LegalizeVectorOps.cpp revision 360660
1//===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the SelectionDAG::LegalizeVectors method.
10//
11// The vector legalizer looks for vector operations which might need to be
12// scalarized and legalizes them. This is a separate step from Legalize because
13// scalarizing can introduce illegal types.  For example, suppose we have an
14// ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
15// on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16// operation, which introduces nodes with the illegal type i64 which must be
17// expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18// the operation must be unrolled, which introduces nodes with the illegal
19// type i8 which must be promoted.
20//
21// This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22// or operations that happen to take a vector which are custom-lowered;
23// the legalization for such operations never produces nodes
24// with illegal types, so it's okay to put off legalizing them until
25// SelectionDAG::Legalize runs.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/ADT/APInt.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/CodeGen/ISDOpcodes.h"
33#include "llvm/CodeGen/MachineMemOperand.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/CodeGen/SelectionDAGNodes.h"
36#include "llvm/CodeGen/TargetLowering.h"
37#include "llvm/CodeGen/ValueTypes.h"
38#include "llvm/IR/DataLayout.h"
39#include "llvm/Support/Casting.h"
40#include "llvm/Support/Compiler.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/MachineValueType.h"
43#include "llvm/Support/MathExtras.h"
44#include <cassert>
45#include <cstdint>
46#include <iterator>
47#include <utility>
48
49using namespace llvm;
50
51#define DEBUG_TYPE "legalizevectorops"
52
53namespace {
54
55class VectorLegalizer {
56  SelectionDAG& DAG;
57  const TargetLowering &TLI;
58  bool Changed = false; // Keep track of whether anything changed
59
60  /// For nodes that are of legal width, and that have more than one use, this
61  /// map indicates what regularized operand to use.  This allows us to avoid
62  /// legalizing the same thing more than once.
63  SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
64
65  /// Adds a node to the translation cache.
66  void AddLegalizedOperand(SDValue From, SDValue To) {
67    LegalizedNodes.insert(std::make_pair(From, To));
68    // If someone requests legalization of the new node, return itself.
69    if (From != To)
70      LegalizedNodes.insert(std::make_pair(To, To));
71  }
72
73  /// Legalizes the given node.
74  SDValue LegalizeOp(SDValue Op);
75
76  /// Assuming the node is legal, "legalize" the results.
77  SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
78
79  /// Implements unrolling a VSETCC.
80  SDValue UnrollVSETCC(SDValue Op);
81
82  /// Implement expand-based legalization of vector operations.
83  ///
84  /// This is just a high-level routine to dispatch to specific code paths for
85  /// operations to legalize them.
86  SDValue Expand(SDValue Op);
87
88  /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
89  /// FP_TO_SINT isn't legal.
90  SDValue ExpandFP_TO_UINT(SDValue Op);
91
92  /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
93  /// SINT_TO_FLOAT and SHR on vectors isn't legal.
94  SDValue ExpandUINT_TO_FLOAT(SDValue Op);
95
96  /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
97  SDValue ExpandSEXTINREG(SDValue Op);
98
99  /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
100  ///
101  /// Shuffles the low lanes of the operand into place and bitcasts to the proper
102  /// type. The contents of the bits in the extended part of each element are
103  /// undef.
104  SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
105
106  /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
107  ///
108  /// Shuffles the low lanes of the operand into place, bitcasts to the proper
109  /// type, then shifts left and arithmetic shifts right to introduce a sign
110  /// extension.
111  SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
112
113  /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
114  ///
115  /// Shuffles the low lanes of the operand into place and blends zeros into
116  /// the remaining lanes, finally bitcasting to the proper type.
117  SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
118
119  /// Implement expand-based legalization of ABS vector operations.
120  /// If following expanding is legal/custom then do it:
121  /// (ABS x) --> (XOR (ADD x, (SRA x, sizeof(x)-1)), (SRA x, sizeof(x)-1))
122  /// else unroll the operation.
123  SDValue ExpandABS(SDValue Op);
124
125  /// Expand bswap of vectors into a shuffle if legal.
126  SDValue ExpandBSWAP(SDValue Op);
127
128  /// Implement vselect in terms of XOR, AND, OR when blend is not
129  /// supported by the target.
130  SDValue ExpandVSELECT(SDValue Op);
131  SDValue ExpandSELECT(SDValue Op);
132  SDValue ExpandLoad(SDValue Op);
133  SDValue ExpandStore(SDValue Op);
134  SDValue ExpandFNEG(SDValue Op);
135  SDValue ExpandFSUB(SDValue Op);
136  SDValue ExpandBITREVERSE(SDValue Op);
137  SDValue ExpandCTPOP(SDValue Op);
138  SDValue ExpandCTLZ(SDValue Op);
139  SDValue ExpandCTTZ(SDValue Op);
140  SDValue ExpandFunnelShift(SDValue Op);
141  SDValue ExpandROT(SDValue Op);
142  SDValue ExpandFMINNUM_FMAXNUM(SDValue Op);
143  SDValue ExpandUADDSUBO(SDValue Op);
144  SDValue ExpandSADDSUBO(SDValue Op);
145  SDValue ExpandMULO(SDValue Op);
146  SDValue ExpandAddSubSat(SDValue Op);
147  SDValue ExpandFixedPointMul(SDValue Op);
148  SDValue ExpandStrictFPOp(SDValue Op);
149
150  /// Implements vector promotion.
151  ///
152  /// This is essentially just bitcasting the operands to a different type and
153  /// bitcasting the result back to the original type.
154  SDValue Promote(SDValue Op);
155
156  /// Implements [SU]INT_TO_FP vector promotion.
157  ///
158  /// This is a [zs]ext of the input operand to a larger integer type.
159  SDValue PromoteINT_TO_FP(SDValue Op);
160
161  /// Implements FP_TO_[SU]INT vector promotion of the result type.
162  ///
163  /// It is promoted to a larger integer type.  The result is then
164  /// truncated back to the original type.
165  SDValue PromoteFP_TO_INT(SDValue Op);
166
167public:
168  VectorLegalizer(SelectionDAG& dag) :
169      DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
170
171  /// Begin legalizer the vector operations in the DAG.
172  bool Run();
173};
174
175} // end anonymous namespace
176
177bool VectorLegalizer::Run() {
178  // Before we start legalizing vector nodes, check if there are any vectors.
179  bool HasVectors = false;
180  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
181       E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
182    // Check if the values of the nodes contain vectors. We don't need to check
183    // the operands because we are going to check their values at some point.
184    for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
185         J != E; ++J)
186      HasVectors |= J->isVector();
187
188    // If we found a vector node we can start the legalization.
189    if (HasVectors)
190      break;
191  }
192
193  // If this basic block has no vectors then no need to legalize vectors.
194  if (!HasVectors)
195    return false;
196
197  // The legalize process is inherently a bottom-up recursive process (users
198  // legalize their uses before themselves).  Given infinite stack space, we
199  // could just start legalizing on the root and traverse the whole graph.  In
200  // practice however, this causes us to run out of stack space on large basic
201  // blocks.  To avoid this problem, compute an ordering of the nodes where each
202  // node is only legalized after all of its operands are legalized.
203  DAG.AssignTopologicalOrder();
204  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
205       E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
206    LegalizeOp(SDValue(&*I, 0));
207
208  // Finally, it's possible the root changed.  Get the new root.
209  SDValue OldRoot = DAG.getRoot();
210  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
211  DAG.setRoot(LegalizedNodes[OldRoot]);
212
213  LegalizedNodes.clear();
214
215  // Remove dead nodes now.
216  DAG.RemoveDeadNodes();
217
218  return Changed;
219}
220
221SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
222  // Generic legalization: just pass the operand through.
223  for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
224    AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
225  return Result.getValue(Op.getResNo());
226}
227
228SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
229  // Note that LegalizeOp may be reentered even from single-use nodes, which
230  // means that we always must cache transformed nodes.
231  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
232  if (I != LegalizedNodes.end()) return I->second;
233
234  SDNode* Node = Op.getNode();
235
236  // Legalize the operands
237  SmallVector<SDValue, 8> Ops;
238  for (const SDValue &Op : Node->op_values())
239    Ops.push_back(LegalizeOp(Op));
240
241  SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops),
242                           Op.getResNo());
243
244  if (Op.getOpcode() == ISD::LOAD) {
245    LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
246    ISD::LoadExtType ExtType = LD->getExtensionType();
247    if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
248      LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
249                 Node->dump(&DAG));
250      switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
251                                   LD->getMemoryVT())) {
252      default: llvm_unreachable("This action is not supported yet!");
253      case TargetLowering::Legal:
254        return TranslateLegalizeResults(Op, Result);
255      case TargetLowering::Custom:
256        if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
257          assert(Lowered->getNumValues() == Op->getNumValues() &&
258                 "Unexpected number of results");
259          if (Lowered != Result) {
260            // Make sure the new code is also legal.
261            Lowered = LegalizeOp(Lowered);
262            Changed = true;
263          }
264          return TranslateLegalizeResults(Op, Lowered);
265        }
266        LLVM_FALLTHROUGH;
267      case TargetLowering::Expand:
268        Changed = true;
269        return ExpandLoad(Op);
270      }
271    }
272  } else if (Op.getOpcode() == ISD::STORE) {
273    StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
274    EVT StVT = ST->getMemoryVT();
275    MVT ValVT = ST->getValue().getSimpleValueType();
276    if (StVT.isVector() && ST->isTruncatingStore()) {
277      LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
278                 Node->dump(&DAG));
279      switch (TLI.getTruncStoreAction(ValVT, StVT)) {
280      default: llvm_unreachable("This action is not supported yet!");
281      case TargetLowering::Legal:
282        return TranslateLegalizeResults(Op, Result);
283      case TargetLowering::Custom: {
284        SDValue Lowered = TLI.LowerOperation(Result, DAG);
285        if (Lowered != Result) {
286          // Make sure the new code is also legal.
287          Lowered = LegalizeOp(Lowered);
288          Changed = true;
289        }
290        return TranslateLegalizeResults(Op, Lowered);
291      }
292      case TargetLowering::Expand:
293        Changed = true;
294        return ExpandStore(Op);
295      }
296    }
297  }
298
299  bool HasVectorValueOrOp = false;
300  for (auto J = Node->value_begin(), E = Node->value_end(); J != E; ++J)
301    HasVectorValueOrOp |= J->isVector();
302  for (const SDValue &Op : Node->op_values())
303    HasVectorValueOrOp |= Op.getValueType().isVector();
304
305  if (!HasVectorValueOrOp)
306    return TranslateLegalizeResults(Op, Result);
307
308  TargetLowering::LegalizeAction Action = TargetLowering::Legal;
309  switch (Op.getOpcode()) {
310  default:
311    return TranslateLegalizeResults(Op, Result);
312  case ISD::STRICT_FADD:
313  case ISD::STRICT_FSUB:
314  case ISD::STRICT_FMUL:
315  case ISD::STRICT_FDIV:
316  case ISD::STRICT_FREM:
317  case ISD::STRICT_FSQRT:
318  case ISD::STRICT_FMA:
319  case ISD::STRICT_FPOW:
320  case ISD::STRICT_FPOWI:
321  case ISD::STRICT_FSIN:
322  case ISD::STRICT_FCOS:
323  case ISD::STRICT_FEXP:
324  case ISD::STRICT_FEXP2:
325  case ISD::STRICT_FLOG:
326  case ISD::STRICT_FLOG10:
327  case ISD::STRICT_FLOG2:
328  case ISD::STRICT_FRINT:
329  case ISD::STRICT_FNEARBYINT:
330  case ISD::STRICT_FMAXNUM:
331  case ISD::STRICT_FMINNUM:
332  case ISD::STRICT_FCEIL:
333  case ISD::STRICT_FFLOOR:
334  case ISD::STRICT_FROUND:
335  case ISD::STRICT_FTRUNC:
336  case ISD::STRICT_FP_ROUND:
337  case ISD::STRICT_FP_EXTEND:
338    // These pseudo-ops get legalized as if they were their non-strict
339    // equivalent.  For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT
340    // is also legal, but if ISD::FSQRT requires expansion then so does
341    // ISD::STRICT_FSQRT.
342    Action = TLI.getStrictFPOperationAction(Node->getOpcode(),
343                                            Node->getValueType(0));
344    break;
345  case ISD::ADD:
346  case ISD::SUB:
347  case ISD::MUL:
348  case ISD::MULHS:
349  case ISD::MULHU:
350  case ISD::SDIV:
351  case ISD::UDIV:
352  case ISD::SREM:
353  case ISD::UREM:
354  case ISD::SDIVREM:
355  case ISD::UDIVREM:
356  case ISD::FADD:
357  case ISD::FSUB:
358  case ISD::FMUL:
359  case ISD::FDIV:
360  case ISD::FREM:
361  case ISD::AND:
362  case ISD::OR:
363  case ISD::XOR:
364  case ISD::SHL:
365  case ISD::SRA:
366  case ISD::SRL:
367  case ISD::FSHL:
368  case ISD::FSHR:
369  case ISD::ROTL:
370  case ISD::ROTR:
371  case ISD::ABS:
372  case ISD::BSWAP:
373  case ISD::BITREVERSE:
374  case ISD::CTLZ:
375  case ISD::CTTZ:
376  case ISD::CTLZ_ZERO_UNDEF:
377  case ISD::CTTZ_ZERO_UNDEF:
378  case ISD::CTPOP:
379  case ISD::SELECT:
380  case ISD::VSELECT:
381  case ISD::SELECT_CC:
382  case ISD::SETCC:
383  case ISD::ZERO_EXTEND:
384  case ISD::ANY_EXTEND:
385  case ISD::TRUNCATE:
386  case ISD::SIGN_EXTEND:
387  case ISD::FP_TO_SINT:
388  case ISD::FP_TO_UINT:
389  case ISD::FNEG:
390  case ISD::FABS:
391  case ISD::FMINNUM:
392  case ISD::FMAXNUM:
393  case ISD::FMINNUM_IEEE:
394  case ISD::FMAXNUM_IEEE:
395  case ISD::FMINIMUM:
396  case ISD::FMAXIMUM:
397  case ISD::FCOPYSIGN:
398  case ISD::FSQRT:
399  case ISD::FSIN:
400  case ISD::FCOS:
401  case ISD::FPOWI:
402  case ISD::FPOW:
403  case ISD::FLOG:
404  case ISD::FLOG2:
405  case ISD::FLOG10:
406  case ISD::FEXP:
407  case ISD::FEXP2:
408  case ISD::FCEIL:
409  case ISD::FTRUNC:
410  case ISD::FRINT:
411  case ISD::FNEARBYINT:
412  case ISD::FROUND:
413  case ISD::FFLOOR:
414  case ISD::FP_ROUND:
415  case ISD::FP_EXTEND:
416  case ISD::FMA:
417  case ISD::SIGN_EXTEND_INREG:
418  case ISD::ANY_EXTEND_VECTOR_INREG:
419  case ISD::SIGN_EXTEND_VECTOR_INREG:
420  case ISD::ZERO_EXTEND_VECTOR_INREG:
421  case ISD::SMIN:
422  case ISD::SMAX:
423  case ISD::UMIN:
424  case ISD::UMAX:
425  case ISD::SMUL_LOHI:
426  case ISD::UMUL_LOHI:
427  case ISD::SADDO:
428  case ISD::UADDO:
429  case ISD::SSUBO:
430  case ISD::USUBO:
431  case ISD::SMULO:
432  case ISD::UMULO:
433  case ISD::FCANONICALIZE:
434  case ISD::SADDSAT:
435  case ISD::UADDSAT:
436  case ISD::SSUBSAT:
437  case ISD::USUBSAT:
438    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
439    break;
440  case ISD::SMULFIX:
441  case ISD::SMULFIXSAT:
442  case ISD::UMULFIX: {
443    unsigned Scale = Node->getConstantOperandVal(2);
444    Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
445                                              Node->getValueType(0), Scale);
446    break;
447  }
448  case ISD::FP_ROUND_INREG:
449    Action = TLI.getOperationAction(Node->getOpcode(),
450               cast<VTSDNode>(Node->getOperand(1))->getVT());
451    break;
452  case ISD::SINT_TO_FP:
453  case ISD::UINT_TO_FP:
454  case ISD::VECREDUCE_ADD:
455  case ISD::VECREDUCE_MUL:
456  case ISD::VECREDUCE_AND:
457  case ISD::VECREDUCE_OR:
458  case ISD::VECREDUCE_XOR:
459  case ISD::VECREDUCE_SMAX:
460  case ISD::VECREDUCE_SMIN:
461  case ISD::VECREDUCE_UMAX:
462  case ISD::VECREDUCE_UMIN:
463  case ISD::VECREDUCE_FADD:
464  case ISD::VECREDUCE_FMUL:
465  case ISD::VECREDUCE_FMAX:
466  case ISD::VECREDUCE_FMIN:
467    Action = TLI.getOperationAction(Node->getOpcode(),
468                                    Node->getOperand(0).getValueType());
469    break;
470  }
471
472  LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
473
474  switch (Action) {
475  default: llvm_unreachable("This action is not supported yet!");
476  case TargetLowering::Promote:
477    Result = Promote(Op);
478    Changed = true;
479    break;
480  case TargetLowering::Legal:
481    LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
482    break;
483  case TargetLowering::Custom: {
484    LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
485    if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) {
486      LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
487      Result = Tmp1;
488      break;
489    }
490    LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
491    LLVM_FALLTHROUGH;
492  }
493  case TargetLowering::Expand:
494    Result = Expand(Op);
495  }
496
497  // Make sure that the generated code is itself legal.
498  if (Result != Op) {
499    Result = LegalizeOp(Result);
500    Changed = true;
501  }
502
503  // Note that LegalizeOp may be reentered even from single-use nodes, which
504  // means that we always must cache transformed nodes.
505  AddLegalizedOperand(Op, Result);
506  return Result;
507}
508
509SDValue VectorLegalizer::Promote(SDValue Op) {
510  // For a few operations there is a specific concept for promotion based on
511  // the operand's type.
512  switch (Op.getOpcode()) {
513  case ISD::SINT_TO_FP:
514  case ISD::UINT_TO_FP:
515    // "Promote" the operation by extending the operand.
516    return PromoteINT_TO_FP(Op);
517  case ISD::FP_TO_UINT:
518  case ISD::FP_TO_SINT:
519    // Promote the operation by extending the operand.
520    return PromoteFP_TO_INT(Op);
521  }
522
523  // There are currently two cases of vector promotion:
524  // 1) Bitcasting a vector of integers to a different type to a vector of the
525  //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
526  // 2) Extending a vector of floats to a vector of the same number of larger
527  //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
528  MVT VT = Op.getSimpleValueType();
529  assert(Op.getNode()->getNumValues() == 1 &&
530         "Can't promote a vector with multiple results!");
531  MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
532  SDLoc dl(Op);
533  SmallVector<SDValue, 4> Operands(Op.getNumOperands());
534
535  for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
536    if (Op.getOperand(j).getValueType().isVector())
537      if (Op.getOperand(j)
538              .getValueType()
539              .getVectorElementType()
540              .isFloatingPoint() &&
541          NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
542        Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
543      else
544        Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
545    else
546      Operands[j] = Op.getOperand(j);
547  }
548
549  Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
550  if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
551      (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
552       NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
553    return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
554  else
555    return DAG.getNode(ISD::BITCAST, dl, VT, Op);
556}
557
558SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
559  // INT_TO_FP operations may require the input operand be promoted even
560  // when the type is otherwise legal.
561  MVT VT = Op.getOperand(0).getSimpleValueType();
562  MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
563  assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
564         "Vectors have different number of elements!");
565
566  SDLoc dl(Op);
567  SmallVector<SDValue, 4> Operands(Op.getNumOperands());
568
569  unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
570    ISD::SIGN_EXTEND;
571  for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
572    if (Op.getOperand(j).getValueType().isVector())
573      Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
574    else
575      Operands[j] = Op.getOperand(j);
576  }
577
578  return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
579}
580
581// For FP_TO_INT we promote the result type to a vector type with wider
582// elements and then truncate the result.  This is different from the default
583// PromoteVector which uses bitcast to promote thus assumning that the
584// promoted vector type has the same overall size.
585SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) {
586  MVT VT = Op.getSimpleValueType();
587  MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
588  assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
589         "Vectors have different number of elements!");
590
591  unsigned NewOpc = Op->getOpcode();
592  // Change FP_TO_UINT to FP_TO_SINT if possible.
593  // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
594  if (NewOpc == ISD::FP_TO_UINT &&
595      TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
596    NewOpc = ISD::FP_TO_SINT;
597
598  SDLoc dl(Op);
599  SDValue Promoted  = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0));
600
601  // Assert that the converted value fits in the original type.  If it doesn't
602  // (eg: because the value being converted is too big), then the result of the
603  // original operation was undefined anyway, so the assert is still correct.
604  Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext
605                                                            : ISD::AssertSext,
606                         dl, NVT, Promoted,
607                         DAG.getValueType(VT.getScalarType()));
608  return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
609}
610
611SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
612  LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
613
614  EVT SrcVT = LD->getMemoryVT();
615  EVT SrcEltVT = SrcVT.getScalarType();
616  unsigned NumElem = SrcVT.getVectorNumElements();
617
618  SDValue NewChain;
619  SDValue Value;
620  if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
621    SDLoc dl(Op);
622
623    SmallVector<SDValue, 8> Vals;
624    SmallVector<SDValue, 8> LoadChains;
625
626    EVT DstEltVT = LD->getValueType(0).getScalarType();
627    SDValue Chain = LD->getChain();
628    SDValue BasePTR = LD->getBasePtr();
629    ISD::LoadExtType ExtType = LD->getExtensionType();
630
631    // When elements in a vector is not byte-addressable, we cannot directly
632    // load each element by advancing pointer, which could only address bytes.
633    // Instead, we load all significant words, mask bits off, and concatenate
634    // them to form each element. Finally, they are extended to destination
635    // scalar type to build the destination vector.
636    EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
637
638    assert(WideVT.isRound() &&
639           "Could not handle the sophisticated case when the widest integer is"
640           " not power of 2.");
641    assert(WideVT.bitsGE(SrcEltVT) &&
642           "Type is not legalized?");
643
644    unsigned WideBytes = WideVT.getStoreSize();
645    unsigned Offset = 0;
646    unsigned RemainingBytes = SrcVT.getStoreSize();
647    SmallVector<SDValue, 8> LoadVals;
648    while (RemainingBytes > 0) {
649      SDValue ScalarLoad;
650      unsigned LoadBytes = WideBytes;
651
652      if (RemainingBytes >= LoadBytes) {
653        ScalarLoad =
654            DAG.getLoad(WideVT, dl, Chain, BasePTR,
655                        LD->getPointerInfo().getWithOffset(Offset),
656                        MinAlign(LD->getAlignment(), Offset),
657                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
658      } else {
659        EVT LoadVT = WideVT;
660        while (RemainingBytes < LoadBytes) {
661          LoadBytes >>= 1; // Reduce the load size by half.
662          LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
663        }
664        ScalarLoad =
665            DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
666                           LD->getPointerInfo().getWithOffset(Offset), LoadVT,
667                           MinAlign(LD->getAlignment(), Offset),
668                           LD->getMemOperand()->getFlags(), LD->getAAInfo());
669      }
670
671      RemainingBytes -= LoadBytes;
672      Offset += LoadBytes;
673
674      BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes);
675
676      LoadVals.push_back(ScalarLoad.getValue(0));
677      LoadChains.push_back(ScalarLoad.getValue(1));
678    }
679
680    unsigned BitOffset = 0;
681    unsigned WideIdx = 0;
682    unsigned WideBits = WideVT.getSizeInBits();
683
684    // Extract bits, pack and extend/trunc them into destination type.
685    unsigned SrcEltBits = SrcEltVT.getSizeInBits();
686    SDValue SrcEltBitMask = DAG.getConstant(
687        APInt::getLowBitsSet(WideBits, SrcEltBits), dl, WideVT);
688
689    for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
690      assert(BitOffset < WideBits && "Unexpected offset!");
691
692      SDValue ShAmt = DAG.getConstant(
693          BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
694      SDValue Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
695
696      BitOffset += SrcEltBits;
697      if (BitOffset >= WideBits) {
698        WideIdx++;
699        BitOffset -= WideBits;
700        if (BitOffset > 0) {
701          ShAmt = DAG.getConstant(
702              SrcEltBits - BitOffset, dl,
703              TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
704          SDValue Hi =
705              DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
706          Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
707        }
708      }
709
710      Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
711
712      switch (ExtType) {
713      default: llvm_unreachable("Unknown extended-load op!");
714      case ISD::EXTLOAD:
715        Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
716        break;
717      case ISD::ZEXTLOAD:
718        Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
719        break;
720      case ISD::SEXTLOAD:
721        ShAmt =
722            DAG.getConstant(WideBits - SrcEltBits, dl,
723                            TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
724        Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
725        Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
726        Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
727        break;
728      }
729      Vals.push_back(Lo);
730    }
731
732    NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
733    Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals);
734  } else {
735    SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG);
736    // Skip past MERGE_VALUE node if known.
737    if (Scalarized->getOpcode() == ISD::MERGE_VALUES) {
738      NewChain = Scalarized.getOperand(1);
739      Value = Scalarized.getOperand(0);
740    } else {
741      NewChain = Scalarized.getValue(1);
742      Value = Scalarized.getValue(0);
743    }
744  }
745
746  AddLegalizedOperand(Op.getValue(0), Value);
747  AddLegalizedOperand(Op.getValue(1), NewChain);
748
749  return (Op.getResNo() ? NewChain : Value);
750}
751
752SDValue VectorLegalizer::ExpandStore(SDValue Op) {
753  StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
754  SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
755  AddLegalizedOperand(Op, TF);
756  return TF;
757}
758
759SDValue VectorLegalizer::Expand(SDValue Op) {
760  switch (Op->getOpcode()) {
761  case ISD::SIGN_EXTEND_INREG:
762    return ExpandSEXTINREG(Op);
763  case ISD::ANY_EXTEND_VECTOR_INREG:
764    return ExpandANY_EXTEND_VECTOR_INREG(Op);
765  case ISD::SIGN_EXTEND_VECTOR_INREG:
766    return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
767  case ISD::ZERO_EXTEND_VECTOR_INREG:
768    return ExpandZERO_EXTEND_VECTOR_INREG(Op);
769  case ISD::BSWAP:
770    return ExpandBSWAP(Op);
771  case ISD::VSELECT:
772    return ExpandVSELECT(Op);
773  case ISD::SELECT:
774    return ExpandSELECT(Op);
775  case ISD::FP_TO_UINT:
776    return ExpandFP_TO_UINT(Op);
777  case ISD::UINT_TO_FP:
778    return ExpandUINT_TO_FLOAT(Op);
779  case ISD::FNEG:
780    return ExpandFNEG(Op);
781  case ISD::FSUB:
782    return ExpandFSUB(Op);
783  case ISD::SETCC:
784    return UnrollVSETCC(Op);
785  case ISD::ABS:
786    return ExpandABS(Op);
787  case ISD::BITREVERSE:
788    return ExpandBITREVERSE(Op);
789  case ISD::CTPOP:
790    return ExpandCTPOP(Op);
791  case ISD::CTLZ:
792  case ISD::CTLZ_ZERO_UNDEF:
793    return ExpandCTLZ(Op);
794  case ISD::CTTZ:
795  case ISD::CTTZ_ZERO_UNDEF:
796    return ExpandCTTZ(Op);
797  case ISD::FSHL:
798  case ISD::FSHR:
799    return ExpandFunnelShift(Op);
800  case ISD::ROTL:
801  case ISD::ROTR:
802    return ExpandROT(Op);
803  case ISD::FMINNUM:
804  case ISD::FMAXNUM:
805    return ExpandFMINNUM_FMAXNUM(Op);
806  case ISD::UADDO:
807  case ISD::USUBO:
808    return ExpandUADDSUBO(Op);
809  case ISD::SADDO:
810  case ISD::SSUBO:
811    return ExpandSADDSUBO(Op);
812  case ISD::UMULO:
813  case ISD::SMULO:
814    return ExpandMULO(Op);
815  case ISD::USUBSAT:
816  case ISD::SSUBSAT:
817  case ISD::UADDSAT:
818  case ISD::SADDSAT:
819    return ExpandAddSubSat(Op);
820  case ISD::SMULFIX:
821  case ISD::UMULFIX:
822    return ExpandFixedPointMul(Op);
823  case ISD::STRICT_FADD:
824  case ISD::STRICT_FSUB:
825  case ISD::STRICT_FMUL:
826  case ISD::STRICT_FDIV:
827  case ISD::STRICT_FREM:
828  case ISD::STRICT_FSQRT:
829  case ISD::STRICT_FMA:
830  case ISD::STRICT_FPOW:
831  case ISD::STRICT_FPOWI:
832  case ISD::STRICT_FSIN:
833  case ISD::STRICT_FCOS:
834  case ISD::STRICT_FEXP:
835  case ISD::STRICT_FEXP2:
836  case ISD::STRICT_FLOG:
837  case ISD::STRICT_FLOG10:
838  case ISD::STRICT_FLOG2:
839  case ISD::STRICT_FRINT:
840  case ISD::STRICT_FNEARBYINT:
841  case ISD::STRICT_FMAXNUM:
842  case ISD::STRICT_FMINNUM:
843  case ISD::STRICT_FCEIL:
844  case ISD::STRICT_FFLOOR:
845  case ISD::STRICT_FROUND:
846  case ISD::STRICT_FTRUNC:
847    return ExpandStrictFPOp(Op);
848  case ISD::VECREDUCE_ADD:
849  case ISD::VECREDUCE_MUL:
850  case ISD::VECREDUCE_AND:
851  case ISD::VECREDUCE_OR:
852  case ISD::VECREDUCE_XOR:
853  case ISD::VECREDUCE_SMAX:
854  case ISD::VECREDUCE_SMIN:
855  case ISD::VECREDUCE_UMAX:
856  case ISD::VECREDUCE_UMIN:
857  case ISD::VECREDUCE_FADD:
858  case ISD::VECREDUCE_FMUL:
859  case ISD::VECREDUCE_FMAX:
860  case ISD::VECREDUCE_FMIN:
861    return TLI.expandVecReduce(Op.getNode(), DAG);
862  default:
863    return DAG.UnrollVectorOp(Op.getNode());
864  }
865}
866
867SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
868  // Lower a select instruction where the condition is a scalar and the
869  // operands are vectors. Lower this select to VSELECT and implement it
870  // using XOR AND OR. The selector bit is broadcasted.
871  EVT VT = Op.getValueType();
872  SDLoc DL(Op);
873
874  SDValue Mask = Op.getOperand(0);
875  SDValue Op1 = Op.getOperand(1);
876  SDValue Op2 = Op.getOperand(2);
877
878  assert(VT.isVector() && !Mask.getValueType().isVector()
879         && Op1.getValueType() == Op2.getValueType() && "Invalid type");
880
881  // If we can't even use the basic vector operations of
882  // AND,OR,XOR, we will have to scalarize the op.
883  // Notice that the operation may be 'promoted' which means that it is
884  // 'bitcasted' to another type which is handled.
885  // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
886  if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
887      TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
888      TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
889      TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
890    return DAG.UnrollVectorOp(Op.getNode());
891
892  // Generate a mask operand.
893  EVT MaskTy = VT.changeVectorElementTypeToInteger();
894
895  // What is the size of each element in the vector mask.
896  EVT BitTy = MaskTy.getScalarType();
897
898  Mask = DAG.getSelect(DL, BitTy, Mask,
899          DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
900                          BitTy),
901          DAG.getConstant(0, DL, BitTy));
902
903  // Broadcast the mask so that the entire vector is all-one or all zero.
904  Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
905
906  // Bitcast the operands to be the same type as the mask.
907  // This is needed when we select between FP types because
908  // the mask is a vector of integers.
909  Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
910  Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
911
912  SDValue AllOnes = DAG.getConstant(
913            APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
914  SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
915
916  Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
917  Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
918  SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
919  return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
920}
921
922SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
923  EVT VT = Op.getValueType();
924
925  // Make sure that the SRA and SHL instructions are available.
926  if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
927      TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
928    return DAG.UnrollVectorOp(Op.getNode());
929
930  SDLoc DL(Op);
931  EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
932
933  unsigned BW = VT.getScalarSizeInBits();
934  unsigned OrigBW = OrigTy.getScalarSizeInBits();
935  SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
936
937  Op = Op.getOperand(0);
938  Op =   DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
939  return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
940}
941
942// Generically expand a vector anyext in register to a shuffle of the relevant
943// lanes into the appropriate locations, with other lanes left undef.
944SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
945  SDLoc DL(Op);
946  EVT VT = Op.getValueType();
947  int NumElements = VT.getVectorNumElements();
948  SDValue Src = Op.getOperand(0);
949  EVT SrcVT = Src.getValueType();
950  int NumSrcElements = SrcVT.getVectorNumElements();
951
952  // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
953  // into a larger vector type.
954  if (SrcVT.bitsLE(VT)) {
955    assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
956           "ANY_EXTEND_VECTOR_INREG vector size mismatch");
957    NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
958    SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
959                             NumSrcElements);
960    Src = DAG.getNode(
961        ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src,
962        DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
963  }
964
965  // Build a base mask of undef shuffles.
966  SmallVector<int, 16> ShuffleMask;
967  ShuffleMask.resize(NumSrcElements, -1);
968
969  // Place the extended lanes into the correct locations.
970  int ExtLaneScale = NumSrcElements / NumElements;
971  int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
972  for (int i = 0; i < NumElements; ++i)
973    ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
974
975  return DAG.getNode(
976      ISD::BITCAST, DL, VT,
977      DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
978}
979
980SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
981  SDLoc DL(Op);
982  EVT VT = Op.getValueType();
983  SDValue Src = Op.getOperand(0);
984  EVT SrcVT = Src.getValueType();
985
986  // First build an any-extend node which can be legalized above when we
987  // recurse through it.
988  Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
989
990  // Now we need sign extend. Do this by shifting the elements. Even if these
991  // aren't legal operations, they have a better chance of being legalized
992  // without full scalarization than the sign extension does.
993  unsigned EltWidth = VT.getScalarSizeInBits();
994  unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
995  SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
996  return DAG.getNode(ISD::SRA, DL, VT,
997                     DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
998                     ShiftAmount);
999}
1000
1001// Generically expand a vector zext in register to a shuffle of the relevant
1002// lanes into the appropriate locations, a blend of zero into the high bits,
1003// and a bitcast to the wider element type.
1004SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
1005  SDLoc DL(Op);
1006  EVT VT = Op.getValueType();
1007  int NumElements = VT.getVectorNumElements();
1008  SDValue Src = Op.getOperand(0);
1009  EVT SrcVT = Src.getValueType();
1010  int NumSrcElements = SrcVT.getVectorNumElements();
1011
1012  // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1013  // into a larger vector type.
1014  if (SrcVT.bitsLE(VT)) {
1015    assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1016           "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1017    NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1018    SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1019                             NumSrcElements);
1020    Src = DAG.getNode(
1021        ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src,
1022        DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
1023  }
1024
1025  // Build up a zero vector to blend into this one.
1026  SDValue Zero = DAG.getConstant(0, DL, SrcVT);
1027
1028  // Shuffle the incoming lanes into the correct position, and pull all other
1029  // lanes from the zero vector.
1030  SmallVector<int, 16> ShuffleMask;
1031  ShuffleMask.reserve(NumSrcElements);
1032  for (int i = 0; i < NumSrcElements; ++i)
1033    ShuffleMask.push_back(i);
1034
1035  int ExtLaneScale = NumSrcElements / NumElements;
1036  int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1037  for (int i = 0; i < NumElements; ++i)
1038    ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1039
1040  return DAG.getNode(ISD::BITCAST, DL, VT,
1041                     DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1042}
1043
1044static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1045  int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1046  for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1047    for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1048      ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1049}
1050
1051SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
1052  EVT VT = Op.getValueType();
1053
1054  // Generate a byte wise shuffle mask for the BSWAP.
1055  SmallVector<int, 16> ShuffleMask;
1056  createBSWAPShuffleMask(VT, ShuffleMask);
1057  EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1058
1059  // Only emit a shuffle if the mask is legal.
1060  if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
1061    return DAG.UnrollVectorOp(Op.getNode());
1062
1063  SDLoc DL(Op);
1064  Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
1065  Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1066  return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1067}
1068
1069SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) {
1070  EVT VT = Op.getValueType();
1071
1072  // If we have the scalar operation, it's probably cheaper to unroll it.
1073  if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
1074    return DAG.UnrollVectorOp(Op.getNode());
1075
1076  // If the vector element width is a whole number of bytes, test if its legal
1077  // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1078  // vector. This greatly reduces the number of bit shifts necessary.
1079  unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1080  if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1081    SmallVector<int, 16> BSWAPMask;
1082    createBSWAPShuffleMask(VT, BSWAPMask);
1083
1084    EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1085    if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1086        (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1087         (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1088          TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1089          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1090          TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1091      SDLoc DL(Op);
1092      Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
1093      Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1094                                BSWAPMask);
1095      Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1096      return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1097    }
1098  }
1099
1100  // If we have the appropriate vector bit operations, it is better to use them
1101  // than unrolling and expanding each component.
1102  if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) ||
1103      !TLI.isOperationLegalOrCustom(ISD::SRL, VT) ||
1104      !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
1105      !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1106    return DAG.UnrollVectorOp(Op.getNode());
1107
1108  // Let LegalizeDAG handle this later.
1109  return Op;
1110}
1111
1112SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
1113  // Implement VSELECT in terms of XOR, AND, OR
1114  // on platforms which do not support blend natively.
1115  SDLoc DL(Op);
1116
1117  SDValue Mask = Op.getOperand(0);
1118  SDValue Op1 = Op.getOperand(1);
1119  SDValue Op2 = Op.getOperand(2);
1120
1121  EVT VT = Mask.getValueType();
1122
1123  // If we can't even use the basic vector operations of
1124  // AND,OR,XOR, we will have to scalarize the op.
1125  // Notice that the operation may be 'promoted' which means that it is
1126  // 'bitcasted' to another type which is handled.
1127  // This operation also isn't safe with AND, OR, XOR when the boolean
1128  // type is 0/1 as we need an all ones vector constant to mask with.
1129  // FIXME: Sign extend 1 to all ones if thats legal on the target.
1130  if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1131      TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1132      TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1133      TLI.getBooleanContents(Op1.getValueType()) !=
1134          TargetLowering::ZeroOrNegativeOneBooleanContent)
1135    return DAG.UnrollVectorOp(Op.getNode());
1136
1137  // If the mask and the type are different sizes, unroll the vector op. This
1138  // can occur when getSetCCResultType returns something that is different in
1139  // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1140  if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1141    return DAG.UnrollVectorOp(Op.getNode());
1142
1143  // Bitcast the operands to be the same type as the mask.
1144  // This is needed when we select between FP types because
1145  // the mask is a vector of integers.
1146  Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1147  Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1148
1149  SDValue AllOnes = DAG.getConstant(
1150    APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
1151  SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
1152
1153  Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1154  Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1155  SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1156  return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
1157}
1158
1159SDValue VectorLegalizer::ExpandABS(SDValue Op) {
1160  // Attempt to expand using TargetLowering.
1161  SDValue Result;
1162  if (TLI.expandABS(Op.getNode(), Result, DAG))
1163    return Result;
1164
1165  // Otherwise go ahead and unroll.
1166  return DAG.UnrollVectorOp(Op.getNode());
1167}
1168
1169SDValue VectorLegalizer::ExpandFP_TO_UINT(SDValue Op) {
1170  // Attempt to expand using TargetLowering.
1171  SDValue Result;
1172  if (TLI.expandFP_TO_UINT(Op.getNode(), Result, DAG))
1173    return Result;
1174
1175  // Otherwise go ahead and unroll.
1176  return DAG.UnrollVectorOp(Op.getNode());
1177}
1178
1179SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
1180  EVT VT = Op.getOperand(0).getValueType();
1181  SDLoc DL(Op);
1182
1183  // Attempt to expand using TargetLowering.
1184  SDValue Result;
1185  if (TLI.expandUINT_TO_FP(Op.getNode(), Result, DAG))
1186    return Result;
1187
1188  // Make sure that the SINT_TO_FP and SRL instructions are available.
1189  if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
1190      TLI.getOperationAction(ISD::SRL,        VT) == TargetLowering::Expand)
1191    return DAG.UnrollVectorOp(Op.getNode());
1192
1193  unsigned BW = VT.getScalarSizeInBits();
1194  assert((BW == 64 || BW == 32) &&
1195         "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1196
1197  SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1198
1199  // Constants to clear the upper part of the word.
1200  // Notice that we can also use SHL+SHR, but using a constant is slightly
1201  // faster on x86.
1202  uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1203  SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1204
1205  // Two to the power of half-word-size.
1206  SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType());
1207
1208  // Clear upper part of LO, lower HI
1209  SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
1210  SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
1211
1212  // Convert hi and lo to floats
1213  // Convert the hi part back to the upper values
1214  // TODO: Can any fast-math-flags be set on these nodes?
1215  SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
1216          fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
1217  SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
1218
1219  // Add the two halves
1220  return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
1221}
1222
1223SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
1224  if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
1225    SDLoc DL(Op);
1226    SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
1227    // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1228    return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
1229                       Zero, Op.getOperand(0));
1230  }
1231  return DAG.UnrollVectorOp(Op.getNode());
1232}
1233
1234SDValue VectorLegalizer::ExpandFSUB(SDValue Op) {
1235  // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1236  // we can defer this to operation legalization where it will be lowered as
1237  // a+(-b).
1238  EVT VT = Op.getValueType();
1239  if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1240      TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1241    return Op; // Defer to LegalizeDAG
1242
1243  return DAG.UnrollVectorOp(Op.getNode());
1244}
1245
1246SDValue VectorLegalizer::ExpandCTPOP(SDValue Op) {
1247  SDValue Result;
1248  if (TLI.expandCTPOP(Op.getNode(), Result, DAG))
1249    return Result;
1250
1251  return DAG.UnrollVectorOp(Op.getNode());
1252}
1253
1254SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) {
1255  SDValue Result;
1256  if (TLI.expandCTLZ(Op.getNode(), Result, DAG))
1257    return Result;
1258
1259  return DAG.UnrollVectorOp(Op.getNode());
1260}
1261
1262SDValue VectorLegalizer::ExpandCTTZ(SDValue Op) {
1263  SDValue Result;
1264  if (TLI.expandCTTZ(Op.getNode(), Result, DAG))
1265    return Result;
1266
1267  return DAG.UnrollVectorOp(Op.getNode());
1268}
1269
1270SDValue VectorLegalizer::ExpandFunnelShift(SDValue Op) {
1271  SDValue Result;
1272  if (TLI.expandFunnelShift(Op.getNode(), Result, DAG))
1273    return Result;
1274
1275  return DAG.UnrollVectorOp(Op.getNode());
1276}
1277
1278SDValue VectorLegalizer::ExpandROT(SDValue Op) {
1279  SDValue Result;
1280  if (TLI.expandROT(Op.getNode(), Result, DAG))
1281    return Result;
1282
1283  return DAG.UnrollVectorOp(Op.getNode());
1284}
1285
1286SDValue VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op) {
1287  if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Op.getNode(), DAG))
1288    return Expanded;
1289  return DAG.UnrollVectorOp(Op.getNode());
1290}
1291
1292SDValue VectorLegalizer::ExpandUADDSUBO(SDValue Op) {
1293  SDValue Result, Overflow;
1294  TLI.expandUADDSUBO(Op.getNode(), Result, Overflow, DAG);
1295
1296  if (Op.getResNo() == 0) {
1297    AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow));
1298    return Result;
1299  } else {
1300    AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result));
1301    return Overflow;
1302  }
1303}
1304
1305SDValue VectorLegalizer::ExpandSADDSUBO(SDValue Op) {
1306  SDValue Result, Overflow;
1307  TLI.expandSADDSUBO(Op.getNode(), Result, Overflow, DAG);
1308
1309  if (Op.getResNo() == 0) {
1310    AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow));
1311    return Result;
1312  } else {
1313    AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result));
1314    return Overflow;
1315  }
1316}
1317
1318SDValue VectorLegalizer::ExpandMULO(SDValue Op) {
1319  SDValue Result, Overflow;
1320  if (!TLI.expandMULO(Op.getNode(), Result, Overflow, DAG))
1321    std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Op.getNode());
1322
1323  if (Op.getResNo() == 0) {
1324    AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow));
1325    return Result;
1326  } else {
1327    AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result));
1328    return Overflow;
1329  }
1330}
1331
1332SDValue VectorLegalizer::ExpandAddSubSat(SDValue Op) {
1333  if (SDValue Expanded = TLI.expandAddSubSat(Op.getNode(), DAG))
1334    return Expanded;
1335  return DAG.UnrollVectorOp(Op.getNode());
1336}
1337
1338SDValue VectorLegalizer::ExpandFixedPointMul(SDValue Op) {
1339  if (SDValue Expanded = TLI.expandFixedPointMul(Op.getNode(), DAG))
1340    return Expanded;
1341  return DAG.UnrollVectorOp(Op.getNode());
1342}
1343
1344SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) {
1345  EVT VT = Op.getValueType();
1346  EVT EltVT = VT.getVectorElementType();
1347  unsigned NumElems = VT.getVectorNumElements();
1348  unsigned NumOpers = Op.getNumOperands();
1349  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1350  EVT ValueVTs[] = {EltVT, MVT::Other};
1351  SDValue Chain = Op.getOperand(0);
1352  SDLoc dl(Op);
1353
1354  SmallVector<SDValue, 32> OpValues;
1355  SmallVector<SDValue, 32> OpChains;
1356  for (unsigned i = 0; i < NumElems; ++i) {
1357    SmallVector<SDValue, 4> Opers;
1358    SDValue Idx = DAG.getConstant(i, dl,
1359                                  TLI.getVectorIdxTy(DAG.getDataLayout()));
1360
1361    // The Chain is the first operand.
1362    Opers.push_back(Chain);
1363
1364    // Now process the remaining operands.
1365    for (unsigned j = 1; j < NumOpers; ++j) {
1366      SDValue Oper = Op.getOperand(j);
1367      EVT OperVT = Oper.getValueType();
1368
1369      if (OperVT.isVector())
1370        Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1371                           OperVT.getVectorElementType(), Oper, Idx);
1372
1373      Opers.push_back(Oper);
1374    }
1375
1376    SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers);
1377
1378    OpValues.push_back(ScalarOp.getValue(0));
1379    OpChains.push_back(ScalarOp.getValue(1));
1380  }
1381
1382  SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1383  SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1384
1385  AddLegalizedOperand(Op.getValue(0), Result);
1386  AddLegalizedOperand(Op.getValue(1), NewChain);
1387
1388  return Op.getResNo() ? NewChain : Result;
1389}
1390
1391SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
1392  EVT VT = Op.getValueType();
1393  unsigned NumElems = VT.getVectorNumElements();
1394  EVT EltVT = VT.getVectorElementType();
1395  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
1396  EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1397  SDLoc dl(Op);
1398  SmallVector<SDValue, 8> Ops(NumElems);
1399  for (unsigned i = 0; i < NumElems; ++i) {
1400    SDValue LHSElem = DAG.getNode(
1401        ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1402        DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1403    SDValue RHSElem = DAG.getNode(
1404        ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1405        DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1406    Ops[i] = DAG.getNode(ISD::SETCC, dl,
1407                         TLI.getSetCCResultType(DAG.getDataLayout(),
1408                                                *DAG.getContext(), TmpEltVT),
1409                         LHSElem, RHSElem, CC);
1410    Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1411                           DAG.getConstant(APInt::getAllOnesValue
1412                                           (EltVT.getSizeInBits()), dl, EltVT),
1413                           DAG.getConstant(0, dl, EltVT));
1414  }
1415  return DAG.getBuildVector(VT, dl, Ops);
1416}
1417
1418bool SelectionDAG::LegalizeVectors() {
1419  return VectorLegalizer(*this).Run();
1420}
1421