LegalizeDAG.cpp revision 276479
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/ADT/SmallPtrSet.h"
16#include "llvm/ADT/SmallSet.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/Triple.h"
19#include "llvm/CodeGen/Analysis.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/IR/CallingConv.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/IR/DataLayout.h"
25#include "llvm/IR/DebugInfo.h"
26#include "llvm/IR/DerivedTypes.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/LLVMContext.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Target/TargetFrameLowering.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetMachine.h"
36using namespace llvm;
37
38//===----------------------------------------------------------------------===//
39/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
40/// hacks on it until the target machine can handle it.  This involves
41/// eliminating value sizes the machine cannot handle (promoting small sizes to
42/// large sizes or splitting up large values into small values) as well as
43/// eliminating operations the machine cannot handle.
44///
45/// This code also does a small amount of optimization and recognition of idioms
46/// as part of its processing.  For example, if a target does not support a
47/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
48/// will attempt merge setcc and brc instructions into brcc's.
49///
50namespace {
51class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener {
52  const TargetMachine &TM;
53  const TargetLowering &TLI;
54  SelectionDAG &DAG;
55
56  /// LegalizePosition - The iterator for walking through the node list.
57  SelectionDAG::allnodes_iterator LegalizePosition;
58
59  /// LegalizedNodes - The set of nodes which have already been legalized.
60  SmallPtrSet<SDNode *, 16> LegalizedNodes;
61
62  EVT getSetCCResultType(EVT VT) const {
63    return TLI.getSetCCResultType(*DAG.getContext(), VT);
64  }
65
66  // Libcall insertion helpers.
67
68public:
69  explicit SelectionDAGLegalize(SelectionDAG &DAG);
70
71  void LegalizeDAG();
72
73private:
74  /// LegalizeOp - Legalizes the given operation.
75  void LegalizeOp(SDNode *Node);
76
77  SDValue OptimizeFloatStore(StoreSDNode *ST);
78
79  void LegalizeLoadOps(SDNode *Node);
80  void LegalizeStoreOps(SDNode *Node);
81
82  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
83  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
84  /// is necessary to spill the vector being inserted into to memory, perform
85  /// the insert there, and then read the result back.
86  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
87                                         SDValue Idx, SDLoc dl);
88  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
89                                  SDValue Idx, SDLoc dl);
90
91  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
92  /// performs the same shuffe in terms of order or result bytes, but on a type
93  /// whose vector element type is narrower than the original shuffle type.
94  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
95  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl,
96                                     SDValue N1, SDValue N2,
97                                     ArrayRef<int> Mask) const;
98
99  bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
100                             bool &NeedInvert, SDLoc dl);
101
102  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
103  SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
104                        unsigned NumOps, bool isSigned, SDLoc dl);
105
106  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
107                                                 SDNode *Node, bool isSigned);
108  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
109                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
110                          RTLIB::Libcall Call_F128,
111                          RTLIB::Libcall Call_PPCF128);
112  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
113                           RTLIB::Libcall Call_I8,
114                           RTLIB::Libcall Call_I16,
115                           RTLIB::Libcall Call_I32,
116                           RTLIB::Libcall Call_I64,
117                           RTLIB::Libcall Call_I128);
118  void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
119  void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
120
121  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, SDLoc dl);
122  SDValue ExpandBUILD_VECTOR(SDNode *Node);
123  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
124  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
125                                SmallVectorImpl<SDValue> &Results);
126  SDValue ExpandFCOPYSIGN(SDNode *Node);
127  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
128                               SDLoc dl);
129  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
130                                SDLoc dl);
131  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
132                                SDLoc dl);
133
134  SDValue ExpandBSWAP(SDValue Op, SDLoc dl);
135  SDValue ExpandBitCount(unsigned Opc, SDValue Op, SDLoc dl);
136
137  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
138  SDValue ExpandInsertToVectorThroughStack(SDValue Op);
139  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
140
141  SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
142
143  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
144
145  void ExpandNode(SDNode *Node);
146  void PromoteNode(SDNode *Node);
147
148  void ForgetNode(SDNode *N) {
149    LegalizedNodes.erase(N);
150    if (LegalizePosition == SelectionDAG::allnodes_iterator(N))
151      ++LegalizePosition;
152  }
153
154public:
155  // DAGUpdateListener implementation.
156  void NodeDeleted(SDNode *N, SDNode *E) override {
157    ForgetNode(N);
158  }
159  void NodeUpdated(SDNode *N) override {}
160
161  // Node replacement helpers
162  void ReplacedNode(SDNode *N) {
163    if (N->use_empty()) {
164      DAG.RemoveDeadNode(N);
165    } else {
166      ForgetNode(N);
167    }
168  }
169  void ReplaceNode(SDNode *Old, SDNode *New) {
170    DAG.ReplaceAllUsesWith(Old, New);
171    ReplacedNode(Old);
172  }
173  void ReplaceNode(SDValue Old, SDValue New) {
174    DAG.ReplaceAllUsesWith(Old, New);
175    ReplacedNode(Old.getNode());
176  }
177  void ReplaceNode(SDNode *Old, const SDValue *New) {
178    DAG.ReplaceAllUsesWith(Old, New);
179    ReplacedNode(Old);
180  }
181};
182}
183
184/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
185/// performs the same shuffe in terms of order or result bytes, but on a type
186/// whose vector element type is narrower than the original shuffle type.
187/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
188SDValue
189SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  SDLoc dl,
190                                                 SDValue N1, SDValue N2,
191                                                 ArrayRef<int> Mask) const {
192  unsigned NumMaskElts = VT.getVectorNumElements();
193  unsigned NumDestElts = NVT.getVectorNumElements();
194  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
195
196  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
197
198  if (NumEltsGrowth == 1)
199    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
200
201  SmallVector<int, 8> NewMask;
202  for (unsigned i = 0; i != NumMaskElts; ++i) {
203    int Idx = Mask[i];
204    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
205      if (Idx < 0)
206        NewMask.push_back(-1);
207      else
208        NewMask.push_back(Idx * NumEltsGrowth + j);
209    }
210  }
211  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
212  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
213  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
214}
215
216SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
217  : SelectionDAG::DAGUpdateListener(dag),
218    TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
219    DAG(dag) {
220}
221
222void SelectionDAGLegalize::LegalizeDAG() {
223  DAG.AssignTopologicalOrder();
224
225  // Visit all the nodes. We start in topological order, so that we see
226  // nodes with their original operands intact. Legalization can produce
227  // new nodes which may themselves need to be legalized. Iterate until all
228  // nodes have been legalized.
229  for (;;) {
230    bool AnyLegalized = false;
231    for (LegalizePosition = DAG.allnodes_end();
232         LegalizePosition != DAG.allnodes_begin(); ) {
233      --LegalizePosition;
234
235      SDNode *N = LegalizePosition;
236      if (LegalizedNodes.insert(N)) {
237        AnyLegalized = true;
238        LegalizeOp(N);
239      }
240    }
241    if (!AnyLegalized)
242      break;
243
244  }
245
246  // Remove dead nodes now.
247  DAG.RemoveDeadNodes();
248}
249
250/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
251/// a load from the constant pool.
252SDValue
253SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
254  bool Extend = false;
255  SDLoc dl(CFP);
256
257  // If a FP immediate is precise when represented as a float and if the
258  // target can do an extending load from float to double, we put it into
259  // the constant pool as a float, even if it's is statically typed as a
260  // double.  This shrinks FP constants and canonicalizes them for targets where
261  // an FP extending load is the same cost as a normal load (such as on the x87
262  // fp stack or PPC FP unit).
263  EVT VT = CFP->getValueType(0);
264  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
265  if (!UseCP) {
266    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
267    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
268                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
269  }
270
271  EVT OrigVT = VT;
272  EVT SVT = VT;
273  while (SVT != MVT::f32 && SVT != MVT::f16) {
274    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
275    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
276        // Only do this if the target has a native EXTLOAD instruction from
277        // smaller type.
278        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
279        TLI.ShouldShrinkFPConstant(OrigVT)) {
280      Type *SType = SVT.getTypeForEVT(*DAG.getContext());
281      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
282      VT = SVT;
283      Extend = true;
284    }
285  }
286
287  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
288  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
289  if (Extend) {
290    SDValue Result =
291      DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
292                     DAG.getEntryNode(),
293                     CPIdx, MachinePointerInfo::getConstantPool(),
294                     VT, false, false, Alignment);
295    return Result;
296  }
297  SDValue Result =
298    DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
299                MachinePointerInfo::getConstantPool(), false, false, false,
300                Alignment);
301  return Result;
302}
303
304/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
305static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
306                                 const TargetLowering &TLI,
307                                 SelectionDAGLegalize *DAGLegalize) {
308  assert(ST->getAddressingMode() == ISD::UNINDEXED &&
309         "unaligned indexed stores not implemented!");
310  SDValue Chain = ST->getChain();
311  SDValue Ptr = ST->getBasePtr();
312  SDValue Val = ST->getValue();
313  EVT VT = Val.getValueType();
314  int Alignment = ST->getAlignment();
315  unsigned AS = ST->getAddressSpace();
316
317  SDLoc dl(ST);
318  if (ST->getMemoryVT().isFloatingPoint() ||
319      ST->getMemoryVT().isVector()) {
320    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
321    if (TLI.isTypeLegal(intVT)) {
322      // Expand to a bitconvert of the value to the integer type of the
323      // same size, then a (misaligned) int store.
324      // FIXME: Does not handle truncating floating point stores!
325      SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
326      Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
327                           ST->isVolatile(), ST->isNonTemporal(), Alignment);
328      DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
329      return;
330    }
331    // Do a (aligned) store to a stack slot, then copy from the stack slot
332    // to the final destination using (unaligned) integer loads and stores.
333    EVT StoredVT = ST->getMemoryVT();
334    MVT RegVT =
335      TLI.getRegisterType(*DAG.getContext(),
336                          EVT::getIntegerVT(*DAG.getContext(),
337                                            StoredVT.getSizeInBits()));
338    unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
339    unsigned RegBytes = RegVT.getSizeInBits() / 8;
340    unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
341
342    // Make sure the stack slot is also aligned for the register type.
343    SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
344
345    // Perform the original store, only redirected to the stack slot.
346    SDValue Store = DAG.getTruncStore(Chain, dl,
347                                      Val, StackPtr, MachinePointerInfo(),
348                                      StoredVT, false, false, 0);
349    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy(AS));
350    SmallVector<SDValue, 8> Stores;
351    unsigned Offset = 0;
352
353    // Do all but one copies using the full register width.
354    for (unsigned i = 1; i < NumRegs; i++) {
355      // Load one integer register's worth from the stack slot.
356      SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
357                                 MachinePointerInfo(),
358                                 false, false, false, 0);
359      // Store it to the final location.  Remember the store.
360      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
361                                  ST->getPointerInfo().getWithOffset(Offset),
362                                    ST->isVolatile(), ST->isNonTemporal(),
363                                    MinAlign(ST->getAlignment(), Offset)));
364      // Increment the pointers.
365      Offset += RegBytes;
366      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
367                             Increment);
368      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
369    }
370
371    // The last store may be partial.  Do a truncating store.  On big-endian
372    // machines this requires an extending load from the stack slot to ensure
373    // that the bits are in the right place.
374    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
375                                  8 * (StoredBytes - Offset));
376
377    // Load from the stack slot.
378    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
379                                  MachinePointerInfo(),
380                                  MemVT, false, false, 0);
381
382    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
383                                       ST->getPointerInfo()
384                                         .getWithOffset(Offset),
385                                       MemVT, ST->isVolatile(),
386                                       ST->isNonTemporal(),
387                                       MinAlign(ST->getAlignment(), Offset),
388                                       ST->getTBAAInfo()));
389    // The order of the stores doesn't matter - say it with a TokenFactor.
390    SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
391    DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
392    return;
393  }
394  assert(ST->getMemoryVT().isInteger() &&
395         !ST->getMemoryVT().isVector() &&
396         "Unaligned store of unknown type.");
397  // Get the half-size VT
398  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
399  int NumBits = NewStoredVT.getSizeInBits();
400  int IncrementSize = NumBits / 8;
401
402  // Divide the stored value in two parts.
403  SDValue ShiftAmount = DAG.getConstant(NumBits,
404                                      TLI.getShiftAmountTy(Val.getValueType()));
405  SDValue Lo = Val;
406  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
407
408  // Store the two parts
409  SDValue Store1, Store2;
410  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
411                             ST->getPointerInfo(), NewStoredVT,
412                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
413
414  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
415                    DAG.getConstant(IncrementSize, TLI.getPointerTy(AS)));
416  Alignment = MinAlign(Alignment, IncrementSize);
417  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
418                             ST->getPointerInfo().getWithOffset(IncrementSize),
419                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
420                             Alignment, ST->getTBAAInfo());
421
422  SDValue Result =
423    DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
424  DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
425}
426
427/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
428static void
429ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
430                    const TargetLowering &TLI,
431                    SDValue &ValResult, SDValue &ChainResult) {
432  assert(LD->getAddressingMode() == ISD::UNINDEXED &&
433         "unaligned indexed loads not implemented!");
434  SDValue Chain = LD->getChain();
435  SDValue Ptr = LD->getBasePtr();
436  EVT VT = LD->getValueType(0);
437  EVT LoadedVT = LD->getMemoryVT();
438  SDLoc dl(LD);
439  if (VT.isFloatingPoint() || VT.isVector()) {
440    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
441    if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) {
442      // Expand to a (misaligned) integer load of the same size,
443      // then bitconvert to floating point or vector.
444      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
445                                    LD->getMemOperand());
446      SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
447      if (LoadedVT != VT)
448        Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
449                             ISD::ANY_EXTEND, dl, VT, Result);
450
451      ValResult = Result;
452      ChainResult = Chain;
453      return;
454    }
455
456    // Copy the value to a (aligned) stack slot using (unaligned) integer
457    // loads and stores, then do a (aligned) load from the stack slot.
458    MVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
459    unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
460    unsigned RegBytes = RegVT.getSizeInBits() / 8;
461    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
462
463    // Make sure the stack slot is also aligned for the register type.
464    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
465
466    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
467    SmallVector<SDValue, 8> Stores;
468    SDValue StackPtr = StackBase;
469    unsigned Offset = 0;
470
471    // Do all but one copies using the full register width.
472    for (unsigned i = 1; i < NumRegs; i++) {
473      // Load one integer register's worth from the original location.
474      SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
475                                 LD->getPointerInfo().getWithOffset(Offset),
476                                 LD->isVolatile(), LD->isNonTemporal(),
477                                 LD->isInvariant(),
478                                 MinAlign(LD->getAlignment(), Offset),
479                                 LD->getTBAAInfo());
480      // Follow the load with a store to the stack slot.  Remember the store.
481      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
482                                    MachinePointerInfo(), false, false, 0));
483      // Increment the pointers.
484      Offset += RegBytes;
485      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
486      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
487                             Increment);
488    }
489
490    // The last copy may be partial.  Do an extending load.
491    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
492                                  8 * (LoadedBytes - Offset));
493    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
494                                  LD->getPointerInfo().getWithOffset(Offset),
495                                  MemVT, LD->isVolatile(),
496                                  LD->isNonTemporal(),
497                                  MinAlign(LD->getAlignment(), Offset),
498                                  LD->getTBAAInfo());
499    // Follow the load with a store to the stack slot.  Remember the store.
500    // On big-endian machines this requires a truncating store to ensure
501    // that the bits end up in the right place.
502    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
503                                       MachinePointerInfo(), MemVT,
504                                       false, false, 0));
505
506    // The order of the stores doesn't matter - say it with a TokenFactor.
507    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
508
509    // Finally, perform the original load only redirected to the stack slot.
510    Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
511                          MachinePointerInfo(), LoadedVT, false, false, 0);
512
513    // Callers expect a MERGE_VALUES node.
514    ValResult = Load;
515    ChainResult = TF;
516    return;
517  }
518  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
519         "Unaligned load of unsupported type.");
520
521  // Compute the new VT that is half the size of the old one.  This is an
522  // integer MVT.
523  unsigned NumBits = LoadedVT.getSizeInBits();
524  EVT NewLoadedVT;
525  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
526  NumBits >>= 1;
527
528  unsigned Alignment = LD->getAlignment();
529  unsigned IncrementSize = NumBits / 8;
530  ISD::LoadExtType HiExtType = LD->getExtensionType();
531
532  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
533  if (HiExtType == ISD::NON_EXTLOAD)
534    HiExtType = ISD::ZEXTLOAD;
535
536  // Load the value in two parts
537  SDValue Lo, Hi;
538  if (TLI.isLittleEndian()) {
539    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
540                        NewLoadedVT, LD->isVolatile(),
541                        LD->isNonTemporal(), Alignment, LD->getTBAAInfo());
542    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
543                      DAG.getConstant(IncrementSize, Ptr.getValueType()));
544    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
545                        LD->getPointerInfo().getWithOffset(IncrementSize),
546                        NewLoadedVT, LD->isVolatile(),
547                        LD->isNonTemporal(), MinAlign(Alignment, IncrementSize),
548                        LD->getTBAAInfo());
549  } else {
550    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
551                        NewLoadedVT, LD->isVolatile(),
552                        LD->isNonTemporal(), Alignment, LD->getTBAAInfo());
553    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
554                      DAG.getConstant(IncrementSize, Ptr.getValueType()));
555    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
556                        LD->getPointerInfo().getWithOffset(IncrementSize),
557                        NewLoadedVT, LD->isVolatile(),
558                        LD->isNonTemporal(), MinAlign(Alignment, IncrementSize),
559                        LD->getTBAAInfo());
560  }
561
562  // aggregate the two parts
563  SDValue ShiftAmount = DAG.getConstant(NumBits,
564                                       TLI.getShiftAmountTy(Hi.getValueType()));
565  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
566  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
567
568  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
569                             Hi.getValue(1));
570
571  ValResult = Result;
572  ChainResult = TF;
573}
574
575/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
576/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
577/// is necessary to spill the vector being inserted into to memory, perform
578/// the insert there, and then read the result back.
579SDValue SelectionDAGLegalize::
580PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
581                               SDLoc dl) {
582  SDValue Tmp1 = Vec;
583  SDValue Tmp2 = Val;
584  SDValue Tmp3 = Idx;
585
586  // If the target doesn't support this, we have to spill the input vector
587  // to a temporary stack slot, update the element, then reload it.  This is
588  // badness.  We could also load the value into a vector register (either
589  // with a "move to register" or "extload into register" instruction, then
590  // permute it into place, if the idx is a constant and if the idx is
591  // supported by the target.
592  EVT VT    = Tmp1.getValueType();
593  EVT EltVT = VT.getVectorElementType();
594  EVT IdxVT = Tmp3.getValueType();
595  EVT PtrVT = TLI.getPointerTy();
596  SDValue StackPtr = DAG.CreateStackTemporary(VT);
597
598  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
599
600  // Store the vector.
601  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
602                            MachinePointerInfo::getFixedStack(SPFI),
603                            false, false, 0);
604
605  // Truncate or zero extend offset to target pointer type.
606  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
607  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
608  // Add the offset to the index.
609  unsigned EltSize = EltVT.getSizeInBits()/8;
610  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
611  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
612  // Store the scalar value.
613  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
614                         false, false, 0);
615  // Load the updated vector.
616  return DAG.getLoad(VT, dl, Ch, StackPtr,
617                     MachinePointerInfo::getFixedStack(SPFI), false, false,
618                     false, 0);
619}
620
621
622SDValue SelectionDAGLegalize::
623ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, SDLoc dl) {
624  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
625    // SCALAR_TO_VECTOR requires that the type of the value being inserted
626    // match the element type of the vector being created, except for
627    // integers in which case the inserted value can be over width.
628    EVT EltVT = Vec.getValueType().getVectorElementType();
629    if (Val.getValueType() == EltVT ||
630        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
631      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
632                                  Vec.getValueType(), Val);
633
634      unsigned NumElts = Vec.getValueType().getVectorNumElements();
635      // We generate a shuffle of InVec and ScVec, so the shuffle mask
636      // should be 0,1,2,3,4,5... with the appropriate element replaced with
637      // elt 0 of the RHS.
638      SmallVector<int, 8> ShufOps;
639      for (unsigned i = 0; i != NumElts; ++i)
640        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
641
642      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
643                                  &ShufOps[0]);
644    }
645  }
646  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
647}
648
649SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
650  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
651  // FIXME: We shouldn't do this for TargetConstantFP's.
652  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
653  // to phase ordering between legalized code and the dag combiner.  This
654  // probably means that we need to integrate dag combiner and legalizer
655  // together.
656  // We generally can't do this one for long doubles.
657  SDValue Chain = ST->getChain();
658  SDValue Ptr = ST->getBasePtr();
659  unsigned Alignment = ST->getAlignment();
660  bool isVolatile = ST->isVolatile();
661  bool isNonTemporal = ST->isNonTemporal();
662  const MDNode *TBAAInfo = ST->getTBAAInfo();
663  SDLoc dl(ST);
664  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
665    if (CFP->getValueType(0) == MVT::f32 &&
666        TLI.isTypeLegal(MVT::i32)) {
667      SDValue Con = DAG.getConstant(CFP->getValueAPF().
668                                      bitcastToAPInt().zextOrTrunc(32),
669                              MVT::i32);
670      return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
671                          isVolatile, isNonTemporal, Alignment, TBAAInfo);
672    }
673
674    if (CFP->getValueType(0) == MVT::f64) {
675      // If this target supports 64-bit registers, do a single 64-bit store.
676      if (TLI.isTypeLegal(MVT::i64)) {
677        SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
678                                  zextOrTrunc(64), MVT::i64);
679        return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
680                            isVolatile, isNonTemporal, Alignment, TBAAInfo);
681      }
682
683      if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
684        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
685        // stores.  If the target supports neither 32- nor 64-bits, this
686        // xform is certainly not worth it.
687        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
688        SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
689        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
690        if (TLI.isBigEndian()) std::swap(Lo, Hi);
691
692        Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile,
693                          isNonTemporal, Alignment, TBAAInfo);
694        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
695                          DAG.getConstant(4, Ptr.getValueType()));
696        Hi = DAG.getStore(Chain, dl, Hi, Ptr,
697                          ST->getPointerInfo().getWithOffset(4),
698                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U),
699                          TBAAInfo);
700
701        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
702      }
703    }
704  }
705  return SDValue(nullptr, 0);
706}
707
708void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
709    StoreSDNode *ST = cast<StoreSDNode>(Node);
710    SDValue Chain = ST->getChain();
711    SDValue Ptr = ST->getBasePtr();
712    SDLoc dl(Node);
713
714    unsigned Alignment = ST->getAlignment();
715    bool isVolatile = ST->isVolatile();
716    bool isNonTemporal = ST->isNonTemporal();
717    const MDNode *TBAAInfo = ST->getTBAAInfo();
718
719    if (!ST->isTruncatingStore()) {
720      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
721        ReplaceNode(ST, OptStore);
722        return;
723      }
724
725      {
726        SDValue Value = ST->getValue();
727        MVT VT = Value.getSimpleValueType();
728        switch (TLI.getOperationAction(ISD::STORE, VT)) {
729        default: llvm_unreachable("This action is not supported yet!");
730        case TargetLowering::Legal: {
731          // If this is an unaligned store and the target doesn't support it,
732          // expand it.
733          unsigned AS = ST->getAddressSpace();
734          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT(), AS)) {
735            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
736            unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
737            if (ST->getAlignment() < ABIAlignment)
738              ExpandUnalignedStore(cast<StoreSDNode>(Node),
739                                   DAG, TLI, this);
740          }
741          break;
742        }
743        case TargetLowering::Custom: {
744          SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
745          if (Res.getNode())
746            ReplaceNode(SDValue(Node, 0), Res);
747          return;
748        }
749        case TargetLowering::Promote: {
750          MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
751          assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
752                 "Can only promote stores to same size type");
753          Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
754          SDValue Result =
755            DAG.getStore(Chain, dl, Value, Ptr,
756                         ST->getPointerInfo(), isVolatile,
757                         isNonTemporal, Alignment, TBAAInfo);
758          ReplaceNode(SDValue(Node, 0), Result);
759          break;
760        }
761        }
762        return;
763      }
764    } else {
765      SDValue Value = ST->getValue();
766
767      EVT StVT = ST->getMemoryVT();
768      unsigned StWidth = StVT.getSizeInBits();
769
770      if (StWidth != StVT.getStoreSizeInBits()) {
771        // Promote to a byte-sized store with upper bits zero if not
772        // storing an integral number of bytes.  For example, promote
773        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
774        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
775                                    StVT.getStoreSizeInBits());
776        Value = DAG.getZeroExtendInReg(Value, dl, StVT);
777        SDValue Result =
778          DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
779                            NVT, isVolatile, isNonTemporal, Alignment,
780                            TBAAInfo);
781        ReplaceNode(SDValue(Node, 0), Result);
782      } else if (StWidth & (StWidth - 1)) {
783        // If not storing a power-of-2 number of bits, expand as two stores.
784        assert(!StVT.isVector() && "Unsupported truncstore!");
785        unsigned RoundWidth = 1 << Log2_32(StWidth);
786        assert(RoundWidth < StWidth);
787        unsigned ExtraWidth = StWidth - RoundWidth;
788        assert(ExtraWidth < RoundWidth);
789        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
790               "Store size not an integral number of bytes!");
791        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
792        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
793        SDValue Lo, Hi;
794        unsigned IncrementSize;
795
796        if (TLI.isLittleEndian()) {
797          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
798          // Store the bottom RoundWidth bits.
799          Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
800                                 RoundVT,
801                                 isVolatile, isNonTemporal, Alignment,
802                                 TBAAInfo);
803
804          // Store the remaining ExtraWidth bits.
805          IncrementSize = RoundWidth / 8;
806          Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
807                            DAG.getConstant(IncrementSize, Ptr.getValueType()));
808          Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
809                           DAG.getConstant(RoundWidth,
810                                   TLI.getShiftAmountTy(Value.getValueType())));
811          Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
812                             ST->getPointerInfo().getWithOffset(IncrementSize),
813                                 ExtraVT, isVolatile, isNonTemporal,
814                                 MinAlign(Alignment, IncrementSize), TBAAInfo);
815        } else {
816          // Big endian - avoid unaligned stores.
817          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
818          // Store the top RoundWidth bits.
819          Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
820                           DAG.getConstant(ExtraWidth,
821                                   TLI.getShiftAmountTy(Value.getValueType())));
822          Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
823                                 RoundVT, isVolatile, isNonTemporal, Alignment,
824                                 TBAAInfo);
825
826          // Store the remaining ExtraWidth bits.
827          IncrementSize = RoundWidth / 8;
828          Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
829                            DAG.getConstant(IncrementSize, Ptr.getValueType()));
830          Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
831                              ST->getPointerInfo().getWithOffset(IncrementSize),
832                                 ExtraVT, isVolatile, isNonTemporal,
833                                 MinAlign(Alignment, IncrementSize), TBAAInfo);
834        }
835
836        // The order of the stores doesn't matter.
837        SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
838        ReplaceNode(SDValue(Node, 0), Result);
839      } else {
840        switch (TLI.getTruncStoreAction(ST->getValue().getSimpleValueType(),
841                                        StVT.getSimpleVT())) {
842        default: llvm_unreachable("This action is not supported yet!");
843        case TargetLowering::Legal: {
844          unsigned AS = ST->getAddressSpace();
845          // If this is an unaligned store and the target doesn't support it,
846          // expand it.
847          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT(), AS)) {
848            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
849            unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
850            if (ST->getAlignment() < ABIAlignment)
851              ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
852          }
853          break;
854        }
855        case TargetLowering::Custom: {
856          SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
857          if (Res.getNode())
858            ReplaceNode(SDValue(Node, 0), Res);
859          return;
860        }
861        case TargetLowering::Expand:
862          assert(!StVT.isVector() &&
863                 "Vector Stores are handled in LegalizeVectorOps");
864
865          // TRUNCSTORE:i16 i32 -> STORE i16
866          assert(TLI.isTypeLegal(StVT) &&
867                 "Do not know how to expand this store!");
868          Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
869          SDValue Result =
870            DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
871                         isVolatile, isNonTemporal, Alignment, TBAAInfo);
872          ReplaceNode(SDValue(Node, 0), Result);
873          break;
874        }
875      }
876    }
877}
878
879void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
880  LoadSDNode *LD = cast<LoadSDNode>(Node);
881  SDValue Chain = LD->getChain();  // The chain.
882  SDValue Ptr = LD->getBasePtr();  // The base pointer.
883  SDValue Value;                   // The value returned by the load op.
884  SDLoc dl(Node);
885
886  ISD::LoadExtType ExtType = LD->getExtensionType();
887  if (ExtType == ISD::NON_EXTLOAD) {
888    MVT VT = Node->getSimpleValueType(0);
889    SDValue RVal = SDValue(Node, 0);
890    SDValue RChain = SDValue(Node, 1);
891
892    switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
893    default: llvm_unreachable("This action is not supported yet!");
894    case TargetLowering::Legal: {
895      unsigned AS = LD->getAddressSpace();
896      // If this is an unaligned load and the target doesn't support it,
897      // expand it.
898      if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT(), AS)) {
899        Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
900        unsigned ABIAlignment =
901          TLI.getDataLayout()->getABITypeAlignment(Ty);
902        if (LD->getAlignment() < ABIAlignment){
903          ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, RVal, RChain);
904        }
905      }
906      break;
907    }
908    case TargetLowering::Custom: {
909      SDValue Res = TLI.LowerOperation(RVal, DAG);
910      if (Res.getNode()) {
911        RVal = Res;
912        RChain = Res.getValue(1);
913      }
914      break;
915    }
916    case TargetLowering::Promote: {
917      MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
918      assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
919             "Can only promote loads to same size type");
920
921      SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
922      RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
923      RChain = Res.getValue(1);
924      break;
925    }
926    }
927    if (RChain.getNode() != Node) {
928      assert(RVal.getNode() != Node && "Load must be completely replaced");
929      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
930      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
931      ReplacedNode(Node);
932    }
933    return;
934  }
935
936  EVT SrcVT = LD->getMemoryVT();
937  unsigned SrcWidth = SrcVT.getSizeInBits();
938  unsigned Alignment = LD->getAlignment();
939  bool isVolatile = LD->isVolatile();
940  bool isNonTemporal = LD->isNonTemporal();
941  const MDNode *TBAAInfo = LD->getTBAAInfo();
942
943  if (SrcWidth != SrcVT.getStoreSizeInBits() &&
944      // Some targets pretend to have an i1 loading operation, and actually
945      // load an i8.  This trick is correct for ZEXTLOAD because the top 7
946      // bits are guaranteed to be zero; it helps the optimizers understand
947      // that these bits are zero.  It is also useful for EXTLOAD, since it
948      // tells the optimizers that those bits are undefined.  It would be
949      // nice to have an effective generic way of getting these benefits...
950      // Until such a way is found, don't insist on promoting i1 here.
951      (SrcVT != MVT::i1 ||
952       TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
953    // Promote to a byte-sized load if not loading an integral number of
954    // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
955    unsigned NewWidth = SrcVT.getStoreSizeInBits();
956    EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
957    SDValue Ch;
958
959    // The extra bits are guaranteed to be zero, since we stored them that
960    // way.  A zext load from NVT thus automatically gives zext from SrcVT.
961
962    ISD::LoadExtType NewExtType =
963      ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
964
965    SDValue Result =
966      DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
967                     Chain, Ptr, LD->getPointerInfo(),
968                     NVT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
969
970    Ch = Result.getValue(1); // The chain.
971
972    if (ExtType == ISD::SEXTLOAD)
973      // Having the top bits zero doesn't help when sign extending.
974      Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
975                           Result.getValueType(),
976                           Result, DAG.getValueType(SrcVT));
977    else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
978      // All the top bits are guaranteed to be zero - inform the optimizers.
979      Result = DAG.getNode(ISD::AssertZext, dl,
980                           Result.getValueType(), Result,
981                           DAG.getValueType(SrcVT));
982
983    Value = Result;
984    Chain = Ch;
985  } else if (SrcWidth & (SrcWidth - 1)) {
986    // If not loading a power-of-2 number of bits, expand as two loads.
987    assert(!SrcVT.isVector() && "Unsupported extload!");
988    unsigned RoundWidth = 1 << Log2_32(SrcWidth);
989    assert(RoundWidth < SrcWidth);
990    unsigned ExtraWidth = SrcWidth - RoundWidth;
991    assert(ExtraWidth < RoundWidth);
992    assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
993           "Load size not an integral number of bytes!");
994    EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
995    EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
996    SDValue Lo, Hi, Ch;
997    unsigned IncrementSize;
998
999    if (TLI.isLittleEndian()) {
1000      // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1001      // Load the bottom RoundWidth bits.
1002      Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
1003                          Chain, Ptr,
1004                          LD->getPointerInfo(), RoundVT, isVolatile,
1005                          isNonTemporal, Alignment, TBAAInfo);
1006
1007      // Load the remaining ExtraWidth bits.
1008      IncrementSize = RoundWidth / 8;
1009      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1010                         DAG.getConstant(IncrementSize, Ptr.getValueType()));
1011      Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
1012                          LD->getPointerInfo().getWithOffset(IncrementSize),
1013                          ExtraVT, isVolatile, isNonTemporal,
1014                          MinAlign(Alignment, IncrementSize), TBAAInfo);
1015
1016      // Build a factor node to remember that this load is independent of
1017      // the other one.
1018      Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1019                       Hi.getValue(1));
1020
1021      // Move the top bits to the right place.
1022      Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1023                       DAG.getConstant(RoundWidth,
1024                                      TLI.getShiftAmountTy(Hi.getValueType())));
1025
1026      // Join the hi and lo parts.
1027      Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1028    } else {
1029      // Big endian - avoid unaligned loads.
1030      // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1031      // Load the top RoundWidth bits.
1032      Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
1033                          LD->getPointerInfo(), RoundVT, isVolatile,
1034                          isNonTemporal, Alignment, TBAAInfo);
1035
1036      // Load the remaining ExtraWidth bits.
1037      IncrementSize = RoundWidth / 8;
1038      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1039                         DAG.getConstant(IncrementSize, Ptr.getValueType()));
1040      Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1041                          dl, Node->getValueType(0), Chain, Ptr,
1042                          LD->getPointerInfo().getWithOffset(IncrementSize),
1043                          ExtraVT, isVolatile, isNonTemporal,
1044                          MinAlign(Alignment, IncrementSize), TBAAInfo);
1045
1046      // Build a factor node to remember that this load is independent of
1047      // the other one.
1048      Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1049                       Hi.getValue(1));
1050
1051      // Move the top bits to the right place.
1052      Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1053                       DAG.getConstant(ExtraWidth,
1054                                      TLI.getShiftAmountTy(Hi.getValueType())));
1055
1056      // Join the hi and lo parts.
1057      Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1058    }
1059
1060    Chain = Ch;
1061  } else {
1062    bool isCustom = false;
1063    switch (TLI.getLoadExtAction(ExtType, SrcVT.getSimpleVT())) {
1064    default: llvm_unreachable("This action is not supported yet!");
1065    case TargetLowering::Custom:
1066      isCustom = true;
1067      // FALLTHROUGH
1068    case TargetLowering::Legal: {
1069      Value = SDValue(Node, 0);
1070      Chain = SDValue(Node, 1);
1071
1072      if (isCustom) {
1073        SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
1074        if (Res.getNode()) {
1075          Value = Res;
1076          Chain = Res.getValue(1);
1077        }
1078      } else {
1079        // If this is an unaligned load and the target doesn't support
1080        // it, expand it.
1081        EVT MemVT = LD->getMemoryVT();
1082        unsigned AS = LD->getAddressSpace();
1083        if (!TLI.allowsUnalignedMemoryAccesses(MemVT, AS)) {
1084          Type *Ty =
1085            LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1086          unsigned ABIAlignment =
1087            TLI.getDataLayout()->getABITypeAlignment(Ty);
1088          if (LD->getAlignment() < ABIAlignment){
1089            ExpandUnalignedLoad(cast<LoadSDNode>(Node),
1090                                DAG, TLI, Value, Chain);
1091          }
1092        }
1093      }
1094      break;
1095    }
1096    case TargetLowering::Expand:
1097      if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) &&
1098          TLI.isTypeLegal(SrcVT)) {
1099        SDValue Load = DAG.getLoad(SrcVT, dl, Chain, Ptr,
1100                                   LD->getMemOperand());
1101        unsigned ExtendOp;
1102        switch (ExtType) {
1103        case ISD::EXTLOAD:
1104          ExtendOp = (SrcVT.isFloatingPoint() ?
1105                      ISD::FP_EXTEND : ISD::ANY_EXTEND);
1106          break;
1107        case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1108        case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1109        default: llvm_unreachable("Unexpected extend load type!");
1110        }
1111        Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1112        Chain = Load.getValue(1);
1113        break;
1114      }
1115
1116      assert(!SrcVT.isVector() &&
1117             "Vector Loads are handled in LegalizeVectorOps");
1118
1119      // FIXME: This does not work for vectors on most targets.  Sign-
1120      // and zero-extend operations are currently folded into extending
1121      // loads, whether they are legal or not, and then we end up here
1122      // without any support for legalizing them.
1123      assert(ExtType != ISD::EXTLOAD &&
1124             "EXTLOAD should always be supported!");
1125      // Turn the unsupported load into an EXTLOAD followed by an
1126      // explicit zero/sign extend inreg.
1127      SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
1128                                      Node->getValueType(0),
1129                                      Chain, Ptr, SrcVT,
1130                                      LD->getMemOperand());
1131      SDValue ValRes;
1132      if (ExtType == ISD::SEXTLOAD)
1133        ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1134                             Result.getValueType(),
1135                             Result, DAG.getValueType(SrcVT));
1136      else
1137        ValRes = DAG.getZeroExtendInReg(Result, dl,
1138                                        SrcVT.getScalarType());
1139      Value = ValRes;
1140      Chain = Result.getValue(1);
1141      break;
1142    }
1143  }
1144
1145  // Since loads produce two values, make sure to remember that we legalized
1146  // both of them.
1147  if (Chain.getNode() != Node) {
1148    assert(Value.getNode() != Node && "Load must be completely replaced");
1149    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
1150    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
1151    ReplacedNode(Node);
1152  }
1153}
1154
1155/// LegalizeOp - Return a legal replacement for the given operation, with
1156/// all legal operands.
1157void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
1158  if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
1159    return;
1160
1161  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1162    assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
1163             TargetLowering::TypeLegal &&
1164           "Unexpected illegal type!");
1165
1166  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
1167    assert((TLI.getTypeAction(*DAG.getContext(),
1168                              Node->getOperand(i).getValueType()) ==
1169              TargetLowering::TypeLegal ||
1170            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
1171           "Unexpected illegal type!");
1172
1173  // Figure out the correct action; the way to query this varies by opcode
1174  TargetLowering::LegalizeAction Action = TargetLowering::Legal;
1175  bool SimpleFinishLegalizing = true;
1176  switch (Node->getOpcode()) {
1177  case ISD::INTRINSIC_W_CHAIN:
1178  case ISD::INTRINSIC_WO_CHAIN:
1179  case ISD::INTRINSIC_VOID:
1180  case ISD::STACKSAVE:
1181    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1182    break;
1183  case ISD::VAARG:
1184    Action = TLI.getOperationAction(Node->getOpcode(),
1185                                    Node->getValueType(0));
1186    if (Action != TargetLowering::Promote)
1187      Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1188    break;
1189  case ISD::FP_TO_FP16:
1190  case ISD::SINT_TO_FP:
1191  case ISD::UINT_TO_FP:
1192  case ISD::EXTRACT_VECTOR_ELT:
1193    Action = TLI.getOperationAction(Node->getOpcode(),
1194                                    Node->getOperand(0).getValueType());
1195    break;
1196  case ISD::FP_ROUND_INREG:
1197  case ISD::SIGN_EXTEND_INREG: {
1198    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1199    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1200    break;
1201  }
1202  case ISD::ATOMIC_STORE: {
1203    Action = TLI.getOperationAction(Node->getOpcode(),
1204                                    Node->getOperand(2).getValueType());
1205    break;
1206  }
1207  case ISD::SELECT_CC:
1208  case ISD::SETCC:
1209  case ISD::BR_CC: {
1210    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1211                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
1212    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
1213    MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1214    ISD::CondCode CCCode =
1215        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1216    Action = TLI.getCondCodeAction(CCCode, OpVT);
1217    if (Action == TargetLowering::Legal) {
1218      if (Node->getOpcode() == ISD::SELECT_CC)
1219        Action = TLI.getOperationAction(Node->getOpcode(),
1220                                        Node->getValueType(0));
1221      else
1222        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1223    }
1224    break;
1225  }
1226  case ISD::LOAD:
1227  case ISD::STORE:
1228    // FIXME: Model these properly.  LOAD and STORE are complicated, and
1229    // STORE expects the unlegalized operand in some cases.
1230    SimpleFinishLegalizing = false;
1231    break;
1232  case ISD::CALLSEQ_START:
1233  case ISD::CALLSEQ_END:
1234    // FIXME: This shouldn't be necessary.  These nodes have special properties
1235    // dealing with the recursive nature of legalization.  Removing this
1236    // special case should be done as part of making LegalizeDAG non-recursive.
1237    SimpleFinishLegalizing = false;
1238    break;
1239  case ISD::EXTRACT_ELEMENT:
1240  case ISD::FLT_ROUNDS_:
1241  case ISD::SADDO:
1242  case ISD::SSUBO:
1243  case ISD::UADDO:
1244  case ISD::USUBO:
1245  case ISD::SMULO:
1246  case ISD::UMULO:
1247  case ISD::FPOWI:
1248  case ISD::MERGE_VALUES:
1249  case ISD::EH_RETURN:
1250  case ISD::FRAME_TO_ARGS_OFFSET:
1251  case ISD::EH_SJLJ_SETJMP:
1252  case ISD::EH_SJLJ_LONGJMP:
1253    // These operations lie about being legal: when they claim to be legal,
1254    // they should actually be expanded.
1255    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1256    if (Action == TargetLowering::Legal)
1257      Action = TargetLowering::Expand;
1258    break;
1259  case ISD::INIT_TRAMPOLINE:
1260  case ISD::ADJUST_TRAMPOLINE:
1261  case ISD::FRAMEADDR:
1262  case ISD::RETURNADDR:
1263    // These operations lie about being legal: when they claim to be legal,
1264    // they should actually be custom-lowered.
1265    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1266    if (Action == TargetLowering::Legal)
1267      Action = TargetLowering::Custom;
1268    break;
1269  case ISD::READ_REGISTER:
1270  case ISD::WRITE_REGISTER:
1271    // Named register is legal in the DAG, but blocked by register name
1272    // selection if not implemented by target (to chose the correct register)
1273    // They'll be converted to Copy(To/From)Reg.
1274    Action = TargetLowering::Legal;
1275    break;
1276  case ISD::DEBUGTRAP:
1277    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1278    if (Action == TargetLowering::Expand) {
1279      // replace ISD::DEBUGTRAP with ISD::TRAP
1280      SDValue NewVal;
1281      NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1282                           Node->getOperand(0));
1283      ReplaceNode(Node, NewVal.getNode());
1284      LegalizeOp(NewVal.getNode());
1285      return;
1286    }
1287    break;
1288
1289  default:
1290    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1291      Action = TargetLowering::Legal;
1292    } else {
1293      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1294    }
1295    break;
1296  }
1297
1298  if (SimpleFinishLegalizing) {
1299    SDNode *NewNode = Node;
1300    switch (Node->getOpcode()) {
1301    default: break;
1302    case ISD::SHL:
1303    case ISD::SRL:
1304    case ISD::SRA:
1305    case ISD::ROTL:
1306    case ISD::ROTR:
1307      // Legalizing shifts/rotates requires adjusting the shift amount
1308      // to the appropriate width.
1309      if (!Node->getOperand(1).getValueType().isVector()) {
1310        SDValue SAO =
1311          DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1312                                    Node->getOperand(1));
1313        HandleSDNode Handle(SAO);
1314        LegalizeOp(SAO.getNode());
1315        NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1316                                         Handle.getValue());
1317      }
1318      break;
1319    case ISD::SRL_PARTS:
1320    case ISD::SRA_PARTS:
1321    case ISD::SHL_PARTS:
1322      // Legalizing shifts/rotates requires adjusting the shift amount
1323      // to the appropriate width.
1324      if (!Node->getOperand(2).getValueType().isVector()) {
1325        SDValue SAO =
1326          DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1327                                    Node->getOperand(2));
1328        HandleSDNode Handle(SAO);
1329        LegalizeOp(SAO.getNode());
1330        NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1331                                         Node->getOperand(1),
1332                                         Handle.getValue());
1333      }
1334      break;
1335    }
1336
1337    if (NewNode != Node) {
1338      DAG.ReplaceAllUsesWith(Node, NewNode);
1339      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1340        DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i));
1341      ReplacedNode(Node);
1342      Node = NewNode;
1343    }
1344    switch (Action) {
1345    case TargetLowering::Legal:
1346      return;
1347    case TargetLowering::Custom: {
1348      // FIXME: The handling for custom lowering with multiple results is
1349      // a complete mess.
1350      SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
1351      if (Res.getNode()) {
1352        SmallVector<SDValue, 8> ResultVals;
1353        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
1354          if (e == 1)
1355            ResultVals.push_back(Res);
1356          else
1357            ResultVals.push_back(Res.getValue(i));
1358        }
1359        if (Res.getNode() != Node || Res.getResNo() != 0) {
1360          DAG.ReplaceAllUsesWith(Node, ResultVals.data());
1361          for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1362            DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]);
1363          ReplacedNode(Node);
1364        }
1365        return;
1366      }
1367    }
1368      // FALL THROUGH
1369    case TargetLowering::Expand:
1370      ExpandNode(Node);
1371      return;
1372    case TargetLowering::Promote:
1373      PromoteNode(Node);
1374      return;
1375    }
1376  }
1377
1378  switch (Node->getOpcode()) {
1379  default:
1380#ifndef NDEBUG
1381    dbgs() << "NODE: ";
1382    Node->dump( &DAG);
1383    dbgs() << "\n";
1384#endif
1385    llvm_unreachable("Do not know how to legalize this operator!");
1386
1387  case ISD::CALLSEQ_START:
1388  case ISD::CALLSEQ_END:
1389    break;
1390  case ISD::LOAD: {
1391    return LegalizeLoadOps(Node);
1392  }
1393  case ISD::STORE: {
1394    return LegalizeStoreOps(Node);
1395  }
1396  }
1397}
1398
1399SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1400  SDValue Vec = Op.getOperand(0);
1401  SDValue Idx = Op.getOperand(1);
1402  SDLoc dl(Op);
1403
1404  // Before we generate a new store to a temporary stack slot, see if there is
1405  // already one that we can use. There often is because when we scalarize
1406  // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1407  // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1408  // the vector. If all are expanded here, we don't want one store per vector
1409  // element.
1410  SDValue StackPtr, Ch;
1411  for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
1412       UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
1413    SDNode *User = *UI;
1414    if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
1415      if (ST->isIndexed() || ST->isTruncatingStore() ||
1416          ST->getValue() != Vec)
1417        continue;
1418
1419      // Make sure that nothing else could have stored into the destination of
1420      // this store.
1421      if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
1422        continue;
1423
1424      StackPtr = ST->getBasePtr();
1425      Ch = SDValue(ST, 0);
1426      break;
1427    }
1428  }
1429
1430  if (!Ch.getNode()) {
1431    // Store the value to a temporary stack slot, then LOAD the returned part.
1432    StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1433    Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1434                      MachinePointerInfo(), false, false, 0);
1435  }
1436
1437  // Add the offset to the index.
1438  unsigned EltSize =
1439      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1440  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1441                    DAG.getConstant(EltSize, Idx.getValueType()));
1442
1443  Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy());
1444  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1445
1446  if (Op.getValueType().isVector())
1447    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1448                       false, false, false, 0);
1449  return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1450                        MachinePointerInfo(),
1451                        Vec.getValueType().getVectorElementType(),
1452                        false, false, 0);
1453}
1454
1455SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1456  assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1457
1458  SDValue Vec  = Op.getOperand(0);
1459  SDValue Part = Op.getOperand(1);
1460  SDValue Idx  = Op.getOperand(2);
1461  SDLoc dl(Op);
1462
1463  // Store the value to a temporary stack slot, then LOAD the returned part.
1464
1465  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1466  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1467  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1468
1469  // First store the whole vector.
1470  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1471                            false, false, 0);
1472
1473  // Then store the inserted part.
1474
1475  // Add the offset to the index.
1476  unsigned EltSize =
1477      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1478
1479  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1480                    DAG.getConstant(EltSize, Idx.getValueType()));
1481  Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy());
1482
1483  SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1484                                    StackPtr);
1485
1486  // Store the subvector.
1487  Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr,
1488                    MachinePointerInfo(), false, false, 0);
1489
1490  // Finally, load the updated vector.
1491  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1492                     false, false, false, 0);
1493}
1494
1495SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1496  // We can't handle this case efficiently.  Allocate a sufficiently
1497  // aligned object on the stack, store each element into it, then load
1498  // the result as a vector.
1499  // Create the stack frame object.
1500  EVT VT = Node->getValueType(0);
1501  EVT EltVT = VT.getVectorElementType();
1502  SDLoc dl(Node);
1503  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1504  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1505  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1506
1507  // Emit a store of each element to the stack slot.
1508  SmallVector<SDValue, 8> Stores;
1509  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1510  // Store (in the right endianness) the elements to memory.
1511  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1512    // Ignore undef elements.
1513    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1514
1515    unsigned Offset = TypeByteSize*i;
1516
1517    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1518    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1519
1520    // If the destination vector element type is narrower than the source
1521    // element type, only store the bits necessary.
1522    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1523      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1524                                         Node->getOperand(i), Idx,
1525                                         PtrInfo.getWithOffset(Offset),
1526                                         EltVT, false, false, 0));
1527    } else
1528      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1529                                    Node->getOperand(i), Idx,
1530                                    PtrInfo.getWithOffset(Offset),
1531                                    false, false, 0));
1532  }
1533
1534  SDValue StoreChain;
1535  if (!Stores.empty())    // Not all undef elements?
1536    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
1537  else
1538    StoreChain = DAG.getEntryNode();
1539
1540  // Result is a load from the stack slot.
1541  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo,
1542                     false, false, false, 0);
1543}
1544
1545SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1546  SDLoc dl(Node);
1547  SDValue Tmp1 = Node->getOperand(0);
1548  SDValue Tmp2 = Node->getOperand(1);
1549
1550  // Get the sign bit of the RHS.  First obtain a value that has the same
1551  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1552  SDValue SignBit;
1553  EVT FloatVT = Tmp2.getValueType();
1554  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1555  if (TLI.isTypeLegal(IVT)) {
1556    // Convert to an integer with the same sign bit.
1557    SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
1558  } else {
1559    // Store the float to memory, then load the sign part out as an integer.
1560    MVT LoadTy = TLI.getPointerTy();
1561    // First create a temporary that is aligned for both the load and store.
1562    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1563    // Then store the float to it.
1564    SDValue Ch =
1565      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1566                   false, false, 0);
1567    if (TLI.isBigEndian()) {
1568      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1569      // Load out a legal integer with the same sign bit as the float.
1570      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1571                            false, false, false, 0);
1572    } else { // Little endian
1573      SDValue LoadPtr = StackPtr;
1574      // The float may be wider than the integer we are going to load.  Advance
1575      // the pointer so that the loaded integer will contain the sign bit.
1576      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1577      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1578      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(), LoadPtr,
1579                           DAG.getConstant(ByteOffset, LoadPtr.getValueType()));
1580      // Load a legal integer containing the sign bit.
1581      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1582                            false, false, false, 0);
1583      // Move the sign bit to the top bit of the loaded integer.
1584      unsigned BitShift = LoadTy.getSizeInBits() -
1585        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1586      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1587      if (BitShift)
1588        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1589                              DAG.getConstant(BitShift,
1590                                 TLI.getShiftAmountTy(SignBit.getValueType())));
1591    }
1592  }
1593  // Now get the sign bit proper, by seeing whether the value is negative.
1594  SignBit = DAG.getSetCC(dl, getSetCCResultType(SignBit.getValueType()),
1595                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1596                         ISD::SETLT);
1597  // Get the absolute value of the result.
1598  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1599  // Select between the nabs and abs value based on the sign bit of
1600  // the input.
1601  return DAG.getSelect(dl, AbsVal.getValueType(), SignBit,
1602                      DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1603                      AbsVal);
1604}
1605
1606void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1607                                           SmallVectorImpl<SDValue> &Results) {
1608  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1609  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1610          " not tell us which reg is the stack pointer!");
1611  SDLoc dl(Node);
1612  EVT VT = Node->getValueType(0);
1613  SDValue Tmp1 = SDValue(Node, 0);
1614  SDValue Tmp2 = SDValue(Node, 1);
1615  SDValue Tmp3 = Node->getOperand(2);
1616  SDValue Chain = Tmp1.getOperand(0);
1617
1618  // Chain the dynamic stack allocation so that it doesn't modify the stack
1619  // pointer when other instructions are using the stack.
1620  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true),
1621                               SDLoc(Node));
1622
1623  SDValue Size  = Tmp2.getOperand(1);
1624  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1625  Chain = SP.getValue(1);
1626  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1627  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
1628  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1629  if (Align > StackAlign)
1630    Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
1631                       DAG.getConstant(-(uint64_t)Align, VT));
1632  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1633
1634  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1635                            DAG.getIntPtrConstant(0, true), SDValue(),
1636                            SDLoc(Node));
1637
1638  Results.push_back(Tmp1);
1639  Results.push_back(Tmp2);
1640}
1641
1642/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1643/// condition code CC on the current target.
1644///
1645/// If the SETCC has been legalized using AND / OR, then the legalized node
1646/// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
1647/// will be set to false.
1648///
1649/// If the SETCC has been legalized by using getSetCCSwappedOperands(),
1650/// then the values of LHS and RHS will be swapped, CC will be set to the
1651/// new condition, and NeedInvert will be set to false.
1652///
1653/// If the SETCC has been legalized using the inverse condcode, then LHS and
1654/// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
1655/// will be set to true. The caller must invert the result of the SETCC with
1656/// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
1657/// of a true/false result.
1658///
1659/// \returns true if the SetCC has been legalized, false if it hasn't.
1660bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1661                                                 SDValue &LHS, SDValue &RHS,
1662                                                 SDValue &CC,
1663                                                 bool &NeedInvert,
1664                                                 SDLoc dl) {
1665  MVT OpVT = LHS.getSimpleValueType();
1666  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1667  NeedInvert = false;
1668  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1669  default: llvm_unreachable("Unknown condition code action!");
1670  case TargetLowering::Legal:
1671    // Nothing to do.
1672    break;
1673  case TargetLowering::Expand: {
1674    ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
1675    if (TLI.isCondCodeLegal(InvCC, OpVT)) {
1676      std::swap(LHS, RHS);
1677      CC = DAG.getCondCode(InvCC);
1678      return true;
1679    }
1680    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1681    unsigned Opc = 0;
1682    switch (CCCode) {
1683    default: llvm_unreachable("Don't know how to expand this condition!");
1684    case ISD::SETO:
1685        assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT)
1686            == TargetLowering::Legal
1687            && "If SETO is expanded, SETOEQ must be legal!");
1688        CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1689    case ISD::SETUO:
1690        assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT)
1691            == TargetLowering::Legal
1692            && "If SETUO is expanded, SETUNE must be legal!");
1693        CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR;  break;
1694    case ISD::SETOEQ:
1695    case ISD::SETOGT:
1696    case ISD::SETOGE:
1697    case ISD::SETOLT:
1698    case ISD::SETOLE:
1699    case ISD::SETONE:
1700    case ISD::SETUEQ:
1701    case ISD::SETUNE:
1702    case ISD::SETUGT:
1703    case ISD::SETUGE:
1704    case ISD::SETULT:
1705    case ISD::SETULE:
1706        // If we are floating point, assign and break, otherwise fall through.
1707        if (!OpVT.isInteger()) {
1708          // We can use the 4th bit to tell if we are the unordered
1709          // or ordered version of the opcode.
1710          CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1711          Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1712          CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1713          break;
1714        }
1715        // Fallthrough if we are unsigned integer.
1716    case ISD::SETLE:
1717    case ISD::SETGT:
1718    case ISD::SETGE:
1719    case ISD::SETLT:
1720      // We only support using the inverted operation, which is computed above
1721      // and not a different manner of supporting expanding these cases.
1722      llvm_unreachable("Don't know how to expand this condition!");
1723    case ISD::SETNE:
1724    case ISD::SETEQ:
1725      // Try inverting the result of the inverse condition.
1726      InvCC = CCCode == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ;
1727      if (TLI.isCondCodeLegal(InvCC, OpVT)) {
1728        CC = DAG.getCondCode(InvCC);
1729        NeedInvert = true;
1730        return true;
1731      }
1732      // If inverting the condition didn't work then we have no means to expand
1733      // the condition.
1734      llvm_unreachable("Don't know how to expand this condition!");
1735    }
1736
1737    SDValue SetCC1, SetCC2;
1738    if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1739      // If we aren't the ordered or unorder operation,
1740      // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1741      SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1742      SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1743    } else {
1744      // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1745      SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1);
1746      SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2);
1747    }
1748    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1749    RHS = SDValue();
1750    CC  = SDValue();
1751    return true;
1752  }
1753  }
1754  return false;
1755}
1756
1757/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1758/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1759/// a load from the stack slot to DestVT, extending it if needed.
1760/// The resultant code need not be legal.
1761SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1762                                               EVT SlotVT,
1763                                               EVT DestVT,
1764                                               SDLoc dl) {
1765  // Create the stack frame object.
1766  unsigned SrcAlign =
1767    TLI.getDataLayout()->getPrefTypeAlignment(SrcOp.getValueType().
1768                                              getTypeForEVT(*DAG.getContext()));
1769  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1770
1771  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1772  int SPFI = StackPtrFI->getIndex();
1773  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
1774
1775  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1776  unsigned SlotSize = SlotVT.getSizeInBits();
1777  unsigned DestSize = DestVT.getSizeInBits();
1778  Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1779  unsigned DestAlign = TLI.getDataLayout()->getPrefTypeAlignment(DestType);
1780
1781  // Emit a store to the stack slot.  Use a truncstore if the input value is
1782  // later than DestVT.
1783  SDValue Store;
1784
1785  if (SrcSize > SlotSize)
1786    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1787                              PtrInfo, SlotVT, false, false, SrcAlign);
1788  else {
1789    assert(SrcSize == SlotSize && "Invalid store");
1790    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1791                         PtrInfo, false, false, SrcAlign);
1792  }
1793
1794  // Result is a load from the stack slot.
1795  if (SlotSize == DestSize)
1796    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
1797                       false, false, false, DestAlign);
1798
1799  assert(SlotSize < DestSize && "Unknown extension!");
1800  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
1801                        PtrInfo, SlotVT, false, false, DestAlign);
1802}
1803
1804SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1805  SDLoc dl(Node);
1806  // Create a vector sized/aligned stack slot, store the value to element #0,
1807  // then load the whole vector back out.
1808  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1809
1810  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1811  int SPFI = StackPtrFI->getIndex();
1812
1813  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1814                                 StackPtr,
1815                                 MachinePointerInfo::getFixedStack(SPFI),
1816                                 Node->getValueType(0).getVectorElementType(),
1817                                 false, false, 0);
1818  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1819                     MachinePointerInfo::getFixedStack(SPFI),
1820                     false, false, false, 0);
1821}
1822
1823static bool
1824ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
1825                     const TargetLowering &TLI, SDValue &Res) {
1826  unsigned NumElems = Node->getNumOperands();
1827  SDLoc dl(Node);
1828  EVT VT = Node->getValueType(0);
1829
1830  // Try to group the scalars into pairs, shuffle the pairs together, then
1831  // shuffle the pairs of pairs together, etc. until the vector has
1832  // been built. This will work only if all of the necessary shuffle masks
1833  // are legal.
1834
1835  // We do this in two phases; first to check the legality of the shuffles,
1836  // and next, assuming that all shuffles are legal, to create the new nodes.
1837  for (int Phase = 0; Phase < 2; ++Phase) {
1838    SmallVector<std::pair<SDValue, SmallVector<int, 16> >, 16> IntermedVals,
1839                                                               NewIntermedVals;
1840    for (unsigned i = 0; i < NumElems; ++i) {
1841      SDValue V = Node->getOperand(i);
1842      if (V.getOpcode() == ISD::UNDEF)
1843        continue;
1844
1845      SDValue Vec;
1846      if (Phase)
1847        Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
1848      IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
1849    }
1850
1851    while (IntermedVals.size() > 2) {
1852      NewIntermedVals.clear();
1853      for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
1854        // This vector and the next vector are shuffled together (simply to
1855        // append the one to the other).
1856        SmallVector<int, 16> ShuffleVec(NumElems, -1);
1857
1858        SmallVector<int, 16> FinalIndices;
1859        FinalIndices.reserve(IntermedVals[i].second.size() +
1860                             IntermedVals[i+1].second.size());
1861
1862        int k = 0;
1863        for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
1864             ++j, ++k) {
1865          ShuffleVec[k] = j;
1866          FinalIndices.push_back(IntermedVals[i].second[j]);
1867        }
1868        for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
1869             ++j, ++k) {
1870          ShuffleVec[k] = NumElems + j;
1871          FinalIndices.push_back(IntermedVals[i+1].second[j]);
1872        }
1873
1874        SDValue Shuffle;
1875        if (Phase)
1876          Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
1877                                         IntermedVals[i+1].first,
1878                                         ShuffleVec.data());
1879        else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1880          return false;
1881        NewIntermedVals.push_back(std::make_pair(Shuffle, FinalIndices));
1882      }
1883
1884      // If we had an odd number of defined values, then append the last
1885      // element to the array of new vectors.
1886      if ((IntermedVals.size() & 1) != 0)
1887        NewIntermedVals.push_back(IntermedVals.back());
1888
1889      IntermedVals.swap(NewIntermedVals);
1890    }
1891
1892    assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
1893           "Invalid number of intermediate vectors");
1894    SDValue Vec1 = IntermedVals[0].first;
1895    SDValue Vec2;
1896    if (IntermedVals.size() > 1)
1897      Vec2 = IntermedVals[1].first;
1898    else if (Phase)
1899      Vec2 = DAG.getUNDEF(VT);
1900
1901    SmallVector<int, 16> ShuffleVec(NumElems, -1);
1902    for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
1903      ShuffleVec[IntermedVals[0].second[i]] = i;
1904    for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
1905      ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
1906
1907    if (Phase)
1908      Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1909    else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1910      return false;
1911  }
1912
1913  return true;
1914}
1915
1916/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1917/// support the operation, but do support the resultant vector type.
1918SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1919  unsigned NumElems = Node->getNumOperands();
1920  SDValue Value1, Value2;
1921  SDLoc dl(Node);
1922  EVT VT = Node->getValueType(0);
1923  EVT OpVT = Node->getOperand(0).getValueType();
1924  EVT EltVT = VT.getVectorElementType();
1925
1926  // If the only non-undef value is the low element, turn this into a
1927  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1928  bool isOnlyLowElement = true;
1929  bool MoreThanTwoValues = false;
1930  bool isConstant = true;
1931  for (unsigned i = 0; i < NumElems; ++i) {
1932    SDValue V = Node->getOperand(i);
1933    if (V.getOpcode() == ISD::UNDEF)
1934      continue;
1935    if (i > 0)
1936      isOnlyLowElement = false;
1937    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1938      isConstant = false;
1939
1940    if (!Value1.getNode()) {
1941      Value1 = V;
1942    } else if (!Value2.getNode()) {
1943      if (V != Value1)
1944        Value2 = V;
1945    } else if (V != Value1 && V != Value2) {
1946      MoreThanTwoValues = true;
1947    }
1948  }
1949
1950  if (!Value1.getNode())
1951    return DAG.getUNDEF(VT);
1952
1953  if (isOnlyLowElement)
1954    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1955
1956  // If all elements are constants, create a load from the constant pool.
1957  if (isConstant) {
1958    SmallVector<Constant*, 16> CV;
1959    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1960      if (ConstantFPSDNode *V =
1961          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1962        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1963      } else if (ConstantSDNode *V =
1964                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1965        if (OpVT==EltVT)
1966          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1967        else {
1968          // If OpVT and EltVT don't match, EltVT is not legal and the
1969          // element values have been promoted/truncated earlier.  Undo this;
1970          // we don't want a v16i8 to become a v16i32 for example.
1971          const ConstantInt *CI = V->getConstantIntValue();
1972          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1973                                        CI->getZExtValue()));
1974        }
1975      } else {
1976        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1977        Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1978        CV.push_back(UndefValue::get(OpNTy));
1979      }
1980    }
1981    Constant *CP = ConstantVector::get(CV);
1982    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1983    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1984    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1985                       MachinePointerInfo::getConstantPool(),
1986                       false, false, false, Alignment);
1987  }
1988
1989  SmallSet<SDValue, 16> DefinedValues;
1990  for (unsigned i = 0; i < NumElems; ++i) {
1991    if (Node->getOperand(i).getOpcode() == ISD::UNDEF)
1992      continue;
1993    DefinedValues.insert(Node->getOperand(i));
1994  }
1995
1996  if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
1997    if (!MoreThanTwoValues) {
1998      SmallVector<int, 8> ShuffleVec(NumElems, -1);
1999      for (unsigned i = 0; i < NumElems; ++i) {
2000        SDValue V = Node->getOperand(i);
2001        if (V.getOpcode() == ISD::UNDEF)
2002          continue;
2003        ShuffleVec[i] = V == Value1 ? 0 : NumElems;
2004      }
2005      if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
2006        // Get the splatted value into the low element of a vector register.
2007        SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
2008        SDValue Vec2;
2009        if (Value2.getNode())
2010          Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
2011        else
2012          Vec2 = DAG.getUNDEF(VT);
2013
2014        // Return shuffle(LowValVec, undef, <0,0,0,0>)
2015        return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
2016      }
2017    } else {
2018      SDValue Res;
2019      if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
2020        return Res;
2021    }
2022  }
2023
2024  // Otherwise, we can't handle this case efficiently.
2025  return ExpandVectorBuildThroughStack(Node);
2026}
2027
2028// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
2029// does not fit into a register, return the lo part and set the hi part to the
2030// by-reg argument.  If it does fit into a single register, return the result
2031// and leave the Hi part unset.
2032SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2033                                            bool isSigned) {
2034  TargetLowering::ArgListTy Args;
2035  TargetLowering::ArgListEntry Entry;
2036  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2037    EVT ArgVT = Node->getOperand(i).getValueType();
2038    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2039    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2040    Entry.isSExt = isSigned;
2041    Entry.isZExt = !isSigned;
2042    Args.push_back(Entry);
2043  }
2044  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2045                                         TLI.getPointerTy());
2046
2047  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2048
2049  // By default, the input chain to this libcall is the entry node of the
2050  // function. If the libcall is going to be emitted as a tail call then
2051  // TLI.isUsedByReturnOnly will change it to the right chain if the return
2052  // node which is being folded has a non-entry input chain.
2053  SDValue InChain = DAG.getEntryNode();
2054
2055  // isTailCall may be true since the callee does not reference caller stack
2056  // frame. Check if it's in the right position.
2057  SDValue TCChain = InChain;
2058  bool isTailCall = TLI.isInTailCallPosition(DAG, Node, TCChain);
2059  if (isTailCall)
2060    InChain = TCChain;
2061
2062  TargetLowering::CallLoweringInfo CLI(DAG);
2063  CLI.setDebugLoc(SDLoc(Node)).setChain(InChain)
2064    .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
2065    .setTailCall(isTailCall).setSExtResult(isSigned).setZExtResult(!isSigned);
2066
2067  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2068
2069  if (!CallInfo.second.getNode())
2070    // It's a tailcall, return the chain (which is the DAG root).
2071    return DAG.getRoot();
2072
2073  return CallInfo.first;
2074}
2075
2076/// ExpandLibCall - Generate a libcall taking the given operands as arguments
2077/// and returning a result of type RetVT.
2078SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
2079                                            const SDValue *Ops, unsigned NumOps,
2080                                            bool isSigned, SDLoc dl) {
2081  TargetLowering::ArgListTy Args;
2082  Args.reserve(NumOps);
2083
2084  TargetLowering::ArgListEntry Entry;
2085  for (unsigned i = 0; i != NumOps; ++i) {
2086    Entry.Node = Ops[i];
2087    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
2088    Entry.isSExt = isSigned;
2089    Entry.isZExt = !isSigned;
2090    Args.push_back(Entry);
2091  }
2092  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2093                                         TLI.getPointerTy());
2094
2095  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2096
2097  TargetLowering::CallLoweringInfo CLI(DAG);
2098  CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
2099    .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
2100    .setSExtResult(isSigned).setZExtResult(!isSigned);
2101
2102  std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI);
2103
2104  return CallInfo.first;
2105}
2106
2107// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
2108// ExpandLibCall except that the first operand is the in-chain.
2109std::pair<SDValue, SDValue>
2110SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
2111                                         SDNode *Node,
2112                                         bool isSigned) {
2113  SDValue InChain = Node->getOperand(0);
2114
2115  TargetLowering::ArgListTy Args;
2116  TargetLowering::ArgListEntry Entry;
2117  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
2118    EVT ArgVT = Node->getOperand(i).getValueType();
2119    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2120    Entry.Node = Node->getOperand(i);
2121    Entry.Ty = ArgTy;
2122    Entry.isSExt = isSigned;
2123    Entry.isZExt = !isSigned;
2124    Args.push_back(Entry);
2125  }
2126  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2127                                         TLI.getPointerTy());
2128
2129  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2130
2131  TargetLowering::CallLoweringInfo CLI(DAG);
2132  CLI.setDebugLoc(SDLoc(Node)).setChain(InChain)
2133    .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
2134    .setSExtResult(isSigned).setZExtResult(!isSigned);
2135
2136  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2137
2138  return CallInfo;
2139}
2140
2141SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2142                                              RTLIB::Libcall Call_F32,
2143                                              RTLIB::Libcall Call_F64,
2144                                              RTLIB::Libcall Call_F80,
2145                                              RTLIB::Libcall Call_F128,
2146                                              RTLIB::Libcall Call_PPCF128) {
2147  RTLIB::Libcall LC;
2148  switch (Node->getSimpleValueType(0).SimpleTy) {
2149  default: llvm_unreachable("Unexpected request for libcall!");
2150  case MVT::f32: LC = Call_F32; break;
2151  case MVT::f64: LC = Call_F64; break;
2152  case MVT::f80: LC = Call_F80; break;
2153  case MVT::f128: LC = Call_F128; break;
2154  case MVT::ppcf128: LC = Call_PPCF128; break;
2155  }
2156  return ExpandLibCall(LC, Node, false);
2157}
2158
2159SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2160                                               RTLIB::Libcall Call_I8,
2161                                               RTLIB::Libcall Call_I16,
2162                                               RTLIB::Libcall Call_I32,
2163                                               RTLIB::Libcall Call_I64,
2164                                               RTLIB::Libcall Call_I128) {
2165  RTLIB::Libcall LC;
2166  switch (Node->getSimpleValueType(0).SimpleTy) {
2167  default: llvm_unreachable("Unexpected request for libcall!");
2168  case MVT::i8:   LC = Call_I8; break;
2169  case MVT::i16:  LC = Call_I16; break;
2170  case MVT::i32:  LC = Call_I32; break;
2171  case MVT::i64:  LC = Call_I64; break;
2172  case MVT::i128: LC = Call_I128; break;
2173  }
2174  return ExpandLibCall(LC, Node, isSigned);
2175}
2176
2177/// isDivRemLibcallAvailable - Return true if divmod libcall is available.
2178static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
2179                                     const TargetLowering &TLI) {
2180  RTLIB::Libcall LC;
2181  switch (Node->getSimpleValueType(0).SimpleTy) {
2182  default: llvm_unreachable("Unexpected request for libcall!");
2183  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2184  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2185  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2186  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2187  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2188  }
2189
2190  return TLI.getLibcallName(LC) != nullptr;
2191}
2192
2193/// useDivRem - Only issue divrem libcall if both quotient and remainder are
2194/// needed.
2195static bool useDivRem(SDNode *Node, bool isSigned, bool isDIV) {
2196  // The other use might have been replaced with a divrem already.
2197  unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2198  unsigned OtherOpcode = 0;
2199  if (isSigned)
2200    OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
2201  else
2202    OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
2203
2204  SDValue Op0 = Node->getOperand(0);
2205  SDValue Op1 = Node->getOperand(1);
2206  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2207         UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2208    SDNode *User = *UI;
2209    if (User == Node)
2210      continue;
2211    if ((User->getOpcode() == OtherOpcode || User->getOpcode() == DivRemOpc) &&
2212        User->getOperand(0) == Op0 &&
2213        User->getOperand(1) == Op1)
2214      return true;
2215  }
2216  return false;
2217}
2218
2219/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem
2220/// pairs.
2221void
2222SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2223                                          SmallVectorImpl<SDValue> &Results) {
2224  unsigned Opcode = Node->getOpcode();
2225  bool isSigned = Opcode == ISD::SDIVREM;
2226
2227  RTLIB::Libcall LC;
2228  switch (Node->getSimpleValueType(0).SimpleTy) {
2229  default: llvm_unreachable("Unexpected request for libcall!");
2230  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2231  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2232  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2233  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2234  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2235  }
2236
2237  // The input chain to this libcall is the entry node of the function.
2238  // Legalizing the call will automatically add the previous call to the
2239  // dependence.
2240  SDValue InChain = DAG.getEntryNode();
2241
2242  EVT RetVT = Node->getValueType(0);
2243  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2244
2245  TargetLowering::ArgListTy Args;
2246  TargetLowering::ArgListEntry Entry;
2247  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2248    EVT ArgVT = Node->getOperand(i).getValueType();
2249    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2250    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2251    Entry.isSExt = isSigned;
2252    Entry.isZExt = !isSigned;
2253    Args.push_back(Entry);
2254  }
2255
2256  // Also pass the return address of the remainder.
2257  SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2258  Entry.Node = FIPtr;
2259  Entry.Ty = RetTy->getPointerTo();
2260  Entry.isSExt = isSigned;
2261  Entry.isZExt = !isSigned;
2262  Args.push_back(Entry);
2263
2264  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2265                                         TLI.getPointerTy());
2266
2267  SDLoc dl(Node);
2268  TargetLowering::CallLoweringInfo CLI(DAG);
2269  CLI.setDebugLoc(dl).setChain(InChain)
2270    .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
2271    .setSExtResult(isSigned).setZExtResult(!isSigned);
2272
2273  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2274
2275  // Remainder is loaded back from the stack frame.
2276  SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr,
2277                            MachinePointerInfo(), false, false, false, 0);
2278  Results.push_back(CallInfo.first);
2279  Results.push_back(Rem);
2280}
2281
2282/// isSinCosLibcallAvailable - Return true if sincos libcall is available.
2283static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2284  RTLIB::Libcall LC;
2285  switch (Node->getSimpleValueType(0).SimpleTy) {
2286  default: llvm_unreachable("Unexpected request for libcall!");
2287  case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2288  case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2289  case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2290  case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2291  case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2292  }
2293  return TLI.getLibcallName(LC) != nullptr;
2294}
2295
2296/// canCombineSinCosLibcall - Return true if sincos libcall is available and
2297/// can be used to combine sin and cos.
2298static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI,
2299                                    const TargetMachine &TM) {
2300  if (!isSinCosLibcallAvailable(Node, TLI))
2301    return false;
2302  // GNU sin/cos functions set errno while sincos does not. Therefore
2303  // combining sin and cos is only safe if unsafe-fpmath is enabled.
2304  bool isGNU = Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU;
2305  if (isGNU && !TM.Options.UnsafeFPMath)
2306    return false;
2307  return true;
2308}
2309
2310/// useSinCos - Only issue sincos libcall if both sin and cos are
2311/// needed.
2312static bool useSinCos(SDNode *Node) {
2313  unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2314    ? ISD::FCOS : ISD::FSIN;
2315
2316  SDValue Op0 = Node->getOperand(0);
2317  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2318       UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2319    SDNode *User = *UI;
2320    if (User == Node)
2321      continue;
2322    // The other user might have been turned into sincos already.
2323    if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2324      return true;
2325  }
2326  return false;
2327}
2328
2329/// ExpandSinCosLibCall - Issue libcalls to sincos to compute sin / cos
2330/// pairs.
2331void
2332SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2333                                          SmallVectorImpl<SDValue> &Results) {
2334  RTLIB::Libcall LC;
2335  switch (Node->getSimpleValueType(0).SimpleTy) {
2336  default: llvm_unreachable("Unexpected request for libcall!");
2337  case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2338  case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2339  case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2340  case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2341  case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2342  }
2343
2344  // The input chain to this libcall is the entry node of the function.
2345  // Legalizing the call will automatically add the previous call to the
2346  // dependence.
2347  SDValue InChain = DAG.getEntryNode();
2348
2349  EVT RetVT = Node->getValueType(0);
2350  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2351
2352  TargetLowering::ArgListTy Args;
2353  TargetLowering::ArgListEntry Entry;
2354
2355  // Pass the argument.
2356  Entry.Node = Node->getOperand(0);
2357  Entry.Ty = RetTy;
2358  Entry.isSExt = false;
2359  Entry.isZExt = false;
2360  Args.push_back(Entry);
2361
2362  // Pass the return address of sin.
2363  SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2364  Entry.Node = SinPtr;
2365  Entry.Ty = RetTy->getPointerTo();
2366  Entry.isSExt = false;
2367  Entry.isZExt = false;
2368  Args.push_back(Entry);
2369
2370  // Also pass the return address of the cos.
2371  SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2372  Entry.Node = CosPtr;
2373  Entry.Ty = RetTy->getPointerTo();
2374  Entry.isSExt = false;
2375  Entry.isZExt = false;
2376  Args.push_back(Entry);
2377
2378  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2379                                         TLI.getPointerTy());
2380
2381  SDLoc dl(Node);
2382  TargetLowering::CallLoweringInfo CLI(DAG);
2383  CLI.setDebugLoc(dl).setChain(InChain)
2384    .setCallee(TLI.getLibcallCallingConv(LC),
2385               Type::getVoidTy(*DAG.getContext()), Callee, std::move(Args), 0);
2386
2387  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2388
2389  Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr,
2390                                MachinePointerInfo(), false, false, false, 0));
2391  Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr,
2392                                MachinePointerInfo(), false, false, false, 0));
2393}
2394
2395/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2396/// INT_TO_FP operation of the specified operand when the target requests that
2397/// we expand it.  At this point, we know that the result and operand types are
2398/// legal for the target.
2399SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2400                                                   SDValue Op0,
2401                                                   EVT DestVT,
2402                                                   SDLoc dl) {
2403  if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2404    // simple 32-bit [signed|unsigned] integer to float/double expansion
2405
2406    // Get the stack frame index of a 8 byte buffer.
2407    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2408
2409    // word offset constant for Hi/Lo address computation
2410    SDValue WordOff = DAG.getConstant(sizeof(int), StackSlot.getValueType());
2411    // set up Hi and Lo (into buffer) address based on endian
2412    SDValue Hi = StackSlot;
2413    SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(),
2414                             StackSlot, WordOff);
2415    if (TLI.isLittleEndian())
2416      std::swap(Hi, Lo);
2417
2418    // if signed map to unsigned space
2419    SDValue Op0Mapped;
2420    if (isSigned) {
2421      // constant used to invert sign bit (signed to unsigned mapping)
2422      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2423      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2424    } else {
2425      Op0Mapped = Op0;
2426    }
2427    // store the lo of the constructed double - based on integer input
2428    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2429                                  Op0Mapped, Lo, MachinePointerInfo(),
2430                                  false, false, 0);
2431    // initial hi portion of constructed double
2432    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2433    // store the hi of the constructed double - biased exponent
2434    SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2435                                  MachinePointerInfo(),
2436                                  false, false, 0);
2437    // load the constructed double
2438    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2439                               MachinePointerInfo(), false, false, false, 0);
2440    // FP constant to bias correct the final result
2441    SDValue Bias = DAG.getConstantFP(isSigned ?
2442                                     BitsToDouble(0x4330000080000000ULL) :
2443                                     BitsToDouble(0x4330000000000000ULL),
2444                                     MVT::f64);
2445    // subtract the bias
2446    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2447    // final result
2448    SDValue Result;
2449    // handle final rounding
2450    if (DestVT == MVT::f64) {
2451      // do nothing
2452      Result = Sub;
2453    } else if (DestVT.bitsLT(MVT::f64)) {
2454      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2455                           DAG.getIntPtrConstant(0));
2456    } else if (DestVT.bitsGT(MVT::f64)) {
2457      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2458    }
2459    return Result;
2460  }
2461  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2462  // Code below here assumes !isSigned without checking again.
2463
2464  // Implementation of unsigned i64 to f64 following the algorithm in
2465  // __floatundidf in compiler_rt. This implementation has the advantage
2466  // of performing rounding correctly, both in the default rounding mode
2467  // and in all alternate rounding modes.
2468  // TODO: Generalize this for use with other types.
2469  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2470    SDValue TwoP52 =
2471      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2472    SDValue TwoP84PlusTwoP52 =
2473      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2474    SDValue TwoP84 =
2475      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2476
2477    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2478    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2479                             DAG.getConstant(32, MVT::i64));
2480    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2481    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2482    SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2483    SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2484    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2485                                TwoP84PlusTwoP52);
2486    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2487  }
2488
2489  // Implementation of unsigned i64 to f32.
2490  // TODO: Generalize this for use with other types.
2491  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2492    // For unsigned conversions, convert them to signed conversions using the
2493    // algorithm from the x86_64 __floatundidf in compiler_rt.
2494    if (!isSigned) {
2495      SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2496
2497      SDValue ShiftConst =
2498          DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType()));
2499      SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2500      SDValue AndConst = DAG.getConstant(1, MVT::i64);
2501      SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2502      SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2503
2504      SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2505      SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2506
2507      // TODO: This really should be implemented using a branch rather than a
2508      // select.  We happen to get lucky and machinesink does the right
2509      // thing most of the time.  This would be a good candidate for a
2510      //pseudo-op, or, even better, for whole-function isel.
2511      SDValue SignBitTest = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
2512        Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
2513      return DAG.getSelect(dl, MVT::f32, SignBitTest, Slow, Fast);
2514    }
2515
2516    // Otherwise, implement the fully general conversion.
2517
2518    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2519         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2520    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2521         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2522    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2523         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2524    SDValue Ne = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
2525                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2526    SDValue Sel = DAG.getSelect(dl, MVT::i64, Ne, Or, Op0);
2527    SDValue Ge = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
2528                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2529                   ISD::SETUGE);
2530    SDValue Sel2 = DAG.getSelect(dl, MVT::i64, Ge, Sel, Op0);
2531    EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
2532
2533    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2534                             DAG.getConstant(32, SHVT));
2535    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2536    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2537    SDValue TwoP32 =
2538      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2539    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2540    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2541    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2542    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2543    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2544                       DAG.getIntPtrConstant(0));
2545  }
2546
2547  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2548
2549  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(Op0.getValueType()),
2550                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2551                                 ISD::SETLT);
2552  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2553  SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
2554                                    SignSet, Four, Zero);
2555
2556  // If the sign bit of the integer is set, the large number will be treated
2557  // as a negative number.  To counteract this, the dynamic code adds an
2558  // offset depending on the data type.
2559  uint64_t FF;
2560  switch (Op0.getSimpleValueType().SimpleTy) {
2561  default: llvm_unreachable("Unsupported integer type!");
2562  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2563  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2564  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2565  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2566  }
2567  if (TLI.isLittleEndian()) FF <<= 32;
2568  Constant *FudgeFactor = ConstantInt::get(
2569                                       Type::getInt64Ty(*DAG.getContext()), FF);
2570
2571  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2572  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2573  CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
2574  Alignment = std::min(Alignment, 4u);
2575  SDValue FudgeInReg;
2576  if (DestVT == MVT::f32)
2577    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2578                             MachinePointerInfo::getConstantPool(),
2579                             false, false, false, Alignment);
2580  else {
2581    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2582                                  DAG.getEntryNode(), CPIdx,
2583                                  MachinePointerInfo::getConstantPool(),
2584                                  MVT::f32, false, false, Alignment);
2585    HandleSDNode Handle(Load);
2586    LegalizeOp(Load.getNode());
2587    FudgeInReg = Handle.getValue();
2588  }
2589
2590  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2591}
2592
2593/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2594/// *INT_TO_FP operation of the specified operand when the target requests that
2595/// we promote it.  At this point, we know that the result and operand types are
2596/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2597/// operation that takes a larger input.
2598SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2599                                                    EVT DestVT,
2600                                                    bool isSigned,
2601                                                    SDLoc dl) {
2602  // First step, figure out the appropriate *INT_TO_FP operation to use.
2603  EVT NewInTy = LegalOp.getValueType();
2604
2605  unsigned OpToUse = 0;
2606
2607  // Scan for the appropriate larger type to use.
2608  while (1) {
2609    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2610    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2611
2612    // If the target supports SINT_TO_FP of this type, use it.
2613    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2614      OpToUse = ISD::SINT_TO_FP;
2615      break;
2616    }
2617    if (isSigned) continue;
2618
2619    // If the target supports UINT_TO_FP of this type, use it.
2620    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2621      OpToUse = ISD::UINT_TO_FP;
2622      break;
2623    }
2624
2625    // Otherwise, try a larger type.
2626  }
2627
2628  // Okay, we found the operation and type to use.  Zero extend our input to the
2629  // desired type then run the operation on it.
2630  return DAG.getNode(OpToUse, dl, DestVT,
2631                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2632                                 dl, NewInTy, LegalOp));
2633}
2634
2635/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2636/// FP_TO_*INT operation of the specified operand when the target requests that
2637/// we promote it.  At this point, we know that the result and operand types are
2638/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2639/// operation that returns a larger result.
2640SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2641                                                    EVT DestVT,
2642                                                    bool isSigned,
2643                                                    SDLoc dl) {
2644  // First step, figure out the appropriate FP_TO*INT operation to use.
2645  EVT NewOutTy = DestVT;
2646
2647  unsigned OpToUse = 0;
2648
2649  // Scan for the appropriate larger type to use.
2650  while (1) {
2651    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2652    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2653
2654    // A larger signed type can hold all unsigned values of the requested type,
2655    // so using FP_TO_SINT is valid
2656    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2657      OpToUse = ISD::FP_TO_SINT;
2658      break;
2659    }
2660
2661    // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2662    if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2663      OpToUse = ISD::FP_TO_UINT;
2664      break;
2665    }
2666
2667    // Otherwise, try a larger type.
2668  }
2669
2670
2671  // Okay, we found the operation and type to use.
2672  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2673
2674  // Truncate the result of the extended FP_TO_*INT operation to the desired
2675  // size.
2676  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2677}
2678
2679/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2680///
2681SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, SDLoc dl) {
2682  EVT VT = Op.getValueType();
2683  EVT SHVT = TLI.getShiftAmountTy(VT);
2684  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2685  switch (VT.getSimpleVT().SimpleTy) {
2686  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2687  case MVT::i16:
2688    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2689    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2690    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2691  case MVT::i32:
2692    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2693    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2694    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2695    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2696    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2697    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2698    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2699    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2700    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2701  case MVT::i64:
2702    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2703    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2704    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2705    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2706    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2707    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2708    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2709    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2710    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2711    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2712    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2713    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2714    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2715    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2716    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2717    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2718    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2719    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2720    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2721    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2722    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2723  }
2724}
2725
2726/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2727///
2728SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2729                                             SDLoc dl) {
2730  switch (Opc) {
2731  default: llvm_unreachable("Cannot expand this yet!");
2732  case ISD::CTPOP: {
2733    EVT VT = Op.getValueType();
2734    EVT ShVT = TLI.getShiftAmountTy(VT);
2735    unsigned Len = VT.getSizeInBits();
2736
2737    assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2738           "CTPOP not implemented for this type.");
2739
2740    // This is the "best" algorithm from
2741    // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2742
2743    SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), VT);
2744    SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), VT);
2745    SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), VT);
2746    SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), VT);
2747
2748    // v = v - ((v >> 1) & 0x55555555...)
2749    Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2750                     DAG.getNode(ISD::AND, dl, VT,
2751                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2752                                             DAG.getConstant(1, ShVT)),
2753                                 Mask55));
2754    // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2755    Op = DAG.getNode(ISD::ADD, dl, VT,
2756                     DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2757                     DAG.getNode(ISD::AND, dl, VT,
2758                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2759                                             DAG.getConstant(2, ShVT)),
2760                                 Mask33));
2761    // v = (v + (v >> 4)) & 0x0F0F0F0F...
2762    Op = DAG.getNode(ISD::AND, dl, VT,
2763                     DAG.getNode(ISD::ADD, dl, VT, Op,
2764                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2765                                             DAG.getConstant(4, ShVT))),
2766                     Mask0F);
2767    // v = (v * 0x01010101...) >> (Len - 8)
2768    Op = DAG.getNode(ISD::SRL, dl, VT,
2769                     DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2770                     DAG.getConstant(Len - 8, ShVT));
2771
2772    return Op;
2773  }
2774  case ISD::CTLZ_ZERO_UNDEF:
2775    // This trivially expands to CTLZ.
2776    return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op);
2777  case ISD::CTLZ: {
2778    // for now, we do this:
2779    // x = x | (x >> 1);
2780    // x = x | (x >> 2);
2781    // ...
2782    // x = x | (x >>16);
2783    // x = x | (x >>32); // for 64-bit input
2784    // return popcount(~x);
2785    //
2786    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2787    EVT VT = Op.getValueType();
2788    EVT ShVT = TLI.getShiftAmountTy(VT);
2789    unsigned len = VT.getSizeInBits();
2790    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2791      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2792      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2793                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2794    }
2795    Op = DAG.getNOT(dl, Op, VT);
2796    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2797  }
2798  case ISD::CTTZ_ZERO_UNDEF:
2799    // This trivially expands to CTTZ.
2800    return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op);
2801  case ISD::CTTZ: {
2802    // for now, we use: { return popcount(~x & (x - 1)); }
2803    // unless the target has ctlz but not ctpop, in which case we use:
2804    // { return 32 - nlz(~x & (x-1)); }
2805    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2806    EVT VT = Op.getValueType();
2807    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2808                               DAG.getNOT(dl, Op, VT),
2809                               DAG.getNode(ISD::SUB, dl, VT, Op,
2810                                           DAG.getConstant(1, VT)));
2811    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2812    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2813        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2814      return DAG.getNode(ISD::SUB, dl, VT,
2815                         DAG.getConstant(VT.getSizeInBits(), VT),
2816                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2817    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2818  }
2819  }
2820}
2821
2822std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2823  unsigned Opc = Node->getOpcode();
2824  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2825  RTLIB::Libcall LC;
2826
2827  switch (Opc) {
2828  default:
2829    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2830  case ISD::ATOMIC_SWAP:
2831    switch (VT.SimpleTy) {
2832    default: llvm_unreachable("Unexpected value type for atomic!");
2833    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2834    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2835    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2836    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2837    case MVT::i128:LC = RTLIB::SYNC_LOCK_TEST_AND_SET_16;break;
2838    }
2839    break;
2840  case ISD::ATOMIC_CMP_SWAP:
2841    switch (VT.SimpleTy) {
2842    default: llvm_unreachable("Unexpected value type for atomic!");
2843    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2844    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2845    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2846    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2847    case MVT::i128:LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16;break;
2848    }
2849    break;
2850  case ISD::ATOMIC_LOAD_ADD:
2851    switch (VT.SimpleTy) {
2852    default: llvm_unreachable("Unexpected value type for atomic!");
2853    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2854    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2855    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2856    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2857    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_ADD_16;break;
2858    }
2859    break;
2860  case ISD::ATOMIC_LOAD_SUB:
2861    switch (VT.SimpleTy) {
2862    default: llvm_unreachable("Unexpected value type for atomic!");
2863    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2864    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2865    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2866    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2867    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_SUB_16;break;
2868    }
2869    break;
2870  case ISD::ATOMIC_LOAD_AND:
2871    switch (VT.SimpleTy) {
2872    default: llvm_unreachable("Unexpected value type for atomic!");
2873    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2874    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2875    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2876    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2877    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_AND_16;break;
2878    }
2879    break;
2880  case ISD::ATOMIC_LOAD_OR:
2881    switch (VT.SimpleTy) {
2882    default: llvm_unreachable("Unexpected value type for atomic!");
2883    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2884    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2885    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2886    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2887    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_OR_16;break;
2888    }
2889    break;
2890  case ISD::ATOMIC_LOAD_XOR:
2891    switch (VT.SimpleTy) {
2892    default: llvm_unreachable("Unexpected value type for atomic!");
2893    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2894    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2895    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2896    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2897    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_XOR_16;break;
2898    }
2899    break;
2900  case ISD::ATOMIC_LOAD_NAND:
2901    switch (VT.SimpleTy) {
2902    default: llvm_unreachable("Unexpected value type for atomic!");
2903    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2904    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2905    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2906    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2907    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_NAND_16;break;
2908    }
2909    break;
2910  case ISD::ATOMIC_LOAD_MAX:
2911    switch (VT.SimpleTy) {
2912    default: llvm_unreachable("Unexpected value type for atomic!");
2913    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_MAX_1; break;
2914    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_MAX_2; break;
2915    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_MAX_4; break;
2916    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_MAX_8; break;
2917    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_MAX_16;break;
2918    }
2919    break;
2920  case ISD::ATOMIC_LOAD_UMAX:
2921    switch (VT.SimpleTy) {
2922    default: llvm_unreachable("Unexpected value type for atomic!");
2923    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_UMAX_1; break;
2924    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_UMAX_2; break;
2925    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_UMAX_4; break;
2926    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_UMAX_8; break;
2927    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_UMAX_16;break;
2928    }
2929    break;
2930  case ISD::ATOMIC_LOAD_MIN:
2931    switch (VT.SimpleTy) {
2932    default: llvm_unreachable("Unexpected value type for atomic!");
2933    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_MIN_1; break;
2934    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_MIN_2; break;
2935    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_MIN_4; break;
2936    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_MIN_8; break;
2937    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_MIN_16;break;
2938    }
2939    break;
2940  case ISD::ATOMIC_LOAD_UMIN:
2941    switch (VT.SimpleTy) {
2942    default: llvm_unreachable("Unexpected value type for atomic!");
2943    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_UMIN_1; break;
2944    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_UMIN_2; break;
2945    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_UMIN_4; break;
2946    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_UMIN_8; break;
2947    case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_UMIN_16;break;
2948    }
2949    break;
2950  }
2951
2952  return ExpandChainLibCall(LC, Node, false);
2953}
2954
2955void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2956  SmallVector<SDValue, 8> Results;
2957  SDLoc dl(Node);
2958  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2959  bool NeedInvert;
2960  switch (Node->getOpcode()) {
2961  case ISD::CTPOP:
2962  case ISD::CTLZ:
2963  case ISD::CTLZ_ZERO_UNDEF:
2964  case ISD::CTTZ:
2965  case ISD::CTTZ_ZERO_UNDEF:
2966    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2967    Results.push_back(Tmp1);
2968    break;
2969  case ISD::BSWAP:
2970    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2971    break;
2972  case ISD::FRAMEADDR:
2973  case ISD::RETURNADDR:
2974  case ISD::FRAME_TO_ARGS_OFFSET:
2975    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2976    break;
2977  case ISD::FLT_ROUNDS_:
2978    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2979    break;
2980  case ISD::EH_RETURN:
2981  case ISD::EH_LABEL:
2982  case ISD::PREFETCH:
2983  case ISD::VAEND:
2984  case ISD::EH_SJLJ_LONGJMP:
2985    // If the target didn't expand these, there's nothing to do, so just
2986    // preserve the chain and be done.
2987    Results.push_back(Node->getOperand(0));
2988    break;
2989  case ISD::EH_SJLJ_SETJMP:
2990    // If the target didn't expand this, just return 'zero' and preserve the
2991    // chain.
2992    Results.push_back(DAG.getConstant(0, MVT::i32));
2993    Results.push_back(Node->getOperand(0));
2994    break;
2995  case ISD::ATOMIC_FENCE: {
2996    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2997    // FIXME: handle "fence singlethread" more efficiently.
2998    TargetLowering::ArgListTy Args;
2999
3000    TargetLowering::CallLoweringInfo CLI(DAG);
3001    CLI.setDebugLoc(dl).setChain(Node->getOperand(0))
3002      .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3003                 DAG.getExternalSymbol("__sync_synchronize",
3004                 TLI.getPointerTy()), std::move(Args), 0);
3005
3006    std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3007
3008    Results.push_back(CallResult.second);
3009    break;
3010  }
3011  case ISD::ATOMIC_LOAD: {
3012    // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
3013    SDValue Zero = DAG.getConstant(0, Node->getValueType(0));
3014    SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
3015    SDValue Swap = DAG.getAtomicCmpSwap(
3016        ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
3017        Node->getOperand(0), Node->getOperand(1), Zero, Zero,
3018        cast<AtomicSDNode>(Node)->getMemOperand(),
3019        cast<AtomicSDNode>(Node)->getOrdering(),
3020        cast<AtomicSDNode>(Node)->getOrdering(),
3021        cast<AtomicSDNode>(Node)->getSynchScope());
3022    Results.push_back(Swap.getValue(0));
3023    Results.push_back(Swap.getValue(1));
3024    break;
3025  }
3026  case ISD::ATOMIC_STORE: {
3027    // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
3028    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
3029                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
3030                                 Node->getOperand(0),
3031                                 Node->getOperand(1), Node->getOperand(2),
3032                                 cast<AtomicSDNode>(Node)->getMemOperand(),
3033                                 cast<AtomicSDNode>(Node)->getOrdering(),
3034                                 cast<AtomicSDNode>(Node)->getSynchScope());
3035    Results.push_back(Swap.getValue(1));
3036    break;
3037  }
3038  // By default, atomic intrinsics are marked Legal and lowered. Targets
3039  // which don't support them directly, however, may want libcalls, in which
3040  // case they mark them Expand, and we get here.
3041  case ISD::ATOMIC_SWAP:
3042  case ISD::ATOMIC_LOAD_ADD:
3043  case ISD::ATOMIC_LOAD_SUB:
3044  case ISD::ATOMIC_LOAD_AND:
3045  case ISD::ATOMIC_LOAD_OR:
3046  case ISD::ATOMIC_LOAD_XOR:
3047  case ISD::ATOMIC_LOAD_NAND:
3048  case ISD::ATOMIC_LOAD_MIN:
3049  case ISD::ATOMIC_LOAD_MAX:
3050  case ISD::ATOMIC_LOAD_UMIN:
3051  case ISD::ATOMIC_LOAD_UMAX:
3052  case ISD::ATOMIC_CMP_SWAP: {
3053    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
3054    Results.push_back(Tmp.first);
3055    Results.push_back(Tmp.second);
3056    break;
3057  }
3058  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
3059    // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
3060    // splits out the success value as a comparison. Expanding the resulting
3061    // ATOMIC_CMP_SWAP will produce a libcall.
3062    SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
3063    SDValue Res = DAG.getAtomicCmpSwap(
3064        ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
3065        Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
3066        Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand(),
3067        cast<AtomicSDNode>(Node)->getSuccessOrdering(),
3068        cast<AtomicSDNode>(Node)->getFailureOrdering(),
3069        cast<AtomicSDNode>(Node)->getSynchScope());
3070
3071    SDValue Success = DAG.getSetCC(SDLoc(Node), Node->getValueType(1),
3072                                   Res, Node->getOperand(2), ISD::SETEQ);
3073
3074    Results.push_back(Res.getValue(0));
3075    Results.push_back(Success);
3076    Results.push_back(Res.getValue(1));
3077    break;
3078  }
3079  case ISD::DYNAMIC_STACKALLOC:
3080    ExpandDYNAMIC_STACKALLOC(Node, Results);
3081    break;
3082  case ISD::MERGE_VALUES:
3083    for (unsigned i = 0; i < Node->getNumValues(); i++)
3084      Results.push_back(Node->getOperand(i));
3085    break;
3086  case ISD::UNDEF: {
3087    EVT VT = Node->getValueType(0);
3088    if (VT.isInteger())
3089      Results.push_back(DAG.getConstant(0, VT));
3090    else {
3091      assert(VT.isFloatingPoint() && "Unknown value type!");
3092      Results.push_back(DAG.getConstantFP(0, VT));
3093    }
3094    break;
3095  }
3096  case ISD::TRAP: {
3097    // If this operation is not supported, lower it to 'abort()' call
3098    TargetLowering::ArgListTy Args;
3099    TargetLowering::CallLoweringInfo CLI(DAG);
3100    CLI.setDebugLoc(dl).setChain(Node->getOperand(0))
3101      .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3102                 DAG.getExternalSymbol("abort", TLI.getPointerTy()),
3103                 std::move(Args), 0);
3104    std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3105
3106    Results.push_back(CallResult.second);
3107    break;
3108  }
3109  case ISD::FP_ROUND:
3110  case ISD::BITCAST:
3111    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
3112                            Node->getValueType(0), dl);
3113    Results.push_back(Tmp1);
3114    break;
3115  case ISD::FP_EXTEND:
3116    Tmp1 = EmitStackConvert(Node->getOperand(0),
3117                            Node->getOperand(0).getValueType(),
3118                            Node->getValueType(0), dl);
3119    Results.push_back(Tmp1);
3120    break;
3121  case ISD::SIGN_EXTEND_INREG: {
3122    // NOTE: we could fall back on load/store here too for targets without
3123    // SAR.  However, it is doubtful that any exist.
3124    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
3125    EVT VT = Node->getValueType(0);
3126    EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
3127    if (VT.isVector())
3128      ShiftAmountTy = VT;
3129    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
3130                        ExtraVT.getScalarType().getSizeInBits();
3131    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
3132    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
3133                       Node->getOperand(0), ShiftCst);
3134    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
3135    Results.push_back(Tmp1);
3136    break;
3137  }
3138  case ISD::FP_ROUND_INREG: {
3139    // The only way we can lower this is to turn it into a TRUNCSTORE,
3140    // EXTLOAD pair, targeting a temporary location (a stack slot).
3141
3142    // NOTE: there is a choice here between constantly creating new stack
3143    // slots and always reusing the same one.  We currently always create
3144    // new ones, as reuse may inhibit scheduling.
3145    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
3146    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
3147                            Node->getValueType(0), dl);
3148    Results.push_back(Tmp1);
3149    break;
3150  }
3151  case ISD::SINT_TO_FP:
3152  case ISD::UINT_TO_FP:
3153    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
3154                                Node->getOperand(0), Node->getValueType(0), dl);
3155    Results.push_back(Tmp1);
3156    break;
3157  case ISD::FP_TO_SINT:
3158    if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
3159      Results.push_back(Tmp1);
3160    break;
3161  case ISD::FP_TO_UINT: {
3162    SDValue True, False;
3163    EVT VT =  Node->getOperand(0).getValueType();
3164    EVT NVT = Node->getValueType(0);
3165    APFloat apf(DAG.EVTToAPFloatSemantics(VT),
3166                APInt::getNullValue(VT.getSizeInBits()));
3167    APInt x = APInt::getSignBit(NVT.getSizeInBits());
3168    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
3169    Tmp1 = DAG.getConstantFP(apf, VT);
3170    Tmp2 = DAG.getSetCC(dl, getSetCCResultType(VT),
3171                        Node->getOperand(0),
3172                        Tmp1, ISD::SETLT);
3173    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
3174    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
3175                        DAG.getNode(ISD::FSUB, dl, VT,
3176                                    Node->getOperand(0), Tmp1));
3177    False = DAG.getNode(ISD::XOR, dl, NVT, False,
3178                        DAG.getConstant(x, NVT));
3179    Tmp1 = DAG.getSelect(dl, NVT, Tmp2, True, False);
3180    Results.push_back(Tmp1);
3181    break;
3182  }
3183  case ISD::VAARG: {
3184    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3185    EVT VT = Node->getValueType(0);
3186    Tmp1 = Node->getOperand(0);
3187    Tmp2 = Node->getOperand(1);
3188    unsigned Align = Node->getConstantOperandVal(3);
3189
3190    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
3191                                     MachinePointerInfo(V),
3192                                     false, false, false, 0);
3193    SDValue VAList = VAListLoad;
3194
3195    if (Align > TLI.getMinStackArgumentAlignment()) {
3196      assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
3197
3198      VAList = DAG.getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
3199                           DAG.getConstant(Align - 1,
3200                                           VAList.getValueType()));
3201
3202      VAList = DAG.getNode(ISD::AND, dl, VAList.getValueType(), VAList,
3203                           DAG.getConstant(-(int64_t)Align,
3204                                           VAList.getValueType()));
3205    }
3206
3207    // Increment the pointer, VAList, to the next vaarg
3208    Tmp3 = DAG.getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
3209                       DAG.getConstant(TLI.getDataLayout()->
3210                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
3211                                       VAList.getValueType()));
3212    // Store the incremented VAList to the legalized pointer
3213    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
3214                        MachinePointerInfo(V), false, false, 0);
3215    // Load the actual argument out of the pointer VAList
3216    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
3217                                  false, false, false, 0));
3218    Results.push_back(Results[0].getValue(1));
3219    break;
3220  }
3221  case ISD::VACOPY: {
3222    // This defaults to loading a pointer from the input and storing it to the
3223    // output, returning the chain.
3224    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
3225    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
3226    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
3227                       Node->getOperand(2), MachinePointerInfo(VS),
3228                       false, false, false, 0);
3229    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
3230                        MachinePointerInfo(VD), false, false, 0);
3231    Results.push_back(Tmp1);
3232    break;
3233  }
3234  case ISD::EXTRACT_VECTOR_ELT:
3235    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
3236      // This must be an access of the only element.  Return it.
3237      Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
3238                         Node->getOperand(0));
3239    else
3240      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
3241    Results.push_back(Tmp1);
3242    break;
3243  case ISD::EXTRACT_SUBVECTOR:
3244    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
3245    break;
3246  case ISD::INSERT_SUBVECTOR:
3247    Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
3248    break;
3249  case ISD::CONCAT_VECTORS: {
3250    Results.push_back(ExpandVectorBuildThroughStack(Node));
3251    break;
3252  }
3253  case ISD::SCALAR_TO_VECTOR:
3254    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3255    break;
3256  case ISD::INSERT_VECTOR_ELT:
3257    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
3258                                              Node->getOperand(1),
3259                                              Node->getOperand(2), dl));
3260    break;
3261  case ISD::VECTOR_SHUFFLE: {
3262    SmallVector<int, 32> NewMask;
3263    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3264
3265    EVT VT = Node->getValueType(0);
3266    EVT EltVT = VT.getVectorElementType();
3267    SDValue Op0 = Node->getOperand(0);
3268    SDValue Op1 = Node->getOperand(1);
3269    if (!TLI.isTypeLegal(EltVT)) {
3270
3271      EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
3272
3273      // BUILD_VECTOR operands are allowed to be wider than the element type.
3274      // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
3275      // it.
3276      if (NewEltVT.bitsLT(EltVT)) {
3277
3278        // Convert shuffle node.
3279        // If original node was v4i64 and the new EltVT is i32,
3280        // cast operands to v8i32 and re-build the mask.
3281
3282        // Calculate new VT, the size of the new VT should be equal to original.
3283        EVT NewVT =
3284            EVT::getVectorVT(*DAG.getContext(), NewEltVT,
3285                             VT.getSizeInBits() / NewEltVT.getSizeInBits());
3286        assert(NewVT.bitsEq(VT));
3287
3288        // cast operands to new VT
3289        Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
3290        Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
3291
3292        // Convert the shuffle mask
3293        unsigned int factor =
3294                         NewVT.getVectorNumElements()/VT.getVectorNumElements();
3295
3296        // EltVT gets smaller
3297        assert(factor > 0);
3298
3299        for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
3300          if (Mask[i] < 0) {
3301            for (unsigned fi = 0; fi < factor; ++fi)
3302              NewMask.push_back(Mask[i]);
3303          }
3304          else {
3305            for (unsigned fi = 0; fi < factor; ++fi)
3306              NewMask.push_back(Mask[i]*factor+fi);
3307          }
3308        }
3309        Mask = NewMask;
3310        VT = NewVT;
3311      }
3312      EltVT = NewEltVT;
3313    }
3314    unsigned NumElems = VT.getVectorNumElements();
3315    SmallVector<SDValue, 16> Ops;
3316    for (unsigned i = 0; i != NumElems; ++i) {
3317      if (Mask[i] < 0) {
3318        Ops.push_back(DAG.getUNDEF(EltVT));
3319        continue;
3320      }
3321      unsigned Idx = Mask[i];
3322      if (Idx < NumElems)
3323        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3324                                  Op0,
3325                                  DAG.getConstant(Idx, TLI.getVectorIdxTy())));
3326      else
3327        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3328                                  Op1,
3329                                  DAG.getConstant(Idx - NumElems,
3330                                                  TLI.getVectorIdxTy())));
3331    }
3332
3333    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3334    // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3335    Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
3336    Results.push_back(Tmp1);
3337    break;
3338  }
3339  case ISD::EXTRACT_ELEMENT: {
3340    EVT OpTy = Node->getOperand(0).getValueType();
3341    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3342      // 1 -> Hi
3343      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3344                         DAG.getConstant(OpTy.getSizeInBits()/2,
3345                    TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
3346      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3347    } else {
3348      // 0 -> Lo
3349      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3350                         Node->getOperand(0));
3351    }
3352    Results.push_back(Tmp1);
3353    break;
3354  }
3355  case ISD::STACKSAVE:
3356    // Expand to CopyFromReg if the target set
3357    // StackPointerRegisterToSaveRestore.
3358    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3359      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3360                                           Node->getValueType(0)));
3361      Results.push_back(Results[0].getValue(1));
3362    } else {
3363      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3364      Results.push_back(Node->getOperand(0));
3365    }
3366    break;
3367  case ISD::STACKRESTORE:
3368    // Expand to CopyToReg if the target set
3369    // StackPointerRegisterToSaveRestore.
3370    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3371      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3372                                         Node->getOperand(1)));
3373    } else {
3374      Results.push_back(Node->getOperand(0));
3375    }
3376    break;
3377  case ISD::FCOPYSIGN:
3378    Results.push_back(ExpandFCOPYSIGN(Node));
3379    break;
3380  case ISD::FNEG:
3381    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
3382    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
3383    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3384                       Node->getOperand(0));
3385    Results.push_back(Tmp1);
3386    break;
3387  case ISD::FABS: {
3388    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
3389    EVT VT = Node->getValueType(0);
3390    Tmp1 = Node->getOperand(0);
3391    Tmp2 = DAG.getConstantFP(0.0, VT);
3392    Tmp2 = DAG.getSetCC(dl, getSetCCResultType(Tmp1.getValueType()),
3393                        Tmp1, Tmp2, ISD::SETUGT);
3394    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
3395    Tmp1 = DAG.getSelect(dl, VT, Tmp2, Tmp1, Tmp3);
3396    Results.push_back(Tmp1);
3397    break;
3398  }
3399  case ISD::FSQRT:
3400    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3401                                      RTLIB::SQRT_F80, RTLIB::SQRT_F128,
3402                                      RTLIB::SQRT_PPCF128));
3403    break;
3404  case ISD::FSIN:
3405  case ISD::FCOS: {
3406    EVT VT = Node->getValueType(0);
3407    bool isSIN = Node->getOpcode() == ISD::FSIN;
3408    // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3409    // fcos which share the same operand and both are used.
3410    if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3411         canCombineSinCosLibcall(Node, TLI, TM))
3412        && useSinCos(Node)) {
3413      SDVTList VTs = DAG.getVTList(VT, VT);
3414      Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3415      if (!isSIN)
3416        Tmp1 = Tmp1.getValue(1);
3417      Results.push_back(Tmp1);
3418    } else if (isSIN) {
3419      Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3420                                        RTLIB::SIN_F80, RTLIB::SIN_F128,
3421                                        RTLIB::SIN_PPCF128));
3422    } else {
3423      Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3424                                        RTLIB::COS_F80, RTLIB::COS_F128,
3425                                        RTLIB::COS_PPCF128));
3426    }
3427    break;
3428  }
3429  case ISD::FSINCOS:
3430    // Expand into sincos libcall.
3431    ExpandSinCosLibCall(Node, Results);
3432    break;
3433  case ISD::FLOG:
3434    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
3435                                      RTLIB::LOG_F80, RTLIB::LOG_F128,
3436                                      RTLIB::LOG_PPCF128));
3437    break;
3438  case ISD::FLOG2:
3439    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
3440                                      RTLIB::LOG2_F80, RTLIB::LOG2_F128,
3441                                      RTLIB::LOG2_PPCF128));
3442    break;
3443  case ISD::FLOG10:
3444    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
3445                                      RTLIB::LOG10_F80, RTLIB::LOG10_F128,
3446                                      RTLIB::LOG10_PPCF128));
3447    break;
3448  case ISD::FEXP:
3449    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
3450                                      RTLIB::EXP_F80, RTLIB::EXP_F128,
3451                                      RTLIB::EXP_PPCF128));
3452    break;
3453  case ISD::FEXP2:
3454    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
3455                                      RTLIB::EXP2_F80, RTLIB::EXP2_F128,
3456                                      RTLIB::EXP2_PPCF128));
3457    break;
3458  case ISD::FTRUNC:
3459    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3460                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
3461                                      RTLIB::TRUNC_PPCF128));
3462    break;
3463  case ISD::FFLOOR:
3464    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3465                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
3466                                      RTLIB::FLOOR_PPCF128));
3467    break;
3468  case ISD::FCEIL:
3469    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
3470                                      RTLIB::CEIL_F80, RTLIB::CEIL_F128,
3471                                      RTLIB::CEIL_PPCF128));
3472    break;
3473  case ISD::FRINT:
3474    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
3475                                      RTLIB::RINT_F80, RTLIB::RINT_F128,
3476                                      RTLIB::RINT_PPCF128));
3477    break;
3478  case ISD::FNEARBYINT:
3479    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
3480                                      RTLIB::NEARBYINT_F64,
3481                                      RTLIB::NEARBYINT_F80,
3482                                      RTLIB::NEARBYINT_F128,
3483                                      RTLIB::NEARBYINT_PPCF128));
3484    break;
3485  case ISD::FROUND:
3486    Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32,
3487                                      RTLIB::ROUND_F64,
3488                                      RTLIB::ROUND_F80,
3489                                      RTLIB::ROUND_F128,
3490                                      RTLIB::ROUND_PPCF128));
3491    break;
3492  case ISD::FPOWI:
3493    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
3494                                      RTLIB::POWI_F80, RTLIB::POWI_F128,
3495                                      RTLIB::POWI_PPCF128));
3496    break;
3497  case ISD::FPOW:
3498    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
3499                                      RTLIB::POW_F80, RTLIB::POW_F128,
3500                                      RTLIB::POW_PPCF128));
3501    break;
3502  case ISD::FDIV:
3503    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3504                                      RTLIB::DIV_F80, RTLIB::DIV_F128,
3505                                      RTLIB::DIV_PPCF128));
3506    break;
3507  case ISD::FREM:
3508    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3509                                      RTLIB::REM_F80, RTLIB::REM_F128,
3510                                      RTLIB::REM_PPCF128));
3511    break;
3512  case ISD::FMA:
3513    Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
3514                                      RTLIB::FMA_F80, RTLIB::FMA_F128,
3515                                      RTLIB::FMA_PPCF128));
3516    break;
3517  case ISD::FP16_TO_FP: {
3518    if (Node->getValueType(0) == MVT::f32) {
3519      Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3520      break;
3521    }
3522
3523    // We can extend to types bigger than f32 in two steps without changing the
3524    // result. Since "f16 -> f32" is much more commonly available, give CodeGen
3525    // the option of emitting that before resorting to a libcall.
3526    SDValue Res =
3527        DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
3528    Results.push_back(
3529        DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
3530    break;
3531  }
3532  case ISD::FP_TO_FP16: {
3533    RTLIB::Libcall LC =
3534        RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
3535    assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
3536    Results.push_back(ExpandLibCall(LC, Node, false));
3537    break;
3538  }
3539  case ISD::ConstantFP: {
3540    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3541    // Check to see if this FP immediate is already legal.
3542    // If this is a legal constant, turn it into a TargetConstantFP node.
3543    if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3544      Results.push_back(ExpandConstantFP(CFP, true));
3545    break;
3546  }
3547  case ISD::FSUB: {
3548    EVT VT = Node->getValueType(0);
3549    assert(TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3550           TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
3551           "Don't know how to expand this FP subtraction!");
3552    Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3553    Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1);
3554    Results.push_back(Tmp1);
3555    break;
3556  }
3557  case ISD::SUB: {
3558    EVT VT = Node->getValueType(0);
3559    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3560           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3561           "Don't know how to expand this subtraction!");
3562    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3563               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
3564    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, VT));
3565    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3566    break;
3567  }
3568  case ISD::UREM:
3569  case ISD::SREM: {
3570    EVT VT = Node->getValueType(0);
3571    bool isSigned = Node->getOpcode() == ISD::SREM;
3572    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3573    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3574    Tmp2 = Node->getOperand(0);
3575    Tmp3 = Node->getOperand(1);
3576    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3577        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3578         // If div is legal, it's better to do the normal expansion
3579         !TLI.isOperationLegalOrCustom(DivOpc, Node->getValueType(0)) &&
3580         useDivRem(Node, isSigned, false))) {
3581      SDVTList VTs = DAG.getVTList(VT, VT);
3582      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3583    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3584      // X % Y -> X-X/Y*Y
3585      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3586      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3587      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3588    } else if (isSigned)
3589      Tmp1 = ExpandIntLibCall(Node, true,
3590                              RTLIB::SREM_I8,
3591                              RTLIB::SREM_I16, RTLIB::SREM_I32,
3592                              RTLIB::SREM_I64, RTLIB::SREM_I128);
3593    else
3594      Tmp1 = ExpandIntLibCall(Node, false,
3595                              RTLIB::UREM_I8,
3596                              RTLIB::UREM_I16, RTLIB::UREM_I32,
3597                              RTLIB::UREM_I64, RTLIB::UREM_I128);
3598    Results.push_back(Tmp1);
3599    break;
3600  }
3601  case ISD::UDIV:
3602  case ISD::SDIV: {
3603    bool isSigned = Node->getOpcode() == ISD::SDIV;
3604    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3605    EVT VT = Node->getValueType(0);
3606    SDVTList VTs = DAG.getVTList(VT, VT);
3607    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3608        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3609         useDivRem(Node, isSigned, true)))
3610      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3611                         Node->getOperand(1));
3612    else if (isSigned)
3613      Tmp1 = ExpandIntLibCall(Node, true,
3614                              RTLIB::SDIV_I8,
3615                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3616                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3617    else
3618      Tmp1 = ExpandIntLibCall(Node, false,
3619                              RTLIB::UDIV_I8,
3620                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3621                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3622    Results.push_back(Tmp1);
3623    break;
3624  }
3625  case ISD::MULHU:
3626  case ISD::MULHS: {
3627    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3628                                                              ISD::SMUL_LOHI;
3629    EVT VT = Node->getValueType(0);
3630    SDVTList VTs = DAG.getVTList(VT, VT);
3631    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3632           "If this wasn't legal, it shouldn't have been created!");
3633    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3634                       Node->getOperand(1));
3635    Results.push_back(Tmp1.getValue(1));
3636    break;
3637  }
3638  case ISD::SDIVREM:
3639  case ISD::UDIVREM:
3640    // Expand into divrem libcall
3641    ExpandDivRemLibCall(Node, Results);
3642    break;
3643  case ISD::MUL: {
3644    EVT VT = Node->getValueType(0);
3645    SDVTList VTs = DAG.getVTList(VT, VT);
3646    // See if multiply or divide can be lowered using two-result operations.
3647    // We just need the low half of the multiply; try both the signed
3648    // and unsigned forms. If the target supports both SMUL_LOHI and
3649    // UMUL_LOHI, form a preference by checking which forms of plain
3650    // MULH it supports.
3651    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3652    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3653    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3654    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3655    unsigned OpToUse = 0;
3656    if (HasSMUL_LOHI && !HasMULHS) {
3657      OpToUse = ISD::SMUL_LOHI;
3658    } else if (HasUMUL_LOHI && !HasMULHU) {
3659      OpToUse = ISD::UMUL_LOHI;
3660    } else if (HasSMUL_LOHI) {
3661      OpToUse = ISD::SMUL_LOHI;
3662    } else if (HasUMUL_LOHI) {
3663      OpToUse = ISD::UMUL_LOHI;
3664    }
3665    if (OpToUse) {
3666      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3667                                    Node->getOperand(1)));
3668      break;
3669    }
3670
3671    SDValue Lo, Hi;
3672    EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
3673    if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
3674        TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
3675        TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
3676        TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
3677        TLI.expandMUL(Node, Lo, Hi, HalfType, DAG)) {
3678      Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3679      Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
3680      SDValue Shift = DAG.getConstant(HalfType.getSizeInBits(),
3681                                      TLI.getShiftAmountTy(HalfType));
3682      Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3683      Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3684      break;
3685    }
3686
3687    Tmp1 = ExpandIntLibCall(Node, false,
3688                            RTLIB::MUL_I8,
3689                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3690                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3691    Results.push_back(Tmp1);
3692    break;
3693  }
3694  case ISD::SADDO:
3695  case ISD::SSUBO: {
3696    SDValue LHS = Node->getOperand(0);
3697    SDValue RHS = Node->getOperand(1);
3698    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3699                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3700                              LHS, RHS);
3701    Results.push_back(Sum);
3702    EVT ResultType = Node->getValueType(1);
3703    EVT OType = getSetCCResultType(Node->getValueType(0));
3704
3705    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3706
3707    //   LHSSign -> LHS >= 0
3708    //   RHSSign -> RHS >= 0
3709    //   SumSign -> Sum >= 0
3710    //
3711    //   Add:
3712    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3713    //   Sub:
3714    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3715    //
3716    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3717    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3718    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3719                                      Node->getOpcode() == ISD::SADDO ?
3720                                      ISD::SETEQ : ISD::SETNE);
3721
3722    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3723    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3724
3725    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3726    Results.push_back(DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType));
3727    break;
3728  }
3729  case ISD::UADDO:
3730  case ISD::USUBO: {
3731    SDValue LHS = Node->getOperand(0);
3732    SDValue RHS = Node->getOperand(1);
3733    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3734                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3735                              LHS, RHS);
3736    Results.push_back(Sum);
3737
3738    EVT ResultType = Node->getValueType(1);
3739    EVT SetCCType = getSetCCResultType(Node->getValueType(0));
3740    ISD::CondCode CC
3741      = Node->getOpcode() == ISD::UADDO ? ISD::SETULT : ISD::SETUGT;
3742    SDValue SetCC = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
3743
3744    Results.push_back(DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType));
3745    break;
3746  }
3747  case ISD::UMULO:
3748  case ISD::SMULO: {
3749    EVT VT = Node->getValueType(0);
3750    EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3751    SDValue LHS = Node->getOperand(0);
3752    SDValue RHS = Node->getOperand(1);
3753    SDValue BottomHalf;
3754    SDValue TopHalf;
3755    static const unsigned Ops[2][3] =
3756        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3757          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3758    bool isSigned = Node->getOpcode() == ISD::SMULO;
3759    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3760      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3761      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3762    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3763      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3764                               RHS);
3765      TopHalf = BottomHalf.getValue(1);
3766    } else if (TLI.isTypeLegal(WideVT)) {
3767      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3768      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3769      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3770      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3771                               DAG.getIntPtrConstant(0));
3772      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3773                            DAG.getIntPtrConstant(1));
3774    } else {
3775      // We can fall back to a libcall with an illegal type for the MUL if we
3776      // have a libcall big enough.
3777      // Also, we can fall back to a division in some cases, but that's a big
3778      // performance hit in the general case.
3779      RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3780      if (WideVT == MVT::i16)
3781        LC = RTLIB::MUL_I16;
3782      else if (WideVT == MVT::i32)
3783        LC = RTLIB::MUL_I32;
3784      else if (WideVT == MVT::i64)
3785        LC = RTLIB::MUL_I64;
3786      else if (WideVT == MVT::i128)
3787        LC = RTLIB::MUL_I128;
3788      assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3789
3790      // The high part is obtained by SRA'ing all but one of the bits of low
3791      // part.
3792      unsigned LoSize = VT.getSizeInBits();
3793      SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS,
3794                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3795      SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS,
3796                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3797
3798      // Here we're passing the 2 arguments explicitly as 4 arguments that are
3799      // pre-lowered to the correct types. This all depends upon WideVT not
3800      // being a legal type for the architecture and thus has to be split to
3801      // two arguments.
3802      SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3803      SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3804      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3805                               DAG.getIntPtrConstant(0));
3806      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3807                            DAG.getIntPtrConstant(1));
3808      // Ret is a node with an illegal type. Because such things are not
3809      // generally permitted during this phase of legalization, delete the
3810      // node. The above EXTRACT_ELEMENT nodes should have been folded.
3811      DAG.DeleteNode(Ret.getNode());
3812    }
3813
3814    if (isSigned) {
3815      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1,
3816                             TLI.getShiftAmountTy(BottomHalf.getValueType()));
3817      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3818      TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, Tmp1,
3819                             ISD::SETNE);
3820    } else {
3821      TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf,
3822                             DAG.getConstant(0, VT), ISD::SETNE);
3823    }
3824    Results.push_back(BottomHalf);
3825    Results.push_back(TopHalf);
3826    break;
3827  }
3828  case ISD::BUILD_PAIR: {
3829    EVT PairTy = Node->getValueType(0);
3830    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3831    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3832    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3833                       DAG.getConstant(PairTy.getSizeInBits()/2,
3834                                       TLI.getShiftAmountTy(PairTy)));
3835    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3836    break;
3837  }
3838  case ISD::SELECT:
3839    Tmp1 = Node->getOperand(0);
3840    Tmp2 = Node->getOperand(1);
3841    Tmp3 = Node->getOperand(2);
3842    if (Tmp1.getOpcode() == ISD::SETCC) {
3843      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3844                             Tmp2, Tmp3,
3845                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3846    } else {
3847      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3848                             DAG.getConstant(0, Tmp1.getValueType()),
3849                             Tmp2, Tmp3, ISD::SETNE);
3850    }
3851    Results.push_back(Tmp1);
3852    break;
3853  case ISD::BR_JT: {
3854    SDValue Chain = Node->getOperand(0);
3855    SDValue Table = Node->getOperand(1);
3856    SDValue Index = Node->getOperand(2);
3857
3858    EVT PTy = TLI.getPointerTy();
3859
3860    const DataLayout &TD = *TLI.getDataLayout();
3861    unsigned EntrySize =
3862      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3863
3864    Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(),
3865                       Index, DAG.getConstant(EntrySize, Index.getValueType()));
3866    SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
3867                               Index, Table);
3868
3869    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3870    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3871                                MachinePointerInfo::getJumpTable(), MemVT,
3872                                false, false, 0);
3873    Addr = LD;
3874    if (TM.getRelocationModel() == Reloc::PIC_) {
3875      // For PIC, the sequence is:
3876      // BRIND(load(Jumptable + index) + RelocBase)
3877      // RelocBase can be JumpTable, GOT or some sort of global base.
3878      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3879                          TLI.getPICJumpTableRelocBase(Table, DAG));
3880    }
3881    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3882    Results.push_back(Tmp1);
3883    break;
3884  }
3885  case ISD::BRCOND:
3886    // Expand brcond's setcc into its constituent parts and create a BR_CC
3887    // Node.
3888    Tmp1 = Node->getOperand(0);
3889    Tmp2 = Node->getOperand(1);
3890    if (Tmp2.getOpcode() == ISD::SETCC) {
3891      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3892                         Tmp1, Tmp2.getOperand(2),
3893                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3894                         Node->getOperand(2));
3895    } else {
3896      // We test only the i1 bit.  Skip the AND if UNDEF.
3897      Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
3898        DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3899                    DAG.getConstant(1, Tmp2.getValueType()));
3900      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3901                         DAG.getCondCode(ISD::SETNE), Tmp3,
3902                         DAG.getConstant(0, Tmp3.getValueType()),
3903                         Node->getOperand(2));
3904    }
3905    Results.push_back(Tmp1);
3906    break;
3907  case ISD::SETCC: {
3908    Tmp1 = Node->getOperand(0);
3909    Tmp2 = Node->getOperand(1);
3910    Tmp3 = Node->getOperand(2);
3911    bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2,
3912                                           Tmp3, NeedInvert, dl);
3913
3914    if (Legalized) {
3915      // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3916      // condition code, create a new SETCC node.
3917      if (Tmp3.getNode())
3918        Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3919                           Tmp1, Tmp2, Tmp3);
3920
3921      // If we expanded the SETCC by inverting the condition code, then wrap
3922      // the existing SETCC in a NOT to restore the intended condition.
3923      if (NeedInvert)
3924        Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
3925
3926      Results.push_back(Tmp1);
3927      break;
3928    }
3929
3930    // Otherwise, SETCC for the given comparison type must be completely
3931    // illegal; expand it into a SELECT_CC.
3932    EVT VT = Node->getValueType(0);
3933    int TrueValue;
3934    switch (TLI.getBooleanContents(Tmp1->getValueType(0))) {
3935    case TargetLowering::ZeroOrOneBooleanContent:
3936    case TargetLowering::UndefinedBooleanContent:
3937      TrueValue = 1;
3938      break;
3939    case TargetLowering::ZeroOrNegativeOneBooleanContent:
3940      TrueValue = -1;
3941      break;
3942    }
3943    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3944                       DAG.getConstant(TrueValue, VT), DAG.getConstant(0, VT),
3945                       Tmp3);
3946    Results.push_back(Tmp1);
3947    break;
3948  }
3949  case ISD::SELECT_CC: {
3950    Tmp1 = Node->getOperand(0);   // LHS
3951    Tmp2 = Node->getOperand(1);   // RHS
3952    Tmp3 = Node->getOperand(2);   // True
3953    Tmp4 = Node->getOperand(3);   // False
3954    EVT VT = Node->getValueType(0);
3955    SDValue CC = Node->getOperand(4);
3956    ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
3957
3958    if (TLI.isCondCodeLegal(CCOp, Tmp1.getSimpleValueType())) {
3959      // If the condition code is legal, then we need to expand this
3960      // node using SETCC and SELECT.
3961      EVT CmpVT = Tmp1.getValueType();
3962      assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
3963             "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3964             "expanded.");
3965      EVT CCVT = TLI.getSetCCResultType(*DAG.getContext(), CmpVT);
3966      SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC);
3967      Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
3968      break;
3969    }
3970
3971    // SELECT_CC is legal, so the condition code must not be.
3972    bool Legalized = false;
3973    // Try to legalize by inverting the condition.  This is for targets that
3974    // might support an ordered version of a condition, but not the unordered
3975    // version (or vice versa).
3976    ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp,
3977                                               Tmp1.getValueType().isInteger());
3978    if (TLI.isCondCodeLegal(InvCC, Tmp1.getSimpleValueType())) {
3979      // Use the new condition code and swap true and false
3980      Legalized = true;
3981      Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
3982    } else {
3983      // If The inverse is not legal, then try to swap the arguments using
3984      // the inverse condition code.
3985      ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
3986      if (TLI.isCondCodeLegal(SwapInvCC, Tmp1.getSimpleValueType())) {
3987        // The swapped inverse condition is legal, so swap true and false,
3988        // lhs and rhs.
3989        Legalized = true;
3990        Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
3991      }
3992    }
3993
3994    if (!Legalized) {
3995      Legalized = LegalizeSetCCCondCode(
3996          getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert,
3997          dl);
3998
3999      assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
4000
4001      // If we expanded the SETCC by inverting the condition code, then swap
4002      // the True/False operands to match.
4003      if (NeedInvert)
4004        std::swap(Tmp3, Tmp4);
4005
4006      // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
4007      // condition code, create a new SELECT_CC node.
4008      if (CC.getNode()) {
4009        Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
4010                           Tmp1, Tmp2, Tmp3, Tmp4, CC);
4011      } else {
4012        Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
4013        CC = DAG.getCondCode(ISD::SETNE);
4014        Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
4015                           Tmp2, Tmp3, Tmp4, CC);
4016      }
4017    }
4018    Results.push_back(Tmp1);
4019    break;
4020  }
4021  case ISD::BR_CC: {
4022    Tmp1 = Node->getOperand(0);              // Chain
4023    Tmp2 = Node->getOperand(2);              // LHS
4024    Tmp3 = Node->getOperand(3);              // RHS
4025    Tmp4 = Node->getOperand(1);              // CC
4026
4027    bool Legalized = LegalizeSetCCCondCode(getSetCCResultType(
4028        Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl);
4029    (void)Legalized;
4030    assert(Legalized && "Can't legalize BR_CC with legal condition!");
4031
4032    // If we expanded the SETCC by inverting the condition code, then wrap
4033    // the existing SETCC in a NOT to restore the intended condition.
4034    if (NeedInvert)
4035      Tmp4 = DAG.getNOT(dl, Tmp4, Tmp4->getValueType(0));
4036
4037    // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
4038    // node.
4039    if (Tmp4.getNode()) {
4040      Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
4041                         Tmp4, Tmp2, Tmp3, Node->getOperand(4));
4042    } else {
4043      Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
4044      Tmp4 = DAG.getCondCode(ISD::SETNE);
4045      Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
4046                         Tmp2, Tmp3, Node->getOperand(4));
4047    }
4048    Results.push_back(Tmp1);
4049    break;
4050  }
4051  case ISD::BUILD_VECTOR:
4052    Results.push_back(ExpandBUILD_VECTOR(Node));
4053    break;
4054  case ISD::SRA:
4055  case ISD::SRL:
4056  case ISD::SHL: {
4057    // Scalarize vector SRA/SRL/SHL.
4058    EVT VT = Node->getValueType(0);
4059    assert(VT.isVector() && "Unable to legalize non-vector shift");
4060    assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
4061    unsigned NumElem = VT.getVectorNumElements();
4062
4063    SmallVector<SDValue, 8> Scalars;
4064    for (unsigned Idx = 0; Idx < NumElem; Idx++) {
4065      SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
4066                               VT.getScalarType(),
4067                               Node->getOperand(0), DAG.getConstant(Idx,
4068                                                    TLI.getVectorIdxTy()));
4069      SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
4070                               VT.getScalarType(),
4071                               Node->getOperand(1), DAG.getConstant(Idx,
4072                                                    TLI.getVectorIdxTy()));
4073      Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
4074                                    VT.getScalarType(), Ex, Sh));
4075    }
4076    SDValue Result =
4077      DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), Scalars);
4078    ReplaceNode(SDValue(Node, 0), Result);
4079    break;
4080  }
4081  case ISD::GLOBAL_OFFSET_TABLE:
4082  case ISD::GlobalAddress:
4083  case ISD::GlobalTLSAddress:
4084  case ISD::ExternalSymbol:
4085  case ISD::ConstantPool:
4086  case ISD::JumpTable:
4087  case ISD::INTRINSIC_W_CHAIN:
4088  case ISD::INTRINSIC_WO_CHAIN:
4089  case ISD::INTRINSIC_VOID:
4090    // FIXME: Custom lowering for these operations shouldn't return null!
4091    break;
4092  }
4093
4094  // Replace the original node with the legalized result.
4095  if (!Results.empty())
4096    ReplaceNode(Node, Results.data());
4097}
4098
4099void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
4100  SmallVector<SDValue, 8> Results;
4101  MVT OVT = Node->getSimpleValueType(0);
4102  if (Node->getOpcode() == ISD::UINT_TO_FP ||
4103      Node->getOpcode() == ISD::SINT_TO_FP ||
4104      Node->getOpcode() == ISD::SETCC) {
4105    OVT = Node->getOperand(0).getSimpleValueType();
4106  }
4107  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
4108  SDLoc dl(Node);
4109  SDValue Tmp1, Tmp2, Tmp3;
4110  switch (Node->getOpcode()) {
4111  case ISD::CTTZ:
4112  case ISD::CTTZ_ZERO_UNDEF:
4113  case ISD::CTLZ:
4114  case ISD::CTLZ_ZERO_UNDEF:
4115  case ISD::CTPOP:
4116    // Zero extend the argument.
4117    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4118    // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
4119    // already the correct result.
4120    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4121    if (Node->getOpcode() == ISD::CTTZ) {
4122      // FIXME: This should set a bit in the zero extended value instead.
4123      Tmp2 = DAG.getSetCC(dl, getSetCCResultType(NVT),
4124                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
4125                          ISD::SETEQ);
4126      Tmp1 = DAG.getSelect(dl, NVT, Tmp2,
4127                           DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
4128    } else if (Node->getOpcode() == ISD::CTLZ ||
4129               Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
4130      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4131      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
4132                          DAG.getConstant(NVT.getSizeInBits() -
4133                                          OVT.getSizeInBits(), NVT));
4134    }
4135    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4136    break;
4137  case ISD::BSWAP: {
4138    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
4139    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4140    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
4141    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
4142                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
4143    Results.push_back(Tmp1);
4144    break;
4145  }
4146  case ISD::FP_TO_UINT:
4147  case ISD::FP_TO_SINT:
4148    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
4149                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
4150    Results.push_back(Tmp1);
4151    break;
4152  case ISD::UINT_TO_FP:
4153  case ISD::SINT_TO_FP:
4154    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
4155                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
4156    Results.push_back(Tmp1);
4157    break;
4158  case ISD::VAARG: {
4159    SDValue Chain = Node->getOperand(0); // Get the chain.
4160    SDValue Ptr = Node->getOperand(1); // Get the pointer.
4161
4162    unsigned TruncOp;
4163    if (OVT.isVector()) {
4164      TruncOp = ISD::BITCAST;
4165    } else {
4166      assert(OVT.isInteger()
4167        && "VAARG promotion is supported only for vectors or integer types");
4168      TruncOp = ISD::TRUNCATE;
4169    }
4170
4171    // Perform the larger operation, then convert back
4172    Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
4173             Node->getConstantOperandVal(3));
4174    Chain = Tmp1.getValue(1);
4175
4176    Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
4177
4178    // Modified the chain result - switch anything that used the old chain to
4179    // use the new one.
4180    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
4181    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
4182    ReplacedNode(Node);
4183    break;
4184  }
4185  case ISD::AND:
4186  case ISD::OR:
4187  case ISD::XOR: {
4188    unsigned ExtOp, TruncOp;
4189    if (OVT.isVector()) {
4190      ExtOp   = ISD::BITCAST;
4191      TruncOp = ISD::BITCAST;
4192    } else {
4193      assert(OVT.isInteger() && "Cannot promote logic operation");
4194      ExtOp   = ISD::ANY_EXTEND;
4195      TruncOp = ISD::TRUNCATE;
4196    }
4197    // Promote each of the values to the new type.
4198    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4199    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4200    // Perform the larger operation, then convert back
4201    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4202    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
4203    break;
4204  }
4205  case ISD::SELECT: {
4206    unsigned ExtOp, TruncOp;
4207    if (Node->getValueType(0).isVector() ||
4208        Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
4209      ExtOp   = ISD::BITCAST;
4210      TruncOp = ISD::BITCAST;
4211    } else if (Node->getValueType(0).isInteger()) {
4212      ExtOp   = ISD::ANY_EXTEND;
4213      TruncOp = ISD::TRUNCATE;
4214    } else {
4215      ExtOp   = ISD::FP_EXTEND;
4216      TruncOp = ISD::FP_ROUND;
4217    }
4218    Tmp1 = Node->getOperand(0);
4219    // Promote each of the values to the new type.
4220    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4221    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4222    // Perform the larger operation, then round down.
4223    Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
4224    if (TruncOp != ISD::FP_ROUND)
4225      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
4226    else
4227      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
4228                         DAG.getIntPtrConstant(0));
4229    Results.push_back(Tmp1);
4230    break;
4231  }
4232  case ISD::VECTOR_SHUFFLE: {
4233    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
4234
4235    // Cast the two input vectors.
4236    Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
4237    Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
4238
4239    // Convert the shuffle mask to the right # elements.
4240    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
4241    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
4242    Results.push_back(Tmp1);
4243    break;
4244  }
4245  case ISD::SETCC: {
4246    unsigned ExtOp = ISD::FP_EXTEND;
4247    if (NVT.isInteger()) {
4248      ISD::CondCode CCCode =
4249        cast<CondCodeSDNode>(Node->getOperand(2))->get();
4250      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4251    }
4252    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4253    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4254    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
4255                                  Tmp1, Tmp2, Node->getOperand(2)));
4256    break;
4257  }
4258  case ISD::FDIV:
4259  case ISD::FREM:
4260  case ISD::FPOW: {
4261    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4262    Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4263    Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4264    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4265                                  Tmp3, DAG.getIntPtrConstant(0)));
4266    break;
4267  }
4268  case ISD::FLOG2:
4269  case ISD::FEXP2:
4270  case ISD::FLOG:
4271  case ISD::FEXP: {
4272    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4273    Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4274    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4275                                  Tmp2, DAG.getIntPtrConstant(0)));
4276    break;
4277  }
4278  }
4279
4280  // Replace the original node with the legalized result.
4281  if (!Results.empty())
4282    ReplaceNode(Node, Results.data());
4283}
4284
4285// SelectionDAG::Legalize - This is the entry point for the file.
4286//
4287void SelectionDAG::Legalize() {
4288  /// run - This is the main entry point to this class.
4289  ///
4290  SelectionDAGLegalize(*this).LegalizeDAG();
4291}
4292