if (!Ctor) {
1118    Ctor = ISHeuristic;
1119    RegisterScheduler::setDefault(Ctor);
1120  }
1121
1122  return Ctor(this, OptLevel);
1123}
1124
1125ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1126  return new ScheduleHazardRecognizer();
1127}
1128
1129//===----------------------------------------------------------------------===//
1130// Helper functions used by the generated instruction selector.
1131//===----------------------------------------------------------------------===//
1132// Calls to these methods are generated by tblgen.
1133
1134/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1135/// the dag combiner simplified the 255, we still want to match.  RHS is the
1136/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1137/// specified in the .td file (e.g. 255).
1138bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1139                                    int64_t DesiredMaskS) const {
1140  const APInt &ActualMask = RHS->getAPIntValue();
1141  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1142
1143  // If the actual mask exactly matches, success!
1144  if (ActualMask == DesiredMask)
1145    return true;
1146
1147  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1148  if (ActualMask.intersects(~DesiredMask))
1149    return false;
1150
1151  // Otherwise, the DAG Combiner may have proven that the value coming in is
1152  // either already zero or is not demanded.  Check for known zero input bits.
1153  APInt NeededMask = DesiredMask & ~ActualMask;
1154  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1155    return true;
1156
1157  // TODO: check to see if missing bits are just not demanded.
1158
1159  // Otherwise, this pattern doesn't match.
1160  return false;
1161}
1162
1163/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1164/// the dag combiner simplified the 255, we still want to match.  RHS is the
1165/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1166/// specified in the .td file (e.g. 255).
1167bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1168                                   int64_t DesiredMaskS) const {
1169  const APInt &ActualMask = RHS->getAPIntValue();
1170  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1171
1172  // If the actual mask exactly matches, success!
1173  if (ActualMask == DesiredMask)
1174    return true;
1175
1176  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1177  if (ActualMask.intersects(~DesiredMask))
1178    return false;
1179
1180  // Otherwise, the DAG Combiner may have proven that the value coming in is
1181  // either already zero or is not demanded.  Check for known zero input bits.
1182  APInt NeededMask = DesiredMask & ~ActualMask;
1183
1184  APInt KnownZero, KnownOne;
1185  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1186
1187  // If all the missing bits in the or are already known to be set, match!
1188  if ((NeededMask & KnownOne) == NeededMask)
1189    return true;
1190
1191  // TODO: check to see if missing bits are just not demanded.
1192
1193  // Otherwise, this pattern doesn't match.
1194  return false;
1195}
1196
1197
1198/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1199/// by tblgen.  Others should not call it.
1200void SelectionDAGISel::
1201SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1202  std::vector<SDValue> InOps;
1203  std::swap(InOps, Ops);
1204
1205  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1206  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1207  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1208
1209  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1210  if (InOps[e-1].getValueType() == MVT::Flag)
1211    --e;  // Don't process a flag operand if it is here.
1212
1213  while (i != e) {
1214    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1215    if (!InlineAsm::isMemKind(Flags)) {
1216      // Just skip over this operand, copying the operands verbatim.
1217      Ops.insert(Ops.end(), InOps.begin()+i,
1218                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1219      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1220    } else {
1221      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1222             "Memory operand with multiple values?");
1223      // Otherwise, this is a memory operand.  Ask the target to select it.
1224      std::vector<SDValue> SelOps;
1225      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1226        report_fatal_error("Could not match memory address.  Inline asm"
1227                           " failure!");
1228
1229      // Add this to the output node.
1230      unsigned NewFlags =
1231        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1232      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1233      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1234      i += 2;
1235    }
1236  }
1237
1238  // Add the flag input back if present.
1239  if (e != InOps.size())
1240    Ops.push_back(InOps.back());
1241}
1242
1243/// findFlagUse - Return use of EVT::Flag value produced by the specified
1244/// SDNode.
1245///
1246static SDNode *findFlagUse(SDNode *N) {
1247  unsigned FlagResNo = N->getNumValues()-1;
1248  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1249    SDUse &Use = I.getUse();
1250    if (Use.getResNo() == FlagResNo)
1251      return Use.getUser();
1252  }
1253  return NULL;
1254}
1255
1256/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1257/// This function recursively traverses up the operand chain, ignoring
1258/// certain nodes.
1259static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1260                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1261                          bool IgnoreChains) {
1262  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1263  // greater than all of its (recursive) operands.  If we scan to a point where
1264  // 'use' is smaller than the node we're scanning for, then we know we will
1265  // never find it.
1266  //
1267  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1268  // happen because we scan down to newly selected nodes in the case of flag
1269  // uses.
1270  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1271    return false;
1272
1273  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1274  // won't fail if we scan it again.
1275  if (!Visited.insert(Use))
1276    return false;
1277
1278  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1279    // Ignore chain uses, they are validated by HandleMergeInputChains.
1280    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1281      continue;
1282
1283    SDNode *N = Use->getOperand(i).getNode();
1284    if (N == Def) {
1285      if (Use == ImmedUse || Use == Root)
1286        continue;  // We are not looking for immediate use.
1287      assert(N != Root);
1288      return true;
1289    }
1290
1291    // Traverse up the operand chain.
1292    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1293      return true;
1294  }
1295  return false;
1296}
1297
1298/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1299/// operand node N of U during instruction selection that starts at Root.
1300bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1301                                          SDNode *Root) const {
1302  if (OptLevel == CodeGenOpt::None) return false;
1303  return N.hasOneUse();
1304}
1305
1306/// IsLegalToFold - Returns true if the specific operand node N of
1307/// U can be folded during instruction selection that starts at Root.
1308bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1309                                     CodeGenOpt::Level OptLevel,
1310                                     bool IgnoreChains) {
1311  if (OptLevel == CodeGenOpt::None) return false;
1312
1313  // If Root use can somehow reach N through a path that that doesn't contain
1314  // U then folding N would create a cycle. e.g. In the following
1315  // diagram, Root can reach N through X. If N is folded into into Root, then
1316  // X is both a predecessor and a successor of U.
1317  //
1318  //          [N*]           //
1319  //         ^   ^           //
1320  //        /     \          //
1321  //      [U*]    [X]?       //
1322  //        ^     ^          //
1323  //         \   /           //
1324  //          \ /            //
1325  //         [Root*]         //
1326  //
1327  // * indicates nodes to be folded together.
1328  //
1329  // If Root produces a flag, then it gets (even more) interesting. Since it
1330  // will be "glued" together with its flag use in the scheduler, we need to
1331  // check if it might reach N.
1332  //
1333  //          [N*]           //
1334  //         ^   ^           //
1335  //        /     \          //
1336  //      [U*]    [X]?       //
1337  //        ^       ^        //
1338  //         \       \       //
1339  //          \      |       //
1340  //         [Root*] |       //
1341  //          ^      |       //
1342  //          f      |       //
1343  //          |      /       //
1344  //         [Y]    /        //
1345  //           ^   /         //
1346  //           f  /          //
1347  //           | /           //
1348  //          [FU]           //
1349  //
1350  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1351  // (call it Fold), then X is a predecessor of FU and a successor of
1352  // Fold. But since Fold and FU are flagged together, this will create
1353  // a cycle in the scheduling graph.
1354
1355  // If the node has flags, walk down the graph to the "lowest" node in the
1356  // flagged set.
1357  EVT VT = Root->getValueType(Root->getNumValues()-1);
1358  while (VT == MVT::Flag) {
1359    SDNode *FU = findFlagUse(Root);
1360    if (FU == NULL)
1361      break;
1362    Root = FU;
1363    VT = Root->getValueType(Root->getNumValues()-1);
1364
1365    // If our query node has a flag result with a use, we've walked up it.  If
1366    // the user (which has already been selected) has a chain or indirectly uses
1367    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1368    // this, we cannot ignore chains in this predicate.
1369    IgnoreChains = false;
1370  }
1371
1372
1373  SmallPtrSet<SDNode*, 16> Visited;
1374  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1375}
1376
1377SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1378  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1379  SelectInlineAsmMemoryOperands(Ops);
1380
1381  std::vector<EVT> VTs;
1382  VTs.push_back(MVT::Other);
1383  VTs.push_back(MVT::Flag);
1384  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1385                                VTs, &Ops[0], Ops.size());
1386  New->setNodeId(-1);
1387  return New.getNode();
1388}
1389
1390SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1391  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1392}
1393
1394/// GetVBR - decode a vbr encoding whose top bit is set.
1395ALWAYS_INLINE static uint64_t
1396GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1397  assert(Val >= 128 && "Not a VBR");
1398  Val &= 127;  // Remove first vbr bit.
1399
1400  unsigned Shift = 7;
1401  uint64_t NextBits;
1402  do {
1403    NextBits = MatcherTable[Idx++];
1404    Val |= (NextBits&127) << Shift;
1405    Shift += 7;
1406  } while (NextBits & 128);
1407
1408  return Val;
1409}
1410
1411
1412/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1413/// interior flag and chain results to use the new flag and chain results.
1414void SelectionDAGISel::
1415UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1416                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1417                     SDValue InputFlag,
1418                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1419                     bool isMorphNodeTo) {
1420  SmallVector<SDNode*, 4> NowDeadNodes;
1421
1422  ISelUpdater ISU(ISelPosition);
1423
1424  // Now that all the normal results are replaced, we replace the chain and
1425  // flag results if present.
1426  if (!ChainNodesMatched.empty()) {
1427    assert(InputChain.getNode() != 0 &&
1428           "Matched input chains but didn't produce a chain");
1429    // Loop over all of the nodes we matched that produced a chain result.
1430    // Replace all the chain results with the final chain we ended up with.
1431    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1432      SDNode *ChainNode = ChainNodesMatched[i];
1433
1434      // If this node was already deleted, don't look at it.
1435      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1436        continue;
1437
1438      // Don't replace the results of the root node if we're doing a
1439      // MorphNodeTo.
1440      if (ChainNode == NodeToMatch && isMorphNodeTo)
1441        continue;
1442
1443      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1444      if (ChainVal.getValueType() == MVT::Flag)
1445        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1446      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1447      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1448
1449      // If the node became dead and we haven't already seen it, delete it.
1450      if (ChainNode->use_empty() &&
1451          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1452        NowDeadNodes.push_back(ChainNode);
1453    }
1454  }
1455
1456  // If the result produces a flag, update any flag results in the matched
1457  // pattern with the flag result.
1458  if (InputFlag.getNode() != 0) {
1459    // Handle any interior nodes explicitly marked.
1460    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1461      SDNode *FRN = FlagResultNodesMatched[i];
1462
1463      // If this node was already deleted, don't look at it.
1464      if (FRN->getOpcode() == ISD::DELETED_NODE)
1465        continue;
1466
1467      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1468             "Doesn't have a flag result");
1469      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1470                                        InputFlag, &ISU);
1471
1472      // If the node became dead and we haven't already seen it, delete it.
1473      if (FRN->use_empty() &&
1474          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1475        NowDeadNodes.push_back(FRN);
1476    }
1477  }
1478
1479  if (!NowDeadNodes.empty())
1480    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1481
1482  DEBUG(errs() << "ISEL: Match complete!\n");
1483}
1484
1485enum ChainResult {
1486  CR_Simple,
1487  CR_InducesCycle,
1488  CR_LeadsToInteriorNode
1489};
1490
1491/// WalkChainUsers - Walk down the users of the specified chained node that is
1492/// part of the pattern we're matching, looking at all of the users we find.
1493/// This determines whether something is an interior node, whether we have a
1494/// non-pattern node in between two pattern nodes (which prevent folding because
1495/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1496/// between pattern nodes (in which case the TF becomes part of the pattern).
1497///
1498/// The walk we do here is guaranteed to be small because we quickly get down to
1499/// already selected nodes "below" us.
1500static ChainResult
1501WalkChainUsers(SDNode *ChainedNode,
1502               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1503               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1504  ChainResult Result = CR_Simple;
1505
1506  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1507         E = ChainedNode->use_end(); UI != E; ++UI) {
1508    // Make sure the use is of the chain, not some other value we produce.
1509    if (UI.getUse().getValueType() != MVT::Other) continue;
1510
1511    SDNode *User = *UI;
1512
1513    // If we see an already-selected machine node, then we've gone beyond the
1514    // pattern that we're selecting down into the already selected chunk of the
1515    // DAG.
1516    if (User->isMachineOpcode() ||
1517        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1518      continue;
1519
1520    if (User->getOpcode() == ISD::CopyToReg ||
1521        User->getOpcode() == ISD::CopyFromReg ||
1522        User->getOpcode() == ISD::INLINEASM ||
1523        User->getOpcode() == ISD::EH_LABEL) {
1524      // If their node ID got reset to -1 then they've already been selected.
1525      // Treat them like a MachineOpcode.
1526      if (User->getNodeId() == -1)
1527        continue;
1528    }
1529
1530    // If we have a TokenFactor, we handle it specially.
1531    if (User->getOpcode() != ISD::TokenFactor) {
1532      // If the node isn't a token factor and isn't part of our pattern, then it
1533      // must be a random chained node in between two nodes we're selecting.
1534      // This happens when we have something like:
1535      //   x = load ptr
1536      //   call
1537      //   y = x+4
1538      //   store y -> ptr
1539      // Because we structurally match the load/store as a read/modify/write,
1540      // but the call is chained between them.  We cannot fold in this case
1541      // because it would induce a cycle in the graph.
1542      if (!std::count(ChainedNodesInPattern.begin(),
1543                      ChainedNodesInPattern.end(), User))
1544        return CR_InducesCycle;
1545
1546      // Otherwise we found a node that is part of our pattern.  For example in:
1547      //   x = load ptr
1548      //   y = x+4
1549      //   store y -> ptr
1550      // This would happen when we're scanning down from the load and see the
1551      // store as a user.  Record that there is a use of ChainedNode that is
1552      // part of the pattern and keep scanning uses.
1553      Result = CR_LeadsToInteriorNode;
1554      InteriorChainedNodes.push_back(User);
1555      continue;
1556    }
1557
1558    // If we found a TokenFactor, there are two cases to consider: first if the
1559    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1560    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1561    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1562    //     [Load chain]
1563    //         ^
1564    //         |
1565    //       [Load]
1566    //       ^    ^
1567    //       |    \                    DAG's like cheese
1568    //      /       \                       do you?
1569    //     /         |
1570    // [TokenFactor] [Op]
1571    //     ^          ^
1572    //     |          |
1573    //      \        /
1574    //       \      /
1575    //       [Store]
1576    //
1577    // In this case, the TokenFactor becomes part of our match and we rewrite it
1578    // as a new TokenFactor.
1579    //
1580    // To distinguish these two cases, do a recursive walk down the uses.
1581    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1582    case CR_Simple:
1583      // If the uses of the TokenFactor are just already-selected nodes, ignore
1584      // it, it is "below" our pattern.
1585      continue;
1586    case CR_InducesCycle:
1587      // If the uses of the TokenFactor lead to nodes that are not part of our
1588      // pattern that are not selected, folding would turn this into a cycle,
1589      // bail out now.
1590      return CR_InducesCycle;
1591    case CR_LeadsToInteriorNode:
1592      break;  // Otherwise, keep processing.
1593    }
1594
1595    // Okay, we know we're in the interesting interior case.  The TokenFactor
1596    // is now going to be considered part of the pattern so that we rewrite its
1597    // uses (it may have uses that are not part of the pattern) with the
1598    // ultimate chain result of the generated code.  We will also add its chain
1599    // inputs as inputs to the ultimate TokenFactor we create.
1600    Result = CR_LeadsToInteriorNode;
1601    ChainedNodesInPattern.push_back(User);
1602    InteriorChainedNodes.push_back(User);
1603    continue;
1604  }
1605
1606  return Result;
1607}
1608
1609/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1610/// operation for when the pattern matched at least one node with a chains.  The
1611/// input vector contains a list of all of the chained nodes that we match.  We
1612/// must determine if this is a valid thing to cover (i.e. matching it won't
1613/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1614/// be used as the input node chain for the generated nodes.
1615static SDValue
1616HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1617                       SelectionDAG *CurDAG) {
1618  // Walk all of the chained nodes we've matched, recursively scanning down the
1619  // users of the chain result. This adds any TokenFactor nodes that are caught
1620  // in between chained nodes to the chained and interior nodes list.
1621  SmallVector<SDNode*, 3> InteriorChainedNodes;
1622  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1623    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1624                       InteriorChainedNodes) == CR_InducesCycle)
1625      return SDValue(); // Would induce a cycle.
1626  }
1627
1628  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1629  // that we are interested in.  Form our input TokenFactor node.
1630  SmallVector<SDValue, 3> InputChains;
1631  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1632    // Add the input chain of this node to the InputChains list (which will be
1633    // the operands of the generated TokenFactor) if it's not an interior node.
1634    SDNode *N = ChainNodesMatched[i];
1635    if (N->getOpcode() != ISD::TokenFactor) {
1636      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1637        continue;
1638
1639      // Otherwise, add the input chain.
1640      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1641      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1642      InputChains.push_back(InChain);
1643      continue;
1644    }
1645
1646    // If we have a token factor, we want to add all inputs of the token factor
1647    // that are not part of the pattern we're matching.
1648    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1649      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1650                      N->getOperand(op).getNode()))
1651        InputChains.push_back(N->getOperand(op));
1652    }
1653  }
1654
1655  SDValue Res;
1656  if (InputChains.size() == 1)
1657    return InputChains[0];
1658  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1659                         MVT::Other, &InputChains[0], InputChains.size());
1660}
1661
1662/// MorphNode - Handle morphing a node in place for the selector.
1663SDNode *SelectionDAGISel::
1664MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1665          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1666  // It is possible we're using MorphNodeTo to replace a node with no
1667  // normal results with one that has a normal result (or we could be
1668  // adding a chain) and the input could have flags and chains as well.
1669  // In this case we need to shift the operands down.
1670  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1671  // than the old isel though.
1672  int OldFlagResultNo = -1, OldChainResultNo = -1;
1673
1674  unsigned NTMNumResults = Node->getNumValues();
1675  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1676    OldFlagResultNo = NTMNumResults-1;
1677    if (NTMNumResults != 1 &&
1678        Node->getValueType(NTMNumResults-2) == MVT::Other)
1679      OldChainResultNo = NTMNumResults-2;
1680  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1681    OldChainResultNo = NTMNumResults-1;
1682
1683  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1684  // that this deletes operands of the old node that become dead.
1685  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1686
1687  // MorphNodeTo can operate in two ways: if an existing node with the
1688  // specified operands exists, it can just return it.  Otherwise, it
1689  // updates the node in place to have the requested operands.
1690  if (Res == Node) {
1691    // If we updated the node in place, reset the node ID.  To the isel,
1692    // this should be just like a newly allocated machine node.
1693    Res->setNodeId(-1);
1694  }
1695
1696  unsigned ResNumResults = Res->getNumValues();
1697  // Move the flag if needed.
1698  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1699      (unsigned)OldFlagResultNo != ResNumResults-1)
1700    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1701                                      SDValue(Res, ResNumResults-1));
1702
1703  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1704  --ResNumResults;
1705
1706  // Move the chain reference if needed.
1707  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1708      (unsigned)OldChainResultNo != ResNumResults-1)
1709    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1710                                      SDValue(Res, ResNumResults-1));
1711
1712  // Otherwise, no replacement happened because the node already exists. Replace
1713  // Uses of the old node with the new one.
1714  if (Res != Node)
1715    CurDAG->ReplaceAllUsesWith(Node, Res);
1716
1717  return Res;
1718}
1719
1720/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1721ALWAYS_INLINE static bool
1722CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1723          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1724  // Accept if it is exactly the same as a previously recorded node.
1725  unsigned RecNo = MatcherTable[MatcherIndex++];
1726  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1727  return N == RecordedNodes[RecNo];
1728}
1729
1730/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1731ALWAYS_INLINE static bool
1732CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1733                      SelectionDAGISel &SDISel) {
1734  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1735}
1736
1737/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1738ALWAYS_INLINE static bool
1739CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1740                   SelectionDAGISel &SDISel, SDNode *N) {
1741  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1742}
1743
1744ALWAYS_INLINE static bool
1745CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1746            SDNode *N) {
1747  uint16_t Opc = MatcherTable[MatcherIndex++];
1748  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1749  return N->getOpcode() == Opc;
1750}
1751
1752ALWAYS_INLINE static bool
1753CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1754          SDValue N, const TargetLowering &TLI) {
1755  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1756  if (N.getValueType() == VT) return true;
1757
1758  // Handle the case when VT is iPTR.
1759  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1760}
1761
1762ALWAYS_INLINE static bool
1763CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1764               SDValue N, const TargetLowering &TLI,
1765               unsigned ChildNo) {
1766  if (ChildNo >= N.getNumOperands())
1767    return false;  // Match fails if out of range child #.
1768  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1769}
1770
1771
1772ALWAYS_INLINE static bool
1773CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1774              SDValue N) {
1775  return cast<CondCodeSDNode>(N)->get() ==
1776      (ISD::CondCode)MatcherTable[MatcherIndex++];
1777}
1778
1779ALWAYS_INLINE static bool
1780CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1781               SDValue N, const TargetLowering &TLI) {
1782  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1783  if (cast<VTSDNode>(N)->getVT() == VT)
1784    return true;
1785
1786  // Handle the case when VT is iPTR.
1787  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1788}
1789
1790ALWAYS_INLINE static bool
1791CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1792             SDValue N) {
1793  int64_t Val = MatcherTable[MatcherIndex++];
1794  if (Val & 128)
1795    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1796
1797  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1798  return C != 0 && C->getSExtValue() == Val;
1799}
1800
1801ALWAYS_INLINE static bool
1802CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1803            SDValue N, SelectionDAGISel &SDISel) {
1804  int64_t Val = MatcherTable[MatcherIndex++];
1805  if (Val & 128)
1806    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1807
1808  if (N->getOpcode() != ISD::AND) return false;
1809
1810  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1811  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1812}
1813
1814ALWAYS_INLINE static bool
1815CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1816           SDValue N, SelectionDAGISel &SDISel) {
1817  int64_t Val = MatcherTable[MatcherIndex++];
1818  if (Val & 128)
1819    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1820
1821  if (N->getOpcode() != ISD::OR) return false;
1822
1823  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1824  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1825}
1826
1827/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1828/// scope, evaluate the current node.  If the current predicate is known to
1829/// fail, set Result=true and return anything.  If the current predicate is
1830/// known to pass, set Result=false and return the MatcherIndex to continue
1831/// with.  If the current predicate is unknown, set Result=false and return the
1832/// MatcherIndex to continue with.
1833static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1834                                       unsigned Index, SDValue N,
1835                                       bool &Result, SelectionDAGISel &SDISel,
1836                                       SmallVectorImpl<SDValue> &RecordedNodes){
1837  switch (Table[Index++]) {
1838  default:
1839    Result = false;
1840    return Index-1;  // Could not evaluate this predicate.
1841  case SelectionDAGISel::OPC_CheckSame:
1842    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1843    return Index;
1844  case SelectionDAGISel::OPC_CheckPatternPredicate:
1845    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1846    return Index;
1847  case SelectionDAGISel::OPC_CheckPredicate:
1848    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1849    return Index;
1850  case SelectionDAGISel::OPC_CheckOpcode:
1851    Result = !::CheckOpcode(Table, Index, N.getNode());
1852    return Index;
1853  case SelectionDAGISel::OPC_CheckType:
1854    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1855    return Index;
1856  case SelectionDAGISel::OPC_CheckChild0Type:
1857  case SelectionDAGISel::OPC_CheckChild1Type:
1858  case SelectionDAGISel::OPC_CheckChild2Type:
1859  case SelectionDAGISel::OPC_CheckChild3Type:
1860  case SelectionDAGISel::OPC_CheckChild4Type:
1861  case SelectionDAGISel::OPC_CheckChild5Type:
1862  case SelectionDAGISel::OPC_CheckChild6Type:
1863  case SelectionDAGISel::OPC_CheckChild7Type:
1864    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1865                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1866    return Index;
1867  case SelectionDAGISel::OPC_CheckCondCode:
1868    Result = !::CheckCondCode(Table, Index, N);
1869    return Index;
1870  case SelectionDAGISel::OPC_CheckValueType:
1871    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1872    return Index;
1873  case SelectionDAGISel::OPC_CheckInteger:
1874    Result = !::CheckInteger(Table, Index, N);
1875    return Index;
1876  case SelectionDAGISel::OPC_CheckAndImm:
1877    Result = !::CheckAndImm(Table, Index, N, SDISel);
1878    return Index;
1879  case SelectionDAGISel::OPC_CheckOrImm:
1880    Result = !::CheckOrImm(Table, Index, N, SDISel);
1881    return Index;
1882  }
1883}
1884
1885namespace {
1886
1887struct MatchScope {
1888  /// FailIndex - If this match fails, this is the index to continue with.
1889  unsigned FailIndex;
1890
1891  /// NodeStack - The node stack when the scope was formed.
1892  SmallVector<SDValue, 4> NodeStack;
1893
1894  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1895  unsigned NumRecordedNodes;
1896
1897  /// NumMatchedMemRefs - The number of matched memref entries.
1898  unsigned NumMatchedMemRefs;
1899
1900  /// InputChain/InputFlag - The current chain/flag
1901  SDValue InputChain, InputFlag;
1902
1903  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1904  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1905};
1906
1907}
1908
1909SDNode *SelectionDAGISel::
1910SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1911                 unsigned TableSize) {
1912  // FIXME: Should these even be selected?  Handle these cases in the caller?
1913  switch (NodeToMatch->getOpcode()) {
1914  default:
1915    break;
1916  case ISD::EntryToken:       // These nodes remain the same.
1917  case ISD::BasicBlock:
1918  case ISD::Register:
1919  //case ISD::VALUETYPE:
1920  //case ISD::CONDCODE:
1921  case ISD::HANDLENODE:
1922  case ISD::MDNODE_SDNODE:
1923  case ISD::TargetConstant:
1924  case ISD::TargetConstantFP:
1925  case ISD::TargetConstantPool:
1926  case ISD::TargetFrameIndex:
1927  case ISD::TargetExternalSymbol:
1928  case ISD::TargetBlockAddress:
1929  case ISD::TargetJumpTable:
1930  case ISD::TargetGlobalTLSAddress:
1931  case ISD::TargetGlobalAddress:
1932  case ISD::TokenFactor:
1933  case ISD::CopyFromReg:
1934  case ISD::CopyToReg:
1935  case ISD::EH_LABEL:
1936    NodeToMatch->setNodeId(-1); // Mark selected.
1937    return 0;
1938  case ISD::AssertSext:
1939  case ISD::AssertZext:
1940    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1941                                      NodeToMatch->getOperand(0));
1942    return 0;
1943  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1944  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1945  }
1946
1947  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1948
1949  // Set up the node stack with NodeToMatch as the only node on the stack.
1950  SmallVector<SDValue, 8> NodeStack;
1951  SDValue N = SDValue(NodeToMatch, 0);
1952  NodeStack.push_back(N);
1953
1954  // MatchScopes - Scopes used when matching, if a match failure happens, this
1955  // indicates where to continue checking.
1956  SmallVector<MatchScope, 8> MatchScopes;
1957
1958  // RecordedNodes - This is the set of nodes that have been recorded by the
1959  // state machine.
1960  SmallVector<SDValue, 8> RecordedNodes;
1961
1962  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1963  // pattern.
1964  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1965
1966  // These are the current input chain and flag for use when generating nodes.
1967  // Various Emit operations change these.  For example, emitting a copytoreg
1968  // uses and updates these.
1969  SDValue InputChain, InputFlag;
1970
1971  // ChainNodesMatched - If a pattern matches nodes that have input/output
1972  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1973  // which ones they are.  The result is captured into this list so that we can
1974  // update the chain results when the pattern is complete.
1975  SmallVector<SDNode*, 3> ChainNodesMatched;
1976  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1977
1978  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1979        NodeToMatch->dump(CurDAG);
1980        errs() << '\n');
1981
1982  // Determine where to start the interpreter.  Normally we start at opcode #0,
1983  // but if the state machine starts with an OPC_SwitchOpcode, then we
1984  // accelerate the first lookup (which is guaranteed to be hot) with the
1985  // OpcodeOffset table.
1986  unsigned MatcherIndex = 0;
1987
1988  if (!OpcodeOffset.empty()) {
1989    // Already computed the OpcodeOffset table, just index into it.
1990    if (N.getOpcode() < OpcodeOffset.size())
1991      MatcherIndex = OpcodeOffset[N.getOpcode()];
1992    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1993
1994  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1995    // Otherwise, the table isn't computed, but the state machine does start
1996    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
1997    // is the first time we're selecting an instruction.
1998    unsigned Idx = 1;
1999    while (1) {
2000      // Get the size of this case.
2001      unsigned CaseSize = MatcherTable[Idx++];
2002      if (CaseSize & 128)
2003        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2004      if (CaseSize == 0) break;
2005
2006      // Get the opcode, add the index to the table.
2007      uint16_t Opc = MatcherTable[Idx++];
2008      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2009      if (Opc >= OpcodeOffset.size())
2010        OpcodeOffset.resize((Opc+1)*2);
2011      OpcodeOffset[Opc] = Idx;
2012      Idx += CaseSize;
2013    }
2014
2015    // Okay, do the lookup for the first opcode.
2016    if (N.getOpcode() < OpcodeOffset.size())
2017      MatcherIndex = OpcodeOffset[N.getOpcode()];
2018  }
2019
2020  while (1) {
2021    assert(MatcherIndex < TableSize && "Invalid index");
2022#ifndef NDEBUG
2023    unsigned CurrentOpcodeIndex = MatcherIndex;
2024#endif
2025    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2026    switch (Opcode) {
2027    case OPC_Scope: {
2028      // Okay, the semantics of this operation are that we should push a scope
2029      // then evaluate the first child.  However, pushing a scope only to have
2030      // the first check fail (which then pops it) is inefficient.  If we can
2031      // determine immediately that the first check (or first several) will
2032      // immediately fail, don't even bother pushing a scope for them.
2033      unsigned FailIndex;
2034
2035      while (1) {
2036        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2037        if (NumToSkip & 128)
2038          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2039        // Found the end of the scope with no match.
2040        if (NumToSkip == 0) {
2041          FailIndex = 0;
2042          break;
2043        }
2044
2045        FailIndex = MatcherIndex+NumToSkip;
2046
2047        unsigned MatcherIndexOfPredicate = MatcherIndex;
2048        (void)MatcherIndexOfPredicate; // silence warning.
2049
2050        // If we can't evaluate this predicate without pushing a scope (e.g. if
2051        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2052        // push the scope and evaluate the full predicate chain.
2053        bool Result;
2054        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2055                                              Result, *this, RecordedNodes);
2056        if (!Result)
2057          break;
2058
2059        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2060                     << "index " << MatcherIndexOfPredicate
2061                     << ", continuing at " << FailIndex << "\n");
2062        ++NumDAGIselRetries;
2063
2064        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2065        // move to the next case.
2066        MatcherIndex = FailIndex;
2067      }
2068
2069      // If the whole scope failed to match, bail.
2070      if (FailIndex == 0) break;
2071
2072      // Push a MatchScope which indicates where to go if the first child fails
2073      // to match.
2074      MatchScope NewEntry;
2075      NewEntry.FailIndex = FailIndex;
2076      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2077      NewEntry.NumRecordedNodes = RecordedNodes.size();
2078      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2079      NewEntry.InputChain = InputChain;
2080      NewEntry.InputFlag = InputFlag;
2081      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2082      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
2083      MatchScopes.push_back(NewEntry);
2084      continue;
2085    }
2086    case OPC_RecordNode:
2087      // Remember this node, it may end up being an operand in the pattern.
2088      RecordedNodes.push_back(N);
2089      continue;
2090
2091    case OPC_RecordChild0: case OPC_RecordChild1:
2092    case OPC_RecordChild2: case OPC_RecordChild3:
2093    case OPC_RecordChild4: case OPC_RecordChild5:
2094    case OPC_RecordChild6: case OPC_RecordChild7: {
2095      unsigned ChildNo = Opcode-OPC_RecordChild0;
2096      if (ChildNo >= N.getNumOperands())
2097        break;  // Match fails if out of range child #.
2098
2099      RecordedNodes.push_back(N->getOperand(ChildNo));
2100      continue;
2101    }
2102    case OPC_RecordMemRef:
2103      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2104      continue;
2105
2106    case OPC_CaptureFlagInput:
2107      // If the current node has an input flag, capture it in InputFlag.
2108      if (N->getNumOperands() != 0 &&
2109          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
2110        InputFlag = N->getOperand(N->getNumOperands()-1);
2111      continue;
2112
2113    case OPC_MoveChild: {
2114      unsigned ChildNo = MatcherTable[MatcherIndex++];
2115      if (ChildNo >= N.getNumOperands())
2116        break;  // Match fails if out of range child #.
2117      N = N.getOperand(ChildNo);
2118      NodeStack.push_back(N);
2119      continue;
2120    }
2121
2122    case OPC_MoveParent:
2123      // Pop the current node off the NodeStack.
2124      NodeStack.pop_back();
2125      assert(!NodeStack.empty() && "Node stack imbalance!");
2126      N = NodeStack.back();
2127      continue;
2128
2129    case OPC_CheckSame:
2130      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2131      continue;
2132    case OPC_CheckPatternPredicate:
2133      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2134      continue;
2135    case OPC_CheckPredicate:
2136      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2137                                N.getNode()))
2138        break;
2139      continue;
2140    case OPC_CheckComplexPat: {
2141      unsigned CPNum = MatcherTable[MatcherIndex++];
2142      unsigned RecNo = MatcherTable[MatcherIndex++];
2143      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2144      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2145                               RecordedNodes))
2146        break;
2147      continue;
2148    }
2149    case OPC_CheckOpcode:
2150      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2151      continue;
2152
2153    case OPC_CheckType:
2154      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2155      continue;
2156
2157    case OPC_SwitchOpcode: {
2158      unsigned CurNodeOpcode = N.getOpcode();
2159      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2160      unsigned CaseSize;
2161      while (1) {
2162        // Get the size of this case.
2163        CaseSize = MatcherTable[MatcherIndex++];
2164        if (CaseSize & 128)
2165          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2166        if (CaseSize == 0) break;
2167
2168        uint16_t Opc = MatcherTable[MatcherIndex++];
2169        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2170
2171        // If the opcode matches, then we will execute this case.
2172        if (CurNodeOpcode == Opc)
2173          break;
2174
2175        // Otherwise, skip over this case.
2176        MatcherIndex += CaseSize;
2177      }
2178
2179      // If no cases matched, bail out.
2180      if (CaseSize == 0) break;
2181
2182      // Otherwise, execute the case we found.
2183      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2184                   << " to " << MatcherIndex << "\n");
2185      continue;
2186    }
2187
2188    case OPC_SwitchType: {
2189      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2190      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2191      unsigned CaseSize;
2192      while (1) {
2193        // Get the size of this case.
2194        CaseSize = MatcherTable[MatcherIndex++];
2195        if (CaseSize & 128)
2196          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2197        if (CaseSize == 0) break;
2198
2199        MVT::SimpleValueType CaseVT =
2200          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2201        if (CaseVT == MVT::iPTR)
2202          CaseVT = TLI.getPointerTy().SimpleTy;
2203
2204        // If the VT matches, then we will execute this case.
2205        if (CurNodeVT == CaseVT)
2206          break;
2207
2208        // Otherwise, skip over this case.
2209        MatcherIndex += CaseSize;
2210      }
2211
2212      // If no cases matched, bail out.
2213      if (CaseSize == 0) break;
2214
2215      // Otherwise, execute the case we found.
2216      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2217                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2218      continue;
2219    }
2220    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2221    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2222    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2223    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2224      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2225                            Opcode-OPC_CheckChild0Type))
2226        break;
2227      continue;
2228    case OPC_CheckCondCode:
2229      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2230      continue;
2231    case OPC_CheckValueType:
2232      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2233      continue;
2234    case OPC_CheckInteger:
2235      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2236      continue;
2237    case OPC_CheckAndImm:
2238      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2239      continue;
2240    case OPC_CheckOrImm:
2241      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2242      continue;
2243
2244    case OPC_CheckFoldableChainNode: {
2245      assert(NodeStack.size() != 1 && "No parent node");
2246      // Verify that all intermediate nodes between the root and this one have
2247      // a single use.
2248      bool HasMultipleUses = false;
2249      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2250        if (!NodeStack[i].hasOneUse()) {
2251          HasMultipleUses = true;
2252          break;
2253        }
2254      if (HasMultipleUses) break;
2255
2256      // Check to see that the target thinks this is profitable to fold and that
2257      // we can fold it without inducing cycles in the graph.
2258      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2259                              NodeToMatch) ||
2260          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2261                         NodeToMatch, OptLevel,
2262                         true/*We validate our own chains*/))
2263        break;
2264
2265      continue;
2266    }
2267    case OPC_EmitInteger: {
2268      MVT::SimpleValueType VT =
2269        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2270      int64_t Val = MatcherTable[MatcherIndex++];
2271      if (Val & 128)
2272        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2273      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2274      continue;
2275    }
2276    case OPC_EmitRegister: {
2277      MVT::SimpleValueType VT =
2278        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2279      unsigned RegNo = MatcherTable[MatcherIndex++];
2280      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2281      continue;
2282    }
2283
2284    case OPC_EmitConvertToTarget:  {
2285      // Convert from IMM/FPIMM to target version.
2286      unsigned RecNo = MatcherTable[MatcherIndex++];
2287      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2288      SDValue Imm = RecordedNodes[RecNo];
2289
2290      if (Imm->getOpcode() == ISD::Constant) {
2291        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2292        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2293      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2294        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2295        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2296      }
2297
2298      RecordedNodes.push_back(Imm);
2299      continue;
2300    }
2301
2302    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2303    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2304      // These are space-optimized forms of OPC_EmitMergeInputChains.
2305      assert(InputChain.getNode() == 0 &&
2306             "EmitMergeInputChains should be the first chain producing node");
2307      assert(ChainNodesMatched.empty() &&
2308             "Should only have one EmitMergeInputChains per match");
2309
2310      // Read all of the chained nodes.
2311      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2312      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2313      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2314
2315      // FIXME: What if other value results of the node have uses not matched
2316      // by this pattern?
2317      if (ChainNodesMatched.back() != NodeToMatch &&
2318          !RecordedNodes[RecNo].hasOneUse()) {
2319        ChainNodesMatched.clear();
2320        break;
2321      }
2322
2323      // Merge the input chains if they are not intra-pattern references.
2324      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2325
2326      if (InputChain.getNode() == 0)
2327        break;  // Failed to merge.
2328      continue;
2329    }
2330
2331    case OPC_EmitMergeInputChains: {
2332      assert(InputChain.getNode() == 0 &&
2333             "EmitMergeInputChains should be the first chain producing node");
2334      // This node gets a list of nodes we matched in the input that have
2335      // chains.  We want to token factor all of the input chains to these nodes
2336      // together.  However, if any of the input chains is actually one of the
2337      // nodes matched in this pattern, then we have an intra-match reference.
2338      // Ignore these because the newly token factored chain should not refer to
2339      // the old nodes.
2340      unsigned NumChains = MatcherTable[MatcherIndex++];
2341      assert(NumChains != 0 && "Can't TF zero chains");
2342
2343      assert(ChainNodesMatched.empty() &&
2344             "Should only have one EmitMergeInputChains per match");
2345
2346      // Read all of the chained nodes.
2347      for (unsigned i = 0; i != NumChains; ++i) {
2348        unsigned RecNo = MatcherTable[MatcherIndex++];
2349        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2350        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2351
2352        // FIXME: What if other value results of the node have uses not matched
2353        // by this pattern?
2354        if (ChainNodesMatched.back() != NodeToMatch &&
2355            !RecordedNodes[RecNo].hasOneUse()) {
2356          ChainNodesMatched.clear();
2357          break;
2358        }
2359      }
2360
2361      // If the inner loop broke out, the match fails.
2362      if (ChainNodesMatched.empty())
2363        break;
2364
2365      // Merge the input chains if they are not intra-pattern references.
2366      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2367
2368      if (InputChain.getNode() == 0)
2369        break;  // Failed to merge.
2370
2371      continue;
2372    }
2373
2374    case OPC_EmitCopyToReg: {
2375      unsigned RecNo = MatcherTable[MatcherIndex++];
2376      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2377      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2378
2379      if (InputChain.getNode() == 0)
2380        InputChain = CurDAG->getEntryNode();
2381
2382      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2383                                        DestPhysReg, RecordedNodes[RecNo],
2384                                        InputFlag);
2385
2386      InputFlag = InputChain.getValue(1);
2387      continue;
2388    }
2389
2390    case OPC_EmitNodeXForm: {
2391      unsigned XFormNo = MatcherTable[MatcherIndex++];
2392      unsigned RecNo = MatcherTable[MatcherIndex++];
2393      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2394      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2395      continue;
2396    }
2397
2398    case OPC_EmitNode:
2399    case OPC_MorphNodeTo: {
2400      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2401      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2402      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2403      // Get the result VT list.
2404      unsigned NumVTs = MatcherTable[MatcherIndex++];
2405      SmallVector<EVT, 4> VTs;
2406      for (unsigned i = 0; i != NumVTs; ++i) {
2407        MVT::SimpleValueType VT =
2408          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2409        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2410        VTs.push_back(VT);
2411      }
2412
2413      if (EmitNodeInfo & OPFL_Chain)
2414        VTs.push_back(MVT::Other);
2415      if (EmitNodeInfo & OPFL_FlagOutput)
2416        VTs.push_back(MVT::Flag);
2417
2418      // This is hot code, so optimize the two most common cases of 1 and 2
2419      // results.
2420      SDVTList VTList;
2421      if (VTs.size() == 1)
2422        VTList = CurDAG->getVTList(VTs[0]);
2423      else if (VTs.size() == 2)
2424        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2425      else
2426        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2427
2428      // Get the operand list.
2429      unsigned NumOps = MatcherTable[MatcherIndex++];
2430      SmallVector<SDValue, 8> Ops;
2431      for (unsigned i = 0; i != NumOps; ++i) {
2432        unsigned RecNo = MatcherTable[MatcherIndex++];
2433        if (RecNo & 128)
2434          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2435
2436        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2437        Ops.push_back(RecordedNodes[RecNo]);
2438      }
2439
2440      // If there are variadic operands to add, handle them now.
2441      if (EmitNodeInfo & OPFL_VariadicInfo) {
2442        // Determine the start index to copy from.
2443        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2444        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2445        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2446               "Invalid variadic node");
2447        // Copy all of the variadic operands, not including a potential flag
2448        // input.
2449        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2450             i != e; ++i) {
2451          SDValue V = NodeToMatch->getOperand(i);
2452          if (V.getValueType() == MVT::Flag) break;
2453          Ops.push_back(V);
2454        }
2455      }
2456
2457      // If this has chain/flag inputs, add them.
2458      if (EmitNodeInfo & OPFL_Chain)
2459        Ops.push_back(InputChain);
2460      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2461        Ops.push_back(InputFlag);
2462
2463      // Create the node.
2464      SDNode *Res = 0;
2465      if (Opcode != OPC_MorphNodeTo) {
2466        // If this is a normal EmitNode command, just create the new node and
2467        // add the results to the RecordedNodes list.
2468        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2469                                     VTList, Ops.data(), Ops.size());
2470
2471        // Add all the non-flag/non-chain results to the RecordedNodes list.
2472        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2473          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2474          RecordedNodes.push_back(SDValue(Res, i));
2475        }
2476
2477      } else {
2478        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2479                        EmitNodeInfo);
2480      }
2481
2482      // If the node had chain/flag results, update our notion of the current
2483      // chain and flag.
2484      if (EmitNodeInfo & OPFL_FlagOutput) {
2485        InputFlag = SDValue(Res, VTs.size()-1);
2486        if (EmitNodeInfo & OPFL_Chain)
2487          InputChain = SDValue(Res, VTs.size()-2);
2488      } else if (EmitNodeInfo & OPFL_Chain)
2489        InputChain = SDValue(Res, VTs.size()-1);
2490
2491      // If the OPFL_MemRefs flag is set on this node, slap all of the
2492      // accumulated memrefs onto it.
2493      //
2494      // FIXME: This is vastly incorrect for patterns with multiple outputs
2495      // instructions that access memory and for ComplexPatterns that match
2496      // loads.
2497      if (EmitNodeInfo & OPFL_MemRefs) {
2498        MachineSDNode::mmo_iterator MemRefs =
2499          MF->allocateMemRefsArray(MatchedMemRefs.size());
2500        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2501        cast<MachineSDNode>(Res)
2502          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2503      }
2504
2505      DEBUG(errs() << "  "
2506                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2507                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2508
2509      // If this was a MorphNodeTo then we're completely done!
2510      if (Opcode == OPC_MorphNodeTo) {
2511        // Update chain and flag uses.
2512        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2513                             InputFlag, FlagResultNodesMatched, true);
2514        return Res;
2515      }
2516
2517      continue;
2518    }
2519
2520    case OPC_MarkFlagResults: {
2521      unsigned NumNodes = MatcherTable[MatcherIndex++];
2522
2523      // Read and remember all the flag-result nodes.
2524      for (unsigned i = 0; i != NumNodes; ++i) {
2525        unsigned RecNo = MatcherTable[MatcherIndex++];
2526        if (RecNo & 128)
2527          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2528
2529        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2530        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2531      }
2532      continue;
2533    }
2534
2535    case OPC_CompleteMatch: {
2536      // The match has been completed, and any new nodes (if any) have been
2537      // created.  Patch up references to the matched dag to use the newly
2538      // created nodes.
2539      unsigned NumResults = MatcherTable[MatcherIndex++];
2540
2541      for (unsigned i = 0; i != NumResults; ++i) {
2542        unsigned ResSlot = MatcherTable[MatcherIndex++];
2543        if (ResSlot & 128)
2544          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2545
2546        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2547        SDValue Res = RecordedNodes[ResSlot];
2548
2549        assert(i < NodeToMatch->getNumValues() &&
2550               NodeToMatch->getValueType(i) != MVT::Other &&
2551               NodeToMatch->getValueType(i) != MVT::Flag &&
2552               "Invalid number of results to complete!");
2553        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2554                NodeToMatch->getValueType(i) == MVT::iPTR ||
2555                Res.getValueType() == MVT::iPTR ||
2556                NodeToMatch->getValueType(i).getSizeInBits() ==
2557                    Res.getValueType().getSizeInBits()) &&
2558               "invalid replacement");
2559        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2560      }
2561
2562      // If the root node defines a flag, add it to the flag nodes to update
2563      // list.
2564      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2565        FlagResultNodesMatched.push_back(NodeToMatch);
2566
2567      // Update chain and flag uses.
2568      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2569                           InputFlag, FlagResultNodesMatched, false);
2570
2571      assert(NodeToMatch->use_empty() &&
2572             "Didn't replace all uses of the node?");
2573
2574      // FIXME: We just return here, which interacts correctly with SelectRoot
2575      // above.  We should fix this to not return an SDNode* anymore.
2576      return 0;
2577    }
2578    }
2579
2580    // If the code reached this point, then the match failed.  See if there is
2581    // another child to try in the current 'Scope', otherwise pop it until we
2582    // find a case to check.
2583    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2584    ++NumDAGIselRetries;
2585    while (1) {
2586      if (MatchScopes.empty()) {
2587        CannotYetSelect(NodeToMatch);
2588        return 0;
2589      }
2590
2591      // Restore the interpreter state back to the point where the scope was
2592      // formed.
2593      MatchScope &LastScope = MatchScopes.back();
2594      RecordedNodes.resize(LastScope.NumRecordedNodes);
2595      NodeStack.clear();
2596      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2597      N = NodeStack.back();
2598
2599      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2600        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2601      MatcherIndex = LastScope.FailIndex;
2602
2603      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2604
2605      InputChain = LastScope.InputChain;
2606      InputFlag = LastScope.InputFlag;
2607      if (!LastScope.HasChainNodesMatched)
2608        ChainNodesMatched.clear();
2609      if (!LastScope.HasFlagResultNodesMatched)
2610        FlagResultNodesMatched.clear();
2611
2612      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2613      // we have reached the end of this scope, otherwise we have another child
2614      // in the current scope to try.
2615      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2616      if (NumToSkip & 128)
2617        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2618
2619      // If we have another child in this scope to match, update FailIndex and
2620      // try it.
2621      if (NumToSkip != 0) {
2622        LastScope.FailIndex = MatcherIndex+NumToSkip;
2623        break;
2624      }
2625
2626      // End of this scope, pop it and try the next child in the containing
2627      // scope.
2628      MatchScopes.pop_back();
2629    }
2630  }
2631}
2632
2633
2634
2635void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2636  std::string msg;
2637  raw_string_ostream Msg(msg);
2638  Msg << "Cannot yet select: ";
2639
2640  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2641      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2642      N->getOpcode() != ISD::INTRINSIC_VOID) {
2643    N->printrFull(Msg, CurDAG);
2644  } else {
2645    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2646    unsigned iid =
2647      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2648    if (iid < Intrinsic::num_intrinsics)
2649      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2650    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2651      Msg << "target intrinsic %" << TII->getName(iid);
2652    else
2653      Msg << "unknown intrinsic #" << iid;
2654  }
2655  report_fatal_error(Msg.str());
2656}
2657
2658char SelectionDAGISel::ID = 0;
2659