LegalizeIntegerTypes.cpp revision 360660
1//===----- LegalizeIntegerTypes.cpp - Legalization of integer types -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements integer type expansion and promotion for LegalizeTypes.
10// Promotion is the act of changing a computation in an illegal type into a
11// computation in a larger type.  For example, implementing i8 arithmetic in an
12// i32 register (often needed on powerpc).
13// Expansion is the act of changing a computation in an illegal type into a
14// computation in two identical registers of a smaller type.  For example,
15// implementing i64 arithmetic in two i32 registers (often needed on 32-bit
16// targets).
17//
18//===----------------------------------------------------------------------===//
19
20#include "LegalizeTypes.h"
21#include "llvm/IR/DerivedTypes.h"
22#include "llvm/Support/ErrorHandling.h"
23#include "llvm/Support/KnownBits.h"
24#include "llvm/Support/raw_ostream.h"
25using namespace llvm;
26
27#define DEBUG_TYPE "legalize-types"
28
29//===----------------------------------------------------------------------===//
30//  Integer Result Promotion
31//===----------------------------------------------------------------------===//
32
33/// PromoteIntegerResult - This method is called when a result of a node is
34/// found to be in need of promotion to a larger type.  At this point, the node
35/// may also have invalid operands or may have other results that need
36/// expansion, we just know that (at least) one result needs promotion.
37void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) {
38  LLVM_DEBUG(dbgs() << "Promote integer result: "; N->dump(&DAG);
39             dbgs() << "\n");
40  SDValue Res = SDValue();
41
42  // See if the target wants to custom expand this node.
43  if (CustomLowerNode(N, N->getValueType(ResNo), true)) {
44    LLVM_DEBUG(dbgs() << "Node has been custom expanded, done\n");
45    return;
46  }
47
48  switch (N->getOpcode()) {
49  default:
50#ifndef NDEBUG
51    dbgs() << "PromoteIntegerResult #" << ResNo << ": ";
52    N->dump(&DAG); dbgs() << "\n";
53#endif
54    llvm_unreachable("Do not know how to promote this operator!");
55  case ISD::MERGE_VALUES:Res = PromoteIntRes_MERGE_VALUES(N, ResNo); break;
56  case ISD::AssertSext:  Res = PromoteIntRes_AssertSext(N); break;
57  case ISD::AssertZext:  Res = PromoteIntRes_AssertZext(N); break;
58  case ISD::BITCAST:     Res = PromoteIntRes_BITCAST(N); break;
59  case ISD::BITREVERSE:  Res = PromoteIntRes_BITREVERSE(N); break;
60  case ISD::BSWAP:       Res = PromoteIntRes_BSWAP(N); break;
61  case ISD::BUILD_PAIR:  Res = PromoteIntRes_BUILD_PAIR(N); break;
62  case ISD::Constant:    Res = PromoteIntRes_Constant(N); break;
63  case ISD::CTLZ_ZERO_UNDEF:
64  case ISD::CTLZ:        Res = PromoteIntRes_CTLZ(N); break;
65  case ISD::CTPOP:       Res = PromoteIntRes_CTPOP(N); break;
66  case ISD::CTTZ_ZERO_UNDEF:
67  case ISD::CTTZ:        Res = PromoteIntRes_CTTZ(N); break;
68  case ISD::EXTRACT_VECTOR_ELT:
69                         Res = PromoteIntRes_EXTRACT_VECTOR_ELT(N); break;
70  case ISD::LOAD:        Res = PromoteIntRes_LOAD(cast<LoadSDNode>(N)); break;
71  case ISD::MLOAD:       Res = PromoteIntRes_MLOAD(cast<MaskedLoadSDNode>(N));
72    break;
73  case ISD::MGATHER:     Res = PromoteIntRes_MGATHER(cast<MaskedGatherSDNode>(N));
74    break;
75  case ISD::SELECT:      Res = PromoteIntRes_SELECT(N); break;
76  case ISD::VSELECT:     Res = PromoteIntRes_VSELECT(N); break;
77  case ISD::SELECT_CC:   Res = PromoteIntRes_SELECT_CC(N); break;
78  case ISD::SETCC:       Res = PromoteIntRes_SETCC(N); break;
79  case ISD::SMIN:
80  case ISD::SMAX:        Res = PromoteIntRes_SExtIntBinOp(N); break;
81  case ISD::UMIN:
82  case ISD::UMAX:        Res = PromoteIntRes_ZExtIntBinOp(N); break;
83
84  case ISD::SHL:         Res = PromoteIntRes_SHL(N); break;
85  case ISD::SIGN_EXTEND_INREG:
86                         Res = PromoteIntRes_SIGN_EXTEND_INREG(N); break;
87  case ISD::SRA:         Res = PromoteIntRes_SRA(N); break;
88  case ISD::SRL:         Res = PromoteIntRes_SRL(N); break;
89  case ISD::TRUNCATE:    Res = PromoteIntRes_TRUNCATE(N); break;
90  case ISD::UNDEF:       Res = PromoteIntRes_UNDEF(N); break;
91  case ISD::VAARG:       Res = PromoteIntRes_VAARG(N); break;
92
93  case ISD::EXTRACT_SUBVECTOR:
94                         Res = PromoteIntRes_EXTRACT_SUBVECTOR(N); break;
95  case ISD::VECTOR_SHUFFLE:
96                         Res = PromoteIntRes_VECTOR_SHUFFLE(N); break;
97  case ISD::INSERT_VECTOR_ELT:
98                         Res = PromoteIntRes_INSERT_VECTOR_ELT(N); break;
99  case ISD::BUILD_VECTOR:
100                         Res = PromoteIntRes_BUILD_VECTOR(N); break;
101  case ISD::SCALAR_TO_VECTOR:
102                         Res = PromoteIntRes_SCALAR_TO_VECTOR(N); break;
103  case ISD::CONCAT_VECTORS:
104                         Res = PromoteIntRes_CONCAT_VECTORS(N); break;
105
106  case ISD::ANY_EXTEND_VECTOR_INREG:
107  case ISD::SIGN_EXTEND_VECTOR_INREG:
108  case ISD::ZERO_EXTEND_VECTOR_INREG:
109                         Res = PromoteIntRes_EXTEND_VECTOR_INREG(N); break;
110
111  case ISD::SIGN_EXTEND:
112  case ISD::ZERO_EXTEND:
113  case ISD::ANY_EXTEND:  Res = PromoteIntRes_INT_EXTEND(N); break;
114
115  case ISD::FP_TO_SINT:
116  case ISD::FP_TO_UINT:  Res = PromoteIntRes_FP_TO_XINT(N); break;
117
118  case ISD::FP_TO_FP16:  Res = PromoteIntRes_FP_TO_FP16(N); break;
119
120  case ISD::FLT_ROUNDS_: Res = PromoteIntRes_FLT_ROUNDS(N); break;
121
122  case ISD::AND:
123  case ISD::OR:
124  case ISD::XOR:
125  case ISD::ADD:
126  case ISD::SUB:
127  case ISD::MUL:         Res = PromoteIntRes_SimpleIntBinOp(N); break;
128
129  case ISD::SDIV:
130  case ISD::SREM:        Res = PromoteIntRes_SExtIntBinOp(N); break;
131
132  case ISD::UDIV:
133  case ISD::UREM:        Res = PromoteIntRes_ZExtIntBinOp(N); break;
134
135  case ISD::SADDO:
136  case ISD::SSUBO:       Res = PromoteIntRes_SADDSUBO(N, ResNo); break;
137  case ISD::UADDO:
138  case ISD::USUBO:       Res = PromoteIntRes_UADDSUBO(N, ResNo); break;
139  case ISD::SMULO:
140  case ISD::UMULO:       Res = PromoteIntRes_XMULO(N, ResNo); break;
141
142  case ISD::ADDE:
143  case ISD::SUBE:
144  case ISD::ADDCARRY:
145  case ISD::SUBCARRY:    Res = PromoteIntRes_ADDSUBCARRY(N, ResNo); break;
146
147  case ISD::SADDSAT:
148  case ISD::UADDSAT:
149  case ISD::SSUBSAT:
150  case ISD::USUBSAT:     Res = PromoteIntRes_ADDSUBSAT(N); break;
151  case ISD::SMULFIX:
152  case ISD::SMULFIXSAT:
153  case ISD::UMULFIX:     Res = PromoteIntRes_MULFIX(N); break;
154  case ISD::ABS:         Res = PromoteIntRes_ABS(N); break;
155
156  case ISD::ATOMIC_LOAD:
157    Res = PromoteIntRes_Atomic0(cast<AtomicSDNode>(N)); break;
158
159  case ISD::ATOMIC_LOAD_ADD:
160  case ISD::ATOMIC_LOAD_SUB:
161  case ISD::ATOMIC_LOAD_AND:
162  case ISD::ATOMIC_LOAD_CLR:
163  case ISD::ATOMIC_LOAD_OR:
164  case ISD::ATOMIC_LOAD_XOR:
165  case ISD::ATOMIC_LOAD_NAND:
166  case ISD::ATOMIC_LOAD_MIN:
167  case ISD::ATOMIC_LOAD_MAX:
168  case ISD::ATOMIC_LOAD_UMIN:
169  case ISD::ATOMIC_LOAD_UMAX:
170  case ISD::ATOMIC_SWAP:
171    Res = PromoteIntRes_Atomic1(cast<AtomicSDNode>(N)); break;
172
173  case ISD::ATOMIC_CMP_SWAP:
174  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
175    Res = PromoteIntRes_AtomicCmpSwap(cast<AtomicSDNode>(N), ResNo);
176    break;
177
178  case ISD::VECREDUCE_ADD:
179  case ISD::VECREDUCE_MUL:
180  case ISD::VECREDUCE_AND:
181  case ISD::VECREDUCE_OR:
182  case ISD::VECREDUCE_XOR:
183  case ISD::VECREDUCE_SMAX:
184  case ISD::VECREDUCE_SMIN:
185  case ISD::VECREDUCE_UMAX:
186  case ISD::VECREDUCE_UMIN:
187    Res = PromoteIntRes_VECREDUCE(N);
188    break;
189  }
190
191  // If the result is null then the sub-method took care of registering it.
192  if (Res.getNode())
193    SetPromotedInteger(SDValue(N, ResNo), Res);
194}
195
196SDValue DAGTypeLegalizer::PromoteIntRes_MERGE_VALUES(SDNode *N,
197                                                     unsigned ResNo) {
198  SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
199  return GetPromotedInteger(Op);
200}
201
202SDValue DAGTypeLegalizer::PromoteIntRes_AssertSext(SDNode *N) {
203  // Sign-extend the new bits, and continue the assertion.
204  SDValue Op = SExtPromotedInteger(N->getOperand(0));
205  return DAG.getNode(ISD::AssertSext, SDLoc(N),
206                     Op.getValueType(), Op, N->getOperand(1));
207}
208
209SDValue DAGTypeLegalizer::PromoteIntRes_AssertZext(SDNode *N) {
210  // Zero the new bits, and continue the assertion.
211  SDValue Op = ZExtPromotedInteger(N->getOperand(0));
212  return DAG.getNode(ISD::AssertZext, SDLoc(N),
213                     Op.getValueType(), Op, N->getOperand(1));
214}
215
216SDValue DAGTypeLegalizer::PromoteIntRes_Atomic0(AtomicSDNode *N) {
217  EVT ResVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
218  SDValue Res = DAG.getAtomic(N->getOpcode(), SDLoc(N),
219                              N->getMemoryVT(), ResVT,
220                              N->getChain(), N->getBasePtr(),
221                              N->getMemOperand());
222  // Legalize the chain result - switch anything that used the old chain to
223  // use the new one.
224  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
225  return Res;
226}
227
228SDValue DAGTypeLegalizer::PromoteIntRes_Atomic1(AtomicSDNode *N) {
229  SDValue Op2 = GetPromotedInteger(N->getOperand(2));
230  SDValue Res = DAG.getAtomic(N->getOpcode(), SDLoc(N),
231                              N->getMemoryVT(),
232                              N->getChain(), N->getBasePtr(),
233                              Op2, N->getMemOperand());
234  // Legalize the chain result - switch anything that used the old chain to
235  // use the new one.
236  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
237  return Res;
238}
239
240SDValue DAGTypeLegalizer::PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N,
241                                                      unsigned ResNo) {
242  if (ResNo == 1) {
243    assert(N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
244    EVT SVT = getSetCCResultType(N->getOperand(2).getValueType());
245    EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(1));
246
247    // Only use the result of getSetCCResultType if it is legal,
248    // otherwise just use the promoted result type (NVT).
249    if (!TLI.isTypeLegal(SVT))
250      SVT = NVT;
251
252    SDVTList VTs = DAG.getVTList(N->getValueType(0), SVT, MVT::Other);
253    SDValue Res = DAG.getAtomicCmpSwap(
254        ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, SDLoc(N), N->getMemoryVT(), VTs,
255        N->getChain(), N->getBasePtr(), N->getOperand(2), N->getOperand(3),
256        N->getMemOperand());
257    ReplaceValueWith(SDValue(N, 0), Res.getValue(0));
258    ReplaceValueWith(SDValue(N, 2), Res.getValue(2));
259    return Res.getValue(1);
260  }
261
262  SDValue Op2 = GetPromotedInteger(N->getOperand(2));
263  SDValue Op3 = GetPromotedInteger(N->getOperand(3));
264  SDVTList VTs =
265      DAG.getVTList(Op2.getValueType(), N->getValueType(1), MVT::Other);
266  SDValue Res = DAG.getAtomicCmpSwap(
267      N->getOpcode(), SDLoc(N), N->getMemoryVT(), VTs, N->getChain(),
268      N->getBasePtr(), Op2, Op3, N->getMemOperand());
269  // Update the use to N with the newly created Res.
270  for (unsigned i = 1, NumResults = N->getNumValues(); i < NumResults; ++i)
271    ReplaceValueWith(SDValue(N, i), Res.getValue(i));
272  return Res;
273}
274
275SDValue DAGTypeLegalizer::PromoteIntRes_BITCAST(SDNode *N) {
276  SDValue InOp = N->getOperand(0);
277  EVT InVT = InOp.getValueType();
278  EVT NInVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
279  EVT OutVT = N->getValueType(0);
280  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
281  SDLoc dl(N);
282
283  switch (getTypeAction(InVT)) {
284  case TargetLowering::TypeLegal:
285    break;
286  case TargetLowering::TypePromoteInteger:
287    if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector() && !NInVT.isVector())
288      // The input promotes to the same size.  Convert the promoted value.
289      return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetPromotedInteger(InOp));
290    break;
291  case TargetLowering::TypeSoftenFloat:
292    // Promote the integer operand by hand.
293    return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT, GetSoftenedFloat(InOp));
294  case TargetLowering::TypePromoteFloat: {
295    // Convert the promoted float by hand.
296    if (!NOutVT.isVector())
297      return DAG.getNode(ISD::FP_TO_FP16, dl, NOutVT, GetPromotedFloat(InOp));
298    break;
299  }
300  case TargetLowering::TypeExpandInteger:
301  case TargetLowering::TypeExpandFloat:
302    break;
303  case TargetLowering::TypeScalarizeVector:
304    // Convert the element to an integer and promote it by hand.
305    if (!NOutVT.isVector())
306      return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
307                         BitConvertToInteger(GetScalarizedVector(InOp)));
308    break;
309  case TargetLowering::TypeSplitVector: {
310    if (!NOutVT.isVector()) {
311      // For example, i32 = BITCAST v2i16 on alpha.  Convert the split
312      // pieces of the input into integers and reassemble in the final type.
313      SDValue Lo, Hi;
314      GetSplitVector(N->getOperand(0), Lo, Hi);
315      Lo = BitConvertToInteger(Lo);
316      Hi = BitConvertToInteger(Hi);
317
318      if (DAG.getDataLayout().isBigEndian())
319        std::swap(Lo, Hi);
320
321      InOp = DAG.getNode(ISD::ANY_EXTEND, dl,
322                         EVT::getIntegerVT(*DAG.getContext(),
323                                           NOutVT.getSizeInBits()),
324                         JoinIntegers(Lo, Hi));
325      return DAG.getNode(ISD::BITCAST, dl, NOutVT, InOp);
326    }
327    break;
328  }
329  case TargetLowering::TypeWidenVector:
330    // The input is widened to the same size. Convert to the widened value.
331    // Make sure that the outgoing value is not a vector, because this would
332    // make us bitcast between two vectors which are legalized in different ways.
333    if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector())
334      return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetWidenedVector(InOp));
335    // If the output type is also a vector and widening it to the same size
336    // as the widened input type would be a legal type, we can widen the bitcast
337    // and handle the promotion after.
338    if (NOutVT.isVector()) {
339      unsigned WidenInSize = NInVT.getSizeInBits();
340      unsigned OutSize = OutVT.getSizeInBits();
341      if (WidenInSize % OutSize == 0) {
342        unsigned Scale = WidenInSize / OutSize;
343        EVT WideOutVT = EVT::getVectorVT(*DAG.getContext(),
344                                         OutVT.getVectorElementType(),
345                                         OutVT.getVectorNumElements() * Scale);
346        if (isTypeLegal(WideOutVT)) {
347          InOp = DAG.getBitcast(WideOutVT, GetWidenedVector(InOp));
348          MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
349          InOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OutVT, InOp,
350                             DAG.getConstant(0, dl, IdxTy));
351          return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT, InOp);
352        }
353      }
354    }
355  }
356
357  return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
358                     CreateStackStoreLoad(InOp, OutVT));
359}
360
361// Helper for BSWAP/BITREVERSE promotion to ensure we can fit the shift amount
362// in the VT returned by getShiftAmountTy and to return a safe VT if we can't.
363static EVT getShiftAmountTyForConstant(unsigned Val, EVT VT,
364                                       const TargetLowering &TLI,
365                                       SelectionDAG &DAG) {
366  EVT ShiftVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
367  // If the value won't fit in the prefered type, just use something safe. It
368  // will be legalized when the shift is expanded.
369  if ((Log2_32(Val) + 1) > ShiftVT.getScalarSizeInBits())
370    ShiftVT = MVT::i32;
371  return ShiftVT;
372}
373
374SDValue DAGTypeLegalizer::PromoteIntRes_BSWAP(SDNode *N) {
375  SDValue Op = GetPromotedInteger(N->getOperand(0));
376  EVT OVT = N->getValueType(0);
377  EVT NVT = Op.getValueType();
378  SDLoc dl(N);
379
380  unsigned DiffBits = NVT.getScalarSizeInBits() - OVT.getScalarSizeInBits();
381  EVT ShiftVT = getShiftAmountTyForConstant(DiffBits, NVT, TLI, DAG);
382  return DAG.getNode(ISD::SRL, dl, NVT, DAG.getNode(ISD::BSWAP, dl, NVT, Op),
383                     DAG.getConstant(DiffBits, dl, ShiftVT));
384}
385
386SDValue DAGTypeLegalizer::PromoteIntRes_BITREVERSE(SDNode *N) {
387  SDValue Op = GetPromotedInteger(N->getOperand(0));
388  EVT OVT = N->getValueType(0);
389  EVT NVT = Op.getValueType();
390  SDLoc dl(N);
391
392  unsigned DiffBits = NVT.getScalarSizeInBits() - OVT.getScalarSizeInBits();
393  EVT ShiftVT = getShiftAmountTyForConstant(DiffBits, NVT, TLI, DAG);
394  return DAG.getNode(ISD::SRL, dl, NVT,
395                     DAG.getNode(ISD::BITREVERSE, dl, NVT, Op),
396                     DAG.getConstant(DiffBits, dl, ShiftVT));
397}
398
399SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_PAIR(SDNode *N) {
400  // The pair element type may be legal, or may not promote to the same type as
401  // the result, for example i14 = BUILD_PAIR (i7, i7).  Handle all cases.
402  return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N),
403                     TLI.getTypeToTransformTo(*DAG.getContext(),
404                     N->getValueType(0)), JoinIntegers(N->getOperand(0),
405                     N->getOperand(1)));
406}
407
408SDValue DAGTypeLegalizer::PromoteIntRes_Constant(SDNode *N) {
409  EVT VT = N->getValueType(0);
410  // FIXME there is no actual debug info here
411  SDLoc dl(N);
412  // Zero extend things like i1, sign extend everything else.  It shouldn't
413  // matter in theory which one we pick, but this tends to give better code?
414  unsigned Opc = VT.isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
415  SDValue Result = DAG.getNode(Opc, dl,
416                               TLI.getTypeToTransformTo(*DAG.getContext(), VT),
417                               SDValue(N, 0));
418  assert(isa<ConstantSDNode>(Result) && "Didn't constant fold ext?");
419  return Result;
420}
421
422SDValue DAGTypeLegalizer::PromoteIntRes_CTLZ(SDNode *N) {
423  // Zero extend to the promoted type and do the count there.
424  SDValue Op = ZExtPromotedInteger(N->getOperand(0));
425  SDLoc dl(N);
426  EVT OVT = N->getValueType(0);
427  EVT NVT = Op.getValueType();
428  Op = DAG.getNode(N->getOpcode(), dl, NVT, Op);
429  // Subtract off the extra leading bits in the bigger type.
430  return DAG.getNode(
431      ISD::SUB, dl, NVT, Op,
432      DAG.getConstant(NVT.getScalarSizeInBits() - OVT.getScalarSizeInBits(), dl,
433                      NVT));
434}
435
436SDValue DAGTypeLegalizer::PromoteIntRes_CTPOP(SDNode *N) {
437  // Zero extend to the promoted type and do the count there.
438  SDValue Op = ZExtPromotedInteger(N->getOperand(0));
439  return DAG.getNode(ISD::CTPOP, SDLoc(N), Op.getValueType(), Op);
440}
441
442SDValue DAGTypeLegalizer::PromoteIntRes_CTTZ(SDNode *N) {
443  SDValue Op = GetPromotedInteger(N->getOperand(0));
444  EVT OVT = N->getValueType(0);
445  EVT NVT = Op.getValueType();
446  SDLoc dl(N);
447  if (N->getOpcode() == ISD::CTTZ) {
448    // The count is the same in the promoted type except if the original
449    // value was zero.  This can be handled by setting the bit just off
450    // the top of the original type.
451    auto TopBit = APInt::getOneBitSet(NVT.getScalarSizeInBits(),
452                                      OVT.getScalarSizeInBits());
453    Op = DAG.getNode(ISD::OR, dl, NVT, Op, DAG.getConstant(TopBit, dl, NVT));
454  }
455  return DAG.getNode(N->getOpcode(), dl, NVT, Op);
456}
457
458SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N) {
459  SDLoc dl(N);
460  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
461
462  SDValue Op0 = N->getOperand(0);
463  SDValue Op1 = N->getOperand(1);
464
465  // If the input also needs to be promoted, do that first so we can get a
466  // get a good idea for the output type.
467  if (TLI.getTypeAction(*DAG.getContext(), Op0.getValueType())
468      == TargetLowering::TypePromoteInteger) {
469    SDValue In = GetPromotedInteger(Op0);
470
471    // If the new type is larger than NVT, use it. We probably won't need to
472    // promote it again.
473    EVT SVT = In.getValueType().getScalarType();
474    if (SVT.bitsGE(NVT)) {
475      SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, In, Op1);
476      return DAG.getAnyExtOrTrunc(Ext, dl, NVT);
477    }
478  }
479
480  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NVT, Op0, Op1);
481}
482
483SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT(SDNode *N) {
484  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
485  unsigned NewOpc = N->getOpcode();
486  SDLoc dl(N);
487
488  // If we're promoting a UINT to a larger size and the larger FP_TO_UINT is
489  // not Legal, check to see if we can use FP_TO_SINT instead.  (If both UINT
490  // and SINT conversions are Custom, there is no way to tell which is
491  // preferable. We choose SINT because that's the right thing on PPC.)
492  if (N->getOpcode() == ISD::FP_TO_UINT &&
493      !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) &&
494      TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
495    NewOpc = ISD::FP_TO_SINT;
496
497  SDValue Res = DAG.getNode(NewOpc, dl, NVT, N->getOperand(0));
498
499  // Assert that the converted value fits in the original type.  If it doesn't
500  // (eg: because the value being converted is too big), then the result of the
501  // original operation was undefined anyway, so the assert is still correct.
502  //
503  // NOTE: fp-to-uint to fp-to-sint promotion guarantees zero extend. For example:
504  //   before legalization: fp-to-uint16, 65534. -> 0xfffe
505  //   after legalization: fp-to-sint32, 65534. -> 0x0000fffe
506  return DAG.getNode(N->getOpcode() == ISD::FP_TO_UINT ?
507                     ISD::AssertZext : ISD::AssertSext, dl, NVT, Res,
508                     DAG.getValueType(N->getValueType(0).getScalarType()));
509}
510
511SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_FP16(SDNode *N) {
512  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
513  SDLoc dl(N);
514
515  return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
516}
517
518SDValue DAGTypeLegalizer::PromoteIntRes_FLT_ROUNDS(SDNode *N) {
519  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
520  SDLoc dl(N);
521
522  return DAG.getNode(N->getOpcode(), dl, NVT);
523}
524
525SDValue DAGTypeLegalizer::PromoteIntRes_INT_EXTEND(SDNode *N) {
526  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
527  SDLoc dl(N);
528
529  if (getTypeAction(N->getOperand(0).getValueType())
530      == TargetLowering::TypePromoteInteger) {
531    SDValue Res = GetPromotedInteger(N->getOperand(0));
532    assert(Res.getValueType().bitsLE(NVT) && "Extension doesn't make sense!");
533
534    // If the result and operand types are the same after promotion, simplify
535    // to an in-register extension.
536    if (NVT == Res.getValueType()) {
537      // The high bits are not guaranteed to be anything.  Insert an extend.
538      if (N->getOpcode() == ISD::SIGN_EXTEND)
539        return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
540                           DAG.getValueType(N->getOperand(0).getValueType()));
541      if (N->getOpcode() == ISD::ZERO_EXTEND)
542        return DAG.getZeroExtendInReg(Res, dl,
543                      N->getOperand(0).getValueType().getScalarType());
544      assert(N->getOpcode() == ISD::ANY_EXTEND && "Unknown integer extension!");
545      return Res;
546    }
547  }
548
549  // Otherwise, just extend the original operand all the way to the larger type.
550  return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
551}
552
553SDValue DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode *N) {
554  assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
555  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
556  ISD::LoadExtType ExtType =
557    ISD::isNON_EXTLoad(N) ? ISD::EXTLOAD : N->getExtensionType();
558  SDLoc dl(N);
559  SDValue Res = DAG.getExtLoad(ExtType, dl, NVT, N->getChain(), N->getBasePtr(),
560                               N->getMemoryVT(), N->getMemOperand());
561
562  // Legalize the chain result - switch anything that used the old chain to
563  // use the new one.
564  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
565  return Res;
566}
567
568SDValue DAGTypeLegalizer::PromoteIntRes_MLOAD(MaskedLoadSDNode *N) {
569  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
570  SDValue ExtPassThru = GetPromotedInteger(N->getPassThru());
571
572  SDLoc dl(N);
573  SDValue Res = DAG.getMaskedLoad(NVT, dl, N->getChain(), N->getBasePtr(),
574                                  N->getMask(), ExtPassThru, N->getMemoryVT(),
575                                  N->getMemOperand(), ISD::EXTLOAD);
576  // Legalize the chain result - switch anything that used the old chain to
577  // use the new one.
578  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
579  return Res;
580}
581
582SDValue DAGTypeLegalizer::PromoteIntRes_MGATHER(MaskedGatherSDNode *N) {
583  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
584  SDValue ExtPassThru = GetPromotedInteger(N->getPassThru());
585  assert(NVT == ExtPassThru.getValueType() &&
586      "Gather result type and the passThru agrument type should be the same");
587
588  SDLoc dl(N);
589  SDValue Ops[] = {N->getChain(), ExtPassThru, N->getMask(), N->getBasePtr(),
590                   N->getIndex(), N->getScale() };
591  SDValue Res = DAG.getMaskedGather(DAG.getVTList(NVT, MVT::Other),
592                                    N->getMemoryVT(), dl, Ops,
593                                    N->getMemOperand());
594  // Legalize the chain result - switch anything that used the old chain to
595  // use the new one.
596  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
597  return Res;
598}
599
600/// Promote the overflow flag of an overflowing arithmetic node.
601SDValue DAGTypeLegalizer::PromoteIntRes_Overflow(SDNode *N) {
602  // Change the return type of the boolean result while obeying
603  // getSetCCResultType.
604  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(1));
605  EVT VT = N->getValueType(0);
606  EVT SVT = getSetCCResultType(VT);
607  SDValue Ops[3] = { N->getOperand(0), N->getOperand(1) };
608  unsigned NumOps = N->getNumOperands();
609  assert(NumOps <= 3 && "Too many operands");
610  if (NumOps == 3)
611    Ops[2] = N->getOperand(2);
612
613  SDLoc dl(N);
614  SDValue Res = DAG.getNode(N->getOpcode(), dl, DAG.getVTList(VT, SVT),
615                            makeArrayRef(Ops, NumOps));
616
617  // Modified the sum result - switch anything that used the old sum to use
618  // the new one.
619  ReplaceValueWith(SDValue(N, 0), Res);
620
621  // Convert to the expected type.
622  return DAG.getBoolExtOrTrunc(Res.getValue(1), dl, NVT, VT);
623}
624
625SDValue DAGTypeLegalizer::PromoteIntRes_ADDSUBSAT(SDNode *N) {
626  // For promoting iN -> iM, this can be expanded by
627  // 1. ANY_EXTEND iN to iM
628  // 2. SHL by M-N
629  // 3. [US][ADD|SUB]SAT
630  // 4. L/ASHR by M-N
631  SDLoc dl(N);
632  SDValue Op1 = N->getOperand(0);
633  SDValue Op2 = N->getOperand(1);
634  unsigned OldBits = Op1.getScalarValueSizeInBits();
635
636  unsigned Opcode = N->getOpcode();
637  unsigned ShiftOp;
638  switch (Opcode) {
639  case ISD::SADDSAT:
640  case ISD::SSUBSAT:
641    ShiftOp = ISD::SRA;
642    break;
643  case ISD::UADDSAT:
644  case ISD::USUBSAT:
645    ShiftOp = ISD::SRL;
646    break;
647  default:
648    llvm_unreachable("Expected opcode to be signed or unsigned saturation "
649                     "addition or subtraction");
650  }
651
652  SDValue Op1Promoted = GetPromotedInteger(Op1);
653  SDValue Op2Promoted = GetPromotedInteger(Op2);
654
655  EVT PromotedType = Op1Promoted.getValueType();
656  unsigned NewBits = PromotedType.getScalarSizeInBits();
657  unsigned SHLAmount = NewBits - OldBits;
658  EVT SHVT = TLI.getShiftAmountTy(PromotedType, DAG.getDataLayout());
659  SDValue ShiftAmount = DAG.getConstant(SHLAmount, dl, SHVT);
660  Op1Promoted =
661      DAG.getNode(ISD::SHL, dl, PromotedType, Op1Promoted, ShiftAmount);
662  Op2Promoted =
663      DAG.getNode(ISD::SHL, dl, PromotedType, Op2Promoted, ShiftAmount);
664
665  SDValue Result =
666      DAG.getNode(Opcode, dl, PromotedType, Op1Promoted, Op2Promoted);
667  return DAG.getNode(ShiftOp, dl, PromotedType, Result, ShiftAmount);
668}
669
670SDValue DAGTypeLegalizer::PromoteIntRes_MULFIX(SDNode *N) {
671  // Can just promote the operands then continue with operation.
672  SDLoc dl(N);
673  SDValue Op1Promoted, Op2Promoted;
674  bool Signed =
675      N->getOpcode() == ISD::SMULFIX || N->getOpcode() == ISD::SMULFIXSAT;
676  if (Signed) {
677    Op1Promoted = SExtPromotedInteger(N->getOperand(0));
678    Op2Promoted = SExtPromotedInteger(N->getOperand(1));
679  } else {
680    Op1Promoted = ZExtPromotedInteger(N->getOperand(0));
681    Op2Promoted = ZExtPromotedInteger(N->getOperand(1));
682  }
683  EVT OldType = N->getOperand(0).getValueType();
684  EVT PromotedType = Op1Promoted.getValueType();
685  unsigned DiffSize =
686      PromotedType.getScalarSizeInBits() - OldType.getScalarSizeInBits();
687
688  bool Saturating = N->getOpcode() == ISD::SMULFIXSAT;
689  if (Saturating) {
690    // Promoting the operand and result values changes the saturation width,
691    // which is extends the values that we clamp to on saturation. This could be
692    // resolved by shifting one of the operands the same amount, which would
693    // also shift the result we compare against, then shifting back.
694    EVT ShiftTy = TLI.getShiftAmountTy(PromotedType, DAG.getDataLayout());
695    Op1Promoted = DAG.getNode(ISD::SHL, dl, PromotedType, Op1Promoted,
696                              DAG.getConstant(DiffSize, dl, ShiftTy));
697    SDValue Result = DAG.getNode(N->getOpcode(), dl, PromotedType, Op1Promoted,
698                                 Op2Promoted, N->getOperand(2));
699    unsigned ShiftOp = Signed ? ISD::SRA : ISD::SRL;
700    return DAG.getNode(ShiftOp, dl, PromotedType, Result,
701                       DAG.getConstant(DiffSize, dl, ShiftTy));
702  }
703  return DAG.getNode(N->getOpcode(), dl, PromotedType, Op1Promoted, Op2Promoted,
704                     N->getOperand(2));
705}
706
707SDValue DAGTypeLegalizer::PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo) {
708  if (ResNo == 1)
709    return PromoteIntRes_Overflow(N);
710
711  // The operation overflowed iff the result in the larger type is not the
712  // sign extension of its truncation to the original type.
713  SDValue LHS = SExtPromotedInteger(N->getOperand(0));
714  SDValue RHS = SExtPromotedInteger(N->getOperand(1));
715  EVT OVT = N->getOperand(0).getValueType();
716  EVT NVT = LHS.getValueType();
717  SDLoc dl(N);
718
719  // Do the arithmetic in the larger type.
720  unsigned Opcode = N->getOpcode() == ISD::SADDO ? ISD::ADD : ISD::SUB;
721  SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
722
723  // Calculate the overflow flag: sign extend the arithmetic result from
724  // the original type.
725  SDValue Ofl = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
726                            DAG.getValueType(OVT));
727  // Overflowed if and only if this is not equal to Res.
728  Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
729
730  // Use the calculated overflow everywhere.
731  ReplaceValueWith(SDValue(N, 1), Ofl);
732
733  return Res;
734}
735
736SDValue DAGTypeLegalizer::PromoteIntRes_SELECT(SDNode *N) {
737  SDValue LHS = GetPromotedInteger(N->getOperand(1));
738  SDValue RHS = GetPromotedInteger(N->getOperand(2));
739  return DAG.getSelect(SDLoc(N),
740                       LHS.getValueType(), N->getOperand(0), LHS, RHS);
741}
742
743SDValue DAGTypeLegalizer::PromoteIntRes_VSELECT(SDNode *N) {
744  SDValue Mask = N->getOperand(0);
745
746  SDValue LHS = GetPromotedInteger(N->getOperand(1));
747  SDValue RHS = GetPromotedInteger(N->getOperand(2));
748  return DAG.getNode(ISD::VSELECT, SDLoc(N),
749                     LHS.getValueType(), Mask, LHS, RHS);
750}
751
752SDValue DAGTypeLegalizer::PromoteIntRes_SELECT_CC(SDNode *N) {
753  SDValue LHS = GetPromotedInteger(N->getOperand(2));
754  SDValue RHS = GetPromotedInteger(N->getOperand(3));
755  return DAG.getNode(ISD::SELECT_CC, SDLoc(N),
756                     LHS.getValueType(), N->getOperand(0),
757                     N->getOperand(1), LHS, RHS, N->getOperand(4));
758}
759
760SDValue DAGTypeLegalizer::PromoteIntRes_SETCC(SDNode *N) {
761  EVT InVT = N->getOperand(0).getValueType();
762  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
763
764  EVT SVT = getSetCCResultType(InVT);
765
766  // If we got back a type that needs to be promoted, this likely means the
767  // the input type also needs to be promoted. So get the promoted type for
768  // the input and try the query again.
769  if (getTypeAction(SVT) == TargetLowering::TypePromoteInteger) {
770    if (getTypeAction(InVT) == TargetLowering::TypePromoteInteger) {
771      InVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
772      SVT = getSetCCResultType(InVT);
773    } else {
774      // Input type isn't promoted, just use the default promoted type.
775      SVT = NVT;
776    }
777  }
778
779  SDLoc dl(N);
780  assert(SVT.isVector() == N->getOperand(0).getValueType().isVector() &&
781         "Vector compare must return a vector result!");
782
783  // Get the SETCC result using the canonical SETCC type.
784  SDValue SetCC = DAG.getNode(N->getOpcode(), dl, SVT, N->getOperand(0),
785                              N->getOperand(1), N->getOperand(2));
786
787  // Convert to the expected type.
788  return DAG.getSExtOrTrunc(SetCC, dl, NVT);
789}
790
791SDValue DAGTypeLegalizer::PromoteIntRes_SHL(SDNode *N) {
792  SDValue LHS = GetPromotedInteger(N->getOperand(0));
793  SDValue RHS = N->getOperand(1);
794  if (getTypeAction(RHS.getValueType()) == TargetLowering::TypePromoteInteger)
795    RHS = ZExtPromotedInteger(RHS);
796  return DAG.getNode(ISD::SHL, SDLoc(N), LHS.getValueType(), LHS, RHS);
797}
798
799SDValue DAGTypeLegalizer::PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N) {
800  SDValue Op = GetPromotedInteger(N->getOperand(0));
801  return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N),
802                     Op.getValueType(), Op, N->getOperand(1));
803}
804
805SDValue DAGTypeLegalizer::PromoteIntRes_SimpleIntBinOp(SDNode *N) {
806  // The input may have strange things in the top bits of the registers, but
807  // these operations don't care.  They may have weird bits going out, but
808  // that too is okay if they are integer operations.
809  SDValue LHS = GetPromotedInteger(N->getOperand(0));
810  SDValue RHS = GetPromotedInteger(N->getOperand(1));
811  return DAG.getNode(N->getOpcode(), SDLoc(N),
812                     LHS.getValueType(), LHS, RHS);
813}
814
815SDValue DAGTypeLegalizer::PromoteIntRes_SExtIntBinOp(SDNode *N) {
816  // Sign extend the input.
817  SDValue LHS = SExtPromotedInteger(N->getOperand(0));
818  SDValue RHS = SExtPromotedInteger(N->getOperand(1));
819  return DAG.getNode(N->getOpcode(), SDLoc(N),
820                     LHS.getValueType(), LHS, RHS);
821}
822
823SDValue DAGTypeLegalizer::PromoteIntRes_ZExtIntBinOp(SDNode *N) {
824  // Zero extend the input.
825  SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
826  SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
827  return DAG.getNode(N->getOpcode(), SDLoc(N),
828                     LHS.getValueType(), LHS, RHS);
829}
830
831SDValue DAGTypeLegalizer::PromoteIntRes_SRA(SDNode *N) {
832  // The input value must be properly sign extended.
833  SDValue LHS = SExtPromotedInteger(N->getOperand(0));
834  SDValue RHS = N->getOperand(1);
835  if (getTypeAction(RHS.getValueType()) == TargetLowering::TypePromoteInteger)
836    RHS = ZExtPromotedInteger(RHS);
837  return DAG.getNode(ISD::SRA, SDLoc(N), LHS.getValueType(), LHS, RHS);
838}
839
840SDValue DAGTypeLegalizer::PromoteIntRes_SRL(SDNode *N) {
841  // The input value must be properly zero extended.
842  SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
843  SDValue RHS = N->getOperand(1);
844  if (getTypeAction(RHS.getValueType()) == TargetLowering::TypePromoteInteger)
845    RHS = ZExtPromotedInteger(RHS);
846  return DAG.getNode(ISD::SRL, SDLoc(N), LHS.getValueType(), LHS, RHS);
847}
848
849SDValue DAGTypeLegalizer::PromoteIntRes_TRUNCATE(SDNode *N) {
850  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
851  SDValue Res;
852  SDValue InOp = N->getOperand(0);
853  SDLoc dl(N);
854
855  switch (getTypeAction(InOp.getValueType())) {
856  default: llvm_unreachable("Unknown type action!");
857  case TargetLowering::TypeLegal:
858  case TargetLowering::TypeExpandInteger:
859    Res = InOp;
860    break;
861  case TargetLowering::TypePromoteInteger:
862    Res = GetPromotedInteger(InOp);
863    break;
864  case TargetLowering::TypeSplitVector: {
865    EVT InVT = InOp.getValueType();
866    assert(InVT.isVector() && "Cannot split scalar types");
867    unsigned NumElts = InVT.getVectorNumElements();
868    assert(NumElts == NVT.getVectorNumElements() &&
869           "Dst and Src must have the same number of elements");
870    assert(isPowerOf2_32(NumElts) &&
871           "Promoted vector type must be a power of two");
872
873    SDValue EOp1, EOp2;
874    GetSplitVector(InOp, EOp1, EOp2);
875
876    EVT HalfNVT = EVT::getVectorVT(*DAG.getContext(), NVT.getScalarType(),
877                                   NumElts/2);
878    EOp1 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp1);
879    EOp2 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp2);
880
881    return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, EOp1, EOp2);
882  }
883  case TargetLowering::TypeWidenVector: {
884    SDValue WideInOp = GetWidenedVector(InOp);
885
886    // Truncate widened InOp.
887    unsigned NumElem = WideInOp.getValueType().getVectorNumElements();
888    EVT TruncVT = EVT::getVectorVT(*DAG.getContext(),
889                                   N->getValueType(0).getScalarType(), NumElem);
890    SDValue WideTrunc = DAG.getNode(ISD::TRUNCATE, dl, TruncVT, WideInOp);
891
892    // Zero extend so that the elements are of same type as those of NVT
893    EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), NVT.getVectorElementType(),
894                                 NumElem);
895    SDValue WideExt = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, WideTrunc);
896
897    // Extract the low NVT subvector.
898    MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
899    SDValue ZeroIdx = DAG.getConstant(0, dl, IdxTy);
900    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT, WideExt, ZeroIdx);
901  }
902  }
903
904  // Truncate to NVT instead of VT
905  return DAG.getNode(ISD::TRUNCATE, dl, NVT, Res);
906}
907
908SDValue DAGTypeLegalizer::PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo) {
909  if (ResNo == 1)
910    return PromoteIntRes_Overflow(N);
911
912  // The operation overflowed iff the result in the larger type is not the
913  // zero extension of its truncation to the original type.
914  SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
915  SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
916  EVT OVT = N->getOperand(0).getValueType();
917  EVT NVT = LHS.getValueType();
918  SDLoc dl(N);
919
920  // Do the arithmetic in the larger type.
921  unsigned Opcode = N->getOpcode() == ISD::UADDO ? ISD::ADD : ISD::SUB;
922  SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
923
924  // Calculate the overflow flag: zero extend the arithmetic result from
925  // the original type.
926  SDValue Ofl = DAG.getZeroExtendInReg(Res, dl, OVT.getScalarType());
927  // Overflowed if and only if this is not equal to Res.
928  Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
929
930  // Use the calculated overflow everywhere.
931  ReplaceValueWith(SDValue(N, 1), Ofl);
932
933  return Res;
934}
935
936// Handle promotion for the ADDE/SUBE/ADDCARRY/SUBCARRY nodes. Notice that
937// the third operand of ADDE/SUBE nodes is carry flag, which differs from
938// the ADDCARRY/SUBCARRY nodes in that the third operand is carry Boolean.
939SDValue DAGTypeLegalizer::PromoteIntRes_ADDSUBCARRY(SDNode *N, unsigned ResNo) {
940  if (ResNo == 1)
941    return PromoteIntRes_Overflow(N);
942
943  // We need to sign-extend the operands so the carry value computed by the
944  // wide operation will be equivalent to the carry value computed by the
945  // narrow operation.
946  // An ADDCARRY can generate carry only if any of the operands has its
947  // most significant bit set. Sign extension propagates the most significant
948  // bit into the higher bits which means the extra bit that the narrow
949  // addition would need (i.e. the carry) will be propagated through the higher
950  // bits of the wide addition.
951  // A SUBCARRY can generate borrow only if LHS < RHS and this property will be
952  // preserved by sign extension.
953  SDValue LHS = SExtPromotedInteger(N->getOperand(0));
954  SDValue RHS = SExtPromotedInteger(N->getOperand(1));
955
956  EVT ValueVTs[] = {LHS.getValueType(), N->getValueType(1)};
957
958  // Do the arithmetic in the wide type.
959  SDValue Res = DAG.getNode(N->getOpcode(), SDLoc(N), DAG.getVTList(ValueVTs),
960                            LHS, RHS, N->getOperand(2));
961
962  // Update the users of the original carry/borrow value.
963  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
964
965  return SDValue(Res.getNode(), 0);
966}
967
968SDValue DAGTypeLegalizer::PromoteIntRes_ABS(SDNode *N) {
969  SDValue Op0 = SExtPromotedInteger(N->getOperand(0));
970  return DAG.getNode(ISD::ABS, SDLoc(N), Op0.getValueType(), Op0);
971}
972
973SDValue DAGTypeLegalizer::PromoteIntRes_XMULO(SDNode *N, unsigned ResNo) {
974  // Promote the overflow bit trivially.
975  if (ResNo == 1)
976    return PromoteIntRes_Overflow(N);
977
978  SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
979  SDLoc DL(N);
980  EVT SmallVT = LHS.getValueType();
981
982  // To determine if the result overflowed in a larger type, we extend the
983  // input to the larger type, do the multiply (checking if it overflows),
984  // then also check the high bits of the result to see if overflow happened
985  // there.
986  if (N->getOpcode() == ISD::SMULO) {
987    LHS = SExtPromotedInteger(LHS);
988    RHS = SExtPromotedInteger(RHS);
989  } else {
990    LHS = ZExtPromotedInteger(LHS);
991    RHS = ZExtPromotedInteger(RHS);
992  }
993  SDVTList VTs = DAG.getVTList(LHS.getValueType(), N->getValueType(1));
994  SDValue Mul = DAG.getNode(N->getOpcode(), DL, VTs, LHS, RHS);
995
996  // Overflow occurred if it occurred in the larger type, or if the high part
997  // of the result does not zero/sign-extend the low part.  Check this second
998  // possibility first.
999  SDValue Overflow;
1000  if (N->getOpcode() == ISD::UMULO) {
1001    // Unsigned overflow occurred if the high part is non-zero.
1002    unsigned Shift = SmallVT.getScalarSizeInBits();
1003    EVT ShiftTy = getShiftAmountTyForConstant(Shift, Mul.getValueType(),
1004                                              TLI, DAG);
1005    SDValue Hi = DAG.getNode(ISD::SRL, DL, Mul.getValueType(), Mul,
1006                             DAG.getConstant(Shift, DL, ShiftTy));
1007    Overflow = DAG.getSetCC(DL, N->getValueType(1), Hi,
1008                            DAG.getConstant(0, DL, Hi.getValueType()),
1009                            ISD::SETNE);
1010  } else {
1011    // Signed overflow occurred if the high part does not sign extend the low.
1012    SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Mul.getValueType(),
1013                               Mul, DAG.getValueType(SmallVT));
1014    Overflow = DAG.getSetCC(DL, N->getValueType(1), SExt, Mul, ISD::SETNE);
1015  }
1016
1017  // The only other way for overflow to occur is if the multiplication in the
1018  // larger type itself overflowed.
1019  Overflow = DAG.getNode(ISD::OR, DL, N->getValueType(1), Overflow,
1020                         SDValue(Mul.getNode(), 1));
1021
1022  // Use the calculated overflow everywhere.
1023  ReplaceValueWith(SDValue(N, 1), Overflow);
1024  return Mul;
1025}
1026
1027SDValue DAGTypeLegalizer::PromoteIntRes_UNDEF(SDNode *N) {
1028  return DAG.getUNDEF(TLI.getTypeToTransformTo(*DAG.getContext(),
1029                                               N->getValueType(0)));
1030}
1031
1032SDValue DAGTypeLegalizer::PromoteIntRes_VAARG(SDNode *N) {
1033  SDValue Chain = N->getOperand(0); // Get the chain.
1034  SDValue Ptr = N->getOperand(1); // Get the pointer.
1035  EVT VT = N->getValueType(0);
1036  SDLoc dl(N);
1037
1038  MVT RegVT = TLI.getRegisterType(*DAG.getContext(), VT);
1039  unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), VT);
1040  // The argument is passed as NumRegs registers of type RegVT.
1041
1042  SmallVector<SDValue, 8> Parts(NumRegs);
1043  for (unsigned i = 0; i < NumRegs; ++i) {
1044    Parts[i] = DAG.getVAArg(RegVT, dl, Chain, Ptr, N->getOperand(2),
1045                            N->getConstantOperandVal(3));
1046    Chain = Parts[i].getValue(1);
1047  }
1048
1049  // Handle endianness of the load.
1050  if (DAG.getDataLayout().isBigEndian())
1051    std::reverse(Parts.begin(), Parts.end());
1052
1053  // Assemble the parts in the promoted type.
1054  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1055  SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[0]);
1056  for (unsigned i = 1; i < NumRegs; ++i) {
1057    SDValue Part = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[i]);
1058    // Shift it to the right position and "or" it in.
1059    Part = DAG.getNode(ISD::SHL, dl, NVT, Part,
1060                       DAG.getConstant(i * RegVT.getSizeInBits(), dl,
1061                                       TLI.getPointerTy(DAG.getDataLayout())));
1062    Res = DAG.getNode(ISD::OR, dl, NVT, Res, Part);
1063  }
1064
1065  // Modified the chain result - switch anything that used the old chain to
1066  // use the new one.
1067  ReplaceValueWith(SDValue(N, 1), Chain);
1068
1069  return Res;
1070}
1071
1072//===----------------------------------------------------------------------===//
1073//  Integer Operand Promotion
1074//===----------------------------------------------------------------------===//
1075
1076/// PromoteIntegerOperand - This method is called when the specified operand of
1077/// the specified node is found to need promotion.  At this point, all of the
1078/// result types of the node are known to be legal, but other operands of the
1079/// node may need promotion or expansion as well as the specified one.
1080bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) {
1081  LLVM_DEBUG(dbgs() << "Promote integer operand: "; N->dump(&DAG);
1082             dbgs() << "\n");
1083  SDValue Res = SDValue();
1084
1085  if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false)) {
1086    LLVM_DEBUG(dbgs() << "Node has been custom lowered, done\n");
1087    return false;
1088  }
1089
1090  switch (N->getOpcode()) {
1091    default:
1092  #ifndef NDEBUG
1093    dbgs() << "PromoteIntegerOperand Op #" << OpNo << ": ";
1094    N->dump(&DAG); dbgs() << "\n";
1095  #endif
1096    llvm_unreachable("Do not know how to promote this operator's operand!");
1097
1098  case ISD::ANY_EXTEND:   Res = PromoteIntOp_ANY_EXTEND(N); break;
1099  case ISD::ATOMIC_STORE:
1100    Res = PromoteIntOp_ATOMIC_STORE(cast<AtomicSDNode>(N));
1101    break;
1102  case ISD::BITCAST:      Res = PromoteIntOp_BITCAST(N); break;
1103  case ISD::BR_CC:        Res = PromoteIntOp_BR_CC(N, OpNo); break;
1104  case ISD::BRCOND:       Res = PromoteIntOp_BRCOND(N, OpNo); break;
1105  case ISD::BUILD_PAIR:   Res = PromoteIntOp_BUILD_PAIR(N); break;
1106  case ISD::BUILD_VECTOR: Res = PromoteIntOp_BUILD_VECTOR(N); break;
1107  case ISD::CONCAT_VECTORS: Res = PromoteIntOp_CONCAT_VECTORS(N); break;
1108  case ISD::EXTRACT_VECTOR_ELT: Res = PromoteIntOp_EXTRACT_VECTOR_ELT(N); break;
1109  case ISD::INSERT_VECTOR_ELT:
1110                          Res = PromoteIntOp_INSERT_VECTOR_ELT(N, OpNo);break;
1111  case ISD::SCALAR_TO_VECTOR:
1112                          Res = PromoteIntOp_SCALAR_TO_VECTOR(N); break;
1113  case ISD::VSELECT:
1114  case ISD::SELECT:       Res = PromoteIntOp_SELECT(N, OpNo); break;
1115  case ISD::SELECT_CC:    Res = PromoteIntOp_SELECT_CC(N, OpNo); break;
1116  case ISD::SETCC:        Res = PromoteIntOp_SETCC(N, OpNo); break;
1117  case ISD::SIGN_EXTEND:  Res = PromoteIntOp_SIGN_EXTEND(N); break;
1118  case ISD::SINT_TO_FP:   Res = PromoteIntOp_SINT_TO_FP(N); break;
1119  case ISD::STORE:        Res = PromoteIntOp_STORE(cast<StoreSDNode>(N),
1120                                                   OpNo); break;
1121  case ISD::MSTORE:       Res = PromoteIntOp_MSTORE(cast<MaskedStoreSDNode>(N),
1122                                                    OpNo); break;
1123  case ISD::MLOAD:        Res = PromoteIntOp_MLOAD(cast<MaskedLoadSDNode>(N),
1124                                                    OpNo); break;
1125  case ISD::MGATHER:  Res = PromoteIntOp_MGATHER(cast<MaskedGatherSDNode>(N),
1126                                                 OpNo); break;
1127  case ISD::MSCATTER: Res = PromoteIntOp_MSCATTER(cast<MaskedScatterSDNode>(N),
1128                                                  OpNo); break;
1129  case ISD::TRUNCATE:     Res = PromoteIntOp_TRUNCATE(N); break;
1130  case ISD::FP16_TO_FP:
1131  case ISD::UINT_TO_FP:   Res = PromoteIntOp_UINT_TO_FP(N); break;
1132  case ISD::ZERO_EXTEND:  Res = PromoteIntOp_ZERO_EXTEND(N); break;
1133  case ISD::EXTRACT_SUBVECTOR: Res = PromoteIntOp_EXTRACT_SUBVECTOR(N); break;
1134
1135  case ISD::SHL:
1136  case ISD::SRA:
1137  case ISD::SRL:
1138  case ISD::ROTL:
1139  case ISD::ROTR: Res = PromoteIntOp_Shift(N); break;
1140
1141  case ISD::ADDCARRY:
1142  case ISD::SUBCARRY: Res = PromoteIntOp_ADDSUBCARRY(N, OpNo); break;
1143
1144  case ISD::FRAMEADDR:
1145  case ISD::RETURNADDR: Res = PromoteIntOp_FRAMERETURNADDR(N); break;
1146
1147  case ISD::PREFETCH: Res = PromoteIntOp_PREFETCH(N, OpNo); break;
1148
1149  case ISD::SMULFIX:
1150  case ISD::SMULFIXSAT:
1151  case ISD::UMULFIX: Res = PromoteIntOp_MULFIX(N); break;
1152
1153  case ISD::FPOWI: Res = PromoteIntOp_FPOWI(N); break;
1154
1155  case ISD::VECREDUCE_ADD:
1156  case ISD::VECREDUCE_MUL:
1157  case ISD::VECREDUCE_AND:
1158  case ISD::VECREDUCE_OR:
1159  case ISD::VECREDUCE_XOR:
1160  case ISD::VECREDUCE_SMAX:
1161  case ISD::VECREDUCE_SMIN:
1162  case ISD::VECREDUCE_UMAX:
1163  case ISD::VECREDUCE_UMIN: Res = PromoteIntOp_VECREDUCE(N); break;
1164  }
1165
1166  // If the result is null, the sub-method took care of registering results etc.
1167  if (!Res.getNode()) return false;
1168
1169  // If the result is N, the sub-method updated N in place.  Tell the legalizer
1170  // core about this.
1171  if (Res.getNode() == N)
1172    return true;
1173
1174  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
1175         "Invalid operand expansion");
1176
1177  ReplaceValueWith(SDValue(N, 0), Res);
1178  return false;
1179}
1180
1181/// PromoteSetCCOperands - Promote the operands of a comparison.  This code is
1182/// shared among BR_CC, SELECT_CC, and SETCC handlers.
1183void DAGTypeLegalizer::PromoteSetCCOperands(SDValue &NewLHS,SDValue &NewRHS,
1184                                            ISD::CondCode CCCode) {
1185  // We have to insert explicit sign or zero extends. Note that we could
1186  // insert sign extends for ALL conditions. For those operations where either
1187  // zero or sign extension would be valid, use SExtOrZExtPromotedInteger
1188  // which will choose the cheapest for the target.
1189  switch (CCCode) {
1190  default: llvm_unreachable("Unknown integer comparison!");
1191  case ISD::SETEQ:
1192  case ISD::SETNE: {
1193    SDValue OpL = GetPromotedInteger(NewLHS);
1194    SDValue OpR = GetPromotedInteger(NewRHS);
1195
1196    // We would prefer to promote the comparison operand with sign extension.
1197    // If the width of OpL/OpR excluding the duplicated sign bits is no greater
1198    // than the width of NewLHS/NewRH, we can avoid inserting real truncate
1199    // instruction, which is redundant eventually.
1200    unsigned OpLEffectiveBits =
1201        OpL.getScalarValueSizeInBits() - DAG.ComputeNumSignBits(OpL) + 1;
1202    unsigned OpREffectiveBits =
1203        OpR.getScalarValueSizeInBits() - DAG.ComputeNumSignBits(OpR) + 1;
1204    if (OpLEffectiveBits <= NewLHS.getScalarValueSizeInBits() &&
1205        OpREffectiveBits <= NewRHS.getScalarValueSizeInBits()) {
1206      NewLHS = OpL;
1207      NewRHS = OpR;
1208    } else {
1209      NewLHS = SExtOrZExtPromotedInteger(NewLHS);
1210      NewRHS = SExtOrZExtPromotedInteger(NewRHS);
1211    }
1212    break;
1213  }
1214  case ISD::SETUGE:
1215  case ISD::SETUGT:
1216  case ISD::SETULE:
1217  case ISD::SETULT:
1218    NewLHS = SExtOrZExtPromotedInteger(NewLHS);
1219    NewRHS = SExtOrZExtPromotedInteger(NewRHS);
1220    break;
1221  case ISD::SETGE:
1222  case ISD::SETGT:
1223  case ISD::SETLT:
1224  case ISD::SETLE:
1225    NewLHS = SExtPromotedInteger(NewLHS);
1226    NewRHS = SExtPromotedInteger(NewRHS);
1227    break;
1228  }
1229}
1230
1231SDValue DAGTypeLegalizer::PromoteIntOp_ANY_EXTEND(SDNode *N) {
1232  SDValue Op = GetPromotedInteger(N->getOperand(0));
1233  return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), N->getValueType(0), Op);
1234}
1235
1236SDValue DAGTypeLegalizer::PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N) {
1237  SDValue Op2 = GetPromotedInteger(N->getOperand(2));
1238  return DAG.getAtomic(N->getOpcode(), SDLoc(N), N->getMemoryVT(),
1239                       N->getChain(), N->getBasePtr(), Op2, N->getMemOperand());
1240}
1241
1242SDValue DAGTypeLegalizer::PromoteIntOp_BITCAST(SDNode *N) {
1243  // This should only occur in unusual situations like bitcasting to an
1244  // x86_fp80, so just turn it into a store+load
1245  return CreateStackStoreLoad(N->getOperand(0), N->getValueType(0));
1246}
1247
1248SDValue DAGTypeLegalizer::PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo) {
1249  assert(OpNo == 2 && "Don't know how to promote this operand!");
1250
1251  SDValue LHS = N->getOperand(2);
1252  SDValue RHS = N->getOperand(3);
1253  PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(1))->get());
1254
1255  // The chain (Op#0), CC (#1) and basic block destination (Op#4) are always
1256  // legal types.
1257  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
1258                                N->getOperand(1), LHS, RHS, N->getOperand(4)),
1259                 0);
1260}
1261
1262SDValue DAGTypeLegalizer::PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo) {
1263  assert(OpNo == 1 && "only know how to promote condition");
1264
1265  // Promote all the way up to the canonical SetCC type.
1266  SDValue Cond = PromoteTargetBoolean(N->getOperand(1), MVT::Other);
1267
1268  // The chain (Op#0) and basic block destination (Op#2) are always legal types.
1269  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Cond,
1270                                        N->getOperand(2)), 0);
1271}
1272
1273SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_PAIR(SDNode *N) {
1274  // Since the result type is legal, the operands must promote to it.
1275  EVT OVT = N->getOperand(0).getValueType();
1276  SDValue Lo = ZExtPromotedInteger(N->getOperand(0));
1277  SDValue Hi = GetPromotedInteger(N->getOperand(1));
1278  assert(Lo.getValueType() == N->getValueType(0) && "Operand over promoted?");
1279  SDLoc dl(N);
1280
1281  Hi = DAG.getNode(ISD::SHL, dl, N->getValueType(0), Hi,
1282                   DAG.getConstant(OVT.getSizeInBits(), dl,
1283                                   TLI.getPointerTy(DAG.getDataLayout())));
1284  return DAG.getNode(ISD::OR, dl, N->getValueType(0), Lo, Hi);
1285}
1286
1287SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) {
1288  // The vector type is legal but the element type is not.  This implies
1289  // that the vector is a power-of-two in length and that the element
1290  // type does not have a strange size (eg: it is not i1).
1291  EVT VecVT = N->getValueType(0);
1292  unsigned NumElts = VecVT.getVectorNumElements();
1293  assert(!((NumElts & 1) && (!TLI.isTypeLegal(VecVT))) &&
1294         "Legal vector of one illegal element?");
1295
1296  // Promote the inserted value.  The type does not need to match the
1297  // vector element type.  Check that any extra bits introduced will be
1298  // truncated away.
1299  assert(N->getOperand(0).getValueSizeInBits() >=
1300         N->getValueType(0).getScalarSizeInBits() &&
1301         "Type of inserted value narrower than vector element type!");
1302
1303  SmallVector<SDValue, 16> NewOps;
1304  for (unsigned i = 0; i < NumElts; ++i)
1305    NewOps.push_back(GetPromotedInteger(N->getOperand(i)));
1306
1307  return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
1308}
1309
1310SDValue DAGTypeLegalizer::PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N,
1311                                                         unsigned OpNo) {
1312  if (OpNo == 1) {
1313    // Promote the inserted value.  This is valid because the type does not
1314    // have to match the vector element type.
1315
1316    // Check that any extra bits introduced will be truncated away.
1317    assert(N->getOperand(1).getValueSizeInBits() >=
1318           N->getValueType(0).getScalarSizeInBits() &&
1319           "Type of inserted value narrower than vector element type!");
1320    return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
1321                                  GetPromotedInteger(N->getOperand(1)),
1322                                  N->getOperand(2)),
1323                   0);
1324  }
1325
1326  assert(OpNo == 2 && "Different operand and result vector types?");
1327
1328  // Promote the index.
1329  SDValue Idx = DAG.getZExtOrTrunc(N->getOperand(2), SDLoc(N),
1330                                   TLI.getVectorIdxTy(DAG.getDataLayout()));
1331  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
1332                                N->getOperand(1), Idx), 0);
1333}
1334
1335SDValue DAGTypeLegalizer::PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N) {
1336  // Integer SCALAR_TO_VECTOR operands are implicitly truncated, so just promote
1337  // the operand in place.
1338  return SDValue(DAG.UpdateNodeOperands(N,
1339                                GetPromotedInteger(N->getOperand(0))), 0);
1340}
1341
1342SDValue DAGTypeLegalizer::PromoteIntOp_SELECT(SDNode *N, unsigned OpNo) {
1343  assert(OpNo == 0 && "Only know how to promote the condition!");
1344  SDValue Cond = N->getOperand(0);
1345  EVT OpTy = N->getOperand(1).getValueType();
1346
1347  if (N->getOpcode() == ISD::VSELECT)
1348    if (SDValue Res = WidenVSELECTAndMask(N))
1349      return Res;
1350
1351  // Promote all the way up to the canonical SetCC type.
1352  EVT OpVT = N->getOpcode() == ISD::SELECT ? OpTy.getScalarType() : OpTy;
1353  Cond = PromoteTargetBoolean(Cond, OpVT);
1354
1355  return SDValue(DAG.UpdateNodeOperands(N, Cond, N->getOperand(1),
1356                                        N->getOperand(2)), 0);
1357}
1358
1359SDValue DAGTypeLegalizer::PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo) {
1360  assert(OpNo == 0 && "Don't know how to promote this operand!");
1361
1362  SDValue LHS = N->getOperand(0);
1363  SDValue RHS = N->getOperand(1);
1364  PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(4))->get());
1365
1366  // The CC (#4) and the possible return values (#2 and #3) have legal types.
1367  return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2),
1368                                N->getOperand(3), N->getOperand(4)), 0);
1369}
1370
1371SDValue DAGTypeLegalizer::PromoteIntOp_SETCC(SDNode *N, unsigned OpNo) {
1372  assert(OpNo == 0 && "Don't know how to promote this operand!");
1373
1374  SDValue LHS = N->getOperand(0);
1375  SDValue RHS = N->getOperand(1);
1376  PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(2))->get());
1377
1378  // The CC (#2) is always legal.
1379  return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2)), 0);
1380}
1381
1382SDValue DAGTypeLegalizer::PromoteIntOp_Shift(SDNode *N) {
1383  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
1384                                ZExtPromotedInteger(N->getOperand(1))), 0);
1385}
1386
1387SDValue DAGTypeLegalizer::PromoteIntOp_SIGN_EXTEND(SDNode *N) {
1388  SDValue Op = GetPromotedInteger(N->getOperand(0));
1389  SDLoc dl(N);
1390  Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
1391  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(),
1392                     Op, DAG.getValueType(N->getOperand(0).getValueType()));
1393}
1394
1395SDValue DAGTypeLegalizer::PromoteIntOp_SINT_TO_FP(SDNode *N) {
1396  return SDValue(DAG.UpdateNodeOperands(N,
1397                                SExtPromotedInteger(N->getOperand(0))), 0);
1398}
1399
1400SDValue DAGTypeLegalizer::PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo){
1401  assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
1402  SDValue Ch = N->getChain(), Ptr = N->getBasePtr();
1403  SDLoc dl(N);
1404
1405  SDValue Val = GetPromotedInteger(N->getValue());  // Get promoted value.
1406
1407  // Truncate the value and store the result.
1408  return DAG.getTruncStore(Ch, dl, Val, Ptr,
1409                           N->getMemoryVT(), N->getMemOperand());
1410}
1411
1412SDValue DAGTypeLegalizer::PromoteIntOp_MSTORE(MaskedStoreSDNode *N,
1413                                              unsigned OpNo) {
1414
1415  SDValue DataOp = N->getValue();
1416  EVT DataVT = DataOp.getValueType();
1417  SDValue Mask = N->getMask();
1418  SDLoc dl(N);
1419
1420  bool TruncateStore = false;
1421  if (OpNo == 3) {
1422    Mask = PromoteTargetBoolean(Mask, DataVT);
1423    // Update in place.
1424    SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end());
1425    NewOps[3] = Mask;
1426    return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
1427  } else { // Data operand
1428    assert(OpNo == 1 && "Unexpected operand for promotion");
1429    DataOp = GetPromotedInteger(DataOp);
1430    TruncateStore = true;
1431  }
1432
1433  return DAG.getMaskedStore(N->getChain(), dl, DataOp, N->getBasePtr(), Mask,
1434                            N->getMemoryVT(), N->getMemOperand(),
1435                            TruncateStore, N->isCompressingStore());
1436}
1437
1438SDValue DAGTypeLegalizer::PromoteIntOp_MLOAD(MaskedLoadSDNode *N,
1439                                             unsigned OpNo) {
1440  assert(OpNo == 2 && "Only know how to promote the mask!");
1441  EVT DataVT = N->getValueType(0);
1442  SDValue Mask = PromoteTargetBoolean(N->getOperand(OpNo), DataVT);
1443  SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end());
1444  NewOps[OpNo] = Mask;
1445  return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
1446}
1447
1448SDValue DAGTypeLegalizer::PromoteIntOp_MGATHER(MaskedGatherSDNode *N,
1449                                               unsigned OpNo) {
1450
1451  SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end());
1452  if (OpNo == 2) {
1453    // The Mask
1454    EVT DataVT = N->getValueType(0);
1455    NewOps[OpNo] = PromoteTargetBoolean(N->getOperand(OpNo), DataVT);
1456  } else if (OpNo == 4) {
1457    // Need to sign extend the index since the bits will likely be used.
1458    NewOps[OpNo] = SExtPromotedInteger(N->getOperand(OpNo));
1459  } else
1460    NewOps[OpNo] = GetPromotedInteger(N->getOperand(OpNo));
1461
1462  return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
1463}
1464
1465SDValue DAGTypeLegalizer::PromoteIntOp_MSCATTER(MaskedScatterSDNode *N,
1466                                                unsigned OpNo) {
1467  SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end());
1468  if (OpNo == 2) {
1469    // The Mask
1470    EVT DataVT = N->getValue().getValueType();
1471    NewOps[OpNo] = PromoteTargetBoolean(N->getOperand(OpNo), DataVT);
1472  } else if (OpNo == 4) {
1473    // Need to sign extend the index since the bits will likely be used.
1474    NewOps[OpNo] = SExtPromotedInteger(N->getOperand(OpNo));
1475  } else
1476    NewOps[OpNo] = GetPromotedInteger(N->getOperand(OpNo));
1477  return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
1478}
1479
1480SDValue DAGTypeLegalizer::PromoteIntOp_TRUNCATE(SDNode *N) {
1481  SDValue Op = GetPromotedInteger(N->getOperand(0));
1482  return DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), Op);
1483}
1484
1485SDValue DAGTypeLegalizer::PromoteIntOp_UINT_TO_FP(SDNode *N) {
1486  return SDValue(DAG.UpdateNodeOperands(N,
1487                                ZExtPromotedInteger(N->getOperand(0))), 0);
1488}
1489
1490SDValue DAGTypeLegalizer::PromoteIntOp_ZERO_EXTEND(SDNode *N) {
1491  SDLoc dl(N);
1492  SDValue Op = GetPromotedInteger(N->getOperand(0));
1493  Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
1494  return DAG.getZeroExtendInReg(Op, dl,
1495                                N->getOperand(0).getValueType().getScalarType());
1496}
1497
1498SDValue DAGTypeLegalizer::PromoteIntOp_ADDSUBCARRY(SDNode *N, unsigned OpNo) {
1499  assert(OpNo == 2 && "Don't know how to promote this operand!");
1500
1501  SDValue LHS = N->getOperand(0);
1502  SDValue RHS = N->getOperand(1);
1503  SDValue Carry = N->getOperand(2);
1504  SDLoc DL(N);
1505
1506  Carry = PromoteTargetBoolean(Carry, LHS.getValueType());
1507
1508  return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, Carry), 0);
1509}
1510
1511SDValue DAGTypeLegalizer::PromoteIntOp_MULFIX(SDNode *N) {
1512  SDValue Op2 = ZExtPromotedInteger(N->getOperand(2));
1513  return SDValue(
1514      DAG.UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1), Op2), 0);
1515}
1516
1517SDValue DAGTypeLegalizer::PromoteIntOp_FRAMERETURNADDR(SDNode *N) {
1518  // Promote the RETURNADDR/FRAMEADDR argument to a supported integer width.
1519  SDValue Op = ZExtPromotedInteger(N->getOperand(0));
1520  return SDValue(DAG.UpdateNodeOperands(N, Op), 0);
1521}
1522
1523SDValue DAGTypeLegalizer::PromoteIntOp_PREFETCH(SDNode *N, unsigned OpNo) {
1524  assert(OpNo > 1 && "Don't know how to promote this operand!");
1525  // Promote the rw, locality, and cache type arguments to a supported integer
1526  // width.
1527  SDValue Op2 = ZExtPromotedInteger(N->getOperand(2));
1528  SDValue Op3 = ZExtPromotedInteger(N->getOperand(3));
1529  SDValue Op4 = ZExtPromotedInteger(N->getOperand(4));
1530  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1),
1531                                        Op2, Op3, Op4),
1532                 0);
1533}
1534
1535SDValue DAGTypeLegalizer::PromoteIntOp_FPOWI(SDNode *N) {
1536  SDValue Op = SExtPromotedInteger(N->getOperand(1));
1537  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Op), 0);
1538}
1539
1540SDValue DAGTypeLegalizer::PromoteIntOp_VECREDUCE(SDNode *N) {
1541  SDLoc dl(N);
1542  SDValue Op;
1543  switch (N->getOpcode()) {
1544  default: llvm_unreachable("Expected integer vector reduction");
1545  case ISD::VECREDUCE_ADD:
1546  case ISD::VECREDUCE_MUL:
1547  case ISD::VECREDUCE_AND:
1548  case ISD::VECREDUCE_OR:
1549  case ISD::VECREDUCE_XOR:
1550    Op = GetPromotedInteger(N->getOperand(0));
1551    break;
1552  case ISD::VECREDUCE_SMAX:
1553  case ISD::VECREDUCE_SMIN:
1554    Op = SExtPromotedInteger(N->getOperand(0));
1555    break;
1556  case ISD::VECREDUCE_UMAX:
1557  case ISD::VECREDUCE_UMIN:
1558    Op = ZExtPromotedInteger(N->getOperand(0));
1559    break;
1560  }
1561
1562  EVT EltVT = Op.getValueType().getVectorElementType();
1563  EVT VT = N->getValueType(0);
1564  if (VT.bitsGE(EltVT))
1565    return DAG.getNode(N->getOpcode(), SDLoc(N), VT, Op);
1566
1567  // Result size must be >= element size. If this is not the case after
1568  // promotion, also promote the result type and then truncate.
1569  SDValue Reduce = DAG.getNode(N->getOpcode(), dl, EltVT, Op);
1570  return DAG.getNode(ISD::TRUNCATE, dl, VT, Reduce);
1571}
1572
1573//===----------------------------------------------------------------------===//
1574//  Integer Result Expansion
1575//===----------------------------------------------------------------------===//
1576
1577/// ExpandIntegerResult - This method is called when the specified result of the
1578/// specified node is found to need expansion.  At this point, the node may also
1579/// have invalid operands or may have other results that need promotion, we just
1580/// know that (at least) one result needs expansion.
1581void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) {
1582  LLVM_DEBUG(dbgs() << "Expand integer result: "; N->dump(&DAG);
1583             dbgs() << "\n");
1584  SDValue Lo, Hi;
1585  Lo = Hi = SDValue();
1586
1587  // See if the target wants to custom expand this node.
1588  if (CustomLowerNode(N, N->getValueType(ResNo), true))
1589    return;
1590
1591  switch (N->getOpcode()) {
1592  default:
1593#ifndef NDEBUG
1594    dbgs() << "ExpandIntegerResult #" << ResNo << ": ";
1595    N->dump(&DAG); dbgs() << "\n";
1596#endif
1597    report_fatal_error("Do not know how to expand the result of this "
1598                       "operator!");
1599
1600  case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break;
1601  case ISD::SELECT:       SplitRes_SELECT(N, Lo, Hi); break;
1602  case ISD::SELECT_CC:    SplitRes_SELECT_CC(N, Lo, Hi); break;
1603  case ISD::UNDEF:        SplitRes_UNDEF(N, Lo, Hi); break;
1604
1605  case ISD::BITCAST:            ExpandRes_BITCAST(N, Lo, Hi); break;
1606  case ISD::BUILD_PAIR:         ExpandRes_BUILD_PAIR(N, Lo, Hi); break;
1607  case ISD::EXTRACT_ELEMENT:    ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break;
1608  case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break;
1609  case ISD::VAARG:              ExpandRes_VAARG(N, Lo, Hi); break;
1610
1611  case ISD::ANY_EXTEND:  ExpandIntRes_ANY_EXTEND(N, Lo, Hi); break;
1612  case ISD::AssertSext:  ExpandIntRes_AssertSext(N, Lo, Hi); break;
1613  case ISD::AssertZext:  ExpandIntRes_AssertZext(N, Lo, Hi); break;
1614  case ISD::BITREVERSE:  ExpandIntRes_BITREVERSE(N, Lo, Hi); break;
1615  case ISD::BSWAP:       ExpandIntRes_BSWAP(N, Lo, Hi); break;
1616  case ISD::Constant:    ExpandIntRes_Constant(N, Lo, Hi); break;
1617  case ISD::ABS:         ExpandIntRes_ABS(N, Lo, Hi); break;
1618  case ISD::CTLZ_ZERO_UNDEF:
1619  case ISD::CTLZ:        ExpandIntRes_CTLZ(N, Lo, Hi); break;
1620  case ISD::CTPOP:       ExpandIntRes_CTPOP(N, Lo, Hi); break;
1621  case ISD::CTTZ_ZERO_UNDEF:
1622  case ISD::CTTZ:        ExpandIntRes_CTTZ(N, Lo, Hi); break;
1623  case ISD::FLT_ROUNDS_: ExpandIntRes_FLT_ROUNDS(N, Lo, Hi); break;
1624  case ISD::FP_TO_SINT:  ExpandIntRes_FP_TO_SINT(N, Lo, Hi); break;
1625  case ISD::FP_TO_UINT:  ExpandIntRes_FP_TO_UINT(N, Lo, Hi); break;
1626  case ISD::LLROUND:     ExpandIntRes_LLROUND(N, Lo, Hi); break;
1627  case ISD::LLRINT:      ExpandIntRes_LLRINT(N, Lo, Hi); break;
1628  case ISD::LOAD:        ExpandIntRes_LOAD(cast<LoadSDNode>(N), Lo, Hi); break;
1629  case ISD::MUL:         ExpandIntRes_MUL(N, Lo, Hi); break;
1630  case ISD::READCYCLECOUNTER: ExpandIntRes_READCYCLECOUNTER(N, Lo, Hi); break;
1631  case ISD::SDIV:        ExpandIntRes_SDIV(N, Lo, Hi); break;
1632  case ISD::SIGN_EXTEND: ExpandIntRes_SIGN_EXTEND(N, Lo, Hi); break;
1633  case ISD::SIGN_EXTEND_INREG: ExpandIntRes_SIGN_EXTEND_INREG(N, Lo, Hi); break;
1634  case ISD::SREM:        ExpandIntRes_SREM(N, Lo, Hi); break;
1635  case ISD::TRUNCATE:    ExpandIntRes_TRUNCATE(N, Lo, Hi); break;
1636  case ISD::UDIV:        ExpandIntRes_UDIV(N, Lo, Hi); break;
1637  case ISD::UREM:        ExpandIntRes_UREM(N, Lo, Hi); break;
1638  case ISD::ZERO_EXTEND: ExpandIntRes_ZERO_EXTEND(N, Lo, Hi); break;
1639  case ISD::ATOMIC_LOAD: ExpandIntRes_ATOMIC_LOAD(N, Lo, Hi); break;
1640
1641  case ISD::ATOMIC_LOAD_ADD:
1642  case ISD::ATOMIC_LOAD_SUB:
1643  case ISD::ATOMIC_LOAD_AND:
1644  case ISD::ATOMIC_LOAD_CLR:
1645  case ISD::ATOMIC_LOAD_OR:
1646  case ISD::ATOMIC_LOAD_XOR:
1647  case ISD::ATOMIC_LOAD_NAND:
1648  case ISD::ATOMIC_LOAD_MIN:
1649  case ISD::ATOMIC_LOAD_MAX:
1650  case ISD::ATOMIC_LOAD_UMIN:
1651  case ISD::ATOMIC_LOAD_UMAX:
1652  case ISD::ATOMIC_SWAP:
1653  case ISD::ATOMIC_CMP_SWAP: {
1654    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(N);
1655    SplitInteger(Tmp.first, Lo, Hi);
1656    ReplaceValueWith(SDValue(N, 1), Tmp.second);
1657    break;
1658  }
1659  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
1660    AtomicSDNode *AN = cast<AtomicSDNode>(N);
1661    SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::Other);
1662    SDValue Tmp = DAG.getAtomicCmpSwap(
1663        ISD::ATOMIC_CMP_SWAP, SDLoc(N), AN->getMemoryVT(), VTs,
1664        N->getOperand(0), N->getOperand(1), N->getOperand(2), N->getOperand(3),
1665        AN->getMemOperand());
1666
1667    // Expanding to the strong ATOMIC_CMP_SWAP node means we can determine
1668    // success simply by comparing the loaded value against the ingoing
1669    // comparison.
1670    SDValue Success = DAG.getSetCC(SDLoc(N), N->getValueType(1), Tmp,
1671                                   N->getOperand(2), ISD::SETEQ);
1672
1673    SplitInteger(Tmp, Lo, Hi);
1674    ReplaceValueWith(SDValue(N, 1), Success);
1675    ReplaceValueWith(SDValue(N, 2), Tmp.getValue(1));
1676    break;
1677  }
1678
1679  case ISD::AND:
1680  case ISD::OR:
1681  case ISD::XOR: ExpandIntRes_Logical(N, Lo, Hi); break;
1682
1683  case ISD::UMAX:
1684  case ISD::SMAX:
1685  case ISD::UMIN:
1686  case ISD::SMIN: ExpandIntRes_MINMAX(N, Lo, Hi); break;
1687
1688  case ISD::ADD:
1689  case ISD::SUB: ExpandIntRes_ADDSUB(N, Lo, Hi); break;
1690
1691  case ISD::ADDC:
1692  case ISD::SUBC: ExpandIntRes_ADDSUBC(N, Lo, Hi); break;
1693
1694  case ISD::ADDE:
1695  case ISD::SUBE: ExpandIntRes_ADDSUBE(N, Lo, Hi); break;
1696
1697  case ISD::ADDCARRY:
1698  case ISD::SUBCARRY: ExpandIntRes_ADDSUBCARRY(N, Lo, Hi); break;
1699
1700  case ISD::SHL:
1701  case ISD::SRA:
1702  case ISD::SRL: ExpandIntRes_Shift(N, Lo, Hi); break;
1703
1704  case ISD::SADDO:
1705  case ISD::SSUBO: ExpandIntRes_SADDSUBO(N, Lo, Hi); break;
1706  case ISD::UADDO:
1707  case ISD::USUBO: ExpandIntRes_UADDSUBO(N, Lo, Hi); break;
1708  case ISD::UMULO:
1709  case ISD::SMULO: ExpandIntRes_XMULO(N, Lo, Hi); break;
1710
1711  case ISD::SADDSAT:
1712  case ISD::UADDSAT:
1713  case ISD::SSUBSAT:
1714  case ISD::USUBSAT: ExpandIntRes_ADDSUBSAT(N, Lo, Hi); break;
1715
1716  case ISD::SMULFIX:
1717  case ISD::SMULFIXSAT:
1718  case ISD::UMULFIX: ExpandIntRes_MULFIX(N, Lo, Hi); break;
1719
1720  case ISD::VECREDUCE_ADD:
1721  case ISD::VECREDUCE_MUL:
1722  case ISD::VECREDUCE_AND:
1723  case ISD::VECREDUCE_OR:
1724  case ISD::VECREDUCE_XOR:
1725  case ISD::VECREDUCE_SMAX:
1726  case ISD::VECREDUCE_SMIN:
1727  case ISD::VECREDUCE_UMAX:
1728  case ISD::VECREDUCE_UMIN: ExpandIntRes_VECREDUCE(N, Lo, Hi); break;
1729  }
1730
1731  // If Lo/Hi is null, the sub-method took care of registering results etc.
1732  if (Lo.getNode())
1733    SetExpandedInteger(SDValue(N, ResNo), Lo, Hi);
1734}
1735
1736/// Lower an atomic node to the appropriate builtin call.
1737std::pair <SDValue, SDValue> DAGTypeLegalizer::ExpandAtomic(SDNode *Node) {
1738  unsigned Opc = Node->getOpcode();
1739  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
1740  RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT);
1741  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!");
1742
1743  return ExpandChainLibCall(LC, Node, false);
1744}
1745
1746/// N is a shift by a value that needs to be expanded,
1747/// and the shift amount is a constant 'Amt'.  Expand the operation.
1748void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, const APInt &Amt,
1749                                             SDValue &Lo, SDValue &Hi) {
1750  SDLoc DL(N);
1751  // Expand the incoming operand to be shifted, so that we have its parts
1752  SDValue InL, InH;
1753  GetExpandedInteger(N->getOperand(0), InL, InH);
1754
1755  // Though Amt shouldn't usually be 0, it's possible. E.g. when legalization
1756  // splitted a vector shift, like this: <op1, op2> SHL <0, 2>.
1757  if (!Amt) {
1758    Lo = InL;
1759    Hi = InH;
1760    return;
1761  }
1762
1763  EVT NVT = InL.getValueType();
1764  unsigned VTBits = N->getValueType(0).getSizeInBits();
1765  unsigned NVTBits = NVT.getSizeInBits();
1766  EVT ShTy = N->getOperand(1).getValueType();
1767
1768  if (N->getOpcode() == ISD::SHL) {
1769    if (Amt.ugt(VTBits)) {
1770      Lo = Hi = DAG.getConstant(0, DL, NVT);
1771    } else if (Amt.ugt(NVTBits)) {
1772      Lo = DAG.getConstant(0, DL, NVT);
1773      Hi = DAG.getNode(ISD::SHL, DL,
1774                       NVT, InL, DAG.getConstant(Amt - NVTBits, DL, ShTy));
1775    } else if (Amt == NVTBits) {
1776      Lo = DAG.getConstant(0, DL, NVT);
1777      Hi = InL;
1778    } else {
1779      Lo = DAG.getNode(ISD::SHL, DL, NVT, InL, DAG.getConstant(Amt, DL, ShTy));
1780      Hi = DAG.getNode(ISD::OR, DL, NVT,
1781                       DAG.getNode(ISD::SHL, DL, NVT, InH,
1782                                   DAG.getConstant(Amt, DL, ShTy)),
1783                       DAG.getNode(ISD::SRL, DL, NVT, InL,
1784                                   DAG.getConstant(-Amt + NVTBits, DL, ShTy)));
1785    }
1786    return;
1787  }
1788
1789  if (N->getOpcode() == ISD::SRL) {
1790    if (Amt.ugt(VTBits)) {
1791      Lo = Hi = DAG.getConstant(0, DL, NVT);
1792    } else if (Amt.ugt(NVTBits)) {
1793      Lo = DAG.getNode(ISD::SRL, DL,
1794                       NVT, InH, DAG.getConstant(Amt - NVTBits, DL, ShTy));
1795      Hi = DAG.getConstant(0, DL, NVT);
1796    } else if (Amt == NVTBits) {
1797      Lo = InH;
1798      Hi = DAG.getConstant(0, DL, NVT);
1799    } else {
1800      Lo = DAG.getNode(ISD::OR, DL, NVT,
1801                       DAG.getNode(ISD::SRL, DL, NVT, InL,
1802                                   DAG.getConstant(Amt, DL, ShTy)),
1803                       DAG.getNode(ISD::SHL, DL, NVT, InH,
1804                                   DAG.getConstant(-Amt + NVTBits, DL, ShTy)));
1805      Hi = DAG.getNode(ISD::SRL, DL, NVT, InH, DAG.getConstant(Amt, DL, ShTy));
1806    }
1807    return;
1808  }
1809
1810  assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
1811  if (Amt.ugt(VTBits)) {
1812    Hi = Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
1813                          DAG.getConstant(NVTBits - 1, DL, ShTy));
1814  } else if (Amt.ugt(NVTBits)) {
1815    Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
1816                     DAG.getConstant(Amt - NVTBits, DL, ShTy));
1817    Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
1818                     DAG.getConstant(NVTBits - 1, DL, ShTy));
1819  } else if (Amt == NVTBits) {
1820    Lo = InH;
1821    Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
1822                     DAG.getConstant(NVTBits - 1, DL, ShTy));
1823  } else {
1824    Lo = DAG.getNode(ISD::OR, DL, NVT,
1825                     DAG.getNode(ISD::SRL, DL, NVT, InL,
1826                                 DAG.getConstant(Amt, DL, ShTy)),
1827                     DAG.getNode(ISD::SHL, DL, NVT, InH,
1828                                 DAG.getConstant(-Amt + NVTBits, DL, ShTy)));
1829    Hi = DAG.getNode(ISD::SRA, DL, NVT, InH, DAG.getConstant(Amt, DL, ShTy));
1830  }
1831}
1832
1833/// ExpandShiftWithKnownAmountBit - Try to determine whether we can simplify
1834/// this shift based on knowledge of the high bit of the shift amount.  If we
1835/// can tell this, we know that it is >= 32 or < 32, without knowing the actual
1836/// shift amount.
1837bool DAGTypeLegalizer::
1838ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
1839  SDValue Amt = N->getOperand(1);
1840  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1841  EVT ShTy = Amt.getValueType();
1842  unsigned ShBits = ShTy.getScalarSizeInBits();
1843  unsigned NVTBits = NVT.getScalarSizeInBits();
1844  assert(isPowerOf2_32(NVTBits) &&
1845         "Expanded integer type size not a power of two!");
1846  SDLoc dl(N);
1847
1848  APInt HighBitMask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits));
1849  KnownBits Known = DAG.computeKnownBits(N->getOperand(1));
1850
1851  // If we don't know anything about the high bits, exit.
1852  if (((Known.Zero|Known.One) & HighBitMask) == 0)
1853    return false;
1854
1855  // Get the incoming operand to be shifted.
1856  SDValue InL, InH;
1857  GetExpandedInteger(N->getOperand(0), InL, InH);
1858
1859  // If we know that any of the high bits of the shift amount are one, then we
1860  // can do this as a couple of simple shifts.
1861  if (Known.One.intersects(HighBitMask)) {
1862    // Mask out the high bit, which we know is set.
1863    Amt = DAG.getNode(ISD::AND, dl, ShTy, Amt,
1864                      DAG.getConstant(~HighBitMask, dl, ShTy));
1865
1866    switch (N->getOpcode()) {
1867    default: llvm_unreachable("Unknown shift");
1868    case ISD::SHL:
1869      Lo = DAG.getConstant(0, dl, NVT);              // Low part is zero.
1870      Hi = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); // High part from Lo part.
1871      return true;
1872    case ISD::SRL:
1873      Hi = DAG.getConstant(0, dl, NVT);              // Hi part is zero.
1874      Lo = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); // Lo part from Hi part.
1875      return true;
1876    case ISD::SRA:
1877      Hi = DAG.getNode(ISD::SRA, dl, NVT, InH,       // Sign extend high part.
1878                       DAG.getConstant(NVTBits - 1, dl, ShTy));
1879      Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); // Lo part from Hi part.
1880      return true;
1881    }
1882  }
1883
1884  // If we know that all of the high bits of the shift amount are zero, then we
1885  // can do this as a couple of simple shifts.
1886  if (HighBitMask.isSubsetOf(Known.Zero)) {
1887    // Calculate 31-x. 31 is used instead of 32 to avoid creating an undefined
1888    // shift if x is zero.  We can use XOR here because x is known to be smaller
1889    // than 32.
1890    SDValue Amt2 = DAG.getNode(ISD::XOR, dl, ShTy, Amt,
1891                               DAG.getConstant(NVTBits - 1, dl, ShTy));
1892
1893    unsigned Op1, Op2;
1894    switch (N->getOpcode()) {
1895    default: llvm_unreachable("Unknown shift");
1896    case ISD::SHL:  Op1 = ISD::SHL; Op2 = ISD::SRL; break;
1897    case ISD::SRL:
1898    case ISD::SRA:  Op1 = ISD::SRL; Op2 = ISD::SHL; break;
1899    }
1900
1901    // When shifting right the arithmetic for Lo and Hi is swapped.
1902    if (N->getOpcode() != ISD::SHL)
1903      std::swap(InL, InH);
1904
1905    // Use a little trick to get the bits that move from Lo to Hi. First
1906    // shift by one bit.
1907    SDValue Sh1 = DAG.getNode(Op2, dl, NVT, InL, DAG.getConstant(1, dl, ShTy));
1908    // Then compute the remaining shift with amount-1.
1909    SDValue Sh2 = DAG.getNode(Op2, dl, NVT, Sh1, Amt2);
1910
1911    Lo = DAG.getNode(N->getOpcode(), dl, NVT, InL, Amt);
1912    Hi = DAG.getNode(ISD::OR, dl, NVT, DAG.getNode(Op1, dl, NVT, InH, Amt),Sh2);
1913
1914    if (N->getOpcode() != ISD::SHL)
1915      std::swap(Hi, Lo);
1916    return true;
1917  }
1918
1919  return false;
1920}
1921
1922/// ExpandShiftWithUnknownAmountBit - Fully general expansion of integer shift
1923/// of any size.
1924bool DAGTypeLegalizer::
1925ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
1926  SDValue Amt = N->getOperand(1);
1927  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1928  EVT ShTy = Amt.getValueType();
1929  unsigned NVTBits = NVT.getSizeInBits();
1930  assert(isPowerOf2_32(NVTBits) &&
1931         "Expanded integer type size not a power of two!");
1932  SDLoc dl(N);
1933
1934  // Get the incoming operand to be shifted.
1935  SDValue InL, InH;
1936  GetExpandedInteger(N->getOperand(0), InL, InH);
1937
1938  SDValue NVBitsNode = DAG.getConstant(NVTBits, dl, ShTy);
1939  SDValue AmtExcess = DAG.getNode(ISD::SUB, dl, ShTy, Amt, NVBitsNode);
1940  SDValue AmtLack = DAG.getNode(ISD::SUB, dl, ShTy, NVBitsNode, Amt);
1941  SDValue isShort = DAG.getSetCC(dl, getSetCCResultType(ShTy),
1942                                 Amt, NVBitsNode, ISD::SETULT);
1943  SDValue isZero = DAG.getSetCC(dl, getSetCCResultType(ShTy),
1944                                Amt, DAG.getConstant(0, dl, ShTy),
1945                                ISD::SETEQ);
1946
1947  SDValue LoS, HiS, LoL, HiL;
1948  switch (N->getOpcode()) {
1949  default: llvm_unreachable("Unknown shift");
1950  case ISD::SHL:
1951    // Short: ShAmt < NVTBits
1952    LoS = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt);
1953    HiS = DAG.getNode(ISD::OR, dl, NVT,
1954                      DAG.getNode(ISD::SHL, dl, NVT, InH, Amt),
1955                      DAG.getNode(ISD::SRL, dl, NVT, InL, AmtLack));
1956
1957    // Long: ShAmt >= NVTBits
1958    LoL = DAG.getConstant(0, dl, NVT);                    // Lo part is zero.
1959    HiL = DAG.getNode(ISD::SHL, dl, NVT, InL, AmtExcess); // Hi from Lo part.
1960
1961    Lo = DAG.getSelect(dl, NVT, isShort, LoS, LoL);
1962    Hi = DAG.getSelect(dl, NVT, isZero, InH,
1963                       DAG.getSelect(dl, NVT, isShort, HiS, HiL));
1964    return true;
1965  case ISD::SRL:
1966    // Short: ShAmt < NVTBits
1967    HiS = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt);
1968    LoS = DAG.getNode(ISD::OR, dl, NVT,
1969                      DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
1970    // FIXME: If Amt is zero, the following shift generates an undefined result
1971    // on some architectures.
1972                      DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
1973
1974    // Long: ShAmt >= NVTBits
1975    HiL = DAG.getConstant(0, dl, NVT);                    // Hi part is zero.
1976    LoL = DAG.getNode(ISD::SRL, dl, NVT, InH, AmtExcess); // Lo from Hi part.
1977
1978    Lo = DAG.getSelect(dl, NVT, isZero, InL,
1979                       DAG.getSelect(dl, NVT, isShort, LoS, LoL));
1980    Hi = DAG.getSelect(dl, NVT, isShort, HiS, HiL);
1981    return true;
1982  case ISD::SRA:
1983    // Short: ShAmt < NVTBits
1984    HiS = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt);
1985    LoS = DAG.getNode(ISD::OR, dl, NVT,
1986                      DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
1987                      DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
1988
1989    // Long: ShAmt >= NVTBits
1990    HiL = DAG.getNode(ISD::SRA, dl, NVT, InH,             // Sign of Hi part.
1991                      DAG.getConstant(NVTBits - 1, dl, ShTy));
1992    LoL = DAG.getNode(ISD::SRA, dl, NVT, InH, AmtExcess); // Lo from Hi part.
1993
1994    Lo = DAG.getSelect(dl, NVT, isZero, InL,
1995                       DAG.getSelect(dl, NVT, isShort, LoS, LoL));
1996    Hi = DAG.getSelect(dl, NVT, isShort, HiS, HiL);
1997    return true;
1998  }
1999}
2000
2001static std::pair<ISD::CondCode, ISD::NodeType> getExpandedMinMaxOps(int Op) {
2002
2003  switch (Op) {
2004    default: llvm_unreachable("invalid min/max opcode");
2005    case ISD::SMAX:
2006      return std::make_pair(ISD::SETGT, ISD::UMAX);
2007    case ISD::UMAX:
2008      return std::make_pair(ISD::SETUGT, ISD::UMAX);
2009    case ISD::SMIN:
2010      return std::make_pair(ISD::SETLT, ISD::UMIN);
2011    case ISD::UMIN:
2012      return std::make_pair(ISD::SETULT, ISD::UMIN);
2013  }
2014}
2015
2016void DAGTypeLegalizer::ExpandIntRes_MINMAX(SDNode *N,
2017                                           SDValue &Lo, SDValue &Hi) {
2018  SDLoc DL(N);
2019  ISD::NodeType LoOpc;
2020  ISD::CondCode CondC;
2021  std::tie(CondC, LoOpc) = getExpandedMinMaxOps(N->getOpcode());
2022
2023  // Expand the subcomponents.
2024  SDValue LHSL, LHSH, RHSL, RHSH;
2025  GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
2026  GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
2027
2028  // Value types
2029  EVT NVT = LHSL.getValueType();
2030  EVT CCT = getSetCCResultType(NVT);
2031
2032  // Hi part is always the same op
2033  Hi = DAG.getNode(N->getOpcode(), DL, NVT, {LHSH, RHSH});
2034
2035  // We need to know whether to select Lo part that corresponds to 'winning'
2036  // Hi part or if Hi parts are equal.
2037  SDValue IsHiLeft = DAG.getSetCC(DL, CCT, LHSH, RHSH, CondC);
2038  SDValue IsHiEq = DAG.getSetCC(DL, CCT, LHSH, RHSH, ISD::SETEQ);
2039
2040  // Lo part corresponding to the 'winning' Hi part
2041  SDValue LoCmp = DAG.getSelect(DL, NVT, IsHiLeft, LHSL, RHSL);
2042
2043  // Recursed Lo part if Hi parts are equal, this uses unsigned version
2044  SDValue LoMinMax = DAG.getNode(LoOpc, DL, NVT, {LHSL, RHSL});
2045
2046  Lo = DAG.getSelect(DL, NVT, IsHiEq, LoMinMax, LoCmp);
2047}
2048
2049void DAGTypeLegalizer::ExpandIntRes_ADDSUB(SDNode *N,
2050                                           SDValue &Lo, SDValue &Hi) {
2051  SDLoc dl(N);
2052  // Expand the subcomponents.
2053  SDValue LHSL, LHSH, RHSL, RHSH;
2054  GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
2055  GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
2056
2057  EVT NVT = LHSL.getValueType();
2058  SDValue LoOps[2] = { LHSL, RHSL };
2059  SDValue HiOps[3] = { LHSH, RHSH };
2060
2061  bool HasOpCarry = TLI.isOperationLegalOrCustom(
2062      N->getOpcode() == ISD::ADD ? ISD::ADDCARRY : ISD::SUBCARRY,
2063      TLI.getTypeToExpandTo(*DAG.getContext(), NVT));
2064  if (HasOpCarry) {
2065    SDVTList VTList = DAG.getVTList(NVT, getSetCCResultType(NVT));
2066    if (N->getOpcode() == ISD::ADD) {
2067      Lo = DAG.getNode(ISD::UADDO, dl, VTList, LoOps);
2068      HiOps[2] = Lo.getValue(1);
2069      Hi = DAG.getNode(ISD::ADDCARRY, dl, VTList, HiOps);
2070    } else {
2071      Lo = DAG.getNode(ISD::USUBO, dl, VTList, LoOps);
2072      HiOps[2] = Lo.getValue(1);
2073      Hi = DAG.getNode(ISD::SUBCARRY, dl, VTList, HiOps);
2074    }
2075    return;
2076  }
2077
2078  // Do not generate ADDC/ADDE or SUBC/SUBE if the target does not support
2079  // them.  TODO: Teach operation legalization how to expand unsupported
2080  // ADDC/ADDE/SUBC/SUBE.  The problem is that these operations generate
2081  // a carry of type MVT::Glue, but there doesn't seem to be any way to
2082  // generate a value of this type in the expanded code sequence.
2083  bool hasCarry =
2084    TLI.isOperationLegalOrCustom(N->getOpcode() == ISD::ADD ?
2085                                   ISD::ADDC : ISD::SUBC,
2086                                 TLI.getTypeToExpandTo(*DAG.getContext(), NVT));
2087
2088  if (hasCarry) {
2089    SDVTList VTList = DAG.getVTList(NVT, MVT::Glue);
2090    if (N->getOpcode() == ISD::ADD) {
2091      Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps);
2092      HiOps[2] = Lo.getValue(1);
2093      Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps);
2094    } else {
2095      Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps);
2096      HiOps[2] = Lo.getValue(1);
2097      Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps);
2098    }
2099    return;
2100  }
2101
2102  bool hasOVF =
2103    TLI.isOperationLegalOrCustom(N->getOpcode() == ISD::ADD ?
2104                                   ISD::UADDO : ISD::USUBO,
2105                                 TLI.getTypeToExpandTo(*DAG.getContext(), NVT));
2106  TargetLoweringBase::BooleanContent BoolType = TLI.getBooleanContents(NVT);
2107
2108  if (hasOVF) {
2109    EVT OvfVT = getSetCCResultType(NVT);
2110    SDVTList VTList = DAG.getVTList(NVT, OvfVT);
2111    int RevOpc;
2112    if (N->getOpcode() == ISD::ADD) {
2113      RevOpc = ISD::SUB;
2114      Lo = DAG.getNode(ISD::UADDO, dl, VTList, LoOps);
2115      Hi = DAG.getNode(ISD::ADD, dl, NVT, makeArrayRef(HiOps, 2));
2116    } else {
2117      RevOpc = ISD::ADD;
2118      Lo = DAG.getNode(ISD::USUBO, dl, VTList, LoOps);
2119      Hi = DAG.getNode(ISD::SUB, dl, NVT, makeArrayRef(HiOps, 2));
2120    }
2121    SDValue OVF = Lo.getValue(1);
2122
2123    switch (BoolType) {
2124    case TargetLoweringBase::UndefinedBooleanContent:
2125      OVF = DAG.getNode(ISD::AND, dl, OvfVT, DAG.getConstant(1, dl, OvfVT), OVF);
2126      LLVM_FALLTHROUGH;
2127    case TargetLoweringBase::ZeroOrOneBooleanContent:
2128      OVF = DAG.getZExtOrTrunc(OVF, dl, NVT);
2129      Hi = DAG.getNode(N->getOpcode(), dl, NVT, Hi, OVF);
2130      break;
2131    case TargetLoweringBase::ZeroOrNegativeOneBooleanContent:
2132      OVF = DAG.getSExtOrTrunc(OVF, dl, NVT);
2133      Hi = DAG.getNode(RevOpc, dl, NVT, Hi, OVF);
2134    }
2135    return;
2136  }
2137
2138  if (N->getOpcode() == ISD::ADD) {
2139    Lo = DAG.getNode(ISD::ADD, dl, NVT, LoOps);
2140    Hi = DAG.getNode(ISD::ADD, dl, NVT, makeArrayRef(HiOps, 2));
2141    SDValue Cmp1 = DAG.getSetCC(dl, getSetCCResultType(NVT), Lo, LoOps[0],
2142                                ISD::SETULT);
2143
2144    if (BoolType == TargetLoweringBase::ZeroOrOneBooleanContent) {
2145      SDValue Carry = DAG.getZExtOrTrunc(Cmp1, dl, NVT);
2146      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, Carry);
2147      return;
2148    }
2149
2150    SDValue Carry1 = DAG.getSelect(dl, NVT, Cmp1,
2151                                   DAG.getConstant(1, dl, NVT),
2152                                   DAG.getConstant(0, dl, NVT));
2153    SDValue Cmp2 = DAG.getSetCC(dl, getSetCCResultType(NVT), Lo, LoOps[1],
2154                                ISD::SETULT);
2155    SDValue Carry2 = DAG.getSelect(dl, NVT, Cmp2,
2156                                   DAG.getConstant(1, dl, NVT), Carry1);
2157    Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, Carry2);
2158  } else {
2159    Lo = DAG.getNode(ISD::SUB, dl, NVT, LoOps);
2160    Hi = DAG.getNode(ISD::SUB, dl, NVT, makeArrayRef(HiOps, 2));
2161    SDValue Cmp =
2162      DAG.getSetCC(dl, getSetCCResultType(LoOps[0].getValueType()),
2163                   LoOps[0], LoOps[1], ISD::SETULT);
2164
2165    SDValue Borrow;
2166    if (BoolType == TargetLoweringBase::ZeroOrOneBooleanContent)
2167      Borrow = DAG.getZExtOrTrunc(Cmp, dl, NVT);
2168    else
2169      Borrow = DAG.getSelect(dl, NVT, Cmp, DAG.getConstant(1, dl, NVT),
2170                             DAG.getConstant(0, dl, NVT));
2171
2172    Hi = DAG.getNode(ISD::SUB, dl, NVT, Hi, Borrow);
2173  }
2174}
2175
2176void DAGTypeLegalizer::ExpandIntRes_ADDSUBC(SDNode *N,
2177                                            SDValue &Lo, SDValue &Hi) {
2178  // Expand the subcomponents.
2179  SDValue LHSL, LHSH, RHSL, RHSH;
2180  SDLoc dl(N);
2181  GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
2182  GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
2183  SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue);
2184  SDValue LoOps[2] = { LHSL, RHSL };
2185  SDValue HiOps[3] = { LHSH, RHSH };
2186
2187  if (N->getOpcode() == ISD::ADDC) {
2188    Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps);
2189    HiOps[2] = Lo.getValue(1);
2190    Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps);
2191  } else {
2192    Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps);
2193    HiOps[2] = Lo.getValue(1);
2194    Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps);
2195  }
2196
2197  // Legalized the flag result - switch anything that used the old flag to
2198  // use the new one.
2199  ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
2200}
2201
2202void DAGTypeLegalizer::ExpandIntRes_ADDSUBE(SDNode *N,
2203                                            SDValue &Lo, SDValue &Hi) {
2204  // Expand the subcomponents.
2205  SDValue LHSL, LHSH, RHSL, RHSH;
2206  SDLoc dl(N);
2207  GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
2208  GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
2209  SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue);
2210  SDValue LoOps[3] = { LHSL, RHSL, N->getOperand(2) };
2211  SDValue HiOps[3] = { LHSH, RHSH };
2212
2213  Lo = DAG.getNode(N->getOpcode(), dl, VTList, LoOps);
2214  HiOps[2] = Lo.getValue(1);
2215  Hi = DAG.getNode(N->getOpcode(), dl, VTList, HiOps);
2216
2217  // Legalized the flag result - switch anything that used the old flag to
2218  // use the new one.
2219  ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
2220}
2221
2222void DAGTypeLegalizer::ExpandIntRes_UADDSUBO(SDNode *N,
2223                                             SDValue &Lo, SDValue &Hi) {
2224  SDValue LHS = N->getOperand(0);
2225  SDValue RHS = N->getOperand(1);
2226  SDLoc dl(N);
2227
2228  SDValue Ovf;
2229
2230  bool HasOpCarry = TLI.isOperationLegalOrCustom(
2231      N->getOpcode() == ISD::ADD ? ISD::ADDCARRY : ISD::SUBCARRY,
2232      TLI.getTypeToExpandTo(*DAG.getContext(), LHS.getValueType()));
2233
2234  if (HasOpCarry) {
2235    // Expand the subcomponents.
2236    SDValue LHSL, LHSH, RHSL, RHSH;
2237    GetExpandedInteger(LHS, LHSL, LHSH);
2238    GetExpandedInteger(RHS, RHSL, RHSH);
2239    SDVTList VTList = DAG.getVTList(LHSL.getValueType(), N->getValueType(1));
2240    SDValue LoOps[2] = { LHSL, RHSL };
2241    SDValue HiOps[3] = { LHSH, RHSH };
2242
2243    unsigned Opc = N->getOpcode() == ISD::UADDO ? ISD::ADDCARRY : ISD::SUBCARRY;
2244    Lo = DAG.getNode(N->getOpcode(), dl, VTList, LoOps);
2245    HiOps[2] = Lo.getValue(1);
2246    Hi = DAG.getNode(Opc, dl, VTList, HiOps);
2247
2248    Ovf = Hi.getValue(1);
2249  } else {
2250    // Expand the result by simply replacing it with the equivalent
2251    // non-overflow-checking operation.
2252    auto Opc = N->getOpcode() == ISD::UADDO ? ISD::ADD : ISD::SUB;
2253    SDValue Sum = DAG.getNode(Opc, dl, LHS.getValueType(), LHS, RHS);
2254    SplitInteger(Sum, Lo, Hi);
2255
2256    // Calculate the overflow: addition overflows iff a + b < a, and subtraction
2257    // overflows iff a - b > a.
2258    auto Cond = N->getOpcode() == ISD::UADDO ? ISD::SETULT : ISD::SETUGT;
2259    Ovf = DAG.getSetCC(dl, N->getValueType(1), Sum, LHS, Cond);
2260  }
2261
2262  // Legalized the flag result - switch anything that used the old flag to
2263  // use the new one.
2264  ReplaceValueWith(SDValue(N, 1), Ovf);
2265}
2266
2267void DAGTypeLegalizer::ExpandIntRes_ADDSUBCARRY(SDNode *N,
2268                                                SDValue &Lo, SDValue &Hi) {
2269  // Expand the subcomponents.
2270  SDValue LHSL, LHSH, RHSL, RHSH;
2271  SDLoc dl(N);
2272  GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
2273  GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
2274  SDVTList VTList = DAG.getVTList(LHSL.getValueType(), N->getValueType(1));
2275  SDValue LoOps[3] = { LHSL, RHSL, N->getOperand(2) };
2276  SDValue HiOps[3] = { LHSH, RHSH, SDValue() };
2277
2278  Lo = DAG.getNode(N->getOpcode(), dl, VTList, LoOps);
2279  HiOps[2] = Lo.getValue(1);
2280  Hi = DAG.getNode(N->getOpcode(), dl, VTList, HiOps);
2281
2282  // Legalized the flag result - switch anything that used the old flag to
2283  // use the new one.
2284  ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
2285}
2286
2287void DAGTypeLegalizer::ExpandIntRes_ANY_EXTEND(SDNode *N,
2288                                               SDValue &Lo, SDValue &Hi) {
2289  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2290  SDLoc dl(N);
2291  SDValue Op = N->getOperand(0);
2292  if (Op.getValueType().bitsLE(NVT)) {
2293    // The low part is any extension of the input (which degenerates to a copy).
2294    Lo = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Op);
2295    Hi = DAG.getUNDEF(NVT);   // The high part is undefined.
2296  } else {
2297    // For example, extension of an i48 to an i64.  The operand type necessarily
2298    // promotes to the result type, so will end up being expanded too.
2299    assert(getTypeAction(Op.getValueType()) ==
2300           TargetLowering::TypePromoteInteger &&
2301           "Only know how to promote this result!");
2302    SDValue Res = GetPromotedInteger(Op);
2303    assert(Res.getValueType() == N->getValueType(0) &&
2304           "Operand over promoted?");
2305    // Split the promoted operand.  This will simplify when it is expanded.
2306    SplitInteger(Res, Lo, Hi);
2307  }
2308}
2309
2310void DAGTypeLegalizer::ExpandIntRes_AssertSext(SDNode *N,
2311                                               SDValue &Lo, SDValue &Hi) {
2312  SDLoc dl(N);
2313  GetExpandedInteger(N->getOperand(0), Lo, Hi);
2314  EVT NVT = Lo.getValueType();
2315  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
2316  unsigned NVTBits = NVT.getSizeInBits();
2317  unsigned EVTBits = EVT.getSizeInBits();
2318
2319  if (NVTBits < EVTBits) {
2320    Hi = DAG.getNode(ISD::AssertSext, dl, NVT, Hi,
2321                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
2322                                                        EVTBits - NVTBits)));
2323  } else {
2324    Lo = DAG.getNode(ISD::AssertSext, dl, NVT, Lo, DAG.getValueType(EVT));
2325    // The high part replicates the sign bit of Lo, make it explicit.
2326    Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
2327                     DAG.getConstant(NVTBits - 1, dl,
2328                                     TLI.getPointerTy(DAG.getDataLayout())));
2329  }
2330}
2331
2332void DAGTypeLegalizer::ExpandIntRes_AssertZext(SDNode *N,
2333                                               SDValue &Lo, SDValue &Hi) {
2334  SDLoc dl(N);
2335  GetExpandedInteger(N->getOperand(0), Lo, Hi);
2336  EVT NVT = Lo.getValueType();
2337  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
2338  unsigned NVTBits = NVT.getSizeInBits();
2339  unsigned EVTBits = EVT.getSizeInBits();
2340
2341  if (NVTBits < EVTBits) {
2342    Hi = DAG.getNode(ISD::AssertZext, dl, NVT, Hi,
2343                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
2344                                                        EVTBits - NVTBits)));
2345  } else {
2346    Lo = DAG.getNode(ISD::AssertZext, dl, NVT, Lo, DAG.getValueType(EVT));
2347    // The high part must be zero, make it explicit.
2348    Hi = DAG.getConstant(0, dl, NVT);
2349  }
2350}
2351
2352void DAGTypeLegalizer::ExpandIntRes_BITREVERSE(SDNode *N,
2353                                               SDValue &Lo, SDValue &Hi) {
2354  SDLoc dl(N);
2355  GetExpandedInteger(N->getOperand(0), Hi, Lo);  // Note swapped operands.
2356  Lo = DAG.getNode(ISD::BITREVERSE, dl, Lo.getValueType(), Lo);
2357  Hi = DAG.getNode(ISD::BITREVERSE, dl, Hi.getValueType(), Hi);
2358}
2359
2360void DAGTypeLegalizer::ExpandIntRes_BSWAP(SDNode *N,
2361                                          SDValue &Lo, SDValue &Hi) {
2362  SDLoc dl(N);
2363  GetExpandedInteger(N->getOperand(0), Hi, Lo);  // Note swapped operands.
2364  Lo = DAG.getNode(ISD::BSWAP, dl, Lo.getValueType(), Lo);
2365  Hi = DAG.getNode(ISD::BSWAP, dl, Hi.getValueType(), Hi);
2366}
2367
2368void DAGTypeLegalizer::ExpandIntRes_Constant(SDNode *N,
2369                                             SDValue &Lo, SDValue &Hi) {
2370  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2371  unsigned NBitWidth = NVT.getSizeInBits();
2372  auto Constant = cast<ConstantSDNode>(N);
2373  const APInt &Cst = Constant->getAPIntValue();
2374  bool IsTarget = Constant->isTargetOpcode();
2375  bool IsOpaque = Constant->isOpaque();
2376  SDLoc dl(N);
2377  Lo = DAG.getConstant(Cst.trunc(NBitWidth), dl, NVT, IsTarget, IsOpaque);
2378  Hi = DAG.getConstant(Cst.lshr(NBitWidth).trunc(NBitWidth), dl, NVT, IsTarget,
2379                       IsOpaque);
2380}
2381
2382void DAGTypeLegalizer::ExpandIntRes_ABS(SDNode *N, SDValue &Lo, SDValue &Hi) {
2383  SDLoc dl(N);
2384
2385  // abs(HiLo) -> (Hi < 0 ? -HiLo : HiLo)
2386  EVT VT = N->getValueType(0);
2387  SDValue N0 = N->getOperand(0);
2388  SDValue Neg = DAG.getNode(ISD::SUB, dl, VT,
2389                            DAG.getConstant(0, dl, VT), N0);
2390  SDValue NegLo, NegHi;
2391  SplitInteger(Neg, NegLo, NegHi);
2392
2393  GetExpandedInteger(N0, Lo, Hi);
2394  EVT NVT = Lo.getValueType();
2395  SDValue HiIsNeg = DAG.getSetCC(dl, getSetCCResultType(NVT),
2396                                 DAG.getConstant(0, dl, NVT), Hi, ISD::SETGT);
2397  Lo = DAG.getSelect(dl, NVT, HiIsNeg, NegLo, Lo);
2398  Hi = DAG.getSelect(dl, NVT, HiIsNeg, NegHi, Hi);
2399}
2400
2401void DAGTypeLegalizer::ExpandIntRes_CTLZ(SDNode *N,
2402                                         SDValue &Lo, SDValue &Hi) {
2403  SDLoc dl(N);
2404  // ctlz (HiLo) -> Hi != 0 ? ctlz(Hi) : (ctlz(Lo)+32)
2405  GetExpandedInteger(N->getOperand(0), Lo, Hi);
2406  EVT NVT = Lo.getValueType();
2407
2408  SDValue HiNotZero = DAG.getSetCC(dl, getSetCCResultType(NVT), Hi,
2409                                   DAG.getConstant(0, dl, NVT), ISD::SETNE);
2410
2411  SDValue LoLZ = DAG.getNode(N->getOpcode(), dl, NVT, Lo);
2412  SDValue HiLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, NVT, Hi);
2413
2414  Lo = DAG.getSelect(dl, NVT, HiNotZero, HiLZ,
2415                     DAG.getNode(ISD::ADD, dl, NVT, LoLZ,
2416                                 DAG.getConstant(NVT.getSizeInBits(), dl,
2417                                                 NVT)));
2418  Hi = DAG.getConstant(0, dl, NVT);
2419}
2420
2421void DAGTypeLegalizer::ExpandIntRes_CTPOP(SDNode *N,
2422                                          SDValue &Lo, SDValue &Hi) {
2423  SDLoc dl(N);
2424  // ctpop(HiLo) -> ctpop(Hi)+ctpop(Lo)
2425  GetExpandedInteger(N->getOperand(0), Lo, Hi);
2426  EVT NVT = Lo.getValueType();
2427  Lo = DAG.getNode(ISD::ADD, dl, NVT, DAG.getNode(ISD::CTPOP, dl, NVT, Lo),
2428                   DAG.getNode(ISD::CTPOP, dl, NVT, Hi));
2429  Hi = DAG.getConstant(0, dl, NVT);
2430}
2431
2432void DAGTypeLegalizer::ExpandIntRes_CTTZ(SDNode *N,
2433                                         SDValue &Lo, SDValue &Hi) {
2434  SDLoc dl(N);
2435  // cttz (HiLo) -> Lo != 0 ? cttz(Lo) : (cttz(Hi)+32)
2436  GetExpandedInteger(N->getOperand(0), Lo, Hi);
2437  EVT NVT = Lo.getValueType();
2438
2439  SDValue LoNotZero = DAG.getSetCC(dl, getSetCCResultType(NVT), Lo,
2440                                   DAG.getConstant(0, dl, NVT), ISD::SETNE);
2441
2442  SDValue LoLZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, NVT, Lo);
2443  SDValue HiLZ = DAG.getNode(N->getOpcode(), dl, NVT, Hi);
2444
2445  Lo = DAG.getSelect(dl, NVT, LoNotZero, LoLZ,
2446                     DAG.getNode(ISD::ADD, dl, NVT, HiLZ,
2447                                 DAG.getConstant(NVT.getSizeInBits(), dl,
2448                                                 NVT)));
2449  Hi = DAG.getConstant(0, dl, NVT);
2450}
2451
2452void DAGTypeLegalizer::ExpandIntRes_FLT_ROUNDS(SDNode *N, SDValue &Lo,
2453                                               SDValue &Hi) {
2454  SDLoc dl(N);
2455  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2456  unsigned NBitWidth = NVT.getSizeInBits();
2457
2458  EVT ShiftAmtTy = TLI.getShiftAmountTy(NVT, DAG.getDataLayout());
2459  Lo = DAG.getNode(ISD::FLT_ROUNDS_, dl, NVT);
2460  // The high part is the sign of Lo, as -1 is a valid value for FLT_ROUNDS
2461  Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
2462                   DAG.getConstant(NBitWidth - 1, dl, ShiftAmtTy));
2463}
2464
2465void DAGTypeLegalizer::ExpandIntRes_FP_TO_SINT(SDNode *N, SDValue &Lo,
2466                                               SDValue &Hi) {
2467  SDLoc dl(N);
2468  EVT VT = N->getValueType(0);
2469
2470  SDValue Op = N->getOperand(0);
2471  if (getTypeAction(Op.getValueType()) == TargetLowering::TypePromoteFloat)
2472    Op = GetPromotedFloat(Op);
2473
2474  RTLIB::Libcall LC = RTLIB::getFPTOSINT(Op.getValueType(), VT);
2475  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-sint conversion!");
2476  SplitInteger(TLI.makeLibCall(DAG, LC, VT, Op, true/*irrelevant*/, dl).first,
2477               Lo, Hi);
2478}
2479
2480void DAGTypeLegalizer::ExpandIntRes_FP_TO_UINT(SDNode *N, SDValue &Lo,
2481                                               SDValue &Hi) {
2482  SDLoc dl(N);
2483  EVT VT = N->getValueType(0);
2484
2485  SDValue Op = N->getOperand(0);
2486  if (getTypeAction(Op.getValueType()) == TargetLowering::TypePromoteFloat)
2487    Op = GetPromotedFloat(Op);
2488
2489  RTLIB::Libcall LC = RTLIB::getFPTOUINT(Op.getValueType(), VT);
2490  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!");
2491  SplitInteger(TLI.makeLibCall(DAG, LC, VT, Op, false/*irrelevant*/, dl).first,
2492               Lo, Hi);
2493}
2494
2495void DAGTypeLegalizer::ExpandIntRes_LLROUND(SDNode *N, SDValue &Lo,
2496                                            SDValue &Hi) {
2497  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2498  EVT VT = N->getOperand(0).getValueType().getSimpleVT().SimpleTy;
2499  if (VT == MVT::f32)
2500    LC = RTLIB::LLROUND_F32;
2501  else if (VT == MVT::f64)
2502    LC = RTLIB::LLROUND_F64;
2503  else if (VT == MVT::f80)
2504    LC = RTLIB::LLROUND_F80;
2505  else if (VT == MVT::f128)
2506    LC = RTLIB::LLROUND_F128;
2507  else if (VT == MVT::ppcf128)
2508    LC = RTLIB::LLROUND_PPCF128;
2509  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected llround input type!");
2510
2511  SDValue Op = N->getOperand(0);
2512  if (getTypeAction(Op.getValueType()) == TargetLowering::TypePromoteFloat)
2513    Op = GetPromotedFloat(Op);
2514
2515  SDLoc dl(N);
2516  EVT RetVT = N->getValueType(0);
2517  SplitInteger(TLI.makeLibCall(DAG, LC, RetVT, Op, true/*irrelevant*/, dl).first,
2518               Lo, Hi);
2519}
2520
2521void DAGTypeLegalizer::ExpandIntRes_LLRINT(SDNode *N, SDValue &Lo,
2522                                            SDValue &Hi) {
2523  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2524  EVT VT = N->getOperand(0).getValueType().getSimpleVT().SimpleTy;
2525  if (VT == MVT::f32)
2526    LC = RTLIB::LLRINT_F32;
2527  else if (VT == MVT::f64)
2528    LC = RTLIB::LLRINT_F64;
2529  else if (VT == MVT::f80)
2530    LC = RTLIB::LLRINT_F80;
2531  else if (VT == MVT::f128)
2532    LC = RTLIB::LLRINT_F128;
2533  else if (VT == MVT::ppcf128)
2534    LC = RTLIB::LLRINT_PPCF128;
2535  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected llrint input type!");
2536
2537  SDValue Op = N->getOperand(0);
2538  if (getTypeAction(Op.getValueType()) == TargetLowering::TypePromoteFloat)
2539    Op = GetPromotedFloat(Op);
2540
2541  SDLoc dl(N);
2542  EVT RetVT = N->getValueType(0);
2543  SplitInteger(TLI.makeLibCall(DAG, LC, RetVT, Op, true/*irrelevant*/, dl).first,
2544               Lo, Hi);
2545}
2546
2547void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
2548                                         SDValue &Lo, SDValue &Hi) {
2549  if (ISD::isNormalLoad(N)) {
2550    ExpandRes_NormalLoad(N, Lo, Hi);
2551    return;
2552  }
2553
2554  assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
2555
2556  EVT VT = N->getValueType(0);
2557  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2558  SDValue Ch  = N->getChain();
2559  SDValue Ptr = N->getBasePtr();
2560  ISD::LoadExtType ExtType = N->getExtensionType();
2561  unsigned Alignment = N->getAlignment();
2562  MachineMemOperand::Flags MMOFlags = N->getMemOperand()->getFlags();
2563  AAMDNodes AAInfo = N->getAAInfo();
2564  SDLoc dl(N);
2565
2566  assert(NVT.isByteSized() && "Expanded type not byte sized!");
2567
2568  if (N->getMemoryVT().bitsLE(NVT)) {
2569    EVT MemVT = N->getMemoryVT();
2570
2571    Lo = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(), MemVT,
2572                        Alignment, MMOFlags, AAInfo);
2573
2574    // Remember the chain.
2575    Ch = Lo.getValue(1);
2576
2577    if (ExtType == ISD::SEXTLOAD) {
2578      // The high part is obtained by SRA'ing all but one of the bits of the
2579      // lo part.
2580      unsigned LoSize = Lo.getValueSizeInBits();
2581      Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
2582                       DAG.getConstant(LoSize - 1, dl,
2583                                       TLI.getPointerTy(DAG.getDataLayout())));
2584    } else if (ExtType == ISD::ZEXTLOAD) {
2585      // The high part is just a zero.
2586      Hi = DAG.getConstant(0, dl, NVT);
2587    } else {
2588      assert(ExtType == ISD::EXTLOAD && "Unknown extload!");
2589      // The high part is undefined.
2590      Hi = DAG.getUNDEF(NVT);
2591    }
2592  } else if (DAG.getDataLayout().isLittleEndian()) {
2593    // Little-endian - low bits are at low addresses.
2594    Lo = DAG.getLoad(NVT, dl, Ch, Ptr, N->getPointerInfo(), Alignment, MMOFlags,
2595                     AAInfo);
2596
2597    unsigned ExcessBits =
2598      N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
2599    EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
2600
2601    // Increment the pointer to the other half.
2602    unsigned IncrementSize = NVT.getSizeInBits()/8;
2603    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
2604                      DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
2605    Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr,
2606                        N->getPointerInfo().getWithOffset(IncrementSize), NEVT,
2607                        MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo);
2608
2609    // Build a factor node to remember that this load is independent of the
2610    // other one.
2611    Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
2612                     Hi.getValue(1));
2613  } else {
2614    // Big-endian - high bits are at low addresses.  Favor aligned loads at
2615    // the cost of some bit-fiddling.
2616    EVT MemVT = N->getMemoryVT();
2617    unsigned EBytes = MemVT.getStoreSize();
2618    unsigned IncrementSize = NVT.getSizeInBits()/8;
2619    unsigned ExcessBits = (EBytes - IncrementSize)*8;
2620
2621    // Load both the high bits and maybe some of the low bits.
2622    Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
2623                        EVT::getIntegerVT(*DAG.getContext(),
2624                                          MemVT.getSizeInBits() - ExcessBits),
2625                        Alignment, MMOFlags, AAInfo);
2626
2627    // Increment the pointer to the other half.
2628    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
2629                      DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
2630    // Load the rest of the low bits.
2631    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, NVT, Ch, Ptr,
2632                        N->getPointerInfo().getWithOffset(IncrementSize),
2633                        EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
2634                        MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo);
2635
2636    // Build a factor node to remember that this load is independent of the
2637    // other one.
2638    Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
2639                     Hi.getValue(1));
2640
2641    if (ExcessBits < NVT.getSizeInBits()) {
2642      // Transfer low bits from the bottom of Hi to the top of Lo.
2643      Lo = DAG.getNode(
2644          ISD::OR, dl, NVT, Lo,
2645          DAG.getNode(ISD::SHL, dl, NVT, Hi,
2646                      DAG.getConstant(ExcessBits, dl,
2647                                      TLI.getPointerTy(DAG.getDataLayout()))));
2648      // Move high bits to the right position in Hi.
2649      Hi = DAG.getNode(ExtType == ISD::SEXTLOAD ? ISD::SRA : ISD::SRL, dl, NVT,
2650                       Hi,
2651                       DAG.getConstant(NVT.getSizeInBits() - ExcessBits, dl,
2652                                       TLI.getPointerTy(DAG.getDataLayout())));
2653    }
2654  }
2655
2656  // Legalize the chain result - switch anything that used the old chain to
2657  // use the new one.
2658  ReplaceValueWith(SDValue(N, 1), Ch);
2659}
2660
2661void DAGTypeLegalizer::ExpandIntRes_Logical(SDNode *N,
2662                                            SDValue &Lo, SDValue &Hi) {
2663  SDLoc dl(N);
2664  SDValue LL, LH, RL, RH;
2665  GetExpandedInteger(N->getOperand(0), LL, LH);
2666  GetExpandedInteger(N->getOperand(1), RL, RH);
2667  Lo = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LL, RL);
2668  Hi = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LH, RH);
2669}
2670
2671void DAGTypeLegalizer::ExpandIntRes_MUL(SDNode *N,
2672                                        SDValue &Lo, SDValue &Hi) {
2673  EVT VT = N->getValueType(0);
2674  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2675  SDLoc dl(N);
2676
2677  SDValue LL, LH, RL, RH;
2678  GetExpandedInteger(N->getOperand(0), LL, LH);
2679  GetExpandedInteger(N->getOperand(1), RL, RH);
2680
2681  if (TLI.expandMUL(N, Lo, Hi, NVT, DAG,
2682                    TargetLowering::MulExpansionKind::OnlyLegalOrCustom,
2683                    LL, LH, RL, RH))
2684    return;
2685
2686  // If nothing else, we can make a libcall.
2687  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2688  if (VT == MVT::i16)
2689    LC = RTLIB::MUL_I16;
2690  else if (VT == MVT::i32)
2691    LC = RTLIB::MUL_I32;
2692  else if (VT == MVT::i64)
2693    LC = RTLIB::MUL_I64;
2694  else if (VT == MVT::i128)
2695    LC = RTLIB::MUL_I128;
2696
2697  if (LC == RTLIB::UNKNOWN_LIBCALL || !TLI.getLibcallName(LC)) {
2698    // We'll expand the multiplication by brute force because we have no other
2699    // options. This is a trivially-generalized version of the code from
2700    // Hacker's Delight (itself derived from Knuth's Algorithm M from section
2701    // 4.3.1).
2702    unsigned Bits = NVT.getSizeInBits();
2703    unsigned HalfBits = Bits >> 1;
2704    SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(Bits, HalfBits), dl,
2705                                   NVT);
2706    SDValue LLL = DAG.getNode(ISD::AND, dl, NVT, LL, Mask);
2707    SDValue RLL = DAG.getNode(ISD::AND, dl, NVT, RL, Mask);
2708
2709    SDValue T = DAG.getNode(ISD::MUL, dl, NVT, LLL, RLL);
2710    SDValue TL = DAG.getNode(ISD::AND, dl, NVT, T, Mask);
2711
2712    EVT ShiftAmtTy = TLI.getShiftAmountTy(NVT, DAG.getDataLayout());
2713    if (APInt::getMaxValue(ShiftAmtTy.getSizeInBits()).ult(HalfBits)) {
2714      // The type from TLI is too small to fit the shift amount we want.
2715      // Override it with i32. The shift will have to be legalized.
2716      ShiftAmtTy = MVT::i32;
2717    }
2718    SDValue Shift = DAG.getConstant(HalfBits, dl, ShiftAmtTy);
2719    SDValue TH = DAG.getNode(ISD::SRL, dl, NVT, T, Shift);
2720    SDValue LLH = DAG.getNode(ISD::SRL, dl, NVT, LL, Shift);
2721    SDValue RLH = DAG.getNode(ISD::SRL, dl, NVT, RL, Shift);
2722
2723    SDValue U = DAG.getNode(ISD::ADD, dl, NVT,
2724                            DAG.getNode(ISD::MUL, dl, NVT, LLH, RLL), TH);
2725    SDValue UL = DAG.getNode(ISD::AND, dl, NVT, U, Mask);
2726    SDValue UH = DAG.getNode(ISD::SRL, dl, NVT, U, Shift);
2727
2728    SDValue V = DAG.getNode(ISD::ADD, dl, NVT,
2729                            DAG.getNode(ISD::MUL, dl, NVT, LLL, RLH), UL);
2730    SDValue VH = DAG.getNode(ISD::SRL, dl, NVT, V, Shift);
2731
2732    SDValue W = DAG.getNode(ISD::ADD, dl, NVT,
2733                            DAG.getNode(ISD::MUL, dl, NVT, LLH, RLH),
2734                            DAG.getNode(ISD::ADD, dl, NVT, UH, VH));
2735    Lo = DAG.getNode(ISD::ADD, dl, NVT, TL,
2736                     DAG.getNode(ISD::SHL, dl, NVT, V, Shift));
2737
2738    Hi = DAG.getNode(ISD::ADD, dl, NVT, W,
2739                     DAG.getNode(ISD::ADD, dl, NVT,
2740                                 DAG.getNode(ISD::MUL, dl, NVT, RH, LL),
2741                                 DAG.getNode(ISD::MUL, dl, NVT, RL, LH)));
2742    return;
2743  }
2744
2745  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2746  SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, true/*irrelevant*/, dl).first,
2747               Lo, Hi);
2748}
2749
2750void DAGTypeLegalizer::ExpandIntRes_READCYCLECOUNTER(SDNode *N, SDValue &Lo,
2751                                                     SDValue &Hi) {
2752  SDLoc DL(N);
2753  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2754  SDVTList VTs = DAG.getVTList(NVT, NVT, MVT::Other);
2755  SDValue R = DAG.getNode(N->getOpcode(), DL, VTs, N->getOperand(0));
2756  Lo = R.getValue(0);
2757  Hi = R.getValue(1);
2758  ReplaceValueWith(SDValue(N, 1), R.getValue(2));
2759}
2760
2761void DAGTypeLegalizer::ExpandIntRes_ADDSUBSAT(SDNode *N, SDValue &Lo,
2762                                              SDValue &Hi) {
2763  SDValue Result = TLI.expandAddSubSat(N, DAG);
2764  SplitInteger(Result, Lo, Hi);
2765}
2766
2767/// This performs an expansion of the integer result for a fixed point
2768/// multiplication. The default expansion performs rounding down towards
2769/// negative infinity, though targets that do care about rounding should specify
2770/// a target hook for rounding and provide their own expansion or lowering of
2771/// fixed point multiplication to be consistent with rounding.
2772void DAGTypeLegalizer::ExpandIntRes_MULFIX(SDNode *N, SDValue &Lo,
2773                                           SDValue &Hi) {
2774  SDLoc dl(N);
2775  EVT VT = N->getValueType(0);
2776  unsigned VTSize = VT.getScalarSizeInBits();
2777  SDValue LHS = N->getOperand(0);
2778  SDValue RHS = N->getOperand(1);
2779  uint64_t Scale = N->getConstantOperandVal(2);
2780  bool Saturating = N->getOpcode() == ISD::SMULFIXSAT;
2781  EVT BoolVT = getSetCCResultType(VT);
2782  SDValue Zero = DAG.getConstant(0, dl, VT);
2783  if (!Scale) {
2784    SDValue Result;
2785    if (!Saturating) {
2786      Result = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
2787    } else {
2788      Result = DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
2789      SDValue Product = Result.getValue(0);
2790      SDValue Overflow = Result.getValue(1);
2791
2792      APInt MinVal = APInt::getSignedMinValue(VTSize);
2793      APInt MaxVal = APInt::getSignedMaxValue(VTSize);
2794      SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
2795      SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
2796      SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
2797      Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
2798      Result = DAG.getSelect(dl, VT, Overflow, Result, Product);
2799    }
2800    SplitInteger(Result, Lo, Hi);
2801    return;
2802  }
2803
2804  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2805  SDValue LL, LH, RL, RH;
2806  GetExpandedInteger(LHS, LL, LH);
2807  GetExpandedInteger(RHS, RL, RH);
2808  SmallVector<SDValue, 4> Result;
2809
2810  bool Signed = (N->getOpcode() == ISD::SMULFIX ||
2811                 N->getOpcode() == ISD::SMULFIXSAT);
2812  unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
2813  if (!TLI.expandMUL_LOHI(LoHiOp, VT, dl, LHS, RHS, Result, NVT, DAG,
2814                          TargetLowering::MulExpansionKind::OnlyLegalOrCustom,
2815                          LL, LH, RL, RH)) {
2816    report_fatal_error("Unable to expand MUL_FIX using MUL_LOHI.");
2817    return;
2818  }
2819
2820  unsigned NVTSize = NVT.getScalarSizeInBits();
2821  assert((VTSize == NVTSize * 2) && "Expected the new value type to be half "
2822                                    "the size of the current value type");
2823  EVT ShiftTy = TLI.getShiftAmountTy(NVT, DAG.getDataLayout());
2824
2825  // Shift whole amount by scale.
2826  SDValue ResultLL = Result[0];
2827  SDValue ResultLH = Result[1];
2828  SDValue ResultHL = Result[2];
2829  SDValue ResultHH = Result[3];
2830
2831  SDValue SatMax, SatMin;
2832  SDValue NVTZero = DAG.getConstant(0, dl, NVT);
2833  SDValue NVTNeg1 = DAG.getConstant(-1, dl, NVT);
2834  EVT BoolNVT = getSetCCResultType(NVT);
2835
2836  // After getting the multplication result in 4 parts, we need to perform a
2837  // shift right by the amount of the scale to get the result in that scale.
2838  // Let's say we multiply 2 64 bit numbers. The resulting value can be held in
2839  // 128 bits that are cut into 4 32-bit parts:
2840  //
2841  //      HH       HL       LH       LL
2842  //  |---32---|---32---|---32---|---32---|
2843  // 128      96       64       32        0
2844  //
2845  //                    |------VTSize-----|
2846  //
2847  //                             |NVTSize-|
2848  //
2849  // The resulting Lo and Hi will only need to be one of these 32-bit parts
2850  // after shifting.
2851  if (Scale < NVTSize) {
2852    // If the scale is less than the size of the VT we expand to, the Hi and
2853    // Lo of the result will be in the first 2 parts of the result after
2854    // shifting right. This only requires shifting by the scale as far as the
2855    // third part in the result (ResultHL).
2856    SDValue SRLAmnt = DAG.getConstant(Scale, dl, ShiftTy);
2857    SDValue SHLAmnt = DAG.getConstant(NVTSize - Scale, dl, ShiftTy);
2858    Lo = DAG.getNode(ISD::SRL, dl, NVT, ResultLL, SRLAmnt);
2859    Lo = DAG.getNode(ISD::OR, dl, NVT, Lo,
2860                     DAG.getNode(ISD::SHL, dl, NVT, ResultLH, SHLAmnt));
2861    Hi = DAG.getNode(ISD::SRL, dl, NVT, ResultLH, SRLAmnt);
2862    Hi = DAG.getNode(ISD::OR, dl, NVT, Hi,
2863                     DAG.getNode(ISD::SHL, dl, NVT, ResultHL, SHLAmnt));
2864
2865    // We cannot overflow past HH when multiplying 2 ints of size VTSize, so the
2866    // highest bit of HH determines saturation direction in the event of
2867    // saturation.
2868    // The number of overflow bits we can check are VTSize - Scale + 1 (we
2869    // include the sign bit). If these top bits are > 0, then we overflowed past
2870    // the max value. If these top bits are < -1, then we overflowed past the
2871    // min value. Otherwise, we did not overflow.
2872    if (Saturating) {
2873      unsigned OverflowBits = VTSize - Scale + 1;
2874      assert(OverflowBits <= VTSize && OverflowBits > NVTSize &&
2875             "Extent of overflow bits must start within HL");
2876      SDValue HLHiMask = DAG.getConstant(
2877          APInt::getHighBitsSet(NVTSize, OverflowBits - NVTSize), dl, NVT);
2878      SDValue HLLoMask = DAG.getConstant(
2879          APInt::getLowBitsSet(NVTSize, VTSize - OverflowBits), dl, NVT);
2880
2881      // HH > 0 or HH == 0 && HL > HLLoMask
2882      SDValue HHPos = DAG.getSetCC(dl, BoolNVT, ResultHH, NVTZero, ISD::SETGT);
2883      SDValue HHZero = DAG.getSetCC(dl, BoolNVT, ResultHH, NVTZero, ISD::SETEQ);
2884      SDValue HLPos =
2885          DAG.getSetCC(dl, BoolNVT, ResultHL, HLLoMask, ISD::SETUGT);
2886      SatMax = DAG.getNode(ISD::OR, dl, BoolNVT, HHPos,
2887                           DAG.getNode(ISD::AND, dl, BoolNVT, HHZero, HLPos));
2888
2889      // HH < -1 or HH == -1 && HL < HLHiMask
2890      SDValue HHNeg = DAG.getSetCC(dl, BoolNVT, ResultHH, NVTNeg1, ISD::SETLT);
2891      SDValue HHNeg1 = DAG.getSetCC(dl, BoolNVT, ResultHH, NVTNeg1, ISD::SETEQ);
2892      SDValue HLNeg =
2893          DAG.getSetCC(dl, BoolNVT, ResultHL, HLHiMask, ISD::SETULT);
2894      SatMin = DAG.getNode(ISD::OR, dl, BoolNVT, HHNeg,
2895                           DAG.getNode(ISD::AND, dl, BoolNVT, HHNeg1, HLNeg));
2896    }
2897  } else if (Scale == NVTSize) {
2898    // If the scales are equal, Lo and Hi are ResultLH and Result HL,
2899    // respectively. Avoid shifting to prevent undefined behavior.
2900    Lo = ResultLH;
2901    Hi = ResultHL;
2902
2903    // We overflow max if HH > 0 or HH == 0 && HL sign bit is 1.
2904    // We overflow min if HH < -1 or HH == -1 && HL sign bit is 0.
2905    if (Saturating) {
2906      SDValue HHPos = DAG.getSetCC(dl, BoolNVT, ResultHH, NVTZero, ISD::SETGT);
2907      SDValue HHZero = DAG.getSetCC(dl, BoolNVT, ResultHH, NVTZero, ISD::SETEQ);
2908      SDValue HLNeg = DAG.getSetCC(dl, BoolNVT, ResultHL, NVTZero, ISD::SETLT);
2909      SatMax = DAG.getNode(ISD::OR, dl, BoolNVT, HHPos,
2910                           DAG.getNode(ISD::AND, dl, BoolNVT, HHZero, HLNeg));
2911
2912      SDValue HHNeg = DAG.getSetCC(dl, BoolNVT, ResultHH, NVTNeg1, ISD::SETLT);
2913      SDValue HHNeg1 = DAG.getSetCC(dl, BoolNVT, ResultHH, NVTNeg1, ISD::SETEQ);
2914      SDValue HLPos = DAG.getSetCC(dl, BoolNVT, ResultHL, NVTZero, ISD::SETGE);
2915      SatMin = DAG.getNode(ISD::OR, dl, BoolNVT, HHNeg,
2916                           DAG.getNode(ISD::AND, dl, BoolNVT, HHNeg1, HLPos));
2917    }
2918  } else if (Scale < VTSize) {
2919    // If the scale is instead less than the old VT size, but greater than or
2920    // equal to the expanded VT size, the first part of the result (ResultLL) is
2921    // no longer a part of Lo because it would be scaled out anyway. Instead we
2922    // can start shifting right from the fourth part (ResultHH) to the second
2923    // part (ResultLH), and Result LH will be the new Lo.
2924    SDValue SRLAmnt = DAG.getConstant(Scale - NVTSize, dl, ShiftTy);
2925    SDValue SHLAmnt = DAG.getConstant(VTSize - Scale, dl, ShiftTy);
2926    Lo = DAG.getNode(ISD::SRL, dl, NVT, ResultLH, SRLAmnt);
2927    Lo = DAG.getNode(ISD::OR, dl, NVT, Lo,
2928                     DAG.getNode(ISD::SHL, dl, NVT, ResultHL, SHLAmnt));
2929    Hi = DAG.getNode(ISD::SRL, dl, NVT, ResultHL, SRLAmnt);
2930    Hi = DAG.getNode(ISD::OR, dl, NVT, Hi,
2931                     DAG.getNode(ISD::SHL, dl, NVT, ResultHH, SHLAmnt));
2932
2933    // This is similar to the case when we saturate if Scale < NVTSize, but we
2934    // only need to chech HH.
2935    if (Saturating) {
2936      unsigned OverflowBits = VTSize - Scale + 1;
2937      SDValue HHHiMask = DAG.getConstant(
2938          APInt::getHighBitsSet(NVTSize, OverflowBits), dl, NVT);
2939      SDValue HHLoMask = DAG.getConstant(
2940          APInt::getLowBitsSet(NVTSize, NVTSize - OverflowBits), dl, NVT);
2941
2942      SatMax = DAG.getSetCC(dl, BoolNVT, ResultHH, HHLoMask, ISD::SETGT);
2943      SatMin = DAG.getSetCC(dl, BoolNVT, ResultHH, HHHiMask, ISD::SETLT);
2944    }
2945  } else if (Scale == VTSize) {
2946    assert(
2947        !Signed &&
2948        "Only unsigned types can have a scale equal to the operand bit width");
2949
2950    Lo = ResultHL;
2951    Hi = ResultHH;
2952  } else {
2953    llvm_unreachable("Expected the scale to be less than or equal to the width "
2954                     "of the operands");
2955  }
2956
2957  if (Saturating) {
2958    APInt LHMax = APInt::getSignedMaxValue(NVTSize);
2959    APInt LLMax = APInt::getAllOnesValue(NVTSize);
2960    APInt LHMin = APInt::getSignedMinValue(NVTSize);
2961    Hi = DAG.getSelect(dl, NVT, SatMax, DAG.getConstant(LHMax, dl, NVT), Hi);
2962    Hi = DAG.getSelect(dl, NVT, SatMin, DAG.getConstant(LHMin, dl, NVT), Hi);
2963    Lo = DAG.getSelect(dl, NVT, SatMax, DAG.getConstant(LLMax, dl, NVT), Lo);
2964    Lo = DAG.getSelect(dl, NVT, SatMin, NVTZero, Lo);
2965  }
2966}
2967
2968void DAGTypeLegalizer::ExpandIntRes_SADDSUBO(SDNode *Node,
2969                                             SDValue &Lo, SDValue &Hi) {
2970  SDValue LHS = Node->getOperand(0);
2971  SDValue RHS = Node->getOperand(1);
2972  SDLoc dl(Node);
2973
2974  // Expand the result by simply replacing it with the equivalent
2975  // non-overflow-checking operation.
2976  SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2977                            ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2978                            LHS, RHS);
2979  SplitInteger(Sum, Lo, Hi);
2980
2981  // Compute the overflow.
2982  //
2983  //   LHSSign -> LHS >= 0
2984  //   RHSSign -> RHS >= 0
2985  //   SumSign -> Sum >= 0
2986  //
2987  //   Add:
2988  //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2989  //   Sub:
2990  //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2991  //
2992  EVT OType = Node->getValueType(1);
2993  SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
2994
2995  SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2996  SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2997  SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2998                                    Node->getOpcode() == ISD::SADDO ?
2999                                    ISD::SETEQ : ISD::SETNE);
3000
3001  SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3002  SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3003
3004  SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3005
3006  // Use the calculated overflow everywhere.
3007  ReplaceValueWith(SDValue(Node, 1), Cmp);
3008}
3009
3010void DAGTypeLegalizer::ExpandIntRes_SDIV(SDNode *N,
3011                                         SDValue &Lo, SDValue &Hi) {
3012  EVT VT = N->getValueType(0);
3013  SDLoc dl(N);
3014  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
3015
3016  if (TLI.getOperationAction(ISD::SDIVREM, VT) == TargetLowering::Custom) {
3017    SDValue Res = DAG.getNode(ISD::SDIVREM, dl, DAG.getVTList(VT, VT), Ops);
3018    SplitInteger(Res.getValue(0), Lo, Hi);
3019    return;
3020  }
3021
3022  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3023  if (VT == MVT::i16)
3024    LC = RTLIB::SDIV_I16;
3025  else if (VT == MVT::i32)
3026    LC = RTLIB::SDIV_I32;
3027  else if (VT == MVT::i64)
3028    LC = RTLIB::SDIV_I64;
3029  else if (VT == MVT::i128)
3030    LC = RTLIB::SDIV_I128;
3031  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
3032
3033  SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, true, dl).first, Lo, Hi);
3034}
3035
3036void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N,
3037                                          SDValue &Lo, SDValue &Hi) {
3038  EVT VT = N->getValueType(0);
3039  SDLoc dl(N);
3040
3041  // If we can emit an efficient shift operation, do so now.  Check to see if
3042  // the RHS is a constant.
3043  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
3044    return ExpandShiftByConstant(N, CN->getAPIntValue(), Lo, Hi);
3045
3046  // If we can determine that the high bit of the shift is zero or one, even if
3047  // the low bits are variable, emit this shift in an optimized form.
3048  if (ExpandShiftWithKnownAmountBit(N, Lo, Hi))
3049    return;
3050
3051  // If this target supports shift_PARTS, use it.  First, map to the _PARTS opc.
3052  unsigned PartsOpc;
3053  if (N->getOpcode() == ISD::SHL) {
3054    PartsOpc = ISD::SHL_PARTS;
3055  } else if (N->getOpcode() == ISD::SRL) {
3056    PartsOpc = ISD::SRL_PARTS;
3057  } else {
3058    assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
3059    PartsOpc = ISD::SRA_PARTS;
3060  }
3061
3062  // Next check to see if the target supports this SHL_PARTS operation or if it
3063  // will custom expand it. Don't lower this to SHL_PARTS when we optimise for
3064  // size, but create a libcall instead.
3065  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3066  TargetLowering::LegalizeAction Action = TLI.getOperationAction(PartsOpc, NVT);
3067  const bool LegalOrCustom =
3068    (Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
3069    Action == TargetLowering::Custom;
3070
3071  if (LegalOrCustom && TLI.shouldExpandShift(DAG, N)) {
3072    // Expand the subcomponents.
3073    SDValue LHSL, LHSH;
3074    GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
3075    EVT VT = LHSL.getValueType();
3076
3077    // If the shift amount operand is coming from a vector legalization it may
3078    // have an illegal type.  Fix that first by casting the operand, otherwise
3079    // the new SHL_PARTS operation would need further legalization.
3080    SDValue ShiftOp = N->getOperand(1);
3081    EVT ShiftTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
3082    assert(ShiftTy.getScalarSizeInBits() >=
3083           Log2_32_Ceil(VT.getScalarSizeInBits()) &&
3084           "ShiftAmountTy is too small to cover the range of this type!");
3085    if (ShiftOp.getValueType() != ShiftTy)
3086      ShiftOp = DAG.getZExtOrTrunc(ShiftOp, dl, ShiftTy);
3087
3088    SDValue Ops[] = { LHSL, LHSH, ShiftOp };
3089    Lo = DAG.getNode(PartsOpc, dl, DAG.getVTList(VT, VT), Ops);
3090    Hi = Lo.getValue(1);
3091    return;
3092  }
3093
3094  // Otherwise, emit a libcall.
3095  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3096  bool isSigned;
3097  if (N->getOpcode() == ISD::SHL) {
3098    isSigned = false; /*sign irrelevant*/
3099    if (VT == MVT::i16)
3100      LC = RTLIB::SHL_I16;
3101    else if (VT == MVT::i32)
3102      LC = RTLIB::SHL_I32;
3103    else if (VT == MVT::i64)
3104      LC = RTLIB::SHL_I64;
3105    else if (VT == MVT::i128)
3106      LC = RTLIB::SHL_I128;
3107  } else if (N->getOpcode() == ISD::SRL) {
3108    isSigned = false;
3109    if (VT == MVT::i16)
3110      LC = RTLIB::SRL_I16;
3111    else if (VT == MVT::i32)
3112      LC = RTLIB::SRL_I32;
3113    else if (VT == MVT::i64)
3114      LC = RTLIB::SRL_I64;
3115    else if (VT == MVT::i128)
3116      LC = RTLIB::SRL_I128;
3117  } else {
3118    assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
3119    isSigned = true;
3120    if (VT == MVT::i16)
3121      LC = RTLIB::SRA_I16;
3122    else if (VT == MVT::i32)
3123      LC = RTLIB::SRA_I32;
3124    else if (VT == MVT::i64)
3125      LC = RTLIB::SRA_I64;
3126    else if (VT == MVT::i128)
3127      LC = RTLIB::SRA_I128;
3128  }
3129
3130  if (LC != RTLIB::UNKNOWN_LIBCALL && TLI.getLibcallName(LC)) {
3131    SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
3132    SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, isSigned, dl).first, Lo, Hi);
3133    return;
3134  }
3135
3136  if (!ExpandShiftWithUnknownAmountBit(N, Lo, Hi))
3137    llvm_unreachable("Unsupported shift!");
3138}
3139
3140void DAGTypeLegalizer::ExpandIntRes_SIGN_EXTEND(SDNode *N,
3141                                                SDValue &Lo, SDValue &Hi) {
3142  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
3143  SDLoc dl(N);
3144  SDValue Op = N->getOperand(0);
3145  if (Op.getValueType().bitsLE(NVT)) {
3146    // The low part is sign extension of the input (degenerates to a copy).
3147    Lo = DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, N->getOperand(0));
3148    // The high part is obtained by SRA'ing all but one of the bits of low part.
3149    unsigned LoSize = NVT.getSizeInBits();
3150    Hi = DAG.getNode(
3151        ISD::SRA, dl, NVT, Lo,
3152        DAG.getConstant(LoSize - 1, dl, TLI.getPointerTy(DAG.getDataLayout())));
3153  } else {
3154    // For example, extension of an i48 to an i64.  The operand type necessarily
3155    // promotes to the result type, so will end up being expanded too.
3156    assert(getTypeAction(Op.getValueType()) ==
3157           TargetLowering::TypePromoteInteger &&
3158           "Only know how to promote this result!");
3159    SDValue Res = GetPromotedInteger(Op);
3160    assert(Res.getValueType() == N->getValueType(0) &&
3161           "Operand over promoted?");
3162    // Split the promoted operand.  This will simplify when it is expanded.
3163    SplitInteger(Res, Lo, Hi);
3164    unsigned ExcessBits = Op.getValueSizeInBits() - NVT.getSizeInBits();
3165    Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
3166                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
3167                                                        ExcessBits)));
3168  }
3169}
3170
3171void DAGTypeLegalizer::
3172ExpandIntRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi) {
3173  SDLoc dl(N);
3174  GetExpandedInteger(N->getOperand(0), Lo, Hi);
3175  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3176
3177  if (EVT.bitsLE(Lo.getValueType())) {
3178    // sext_inreg the low part if needed.
3179    Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Lo.getValueType(), Lo,
3180                     N->getOperand(1));
3181
3182    // The high part gets the sign extension from the lo-part.  This handles
3183    // things like sextinreg V:i64 from i8.
3184    Hi = DAG.getNode(ISD::SRA, dl, Hi.getValueType(), Lo,
3185                     DAG.getConstant(Hi.getValueSizeInBits() - 1, dl,
3186                                     TLI.getPointerTy(DAG.getDataLayout())));
3187  } else {
3188    // For example, extension of an i48 to an i64.  Leave the low part alone,
3189    // sext_inreg the high part.
3190    unsigned ExcessBits = EVT.getSizeInBits() - Lo.getValueSizeInBits();
3191    Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
3192                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
3193                                                        ExcessBits)));
3194  }
3195}
3196
3197void DAGTypeLegalizer::ExpandIntRes_SREM(SDNode *N,
3198                                         SDValue &Lo, SDValue &Hi) {
3199  EVT VT = N->getValueType(0);
3200  SDLoc dl(N);
3201  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
3202
3203  if (TLI.getOperationAction(ISD::SDIVREM, VT) == TargetLowering::Custom) {
3204    SDValue Res = DAG.getNode(ISD::SDIVREM, dl, DAG.getVTList(VT, VT), Ops);
3205    SplitInteger(Res.getValue(1), Lo, Hi);
3206    return;
3207  }
3208
3209  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3210  if (VT == MVT::i16)
3211    LC = RTLIB::SREM_I16;
3212  else if (VT == MVT::i32)
3213    LC = RTLIB::SREM_I32;
3214  else if (VT == MVT::i64)
3215    LC = RTLIB::SREM_I64;
3216  else if (VT == MVT::i128)
3217    LC = RTLIB::SREM_I128;
3218  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
3219
3220  SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, true, dl).first, Lo, Hi);
3221}
3222
3223void DAGTypeLegalizer::ExpandIntRes_TRUNCATE(SDNode *N,
3224                                             SDValue &Lo, SDValue &Hi) {
3225  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
3226  SDLoc dl(N);
3227  Lo = DAG.getNode(ISD::TRUNCATE, dl, NVT, N->getOperand(0));
3228  Hi = DAG.getNode(ISD::SRL, dl, N->getOperand(0).getValueType(),
3229                   N->getOperand(0),
3230                   DAG.getConstant(NVT.getSizeInBits(), dl,
3231                                   TLI.getPointerTy(DAG.getDataLayout())));
3232  Hi = DAG.getNode(ISD::TRUNCATE, dl, NVT, Hi);
3233}
3234
3235void DAGTypeLegalizer::ExpandIntRes_XMULO(SDNode *N,
3236                                          SDValue &Lo, SDValue &Hi) {
3237  EVT VT = N->getValueType(0);
3238  SDLoc dl(N);
3239
3240  if (N->getOpcode() == ISD::UMULO) {
3241    // This section expands the operation into the following sequence of
3242    // instructions. `iNh` here refers to a type which has half the bit width of
3243    // the type the original operation operated on.
3244    //
3245    // %0 = %LHS.HI != 0 && %RHS.HI != 0
3246    // %1 = { iNh, i1 } @umul.with.overflow.iNh(iNh %LHS.HI, iNh %RHS.LO)
3247    // %2 = { iNh, i1 } @umul.with.overflow.iNh(iNh %RHS.HI, iNh %LHS.LO)
3248    // %3 = mul nuw iN (%LHS.LOW as iN), (%RHS.LOW as iN)
3249    // %4 = add iN (%1.0 as iN) << Nh, (%2.0 as iN) << Nh
3250    // %5 = { iN, i1 } @uadd.with.overflow.iN( %4, %3 )
3251    //
3252    // %res = { %5.0, %0 || %1.1 || %2.1 || %5.1 }
3253    SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
3254    SDValue LHSHigh, LHSLow, RHSHigh, RHSLow;
3255    SplitInteger(LHS, LHSLow, LHSHigh);
3256    SplitInteger(RHS, RHSLow, RHSHigh);
3257    EVT HalfVT = LHSLow.getValueType()
3258      , BitVT = N->getValueType(1);
3259    SDVTList VTHalfMulO = DAG.getVTList(HalfVT, BitVT);
3260    SDVTList VTFullAddO = DAG.getVTList(VT, BitVT);
3261
3262    SDValue HalfZero = DAG.getConstant(0, dl, HalfVT);
3263    SDValue Overflow = DAG.getNode(ISD::AND, dl, BitVT,
3264      DAG.getSetCC(dl, BitVT, LHSHigh, HalfZero, ISD::SETNE),
3265      DAG.getSetCC(dl, BitVT, RHSHigh, HalfZero, ISD::SETNE));
3266
3267    SDValue One = DAG.getNode(ISD::UMULO, dl, VTHalfMulO, LHSHigh, RHSLow);
3268    Overflow = DAG.getNode(ISD::OR, dl, BitVT, Overflow, One.getValue(1));
3269    SDValue OneInHigh = DAG.getNode(ISD::BUILD_PAIR, dl, VT, HalfZero,
3270                                    One.getValue(0));
3271
3272    SDValue Two = DAG.getNode(ISD::UMULO, dl, VTHalfMulO, RHSHigh, LHSLow);
3273    Overflow = DAG.getNode(ISD::OR, dl, BitVT, Overflow, Two.getValue(1));
3274    SDValue TwoInHigh = DAG.getNode(ISD::BUILD_PAIR, dl, VT, HalfZero,
3275                                    Two.getValue(0));
3276
3277    // Cannot use `UMUL_LOHI` directly, because some 32-bit targets (ARM) do not
3278    // know how to expand `i64,i64 = umul_lohi a, b` and abort (why isn���t this
3279    // operation recursively legalized?).
3280    //
3281    // Many backends understand this pattern and will convert into LOHI
3282    // themselves, if applicable.
3283    SDValue Three = DAG.getNode(ISD::MUL, dl, VT,
3284      DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LHSLow),
3285      DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RHSLow));
3286    SDValue Four = DAG.getNode(ISD::ADD, dl, VT, OneInHigh, TwoInHigh);
3287    SDValue Five = DAG.getNode(ISD::UADDO, dl, VTFullAddO, Three, Four);
3288    Overflow = DAG.getNode(ISD::OR, dl, BitVT, Overflow, Five.getValue(1));
3289    SplitInteger(Five, Lo, Hi);
3290    ReplaceValueWith(SDValue(N, 1), Overflow);
3291    return;
3292  }
3293
3294  Type *RetTy = VT.getTypeForEVT(*DAG.getContext());
3295  EVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
3296  Type *PtrTy = PtrVT.getTypeForEVT(*DAG.getContext());
3297
3298  // Replace this with a libcall that will check overflow.
3299  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3300  if (VT == MVT::i32)
3301    LC = RTLIB::MULO_I32;
3302  else if (VT == MVT::i64)
3303    LC = RTLIB::MULO_I64;
3304  else if (VT == MVT::i128)
3305    LC = RTLIB::MULO_I128;
3306  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported XMULO!");
3307
3308  SDValue Temp = DAG.CreateStackTemporary(PtrVT);
3309  // Temporary for the overflow value, default it to zero.
3310  SDValue Chain =
3311      DAG.getStore(DAG.getEntryNode(), dl, DAG.getConstant(0, dl, PtrVT), Temp,
3312                   MachinePointerInfo());
3313
3314  TargetLowering::ArgListTy Args;
3315  TargetLowering::ArgListEntry Entry;
3316  for (const SDValue &Op : N->op_values()) {
3317    EVT ArgVT = Op.getValueType();
3318    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
3319    Entry.Node = Op;
3320    Entry.Ty = ArgTy;
3321    Entry.IsSExt = true;
3322    Entry.IsZExt = false;
3323    Args.push_back(Entry);
3324  }
3325
3326  // Also pass the address of the overflow check.
3327  Entry.Node = Temp;
3328  Entry.Ty = PtrTy->getPointerTo();
3329  Entry.IsSExt = true;
3330  Entry.IsZExt = false;
3331  Args.push_back(Entry);
3332
3333  SDValue Func = DAG.getExternalSymbol(TLI.getLibcallName(LC), PtrVT);
3334
3335  TargetLowering::CallLoweringInfo CLI(DAG);
3336  CLI.setDebugLoc(dl)
3337      .setChain(Chain)
3338      .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Func, std::move(Args))
3339      .setSExtResult();
3340
3341  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
3342
3343  SplitInteger(CallInfo.first, Lo, Hi);
3344  SDValue Temp2 =
3345      DAG.getLoad(PtrVT, dl, CallInfo.second, Temp, MachinePointerInfo());
3346  SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Temp2,
3347                             DAG.getConstant(0, dl, PtrVT),
3348                             ISD::SETNE);
3349  // Use the overflow from the libcall everywhere.
3350  ReplaceValueWith(SDValue(N, 1), Ofl);
3351}
3352
3353void DAGTypeLegalizer::ExpandIntRes_UDIV(SDNode *N,
3354                                         SDValue &Lo, SDValue &Hi) {
3355  EVT VT = N->getValueType(0);
3356  SDLoc dl(N);
3357  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
3358
3359  if (TLI.getOperationAction(ISD::UDIVREM, VT) == TargetLowering::Custom) {
3360    SDValue Res = DAG.getNode(ISD::UDIVREM, dl, DAG.getVTList(VT, VT), Ops);
3361    SplitInteger(Res.getValue(0), Lo, Hi);
3362    return;
3363  }
3364
3365  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3366  if (VT == MVT::i16)
3367    LC = RTLIB::UDIV_I16;
3368  else if (VT == MVT::i32)
3369    LC = RTLIB::UDIV_I32;
3370  else if (VT == MVT::i64)
3371    LC = RTLIB::UDIV_I64;
3372  else if (VT == MVT::i128)
3373    LC = RTLIB::UDIV_I128;
3374  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UDIV!");
3375
3376  SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, false, dl).first, Lo, Hi);
3377}
3378
3379void DAGTypeLegalizer::ExpandIntRes_UREM(SDNode *N,
3380                                         SDValue &Lo, SDValue &Hi) {
3381  EVT VT = N->getValueType(0);
3382  SDLoc dl(N);
3383  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
3384
3385  if (TLI.getOperationAction(ISD::UDIVREM, VT) == TargetLowering::Custom) {
3386    SDValue Res = DAG.getNode(ISD::UDIVREM, dl, DAG.getVTList(VT, VT), Ops);
3387    SplitInteger(Res.getValue(1), Lo, Hi);
3388    return;
3389  }
3390
3391  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3392  if (VT == MVT::i16)
3393    LC = RTLIB::UREM_I16;
3394  else if (VT == MVT::i32)
3395    LC = RTLIB::UREM_I32;
3396  else if (VT == MVT::i64)
3397    LC = RTLIB::UREM_I64;
3398  else if (VT == MVT::i128)
3399    LC = RTLIB::UREM_I128;
3400  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UREM!");
3401
3402  SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, false, dl).first, Lo, Hi);
3403}
3404
3405void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode *N,
3406                                                SDValue &Lo, SDValue &Hi) {
3407  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
3408  SDLoc dl(N);
3409  SDValue Op = N->getOperand(0);
3410  if (Op.getValueType().bitsLE(NVT)) {
3411    // The low part is zero extension of the input (degenerates to a copy).
3412    Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N->getOperand(0));
3413    Hi = DAG.getConstant(0, dl, NVT);   // The high part is just a zero.
3414  } else {
3415    // For example, extension of an i48 to an i64.  The operand type necessarily
3416    // promotes to the result type, so will end up being expanded too.
3417    assert(getTypeAction(Op.getValueType()) ==
3418           TargetLowering::TypePromoteInteger &&
3419           "Only know how to promote this result!");
3420    SDValue Res = GetPromotedInteger(Op);
3421    assert(Res.getValueType() == N->getValueType(0) &&
3422           "Operand over promoted?");
3423    // Split the promoted operand.  This will simplify when it is expanded.
3424    SplitInteger(Res, Lo, Hi);
3425    unsigned ExcessBits = Op.getValueSizeInBits() - NVT.getSizeInBits();
3426    Hi = DAG.getZeroExtendInReg(Hi, dl,
3427                                EVT::getIntegerVT(*DAG.getContext(),
3428                                                  ExcessBits));
3429  }
3430}
3431
3432void DAGTypeLegalizer::ExpandIntRes_ATOMIC_LOAD(SDNode *N,
3433                                                SDValue &Lo, SDValue &Hi) {
3434  SDLoc dl(N);
3435  EVT VT = cast<AtomicSDNode>(N)->getMemoryVT();
3436  SDVTList VTs = DAG.getVTList(VT, MVT::i1, MVT::Other);
3437  SDValue Zero = DAG.getConstant(0, dl, VT);
3438  SDValue Swap = DAG.getAtomicCmpSwap(
3439      ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl,
3440      cast<AtomicSDNode>(N)->getMemoryVT(), VTs, N->getOperand(0),
3441      N->getOperand(1), Zero, Zero, cast<AtomicSDNode>(N)->getMemOperand());
3442
3443  ReplaceValueWith(SDValue(N, 0), Swap.getValue(0));
3444  ReplaceValueWith(SDValue(N, 1), Swap.getValue(2));
3445}
3446
3447void DAGTypeLegalizer::ExpandIntRes_VECREDUCE(SDNode *N,
3448                                              SDValue &Lo, SDValue &Hi) {
3449  // TODO For VECREDUCE_(AND|OR|XOR) we could split the vector and calculate
3450  // both halves independently.
3451  SDValue Res = TLI.expandVecReduce(N, DAG);
3452  SplitInteger(Res, Lo, Hi);
3453}
3454
3455//===----------------------------------------------------------------------===//
3456//  Integer Operand Expansion
3457//===----------------------------------------------------------------------===//
3458
3459/// ExpandIntegerOperand - This method is called when the specified operand of
3460/// the specified node is found to need expansion.  At this point, all of the
3461/// result types of the node are known to be legal, but other operands of the
3462/// node may need promotion or expansion as well as the specified one.
3463bool DAGTypeLegalizer::ExpandIntegerOperand(SDNode *N, unsigned OpNo) {
3464  LLVM_DEBUG(dbgs() << "Expand integer operand: "; N->dump(&DAG);
3465             dbgs() << "\n");
3466  SDValue Res = SDValue();
3467
3468  if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
3469    return false;
3470
3471  switch (N->getOpcode()) {
3472  default:
3473  #ifndef NDEBUG
3474    dbgs() << "ExpandIntegerOperand Op #" << OpNo << ": ";
3475    N->dump(&DAG); dbgs() << "\n";
3476  #endif
3477    report_fatal_error("Do not know how to expand this operator's operand!");
3478
3479  case ISD::BITCAST:           Res = ExpandOp_BITCAST(N); break;
3480  case ISD::BR_CC:             Res = ExpandIntOp_BR_CC(N); break;
3481  case ISD::BUILD_VECTOR:      Res = ExpandOp_BUILD_VECTOR(N); break;
3482  case ISD::EXTRACT_ELEMENT:   Res = ExpandOp_EXTRACT_ELEMENT(N); break;
3483  case ISD::INSERT_VECTOR_ELT: Res = ExpandOp_INSERT_VECTOR_ELT(N); break;
3484  case ISD::SCALAR_TO_VECTOR:  Res = ExpandOp_SCALAR_TO_VECTOR(N); break;
3485  case ISD::SELECT_CC:         Res = ExpandIntOp_SELECT_CC(N); break;
3486  case ISD::SETCC:             Res = ExpandIntOp_SETCC(N); break;
3487  case ISD::SETCCCARRY:        Res = ExpandIntOp_SETCCCARRY(N); break;
3488  case ISD::SINT_TO_FP:        Res = ExpandIntOp_SINT_TO_FP(N); break;
3489  case ISD::STORE:   Res = ExpandIntOp_STORE(cast<StoreSDNode>(N), OpNo); break;
3490  case ISD::TRUNCATE:          Res = ExpandIntOp_TRUNCATE(N); break;
3491  case ISD::UINT_TO_FP:        Res = ExpandIntOp_UINT_TO_FP(N); break;
3492
3493  case ISD::SHL:
3494  case ISD::SRA:
3495  case ISD::SRL:
3496  case ISD::ROTL:
3497  case ISD::ROTR:              Res = ExpandIntOp_Shift(N); break;
3498  case ISD::RETURNADDR:
3499  case ISD::FRAMEADDR:         Res = ExpandIntOp_RETURNADDR(N); break;
3500
3501  case ISD::ATOMIC_STORE:      Res = ExpandIntOp_ATOMIC_STORE(N); break;
3502  }
3503
3504  // If the result is null, the sub-method took care of registering results etc.
3505  if (!Res.getNode()) return false;
3506
3507  // If the result is N, the sub-method updated N in place.  Tell the legalizer
3508  // core about this.
3509  if (Res.getNode() == N)
3510    return true;
3511
3512  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
3513         "Invalid operand expansion");
3514
3515  ReplaceValueWith(SDValue(N, 0), Res);
3516  return false;
3517}
3518
3519/// IntegerExpandSetCCOperands - Expand the operands of a comparison.  This code
3520/// is shared among BR_CC, SELECT_CC, and SETCC handlers.
3521void DAGTypeLegalizer::IntegerExpandSetCCOperands(SDValue &NewLHS,
3522                                                  SDValue &NewRHS,
3523                                                  ISD::CondCode &CCCode,
3524                                                  const SDLoc &dl) {
3525  SDValue LHSLo, LHSHi, RHSLo, RHSHi;
3526  GetExpandedInteger(NewLHS, LHSLo, LHSHi);
3527  GetExpandedInteger(NewRHS, RHSLo, RHSHi);
3528
3529  if (CCCode == ISD::SETEQ || CCCode == ISD::SETNE) {
3530    if (RHSLo == RHSHi) {
3531      if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) {
3532        if (RHSCST->isAllOnesValue()) {
3533          // Equality comparison to -1.
3534          NewLHS = DAG.getNode(ISD::AND, dl,
3535                               LHSLo.getValueType(), LHSLo, LHSHi);
3536          NewRHS = RHSLo;
3537          return;
3538        }
3539      }
3540    }
3541
3542    NewLHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSLo, RHSLo);
3543    NewRHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSHi, RHSHi);
3544    NewLHS = DAG.getNode(ISD::OR, dl, NewLHS.getValueType(), NewLHS, NewRHS);
3545    NewRHS = DAG.getConstant(0, dl, NewLHS.getValueType());
3546    return;
3547  }
3548
3549  // If this is a comparison of the sign bit, just look at the top part.
3550  // X > -1,  x < 0
3551  if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(NewRHS))
3552    if ((CCCode == ISD::SETLT && CST->isNullValue()) ||     // X < 0
3553        (CCCode == ISD::SETGT && CST->isAllOnesValue())) {  // X > -1
3554      NewLHS = LHSHi;
3555      NewRHS = RHSHi;
3556      return;
3557    }
3558
3559  // FIXME: This generated code sucks.
3560  ISD::CondCode LowCC;
3561  switch (CCCode) {
3562  default: llvm_unreachable("Unknown integer setcc!");
3563  case ISD::SETLT:
3564  case ISD::SETULT: LowCC = ISD::SETULT; break;
3565  case ISD::SETGT:
3566  case ISD::SETUGT: LowCC = ISD::SETUGT; break;
3567  case ISD::SETLE:
3568  case ISD::SETULE: LowCC = ISD::SETULE; break;
3569  case ISD::SETGE:
3570  case ISD::SETUGE: LowCC = ISD::SETUGE; break;
3571  }
3572
3573  // LoCmp = lo(op1) < lo(op2)   // Always unsigned comparison
3574  // HiCmp = hi(op1) < hi(op2)   // Signedness depends on operands
3575  // dest  = hi(op1) == hi(op2) ? LoCmp : HiCmp;
3576
3577  // NOTE: on targets without efficient SELECT of bools, we can always use
3578  // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
3579  TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, AfterLegalizeTypes, true,
3580                                                 nullptr);
3581  SDValue LoCmp, HiCmp;
3582  if (TLI.isTypeLegal(LHSLo.getValueType()) &&
3583      TLI.isTypeLegal(RHSLo.getValueType()))
3584    LoCmp = TLI.SimplifySetCC(getSetCCResultType(LHSLo.getValueType()), LHSLo,
3585                              RHSLo, LowCC, false, DagCombineInfo, dl);
3586  if (!LoCmp.getNode())
3587    LoCmp = DAG.getSetCC(dl, getSetCCResultType(LHSLo.getValueType()), LHSLo,
3588                         RHSLo, LowCC);
3589  if (TLI.isTypeLegal(LHSHi.getValueType()) &&
3590      TLI.isTypeLegal(RHSHi.getValueType()))
3591    HiCmp = TLI.SimplifySetCC(getSetCCResultType(LHSHi.getValueType()), LHSHi,
3592                              RHSHi, CCCode, false, DagCombineInfo, dl);
3593  if (!HiCmp.getNode())
3594    HiCmp =
3595        DAG.getNode(ISD::SETCC, dl, getSetCCResultType(LHSHi.getValueType()),
3596                    LHSHi, RHSHi, DAG.getCondCode(CCCode));
3597
3598  ConstantSDNode *LoCmpC = dyn_cast<ConstantSDNode>(LoCmp.getNode());
3599  ConstantSDNode *HiCmpC = dyn_cast<ConstantSDNode>(HiCmp.getNode());
3600
3601  bool EqAllowed = (CCCode == ISD::SETLE || CCCode == ISD::SETGE ||
3602                    CCCode == ISD::SETUGE || CCCode == ISD::SETULE);
3603
3604  if ((EqAllowed && (HiCmpC && HiCmpC->isNullValue())) ||
3605      (!EqAllowed && ((HiCmpC && (HiCmpC->getAPIntValue() == 1)) ||
3606                      (LoCmpC && LoCmpC->isNullValue())))) {
3607    // For LE / GE, if high part is known false, ignore the low part.
3608    // For LT / GT: if low part is known false, return the high part.
3609    //              if high part is known true, ignore the low part.
3610    NewLHS = HiCmp;
3611    NewRHS = SDValue();
3612    return;
3613  }
3614
3615  if (LHSHi == RHSHi) {
3616    // Comparing the low bits is enough.
3617    NewLHS = LoCmp;
3618    NewRHS = SDValue();
3619    return;
3620  }
3621
3622  // Lower with SETCCCARRY if the target supports it.
3623  EVT HiVT = LHSHi.getValueType();
3624  EVT ExpandVT = TLI.getTypeToExpandTo(*DAG.getContext(), HiVT);
3625  bool HasSETCCCARRY = TLI.isOperationLegalOrCustom(ISD::SETCCCARRY, ExpandVT);
3626
3627  // FIXME: Make all targets support this, then remove the other lowering.
3628  if (HasSETCCCARRY) {
3629    // SETCCCARRY can detect < and >= directly. For > and <=, flip
3630    // operands and condition code.
3631    bool FlipOperands = false;
3632    switch (CCCode) {
3633    case ISD::SETGT:  CCCode = ISD::SETLT;  FlipOperands = true; break;
3634    case ISD::SETUGT: CCCode = ISD::SETULT; FlipOperands = true; break;
3635    case ISD::SETLE:  CCCode = ISD::SETGE;  FlipOperands = true; break;
3636    case ISD::SETULE: CCCode = ISD::SETUGE; FlipOperands = true; break;
3637    default: break;
3638    }
3639    if (FlipOperands) {
3640      std::swap(LHSLo, RHSLo);
3641      std::swap(LHSHi, RHSHi);
3642    }
3643    // Perform a wide subtraction, feeding the carry from the low part into
3644    // SETCCCARRY. The SETCCCARRY operation is essentially looking at the high
3645    // part of the result of LHS - RHS. It is negative iff LHS < RHS. It is
3646    // zero or positive iff LHS >= RHS.
3647    EVT LoVT = LHSLo.getValueType();
3648    SDVTList VTList = DAG.getVTList(LoVT, getSetCCResultType(LoVT));
3649    SDValue LowCmp = DAG.getNode(ISD::USUBO, dl, VTList, LHSLo, RHSLo);
3650    SDValue Res = DAG.getNode(ISD::SETCCCARRY, dl, getSetCCResultType(HiVT),
3651                              LHSHi, RHSHi, LowCmp.getValue(1),
3652                              DAG.getCondCode(CCCode));
3653    NewLHS = Res;
3654    NewRHS = SDValue();
3655    return;
3656  }
3657
3658  NewLHS = TLI.SimplifySetCC(getSetCCResultType(HiVT), LHSHi, RHSHi, ISD::SETEQ,
3659                             false, DagCombineInfo, dl);
3660  if (!NewLHS.getNode())
3661    NewLHS =
3662        DAG.getSetCC(dl, getSetCCResultType(HiVT), LHSHi, RHSHi, ISD::SETEQ);
3663  NewLHS = DAG.getSelect(dl, LoCmp.getValueType(), NewLHS, LoCmp, HiCmp);
3664  NewRHS = SDValue();
3665}
3666
3667SDValue DAGTypeLegalizer::ExpandIntOp_BR_CC(SDNode *N) {
3668  SDValue NewLHS = N->getOperand(2), NewRHS = N->getOperand(3);
3669  ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(1))->get();
3670  IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N));
3671
3672  // If ExpandSetCCOperands returned a scalar, we need to compare the result
3673  // against zero to select between true and false values.
3674  if (!NewRHS.getNode()) {
3675    NewRHS = DAG.getConstant(0, SDLoc(N), NewLHS.getValueType());
3676    CCCode = ISD::SETNE;
3677  }
3678
3679  // Update N to have the operands specified.
3680  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
3681                                DAG.getCondCode(CCCode), NewLHS, NewRHS,
3682                                N->getOperand(4)), 0);
3683}
3684
3685SDValue DAGTypeLegalizer::ExpandIntOp_SELECT_CC(SDNode *N) {
3686  SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
3687  ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(4))->get();
3688  IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N));
3689
3690  // If ExpandSetCCOperands returned a scalar, we need to compare the result
3691  // against zero to select between true and false values.
3692  if (!NewRHS.getNode()) {
3693    NewRHS = DAG.getConstant(0, SDLoc(N), NewLHS.getValueType());
3694    CCCode = ISD::SETNE;
3695  }
3696
3697  // Update N to have the operands specified.
3698  return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
3699                                N->getOperand(2), N->getOperand(3),
3700                                DAG.getCondCode(CCCode)), 0);
3701}
3702
3703SDValue DAGTypeLegalizer::ExpandIntOp_SETCC(SDNode *N) {
3704  SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
3705  ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(2))->get();
3706  IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N));
3707
3708  // If ExpandSetCCOperands returned a scalar, use it.
3709  if (!NewRHS.getNode()) {
3710    assert(NewLHS.getValueType() == N->getValueType(0) &&
3711           "Unexpected setcc expansion!");
3712    return NewLHS;
3713  }
3714
3715  // Otherwise, update N to have the operands specified.
3716  return SDValue(
3717      DAG.UpdateNodeOperands(N, NewLHS, NewRHS, DAG.getCondCode(CCCode)), 0);
3718}
3719
3720SDValue DAGTypeLegalizer::ExpandIntOp_SETCCCARRY(SDNode *N) {
3721  SDValue LHS = N->getOperand(0);
3722  SDValue RHS = N->getOperand(1);
3723  SDValue Carry = N->getOperand(2);
3724  SDValue Cond = N->getOperand(3);
3725  SDLoc dl = SDLoc(N);
3726
3727  SDValue LHSLo, LHSHi, RHSLo, RHSHi;
3728  GetExpandedInteger(LHS, LHSLo, LHSHi);
3729  GetExpandedInteger(RHS, RHSLo, RHSHi);
3730
3731  // Expand to a SUBE for the low part and a smaller SETCCCARRY for the high.
3732  SDVTList VTList = DAG.getVTList(LHSLo.getValueType(), Carry.getValueType());
3733  SDValue LowCmp = DAG.getNode(ISD::SUBCARRY, dl, VTList, LHSLo, RHSLo, Carry);
3734  return DAG.getNode(ISD::SETCCCARRY, dl, N->getValueType(0), LHSHi, RHSHi,
3735                     LowCmp.getValue(1), Cond);
3736}
3737
3738SDValue DAGTypeLegalizer::ExpandIntOp_Shift(SDNode *N) {
3739  // The value being shifted is legal, but the shift amount is too big.
3740  // It follows that either the result of the shift is undefined, or the
3741  // upper half of the shift amount is zero.  Just use the lower half.
3742  SDValue Lo, Hi;
3743  GetExpandedInteger(N->getOperand(1), Lo, Hi);
3744  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Lo), 0);
3745}
3746
3747SDValue DAGTypeLegalizer::ExpandIntOp_RETURNADDR(SDNode *N) {
3748  // The argument of RETURNADDR / FRAMEADDR builtin is 32 bit contant.  This
3749  // surely makes pretty nice problems on 8/16 bit targets. Just truncate this
3750  // constant to valid type.
3751  SDValue Lo, Hi;
3752  GetExpandedInteger(N->getOperand(0), Lo, Hi);
3753  return SDValue(DAG.UpdateNodeOperands(N, Lo), 0);
3754}
3755
3756SDValue DAGTypeLegalizer::ExpandIntOp_SINT_TO_FP(SDNode *N) {
3757  SDValue Op = N->getOperand(0);
3758  EVT DstVT = N->getValueType(0);
3759  RTLIB::Libcall LC = RTLIB::getSINTTOFP(Op.getValueType(), DstVT);
3760  assert(LC != RTLIB::UNKNOWN_LIBCALL &&
3761         "Don't know how to expand this SINT_TO_FP!");
3762  return TLI.makeLibCall(DAG, LC, DstVT, Op, true, SDLoc(N)).first;
3763}
3764
3765SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
3766  if (ISD::isNormalStore(N))
3767    return ExpandOp_NormalStore(N, OpNo);
3768
3769  assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
3770  assert(OpNo == 1 && "Can only expand the stored value so far");
3771
3772  EVT VT = N->getOperand(1).getValueType();
3773  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3774  SDValue Ch  = N->getChain();
3775  SDValue Ptr = N->getBasePtr();
3776  unsigned Alignment = N->getAlignment();
3777  MachineMemOperand::Flags MMOFlags = N->getMemOperand()->getFlags();
3778  AAMDNodes AAInfo = N->getAAInfo();
3779  SDLoc dl(N);
3780  SDValue Lo, Hi;
3781
3782  assert(NVT.isByteSized() && "Expanded type not byte sized!");
3783
3784  if (N->getMemoryVT().bitsLE(NVT)) {
3785    GetExpandedInteger(N->getValue(), Lo, Hi);
3786    return DAG.getTruncStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
3787                             N->getMemoryVT(), Alignment, MMOFlags, AAInfo);
3788  }
3789
3790  if (DAG.getDataLayout().isLittleEndian()) {
3791    // Little-endian - low bits are at low addresses.
3792    GetExpandedInteger(N->getValue(), Lo, Hi);
3793
3794    Lo = DAG.getStore(Ch, dl, Lo, Ptr, N->getPointerInfo(), Alignment, MMOFlags,
3795                      AAInfo);
3796
3797    unsigned ExcessBits =
3798      N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
3799    EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
3800
3801    // Increment the pointer to the other half.
3802    unsigned IncrementSize = NVT.getSizeInBits()/8;
3803    Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
3804    Hi = DAG.getTruncStore(
3805        Ch, dl, Hi, Ptr, N->getPointerInfo().getWithOffset(IncrementSize), NEVT,
3806        MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo);
3807    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
3808  }
3809
3810  // Big-endian - high bits are at low addresses.  Favor aligned stores at
3811  // the cost of some bit-fiddling.
3812  GetExpandedInteger(N->getValue(), Lo, Hi);
3813
3814  EVT ExtVT = N->getMemoryVT();
3815  unsigned EBytes = ExtVT.getStoreSize();
3816  unsigned IncrementSize = NVT.getSizeInBits()/8;
3817  unsigned ExcessBits = (EBytes - IncrementSize)*8;
3818  EVT HiVT = EVT::getIntegerVT(*DAG.getContext(),
3819                               ExtVT.getSizeInBits() - ExcessBits);
3820
3821  if (ExcessBits < NVT.getSizeInBits()) {
3822    // Transfer high bits from the top of Lo to the bottom of Hi.
3823    Hi = DAG.getNode(ISD::SHL, dl, NVT, Hi,
3824                     DAG.getConstant(NVT.getSizeInBits() - ExcessBits, dl,
3825                                     TLI.getPointerTy(DAG.getDataLayout())));
3826    Hi = DAG.getNode(
3827        ISD::OR, dl, NVT, Hi,
3828        DAG.getNode(ISD::SRL, dl, NVT, Lo,
3829                    DAG.getConstant(ExcessBits, dl,
3830                                    TLI.getPointerTy(DAG.getDataLayout()))));
3831  }
3832
3833  // Store both the high bits and maybe some of the low bits.
3834  Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr, N->getPointerInfo(), HiVT, Alignment,
3835                         MMOFlags, AAInfo);
3836
3837  // Increment the pointer to the other half.
3838  Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
3839  // Store the lowest ExcessBits bits in the second half.
3840  Lo = DAG.getTruncStore(Ch, dl, Lo, Ptr,
3841                         N->getPointerInfo().getWithOffset(IncrementSize),
3842                         EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
3843                         MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo);
3844  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
3845}
3846
3847SDValue DAGTypeLegalizer::ExpandIntOp_TRUNCATE(SDNode *N) {
3848  SDValue InL, InH;
3849  GetExpandedInteger(N->getOperand(0), InL, InH);
3850  // Just truncate the low part of the source.
3851  return DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), InL);
3852}
3853
3854SDValue DAGTypeLegalizer::ExpandIntOp_UINT_TO_FP(SDNode *N) {
3855  SDValue Op = N->getOperand(0);
3856  EVT SrcVT = Op.getValueType();
3857  EVT DstVT = N->getValueType(0);
3858  SDLoc dl(N);
3859
3860  // The following optimization is valid only if every value in SrcVT (when
3861  // treated as signed) is representable in DstVT.  Check that the mantissa
3862  // size of DstVT is >= than the number of bits in SrcVT -1.
3863  const fltSemantics &sem = DAG.EVTToAPFloatSemantics(DstVT);
3864  if (APFloat::semanticsPrecision(sem) >= SrcVT.getSizeInBits()-1 &&
3865      TLI.getOperationAction(ISD::SINT_TO_FP, SrcVT) == TargetLowering::Custom){
3866    // Do a signed conversion then adjust the result.
3867    SDValue SignedConv = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Op);
3868    SignedConv = TLI.LowerOperation(SignedConv, DAG);
3869
3870    // The result of the signed conversion needs adjusting if the 'sign bit' of
3871    // the incoming integer was set.  To handle this, we dynamically test to see
3872    // if it is set, and, if so, add a fudge factor.
3873
3874    const uint64_t F32TwoE32  = 0x4F800000ULL;
3875    const uint64_t F32TwoE64  = 0x5F800000ULL;
3876    const uint64_t F32TwoE128 = 0x7F800000ULL;
3877
3878    APInt FF(32, 0);
3879    if (SrcVT == MVT::i32)
3880      FF = APInt(32, F32TwoE32);
3881    else if (SrcVT == MVT::i64)
3882      FF = APInt(32, F32TwoE64);
3883    else if (SrcVT == MVT::i128)
3884      FF = APInt(32, F32TwoE128);
3885    else
3886      llvm_unreachable("Unsupported UINT_TO_FP!");
3887
3888    // Check whether the sign bit is set.
3889    SDValue Lo, Hi;
3890    GetExpandedInteger(Op, Lo, Hi);
3891    SDValue SignSet = DAG.getSetCC(dl,
3892                                   getSetCCResultType(Hi.getValueType()),
3893                                   Hi,
3894                                   DAG.getConstant(0, dl, Hi.getValueType()),
3895                                   ISD::SETLT);
3896
3897    // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
3898    SDValue FudgePtr =
3899        DAG.getConstantPool(ConstantInt::get(*DAG.getContext(), FF.zext(64)),
3900                            TLI.getPointerTy(DAG.getDataLayout()));
3901
3902    // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
3903    SDValue Zero = DAG.getIntPtrConstant(0, dl);
3904    SDValue Four = DAG.getIntPtrConstant(4, dl);
3905    if (DAG.getDataLayout().isBigEndian())
3906      std::swap(Zero, Four);
3907    SDValue Offset = DAG.getSelect(dl, Zero.getValueType(), SignSet,
3908                                   Zero, Four);
3909    unsigned Alignment = cast<ConstantPoolSDNode>(FudgePtr)->getAlignment();
3910    FudgePtr = DAG.getNode(ISD::ADD, dl, FudgePtr.getValueType(),
3911                           FudgePtr, Offset);
3912    Alignment = std::min(Alignment, 4u);
3913
3914    // Load the value out, extending it from f32 to the destination float type.
3915    // FIXME: Avoid the extend by constructing the right constant pool?
3916    SDValue Fudge = DAG.getExtLoad(
3917        ISD::EXTLOAD, dl, DstVT, DAG.getEntryNode(), FudgePtr,
3918        MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
3919        Alignment);
3920    return DAG.getNode(ISD::FADD, dl, DstVT, SignedConv, Fudge);
3921  }
3922
3923  // Otherwise, use a libcall.
3924  RTLIB::Libcall LC = RTLIB::getUINTTOFP(SrcVT, DstVT);
3925  assert(LC != RTLIB::UNKNOWN_LIBCALL &&
3926         "Don't know how to expand this UINT_TO_FP!");
3927  return TLI.makeLibCall(DAG, LC, DstVT, Op, true, dl).first;
3928}
3929
3930SDValue DAGTypeLegalizer::ExpandIntOp_ATOMIC_STORE(SDNode *N) {
3931  SDLoc dl(N);
3932  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
3933                               cast<AtomicSDNode>(N)->getMemoryVT(),
3934                               N->getOperand(0),
3935                               N->getOperand(1), N->getOperand(2),
3936                               cast<AtomicSDNode>(N)->getMemOperand());
3937  return Swap.getValue(1);
3938}
3939
3940
3941SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N) {
3942
3943  EVT OutVT = N->getValueType(0);
3944  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
3945  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
3946  unsigned OutNumElems = OutVT.getVectorNumElements();
3947  EVT NOutVTElem = NOutVT.getVectorElementType();
3948
3949  SDLoc dl(N);
3950  SDValue BaseIdx = N->getOperand(1);
3951
3952  SDValue InOp0 = N->getOperand(0);
3953  if (getTypeAction(InOp0.getValueType()) == TargetLowering::TypePromoteInteger)
3954    InOp0 = GetPromotedInteger(N->getOperand(0));
3955
3956  EVT InVT = InOp0.getValueType();
3957
3958  SmallVector<SDValue, 8> Ops;
3959  Ops.reserve(OutNumElems);
3960  for (unsigned i = 0; i != OutNumElems; ++i) {
3961
3962    // Extract the element from the original vector.
3963    SDValue Index = DAG.getNode(ISD::ADD, dl, BaseIdx.getValueType(),
3964      BaseIdx, DAG.getConstant(i, dl, BaseIdx.getValueType()));
3965    SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3966      InVT.getVectorElementType(), N->getOperand(0), Index);
3967
3968    SDValue Op = DAG.getAnyExtOrTrunc(Ext, dl, NOutVTElem);
3969    // Insert the converted element to the new vector.
3970    Ops.push_back(Op);
3971  }
3972
3973  return DAG.getBuildVector(NOutVT, dl, Ops);
3974}
3975
3976
3977SDValue DAGTypeLegalizer::PromoteIntRes_VECTOR_SHUFFLE(SDNode *N) {
3978  ShuffleVectorSDNode *SV = cast<ShuffleVectorSDNode>(N);
3979  EVT VT = N->getValueType(0);
3980  SDLoc dl(N);
3981
3982  ArrayRef<int> NewMask = SV->getMask().slice(0, VT.getVectorNumElements());
3983
3984  SDValue V0 = GetPromotedInteger(N->getOperand(0));
3985  SDValue V1 = GetPromotedInteger(N->getOperand(1));
3986  EVT OutVT = V0.getValueType();
3987
3988  return DAG.getVectorShuffle(OutVT, dl, V0, V1, NewMask);
3989}
3990
3991
3992SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_VECTOR(SDNode *N) {
3993  EVT OutVT = N->getValueType(0);
3994  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
3995  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
3996  unsigned NumElems = N->getNumOperands();
3997  EVT NOutVTElem = NOutVT.getVectorElementType();
3998
3999  SDLoc dl(N);
4000
4001  SmallVector<SDValue, 8> Ops;
4002  Ops.reserve(NumElems);
4003  for (unsigned i = 0; i != NumElems; ++i) {
4004    SDValue Op;
4005    // BUILD_VECTOR integer operand types are allowed to be larger than the
4006    // result's element type. This may still be true after the promotion. For
4007    // example, we might be promoting (<v?i1> = BV <i32>, <i32>, ...) to
4008    // (v?i16 = BV <i32>, <i32>, ...), and we can't any_extend <i32> to <i16>.
4009    if (N->getOperand(i).getValueType().bitsLT(NOutVTElem))
4010      Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(i));
4011    else
4012      Op = N->getOperand(i);
4013    Ops.push_back(Op);
4014  }
4015
4016  return DAG.getBuildVector(NOutVT, dl, Ops);
4017}
4018
4019SDValue DAGTypeLegalizer::PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N) {
4020
4021  SDLoc dl(N);
4022
4023  assert(!N->getOperand(0).getValueType().isVector() &&
4024         "Input must be a scalar");
4025
4026  EVT OutVT = N->getValueType(0);
4027  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
4028  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
4029  EVT NOutVTElem = NOutVT.getVectorElementType();
4030
4031  SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(0));
4032
4033  return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NOutVT, Op);
4034}
4035
4036SDValue DAGTypeLegalizer::PromoteIntRes_CONCAT_VECTORS(SDNode *N) {
4037  SDLoc dl(N);
4038
4039  EVT OutVT = N->getValueType(0);
4040  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
4041  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
4042
4043  EVT OutElemTy = NOutVT.getVectorElementType();
4044
4045  unsigned NumElem = N->getOperand(0).getValueType().getVectorNumElements();
4046  unsigned NumOutElem = NOutVT.getVectorNumElements();
4047  unsigned NumOperands = N->getNumOperands();
4048  assert(NumElem * NumOperands == NumOutElem &&
4049         "Unexpected number of elements");
4050
4051  // Take the elements from the first vector.
4052  SmallVector<SDValue, 8> Ops(NumOutElem);
4053  for (unsigned i = 0; i < NumOperands; ++i) {
4054    SDValue Op = N->getOperand(i);
4055    if (getTypeAction(Op.getValueType()) == TargetLowering::TypePromoteInteger)
4056      Op = GetPromotedInteger(Op);
4057    EVT SclrTy = Op.getValueType().getVectorElementType();
4058    assert(NumElem == Op.getValueType().getVectorNumElements() &&
4059           "Unexpected number of elements");
4060
4061    for (unsigned j = 0; j < NumElem; ++j) {
4062      SDValue Ext = DAG.getNode(
4063          ISD::EXTRACT_VECTOR_ELT, dl, SclrTy, Op,
4064          DAG.getConstant(j, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
4065      Ops[i * NumElem + j] = DAG.getAnyExtOrTrunc(Ext, dl, OutElemTy);
4066    }
4067  }
4068
4069  return DAG.getBuildVector(NOutVT, dl, Ops);
4070}
4071
4072SDValue DAGTypeLegalizer::PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N) {
4073  EVT VT = N->getValueType(0);
4074  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
4075  assert(NVT.isVector() && "This type must be promoted to a vector type");
4076
4077  SDLoc dl(N);
4078
4079  // For operands whose TypeAction is to promote, extend the promoted node
4080  // appropriately (ZERO_EXTEND or SIGN_EXTEND) from the original pre-promotion
4081  // type, and then construct a new *_EXTEND_VECTOR_INREG node to the promote-to
4082  // type..
4083  if (getTypeAction(N->getOperand(0).getValueType())
4084      == TargetLowering::TypePromoteInteger) {
4085    SDValue Promoted;
4086
4087    switch(N->getOpcode()) {
4088      case ISD::SIGN_EXTEND_VECTOR_INREG:
4089        Promoted = SExtPromotedInteger(N->getOperand(0));
4090        break;
4091      case ISD::ZERO_EXTEND_VECTOR_INREG:
4092        Promoted = ZExtPromotedInteger(N->getOperand(0));
4093        break;
4094      case ISD::ANY_EXTEND_VECTOR_INREG:
4095        Promoted = GetPromotedInteger(N->getOperand(0));
4096        break;
4097      default:
4098        llvm_unreachable("Node has unexpected Opcode");
4099    }
4100    return DAG.getNode(N->getOpcode(), dl, NVT, Promoted);
4101  }
4102
4103  // Directly extend to the appropriate transform-to type.
4104  return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
4105}
4106
4107SDValue DAGTypeLegalizer::PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N) {
4108  EVT OutVT = N->getValueType(0);
4109  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
4110  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
4111
4112  EVT NOutVTElem = NOutVT.getVectorElementType();
4113
4114  SDLoc dl(N);
4115  SDValue V0 = GetPromotedInteger(N->getOperand(0));
4116
4117  SDValue ConvElem = DAG.getNode(ISD::ANY_EXTEND, dl,
4118    NOutVTElem, N->getOperand(1));
4119  return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NOutVT,
4120    V0, ConvElem, N->getOperand(2));
4121}
4122
4123SDValue DAGTypeLegalizer::PromoteIntRes_VECREDUCE(SDNode *N) {
4124  // The VECREDUCE result size may be larger than the element size, so
4125  // we can simply change the result type.
4126  SDLoc dl(N);
4127  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
4128  return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
4129}
4130
4131SDValue DAGTypeLegalizer::PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N) {
4132  SDLoc dl(N);
4133  SDValue V0 = GetPromotedInteger(N->getOperand(0));
4134  SDValue V1 = DAG.getZExtOrTrunc(N->getOperand(1), dl,
4135                                  TLI.getVectorIdxTy(DAG.getDataLayout()));
4136  SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
4137    V0->getValueType(0).getScalarType(), V0, V1);
4138
4139  // EXTRACT_VECTOR_ELT can return types which are wider than the incoming
4140  // element types. If this is the case then we need to expand the outgoing
4141  // value and not truncate it.
4142  return DAG.getAnyExtOrTrunc(Ext, dl, N->getValueType(0));
4143}
4144
4145SDValue DAGTypeLegalizer::PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N) {
4146  SDLoc dl(N);
4147  SDValue V0 = GetPromotedInteger(N->getOperand(0));
4148  MVT InVT = V0.getValueType().getSimpleVT();
4149  MVT OutVT = MVT::getVectorVT(InVT.getVectorElementType(),
4150                               N->getValueType(0).getVectorNumElements());
4151  SDValue Ext = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OutVT, V0, N->getOperand(1));
4152  return DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), Ext);
4153}
4154
4155SDValue DAGTypeLegalizer::PromoteIntOp_CONCAT_VECTORS(SDNode *N) {
4156  SDLoc dl(N);
4157  unsigned NumElems = N->getNumOperands();
4158
4159  EVT RetSclrTy = N->getValueType(0).getVectorElementType();
4160
4161  SmallVector<SDValue, 8> NewOps;
4162  NewOps.reserve(NumElems);
4163
4164  // For each incoming vector
4165  for (unsigned VecIdx = 0; VecIdx != NumElems; ++VecIdx) {
4166    SDValue Incoming = GetPromotedInteger(N->getOperand(VecIdx));
4167    EVT SclrTy = Incoming->getValueType(0).getVectorElementType();
4168    unsigned NumElem = Incoming->getValueType(0).getVectorNumElements();
4169
4170    for (unsigned i=0; i<NumElem; ++i) {
4171      // Extract element from incoming vector
4172      SDValue Ex = DAG.getNode(
4173          ISD::EXTRACT_VECTOR_ELT, dl, SclrTy, Incoming,
4174          DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
4175      SDValue Tr = DAG.getNode(ISD::TRUNCATE, dl, RetSclrTy, Ex);
4176      NewOps.push_back(Tr);
4177    }
4178  }
4179
4180  return DAG.getBuildVector(N->getValueType(0), dl, NewOps);
4181}
4182