1//===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the SelectionDAG::Legalize method.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/ADT/APFloat.h"
14#include "llvm/ADT/APInt.h"
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/SetVector.h"
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/Analysis/TargetLibraryInfo.h"
21#include "llvm/CodeGen/ISDOpcodes.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineJumpTableInfo.h"
24#include "llvm/CodeGen/MachineMemOperand.h"
25#include "llvm/CodeGen/RuntimeLibcalls.h"
26#include "llvm/CodeGen/SelectionDAG.h"
27#include "llvm/CodeGen/SelectionDAGNodes.h"
28#include "llvm/CodeGen/TargetFrameLowering.h"
29#include "llvm/CodeGen/TargetLowering.h"
30#include "llvm/CodeGen/TargetSubtargetInfo.h"
31#include "llvm/CodeGen/ValueTypes.h"
32#include "llvm/IR/CallingConv.h"
33#include "llvm/IR/Constants.h"
34#include "llvm/IR/DataLayout.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/Metadata.h"
38#include "llvm/IR/Type.h"
39#include "llvm/Support/Casting.h"
40#include "llvm/Support/Compiler.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/MachineValueType.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48#include <algorithm>
49#include <cassert>
50#include <cstdint>
51#include <tuple>
52#include <utility>
53
54using namespace llvm;
55
56#define DEBUG_TYPE "legalizedag"
57
58namespace {
59
60/// Keeps track of state when getting the sign of a floating-point value as an
61/// integer.
62struct FloatSignAsInt {
63  EVT FloatVT;
64  SDValue Chain;
65  SDValue FloatPtr;
66  SDValue IntPtr;
67  MachinePointerInfo IntPointerInfo;
68  MachinePointerInfo FloatPointerInfo;
69  SDValue IntValue;
70  APInt SignMask;
71  uint8_t SignBit;
72};
73
74//===----------------------------------------------------------------------===//
75/// This takes an arbitrary SelectionDAG as input and
76/// hacks on it until the target machine can handle it.  This involves
77/// eliminating value sizes the machine cannot handle (promoting small sizes to
78/// large sizes or splitting up large values into small values) as well as
79/// eliminating operations the machine cannot handle.
80///
81/// This code also does a small amount of optimization and recognition of idioms
82/// as part of its processing.  For example, if a target does not support a
83/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
84/// will attempt merge setcc and brc instructions into brcc's.
85class SelectionDAGLegalize {
86  const TargetMachine &TM;
87  const TargetLowering &TLI;
88  SelectionDAG &DAG;
89
90  /// The set of nodes which have already been legalized. We hold a
91  /// reference to it in order to update as necessary on node deletion.
92  SmallPtrSetImpl<SDNode *> &LegalizedNodes;
93
94  /// A set of all the nodes updated during legalization.
95  SmallSetVector<SDNode *, 16> *UpdatedNodes;
96
97  EVT getSetCCResultType(EVT VT) const {
98    return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
99  }
100
101  // Libcall insertion helpers.
102
103public:
104  SelectionDAGLegalize(SelectionDAG &DAG,
105                       SmallPtrSetImpl<SDNode *> &LegalizedNodes,
106                       SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
107      : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
108        LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
109
110  /// Legalizes the given operation.
111  void LegalizeOp(SDNode *Node);
112
113private:
114  SDValue OptimizeFloatStore(StoreSDNode *ST);
115
116  void LegalizeLoadOps(SDNode *Node);
117  void LegalizeStoreOps(SDNode *Node);
118
119  /// Some targets cannot handle a variable
120  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
121  /// is necessary to spill the vector being inserted into to memory, perform
122  /// the insert there, and then read the result back.
123  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
124                                         const SDLoc &dl);
125  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx,
126                                  const SDLoc &dl);
127
128  /// Return a vector shuffle operation which
129  /// performs the same shuffe in terms of order or result bytes, but on a type
130  /// whose vector element type is narrower than the original shuffle type.
131  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
132  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl,
133                                     SDValue N1, SDValue N2,
134                                     ArrayRef<int> Mask) const;
135
136  bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
137                             bool &NeedInvert, const SDLoc &dl, SDValue &Chain,
138                             bool IsSignaling = false);
139
140  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
141
142  void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
143                       RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
144                       RTLIB::Libcall Call_F128,
145                       RTLIB::Libcall Call_PPCF128,
146                       SmallVectorImpl<SDValue> &Results);
147  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
148                           RTLIB::Libcall Call_I8,
149                           RTLIB::Libcall Call_I16,
150                           RTLIB::Libcall Call_I32,
151                           RTLIB::Libcall Call_I64,
152                           RTLIB::Libcall Call_I128);
153  void ExpandArgFPLibCall(SDNode *Node,
154                          RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64,
155                          RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128,
156                          RTLIB::Libcall Call_PPCF128,
157                          SmallVectorImpl<SDValue> &Results);
158  void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
159  void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
160
161  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
162                           const SDLoc &dl);
163  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
164                           const SDLoc &dl, SDValue ChainIn);
165  SDValue ExpandBUILD_VECTOR(SDNode *Node);
166  SDValue ExpandSPLAT_VECTOR(SDNode *Node);
167  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
168  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
169                                SmallVectorImpl<SDValue> &Results);
170  void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL,
171                         SDValue Value) const;
172  SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL,
173                          SDValue NewIntValue) const;
174  SDValue ExpandFCOPYSIGN(SDNode *Node) const;
175  SDValue ExpandFABS(SDNode *Node) const;
176  SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain);
177  void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl,
178                             SmallVectorImpl<SDValue> &Results);
179  void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
180                             SmallVectorImpl<SDValue> &Results);
181
182  SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl);
183  SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl);
184
185  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
186  SDValue ExpandInsertToVectorThroughStack(SDValue Op);
187  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
188
189  SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
190  SDValue ExpandConstant(ConstantSDNode *CP);
191
192  // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
193  bool ExpandNode(SDNode *Node);
194  void ConvertNodeToLibcall(SDNode *Node);
195  void PromoteNode(SDNode *Node);
196
197public:
198  // Node replacement helpers
199
200  void ReplacedNode(SDNode *N) {
201    LegalizedNodes.erase(N);
202    if (UpdatedNodes)
203      UpdatedNodes->insert(N);
204  }
205
206  void ReplaceNode(SDNode *Old, SDNode *New) {
207    LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
208               dbgs() << "     with:      "; New->dump(&DAG));
209
210    assert(Old->getNumValues() == New->getNumValues() &&
211           "Replacing one node with another that produces a different number "
212           "of values!");
213    DAG.ReplaceAllUsesWith(Old, New);
214    if (UpdatedNodes)
215      UpdatedNodes->insert(New);
216    ReplacedNode(Old);
217  }
218
219  void ReplaceNode(SDValue Old, SDValue New) {
220    LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
221               dbgs() << "     with:      "; New->dump(&DAG));
222
223    DAG.ReplaceAllUsesWith(Old, New);
224    if (UpdatedNodes)
225      UpdatedNodes->insert(New.getNode());
226    ReplacedNode(Old.getNode());
227  }
228
229  void ReplaceNode(SDNode *Old, const SDValue *New) {
230    LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
231
232    DAG.ReplaceAllUsesWith(Old, New);
233    for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
234      LLVM_DEBUG(dbgs() << (i == 0 ? "     with:      " : "      and:      ");
235                 New[i]->dump(&DAG));
236      if (UpdatedNodes)
237        UpdatedNodes->insert(New[i].getNode());
238    }
239    ReplacedNode(Old);
240  }
241
242  void ReplaceNodeWithValue(SDValue Old, SDValue New) {
243    LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
244               dbgs() << "     with:      "; New->dump(&DAG));
245
246    DAG.ReplaceAllUsesOfValueWith(Old, New);
247    if (UpdatedNodes)
248      UpdatedNodes->insert(New.getNode());
249    ReplacedNode(Old.getNode());
250  }
251};
252
253} // end anonymous namespace
254
255/// Return a vector shuffle operation which
256/// performs the same shuffle in terms of order or result bytes, but on a type
257/// whose vector element type is narrower than the original shuffle type.
258/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
259SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType(
260    EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
261    ArrayRef<int> Mask) const {
262  unsigned NumMaskElts = VT.getVectorNumElements();
263  unsigned NumDestElts = NVT.getVectorNumElements();
264  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
265
266  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
267
268  if (NumEltsGrowth == 1)
269    return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask);
270
271  SmallVector<int, 8> NewMask;
272  for (unsigned i = 0; i != NumMaskElts; ++i) {
273    int Idx = Mask[i];
274    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
275      if (Idx < 0)
276        NewMask.push_back(-1);
277      else
278        NewMask.push_back(Idx * NumEltsGrowth + j);
279    }
280  }
281  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
282  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
283  return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask);
284}
285
286/// Expands the ConstantFP node to an integer constant or
287/// a load from the constant pool.
288SDValue
289SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
290  bool Extend = false;
291  SDLoc dl(CFP);
292
293  // If a FP immediate is precise when represented as a float and if the
294  // target can do an extending load from float to double, we put it into
295  // the constant pool as a float, even if it's is statically typed as a
296  // double.  This shrinks FP constants and canonicalizes them for targets where
297  // an FP extending load is the same cost as a normal load (such as on the x87
298  // fp stack or PPC FP unit).
299  EVT VT = CFP->getValueType(0);
300  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
301  if (!UseCP) {
302    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
303    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl,
304                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
305  }
306
307  APFloat APF = CFP->getValueAPF();
308  EVT OrigVT = VT;
309  EVT SVT = VT;
310
311  // We don't want to shrink SNaNs. Converting the SNaN back to its real type
312  // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ).
313  if (!APF.isSignaling()) {
314    while (SVT != MVT::f32 && SVT != MVT::f16) {
315      SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
316      if (ConstantFPSDNode::isValueValidForType(SVT, APF) &&
317          // Only do this if the target has a native EXTLOAD instruction from
318          // smaller type.
319          TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
320          TLI.ShouldShrinkFPConstant(OrigVT)) {
321        Type *SType = SVT.getTypeForEVT(*DAG.getContext());
322        LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
323        VT = SVT;
324        Extend = true;
325      }
326    }
327  }
328
329  SDValue CPIdx =
330      DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout()));
331  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
332  if (Extend) {
333    SDValue Result = DAG.getExtLoad(
334        ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx,
335        MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT,
336        Alignment);
337    return Result;
338  }
339  SDValue Result = DAG.getLoad(
340      OrigVT, dl, DAG.getEntryNode(), CPIdx,
341      MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
342  return Result;
343}
344
345/// Expands the Constant node to a load from the constant pool.
346SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) {
347  SDLoc dl(CP);
348  EVT VT = CP->getValueType(0);
349  SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(),
350                                      TLI.getPointerTy(DAG.getDataLayout()));
351  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
352  SDValue Result = DAG.getLoad(
353      VT, dl, DAG.getEntryNode(), CPIdx,
354      MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
355  return Result;
356}
357
358/// Some target cannot handle a variable insertion index for the
359/// INSERT_VECTOR_ELT instruction.  In this case, it
360/// is necessary to spill the vector being inserted into to memory, perform
361/// the insert there, and then read the result back.
362SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec,
363                                                             SDValue Val,
364                                                             SDValue Idx,
365                                                             const SDLoc &dl) {
366  SDValue Tmp1 = Vec;
367  SDValue Tmp2 = Val;
368  SDValue Tmp3 = Idx;
369
370  // If the target doesn't support this, we have to spill the input vector
371  // to a temporary stack slot, update the element, then reload it.  This is
372  // badness.  We could also load the value into a vector register (either
373  // with a "move to register" or "extload into register" instruction, then
374  // permute it into place, if the idx is a constant and if the idx is
375  // supported by the target.
376  EVT VT    = Tmp1.getValueType();
377  EVT EltVT = VT.getVectorElementType();
378  SDValue StackPtr = DAG.CreateStackTemporary(VT);
379
380  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
381
382  // Store the vector.
383  SDValue Ch = DAG.getStore(
384      DAG.getEntryNode(), dl, Tmp1, StackPtr,
385      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
386
387  SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3);
388
389  // Store the scalar value.
390  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT);
391  // Load the updated vector.
392  return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(
393                                               DAG.getMachineFunction(), SPFI));
394}
395
396SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
397                                                      SDValue Idx,
398                                                      const SDLoc &dl) {
399  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
400    // SCALAR_TO_VECTOR requires that the type of the value being inserted
401    // match the element type of the vector being created, except for
402    // integers in which case the inserted value can be over width.
403    EVT EltVT = Vec.getValueType().getVectorElementType();
404    if (Val.getValueType() == EltVT ||
405        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
406      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
407                                  Vec.getValueType(), Val);
408
409      unsigned NumElts = Vec.getValueType().getVectorNumElements();
410      // We generate a shuffle of InVec and ScVec, so the shuffle mask
411      // should be 0,1,2,3,4,5... with the appropriate element replaced with
412      // elt 0 of the RHS.
413      SmallVector<int, 8> ShufOps;
414      for (unsigned i = 0; i != NumElts; ++i)
415        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
416
417      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps);
418    }
419  }
420  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
421}
422
423SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
424  if (!ISD::isNormalStore(ST))
425    return SDValue();
426
427  LLVM_DEBUG(dbgs() << "Optimizing float store operations\n");
428  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
429  // FIXME: We shouldn't do this for TargetConstantFP's.
430  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
431  // to phase ordering between legalized code and the dag combiner.  This
432  // probably means that we need to integrate dag combiner and legalizer
433  // together.
434  // We generally can't do this one for long doubles.
435  SDValue Chain = ST->getChain();
436  SDValue Ptr = ST->getBasePtr();
437  unsigned Alignment = ST->getAlignment();
438  MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
439  AAMDNodes AAInfo = ST->getAAInfo();
440  SDLoc dl(ST);
441  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
442    if (CFP->getValueType(0) == MVT::f32 &&
443        TLI.isTypeLegal(MVT::i32)) {
444      SDValue Con = DAG.getConstant(CFP->getValueAPF().
445                                      bitcastToAPInt().zextOrTrunc(32),
446                                    SDLoc(CFP), MVT::i32);
447      return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment,
448                          MMOFlags, AAInfo);
449    }
450
451    if (CFP->getValueType(0) == MVT::f64) {
452      // If this target supports 64-bit registers, do a single 64-bit store.
453      if (TLI.isTypeLegal(MVT::i64)) {
454        SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
455                                      zextOrTrunc(64), SDLoc(CFP), MVT::i64);
456        return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
457                            Alignment, MMOFlags, AAInfo);
458      }
459
460      if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
461        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
462        // stores.  If the target supports neither 32- nor 64-bits, this
463        // xform is certainly not worth it.
464        const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt();
465        SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32);
466        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32);
467        if (DAG.getDataLayout().isBigEndian())
468          std::swap(Lo, Hi);
469
470        Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment,
471                          MMOFlags, AAInfo);
472        Ptr = DAG.getMemBasePlusOffset(Ptr, 4, dl);
473        Hi = DAG.getStore(Chain, dl, Hi, Ptr,
474                          ST->getPointerInfo().getWithOffset(4),
475                          MinAlign(Alignment, 4U), MMOFlags, AAInfo);
476
477        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
478      }
479    }
480  }
481  return SDValue(nullptr, 0);
482}
483
484void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
485  StoreSDNode *ST = cast<StoreSDNode>(Node);
486  SDValue Chain = ST->getChain();
487  SDValue Ptr = ST->getBasePtr();
488  SDLoc dl(Node);
489
490  unsigned Alignment = ST->getAlignment();
491  MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
492  AAMDNodes AAInfo = ST->getAAInfo();
493
494  if (!ST->isTruncatingStore()) {
495    LLVM_DEBUG(dbgs() << "Legalizing store operation\n");
496    if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
497      ReplaceNode(ST, OptStore);
498      return;
499    }
500
501    SDValue Value = ST->getValue();
502    MVT VT = Value.getSimpleValueType();
503    switch (TLI.getOperationAction(ISD::STORE, VT)) {
504    default: llvm_unreachable("This action is not supported yet!");
505    case TargetLowering::Legal: {
506      // If this is an unaligned store and the target doesn't support it,
507      // expand it.
508      EVT MemVT = ST->getMemoryVT();
509      const DataLayout &DL = DAG.getDataLayout();
510      if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
511                                              *ST->getMemOperand())) {
512        LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n");
513        SDValue Result = TLI.expandUnalignedStore(ST, DAG);
514        ReplaceNode(SDValue(ST, 0), Result);
515      } else
516        LLVM_DEBUG(dbgs() << "Legal store\n");
517      break;
518    }
519    case TargetLowering::Custom: {
520      LLVM_DEBUG(dbgs() << "Trying custom lowering\n");
521      SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
522      if (Res && Res != SDValue(Node, 0))
523        ReplaceNode(SDValue(Node, 0), Res);
524      return;
525    }
526    case TargetLowering::Promote: {
527      MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
528      assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
529             "Can only promote stores to same size type");
530      Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
531      SDValue Result =
532          DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
533                       Alignment, MMOFlags, AAInfo);
534      ReplaceNode(SDValue(Node, 0), Result);
535      break;
536    }
537    }
538    return;
539  }
540
541  LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n");
542  SDValue Value = ST->getValue();
543  EVT StVT = ST->getMemoryVT();
544  unsigned StWidth = StVT.getSizeInBits();
545  auto &DL = DAG.getDataLayout();
546
547  if (StWidth != StVT.getStoreSizeInBits()) {
548    // Promote to a byte-sized store with upper bits zero if not
549    // storing an integral number of bytes.  For example, promote
550    // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
551    EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
552                                StVT.getStoreSizeInBits());
553    Value = DAG.getZeroExtendInReg(Value, dl, StVT);
554    SDValue Result =
555        DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT,
556                          Alignment, MMOFlags, AAInfo);
557    ReplaceNode(SDValue(Node, 0), Result);
558  } else if (StWidth & (StWidth - 1)) {
559    // If not storing a power-of-2 number of bits, expand as two stores.
560    assert(!StVT.isVector() && "Unsupported truncstore!");
561    unsigned LogStWidth = Log2_32(StWidth);
562    assert(LogStWidth < 32);
563    unsigned RoundWidth = 1 << LogStWidth;
564    assert(RoundWidth < StWidth);
565    unsigned ExtraWidth = StWidth - RoundWidth;
566    assert(ExtraWidth < RoundWidth);
567    assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
568           "Store size not an integral number of bytes!");
569    EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
570    EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
571    SDValue Lo, Hi;
572    unsigned IncrementSize;
573
574    if (DL.isLittleEndian()) {
575      // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
576      // Store the bottom RoundWidth bits.
577      Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
578                             RoundVT, Alignment, MMOFlags, AAInfo);
579
580      // Store the remaining ExtraWidth bits.
581      IncrementSize = RoundWidth / 8;
582      Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl);
583      Hi = DAG.getNode(
584          ISD::SRL, dl, Value.getValueType(), Value,
585          DAG.getConstant(RoundWidth, dl,
586                          TLI.getShiftAmountTy(Value.getValueType(), DL)));
587      Hi = DAG.getTruncStore(
588          Chain, dl, Hi, Ptr,
589          ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT,
590          MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo);
591    } else {
592      // Big endian - avoid unaligned stores.
593      // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
594      // Store the top RoundWidth bits.
595      Hi = DAG.getNode(
596          ISD::SRL, dl, Value.getValueType(), Value,
597          DAG.getConstant(ExtraWidth, dl,
598                          TLI.getShiftAmountTy(Value.getValueType(), DL)));
599      Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
600                             RoundVT, Alignment, MMOFlags, AAInfo);
601
602      // Store the remaining ExtraWidth bits.
603      IncrementSize = RoundWidth / 8;
604      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
605                        DAG.getConstant(IncrementSize, dl,
606                                        Ptr.getValueType()));
607      Lo = DAG.getTruncStore(
608          Chain, dl, Value, Ptr,
609          ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT,
610          MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo);
611    }
612
613    // The order of the stores doesn't matter.
614    SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
615    ReplaceNode(SDValue(Node, 0), Result);
616  } else {
617    switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
618    default: llvm_unreachable("This action is not supported yet!");
619    case TargetLowering::Legal: {
620      EVT MemVT = ST->getMemoryVT();
621      // If this is an unaligned store and the target doesn't support it,
622      // expand it.
623      if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
624                                              *ST->getMemOperand())) {
625        SDValue Result = TLI.expandUnalignedStore(ST, DAG);
626        ReplaceNode(SDValue(ST, 0), Result);
627      }
628      break;
629    }
630    case TargetLowering::Custom: {
631      SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
632      if (Res && Res != SDValue(Node, 0))
633        ReplaceNode(SDValue(Node, 0), Res);
634      return;
635    }
636    case TargetLowering::Expand:
637      assert(!StVT.isVector() &&
638             "Vector Stores are handled in LegalizeVectorOps");
639
640      SDValue Result;
641
642      // TRUNCSTORE:i16 i32 -> STORE i16
643      if (TLI.isTypeLegal(StVT)) {
644        Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
645        Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
646                              Alignment, MMOFlags, AAInfo);
647      } else {
648        // The in-memory type isn't legal. Truncate to the type it would promote
649        // to, and then do a truncstore.
650        Value = DAG.getNode(ISD::TRUNCATE, dl,
651                            TLI.getTypeToTransformTo(*DAG.getContext(), StVT),
652                            Value);
653        Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
654                                   StVT, Alignment, MMOFlags, AAInfo);
655      }
656
657      ReplaceNode(SDValue(Node, 0), Result);
658      break;
659    }
660  }
661}
662
663void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
664  LoadSDNode *LD = cast<LoadSDNode>(Node);
665  SDValue Chain = LD->getChain();  // The chain.
666  SDValue Ptr = LD->getBasePtr();  // The base pointer.
667  SDValue Value;                   // The value returned by the load op.
668  SDLoc dl(Node);
669
670  ISD::LoadExtType ExtType = LD->getExtensionType();
671  if (ExtType == ISD::NON_EXTLOAD) {
672    LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n");
673    MVT VT = Node->getSimpleValueType(0);
674    SDValue RVal = SDValue(Node, 0);
675    SDValue RChain = SDValue(Node, 1);
676
677    switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
678    default: llvm_unreachable("This action is not supported yet!");
679    case TargetLowering::Legal: {
680      EVT MemVT = LD->getMemoryVT();
681      const DataLayout &DL = DAG.getDataLayout();
682      // If this is an unaligned load and the target doesn't support it,
683      // expand it.
684      if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
685                                              *LD->getMemOperand())) {
686        std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG);
687      }
688      break;
689    }
690    case TargetLowering::Custom:
691      if (SDValue Res = TLI.LowerOperation(RVal, DAG)) {
692        RVal = Res;
693        RChain = Res.getValue(1);
694      }
695      break;
696
697    case TargetLowering::Promote: {
698      MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
699      assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
700             "Can only promote loads to same size type");
701
702      SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
703      RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
704      RChain = Res.getValue(1);
705      break;
706    }
707    }
708    if (RChain.getNode() != Node) {
709      assert(RVal.getNode() != Node && "Load must be completely replaced");
710      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
711      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
712      if (UpdatedNodes) {
713        UpdatedNodes->insert(RVal.getNode());
714        UpdatedNodes->insert(RChain.getNode());
715      }
716      ReplacedNode(Node);
717    }
718    return;
719  }
720
721  LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n");
722  EVT SrcVT = LD->getMemoryVT();
723  unsigned SrcWidth = SrcVT.getSizeInBits();
724  unsigned Alignment = LD->getAlignment();
725  MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
726  AAMDNodes AAInfo = LD->getAAInfo();
727
728  if (SrcWidth != SrcVT.getStoreSizeInBits() &&
729      // Some targets pretend to have an i1 loading operation, and actually
730      // load an i8.  This trick is correct for ZEXTLOAD because the top 7
731      // bits are guaranteed to be zero; it helps the optimizers understand
732      // that these bits are zero.  It is also useful for EXTLOAD, since it
733      // tells the optimizers that those bits are undefined.  It would be
734      // nice to have an effective generic way of getting these benefits...
735      // Until such a way is found, don't insist on promoting i1 here.
736      (SrcVT != MVT::i1 ||
737       TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
738         TargetLowering::Promote)) {
739    // Promote to a byte-sized load if not loading an integral number of
740    // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
741    unsigned NewWidth = SrcVT.getStoreSizeInBits();
742    EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
743    SDValue Ch;
744
745    // The extra bits are guaranteed to be zero, since we stored them that
746    // way.  A zext load from NVT thus automatically gives zext from SrcVT.
747
748    ISD::LoadExtType NewExtType =
749      ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
750
751    SDValue Result =
752        DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr,
753                       LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo);
754
755    Ch = Result.getValue(1); // The chain.
756
757    if (ExtType == ISD::SEXTLOAD)
758      // Having the top bits zero doesn't help when sign extending.
759      Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
760                           Result.getValueType(),
761                           Result, DAG.getValueType(SrcVT));
762    else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
763      // All the top bits are guaranteed to be zero - inform the optimizers.
764      Result = DAG.getNode(ISD::AssertZext, dl,
765                           Result.getValueType(), Result,
766                           DAG.getValueType(SrcVT));
767
768    Value = Result;
769    Chain = Ch;
770  } else if (SrcWidth & (SrcWidth - 1)) {
771    // If not loading a power-of-2 number of bits, expand as two loads.
772    assert(!SrcVT.isVector() && "Unsupported extload!");
773    unsigned LogSrcWidth = Log2_32(SrcWidth);
774    assert(LogSrcWidth < 32);
775    unsigned RoundWidth = 1 << LogSrcWidth;
776    assert(RoundWidth < SrcWidth);
777    unsigned ExtraWidth = SrcWidth - RoundWidth;
778    assert(ExtraWidth < RoundWidth);
779    assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
780           "Load size not an integral number of bytes!");
781    EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
782    EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
783    SDValue Lo, Hi, Ch;
784    unsigned IncrementSize;
785    auto &DL = DAG.getDataLayout();
786
787    if (DL.isLittleEndian()) {
788      // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
789      // Load the bottom RoundWidth bits.
790      Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
791                          LD->getPointerInfo(), RoundVT, Alignment, MMOFlags,
792                          AAInfo);
793
794      // Load the remaining ExtraWidth bits.
795      IncrementSize = RoundWidth / 8;
796      Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl);
797      Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
798                          LD->getPointerInfo().getWithOffset(IncrementSize),
799                          ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags,
800                          AAInfo);
801
802      // Build a factor node to remember that this load is independent of
803      // the other one.
804      Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
805                       Hi.getValue(1));
806
807      // Move the top bits to the right place.
808      Hi = DAG.getNode(
809          ISD::SHL, dl, Hi.getValueType(), Hi,
810          DAG.getConstant(RoundWidth, dl,
811                          TLI.getShiftAmountTy(Hi.getValueType(), DL)));
812
813      // Join the hi and lo parts.
814      Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
815    } else {
816      // Big endian - avoid unaligned loads.
817      // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
818      // Load the top RoundWidth bits.
819      Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
820                          LD->getPointerInfo(), RoundVT, Alignment, MMOFlags,
821                          AAInfo);
822
823      // Load the remaining ExtraWidth bits.
824      IncrementSize = RoundWidth / 8;
825      Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl);
826      Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
827                          LD->getPointerInfo().getWithOffset(IncrementSize),
828                          ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags,
829                          AAInfo);
830
831      // Build a factor node to remember that this load is independent of
832      // the other one.
833      Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
834                       Hi.getValue(1));
835
836      // Move the top bits to the right place.
837      Hi = DAG.getNode(
838          ISD::SHL, dl, Hi.getValueType(), Hi,
839          DAG.getConstant(ExtraWidth, dl,
840                          TLI.getShiftAmountTy(Hi.getValueType(), DL)));
841
842      // Join the hi and lo parts.
843      Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
844    }
845
846    Chain = Ch;
847  } else {
848    bool isCustom = false;
849    switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
850                                 SrcVT.getSimpleVT())) {
851    default: llvm_unreachable("This action is not supported yet!");
852    case TargetLowering::Custom:
853      isCustom = true;
854      LLVM_FALLTHROUGH;
855    case TargetLowering::Legal:
856      Value = SDValue(Node, 0);
857      Chain = SDValue(Node, 1);
858
859      if (isCustom) {
860        if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
861          Value = Res;
862          Chain = Res.getValue(1);
863        }
864      } else {
865        // If this is an unaligned load and the target doesn't support it,
866        // expand it.
867        EVT MemVT = LD->getMemoryVT();
868        const DataLayout &DL = DAG.getDataLayout();
869        if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT,
870                                    *LD->getMemOperand())) {
871          std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG);
872        }
873      }
874      break;
875
876    case TargetLowering::Expand: {
877      EVT DestVT = Node->getValueType(0);
878      if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) {
879        // If the source type is not legal, see if there is a legal extload to
880        // an intermediate type that we can then extend further.
881        EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
882        if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
883            TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
884          // If we are loading a legal type, this is a non-extload followed by a
885          // full extend.
886          ISD::LoadExtType MidExtType =
887              (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
888
889          SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
890                                        SrcVT, LD->getMemOperand());
891          unsigned ExtendOp =
892              ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
893          Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
894          Chain = Load.getValue(1);
895          break;
896        }
897
898        // Handle the special case of fp16 extloads. EXTLOAD doesn't have the
899        // normal undefined upper bits behavior to allow using an in-reg extend
900        // with the illegal FP type, so load as an integer and do the
901        // from-integer conversion.
902        if (SrcVT.getScalarType() == MVT::f16) {
903          EVT ISrcVT = SrcVT.changeTypeToInteger();
904          EVT IDestVT = DestVT.changeTypeToInteger();
905          EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT());
906
907          SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain,
908                                          Ptr, ISrcVT, LD->getMemOperand());
909          Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result);
910          Chain = Result.getValue(1);
911          break;
912        }
913      }
914
915      assert(!SrcVT.isVector() &&
916             "Vector Loads are handled in LegalizeVectorOps");
917
918      // FIXME: This does not work for vectors on most targets.  Sign-
919      // and zero-extend operations are currently folded into extending
920      // loads, whether they are legal or not, and then we end up here
921      // without any support for legalizing them.
922      assert(ExtType != ISD::EXTLOAD &&
923             "EXTLOAD should always be supported!");
924      // Turn the unsupported load into an EXTLOAD followed by an
925      // explicit zero/sign extend inreg.
926      SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
927                                      Node->getValueType(0),
928                                      Chain, Ptr, SrcVT,
929                                      LD->getMemOperand());
930      SDValue ValRes;
931      if (ExtType == ISD::SEXTLOAD)
932        ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
933                             Result.getValueType(),
934                             Result, DAG.getValueType(SrcVT));
935      else
936        ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
937      Value = ValRes;
938      Chain = Result.getValue(1);
939      break;
940    }
941    }
942  }
943
944  // Since loads produce two values, make sure to remember that we legalized
945  // both of them.
946  if (Chain.getNode() != Node) {
947    assert(Value.getNode() != Node && "Load must be completely replaced");
948    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
949    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
950    if (UpdatedNodes) {
951      UpdatedNodes->insert(Value.getNode());
952      UpdatedNodes->insert(Chain.getNode());
953    }
954    ReplacedNode(Node);
955  }
956}
957
958/// Return a legal replacement for the given operation, with all legal operands.
959void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
960  LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
961
962  // Allow illegal target nodes and illegal registers.
963  if (Node->getOpcode() == ISD::TargetConstant ||
964      Node->getOpcode() == ISD::Register)
965    return;
966
967#ifndef NDEBUG
968  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
969    assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
970             TargetLowering::TypeLegal &&
971           "Unexpected illegal type!");
972
973  for (const SDValue &Op : Node->op_values())
974    assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) ==
975              TargetLowering::TypeLegal ||
976            Op.getOpcode() == ISD::TargetConstant ||
977            Op.getOpcode() == ISD::Register) &&
978            "Unexpected illegal type!");
979#endif
980
981  // Figure out the correct action; the way to query this varies by opcode
982  TargetLowering::LegalizeAction Action = TargetLowering::Legal;
983  bool SimpleFinishLegalizing = true;
984  switch (Node->getOpcode()) {
985  case ISD::INTRINSIC_W_CHAIN:
986  case ISD::INTRINSIC_WO_CHAIN:
987  case ISD::INTRINSIC_VOID:
988  case ISD::STACKSAVE:
989    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
990    break;
991  case ISD::GET_DYNAMIC_AREA_OFFSET:
992    Action = TLI.getOperationAction(Node->getOpcode(),
993                                    Node->getValueType(0));
994    break;
995  case ISD::VAARG:
996    Action = TLI.getOperationAction(Node->getOpcode(),
997                                    Node->getValueType(0));
998    if (Action != TargetLowering::Promote)
999      Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1000    break;
1001  case ISD::FP_TO_FP16:
1002  case ISD::SINT_TO_FP:
1003  case ISD::UINT_TO_FP:
1004  case ISD::EXTRACT_VECTOR_ELT:
1005  case ISD::LROUND:
1006  case ISD::LLROUND:
1007  case ISD::LRINT:
1008  case ISD::LLRINT:
1009    Action = TLI.getOperationAction(Node->getOpcode(),
1010                                    Node->getOperand(0).getValueType());
1011    break;
1012  case ISD::STRICT_SINT_TO_FP:
1013  case ISD::STRICT_UINT_TO_FP:
1014  case ISD::STRICT_LRINT:
1015  case ISD::STRICT_LLRINT:
1016  case ISD::STRICT_LROUND:
1017  case ISD::STRICT_LLROUND:
1018    // These pseudo-ops are the same as the other STRICT_ ops except
1019    // they are registered with setOperationAction() using the input type
1020    // instead of the output type.
1021    Action = TLI.getOperationAction(Node->getOpcode(),
1022                                    Node->getOperand(1).getValueType());
1023    break;
1024  case ISD::SIGN_EXTEND_INREG: {
1025    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1026    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1027    break;
1028  }
1029  case ISD::ATOMIC_STORE:
1030    Action = TLI.getOperationAction(Node->getOpcode(),
1031                                    Node->getOperand(2).getValueType());
1032    break;
1033  case ISD::SELECT_CC:
1034  case ISD::STRICT_FSETCC:
1035  case ISD::STRICT_FSETCCS:
1036  case ISD::SETCC:
1037  case ISD::BR_CC: {
1038    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1039                         Node->getOpcode() == ISD::STRICT_FSETCC ? 3 :
1040                         Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 :
1041                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
1042    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 :
1043                              Node->getOpcode() == ISD::STRICT_FSETCC ? 1 :
1044                              Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0;
1045    MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1046    ISD::CondCode CCCode =
1047        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1048    Action = TLI.getCondCodeAction(CCCode, OpVT);
1049    if (Action == TargetLowering::Legal) {
1050      if (Node->getOpcode() == ISD::SELECT_CC)
1051        Action = TLI.getOperationAction(Node->getOpcode(),
1052                                        Node->getValueType(0));
1053      else
1054        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1055    }
1056    break;
1057  }
1058  case ISD::LOAD:
1059  case ISD::STORE:
1060    // FIXME: Model these properly.  LOAD and STORE are complicated, and
1061    // STORE expects the unlegalized operand in some cases.
1062    SimpleFinishLegalizing = false;
1063    break;
1064  case ISD::CALLSEQ_START:
1065  case ISD::CALLSEQ_END:
1066    // FIXME: This shouldn't be necessary.  These nodes have special properties
1067    // dealing with the recursive nature of legalization.  Removing this
1068    // special case should be done as part of making LegalizeDAG non-recursive.
1069    SimpleFinishLegalizing = false;
1070    break;
1071  case ISD::EXTRACT_ELEMENT:
1072  case ISD::FLT_ROUNDS_:
1073  case ISD::MERGE_VALUES:
1074  case ISD::EH_RETURN:
1075  case ISD::FRAME_TO_ARGS_OFFSET:
1076  case ISD::EH_DWARF_CFA:
1077  case ISD::EH_SJLJ_SETJMP:
1078  case ISD::EH_SJLJ_LONGJMP:
1079  case ISD::EH_SJLJ_SETUP_DISPATCH:
1080    // These operations lie about being legal: when they claim to be legal,
1081    // they should actually be expanded.
1082    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1083    if (Action == TargetLowering::Legal)
1084      Action = TargetLowering::Expand;
1085    break;
1086  case ISD::INIT_TRAMPOLINE:
1087  case ISD::ADJUST_TRAMPOLINE:
1088  case ISD::FRAMEADDR:
1089  case ISD::RETURNADDR:
1090  case ISD::ADDROFRETURNADDR:
1091  case ISD::SPONENTRY:
1092    // These operations lie about being legal: when they claim to be legal,
1093    // they should actually be custom-lowered.
1094    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1095    if (Action == TargetLowering::Legal)
1096      Action = TargetLowering::Custom;
1097    break;
1098  case ISD::READCYCLECOUNTER:
1099    // READCYCLECOUNTER returns an i64, even if type legalization might have
1100    // expanded that to several smaller types.
1101    Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64);
1102    break;
1103  case ISD::READ_REGISTER:
1104  case ISD::WRITE_REGISTER:
1105    // Named register is legal in the DAG, but blocked by register name
1106    // selection if not implemented by target (to chose the correct register)
1107    // They'll be converted to Copy(To/From)Reg.
1108    Action = TargetLowering::Legal;
1109    break;
1110  case ISD::DEBUGTRAP:
1111    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1112    if (Action == TargetLowering::Expand) {
1113      // replace ISD::DEBUGTRAP with ISD::TRAP
1114      SDValue NewVal;
1115      NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1116                           Node->getOperand(0));
1117      ReplaceNode(Node, NewVal.getNode());
1118      LegalizeOp(NewVal.getNode());
1119      return;
1120    }
1121    break;
1122  case ISD::SADDSAT:
1123  case ISD::UADDSAT:
1124  case ISD::SSUBSAT:
1125  case ISD::USUBSAT: {
1126    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1127    break;
1128  }
1129  case ISD::SMULFIX:
1130  case ISD::SMULFIXSAT:
1131  case ISD::UMULFIX:
1132  case ISD::UMULFIXSAT:
1133  case ISD::SDIVFIX:
1134  case ISD::UDIVFIX: {
1135    unsigned Scale = Node->getConstantOperandVal(2);
1136    Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
1137                                              Node->getValueType(0), Scale);
1138    break;
1139  }
1140  case ISD::MSCATTER:
1141    Action = TLI.getOperationAction(Node->getOpcode(),
1142                    cast<MaskedScatterSDNode>(Node)->getValue().getValueType());
1143    break;
1144  case ISD::MSTORE:
1145    Action = TLI.getOperationAction(Node->getOpcode(),
1146                    cast<MaskedStoreSDNode>(Node)->getValue().getValueType());
1147    break;
1148  case ISD::VECREDUCE_FADD:
1149  case ISD::VECREDUCE_FMUL:
1150  case ISD::VECREDUCE_ADD:
1151  case ISD::VECREDUCE_MUL:
1152  case ISD::VECREDUCE_AND:
1153  case ISD::VECREDUCE_OR:
1154  case ISD::VECREDUCE_XOR:
1155  case ISD::VECREDUCE_SMAX:
1156  case ISD::VECREDUCE_SMIN:
1157  case ISD::VECREDUCE_UMAX:
1158  case ISD::VECREDUCE_UMIN:
1159  case ISD::VECREDUCE_FMAX:
1160  case ISD::VECREDUCE_FMIN:
1161    Action = TLI.getOperationAction(
1162        Node->getOpcode(), Node->getOperand(0).getValueType());
1163    break;
1164  default:
1165    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1166      Action = TargetLowering::Legal;
1167    } else {
1168      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1169    }
1170    break;
1171  }
1172
1173  if (SimpleFinishLegalizing) {
1174    SDNode *NewNode = Node;
1175    switch (Node->getOpcode()) {
1176    default: break;
1177    case ISD::SHL:
1178    case ISD::SRL:
1179    case ISD::SRA:
1180    case ISD::ROTL:
1181    case ISD::ROTR: {
1182      // Legalizing shifts/rotates requires adjusting the shift amount
1183      // to the appropriate width.
1184      SDValue Op0 = Node->getOperand(0);
1185      SDValue Op1 = Node->getOperand(1);
1186      if (!Op1.getValueType().isVector()) {
1187        SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1);
1188        // The getShiftAmountOperand() may create a new operand node or
1189        // return the existing one. If new operand is created we need
1190        // to update the parent node.
1191        // Do not try to legalize SAO here! It will be automatically legalized
1192        // in the next round.
1193        if (SAO != Op1)
1194          NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO);
1195      }
1196    }
1197    break;
1198    case ISD::FSHL:
1199    case ISD::FSHR:
1200    case ISD::SRL_PARTS:
1201    case ISD::SRA_PARTS:
1202    case ISD::SHL_PARTS: {
1203      // Legalizing shifts/rotates requires adjusting the shift amount
1204      // to the appropriate width.
1205      SDValue Op0 = Node->getOperand(0);
1206      SDValue Op1 = Node->getOperand(1);
1207      SDValue Op2 = Node->getOperand(2);
1208      if (!Op2.getValueType().isVector()) {
1209        SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2);
1210        // The getShiftAmountOperand() may create a new operand node or
1211        // return the existing one. If new operand is created we need
1212        // to update the parent node.
1213        if (SAO != Op2)
1214          NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO);
1215      }
1216      break;
1217    }
1218    }
1219
1220    if (NewNode != Node) {
1221      ReplaceNode(Node, NewNode);
1222      Node = NewNode;
1223    }
1224    switch (Action) {
1225    case TargetLowering::Legal:
1226      LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
1227      return;
1228    case TargetLowering::Custom:
1229      LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
1230      // FIXME: The handling for custom lowering with multiple results is
1231      // a complete mess.
1232      if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
1233        if (!(Res.getNode() != Node || Res.getResNo() != 0))
1234          return;
1235
1236        if (Node->getNumValues() == 1) {
1237          LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1238          // We can just directly replace this node with the lowered value.
1239          ReplaceNode(SDValue(Node, 0), Res);
1240          return;
1241        }
1242
1243        SmallVector<SDValue, 8> ResultVals;
1244        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1245          ResultVals.push_back(Res.getValue(i));
1246        LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1247        ReplaceNode(Node, ResultVals.data());
1248        return;
1249      }
1250      LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
1251      LLVM_FALLTHROUGH;
1252    case TargetLowering::Expand:
1253      if (ExpandNode(Node))
1254        return;
1255      LLVM_FALLTHROUGH;
1256    case TargetLowering::LibCall:
1257      ConvertNodeToLibcall(Node);
1258      return;
1259    case TargetLowering::Promote:
1260      PromoteNode(Node);
1261      return;
1262    }
1263  }
1264
1265  switch (Node->getOpcode()) {
1266  default:
1267#ifndef NDEBUG
1268    dbgs() << "NODE: ";
1269    Node->dump( &DAG);
1270    dbgs() << "\n";
1271#endif
1272    llvm_unreachable("Do not know how to legalize this operator!");
1273
1274  case ISD::CALLSEQ_START:
1275  case ISD::CALLSEQ_END:
1276    break;
1277  case ISD::LOAD:
1278    return LegalizeLoadOps(Node);
1279  case ISD::STORE:
1280    return LegalizeStoreOps(Node);
1281  }
1282}
1283
1284SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1285  SDValue Vec = Op.getOperand(0);
1286  SDValue Idx = Op.getOperand(1);
1287  SDLoc dl(Op);
1288
1289  // Before we generate a new store to a temporary stack slot, see if there is
1290  // already one that we can use. There often is because when we scalarize
1291  // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1292  // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1293  // the vector. If all are expanded here, we don't want one store per vector
1294  // element.
1295
1296  // Caches for hasPredecessorHelper
1297  SmallPtrSet<const SDNode *, 32> Visited;
1298  SmallVector<const SDNode *, 16> Worklist;
1299  Visited.insert(Op.getNode());
1300  Worklist.push_back(Idx.getNode());
1301  SDValue StackPtr, Ch;
1302  for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
1303       UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
1304    SDNode *User = *UI;
1305    if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
1306      if (ST->isIndexed() || ST->isTruncatingStore() ||
1307          ST->getValue() != Vec)
1308        continue;
1309
1310      // Make sure that nothing else could have stored into the destination of
1311      // this store.
1312      if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
1313        continue;
1314
1315      // If the index is dependent on the store we will introduce a cycle when
1316      // creating the load (the load uses the index, and by replacing the chain
1317      // we will make the index dependent on the load). Also, the store might be
1318      // dependent on the extractelement and introduce a cycle when creating
1319      // the load.
1320      if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) ||
1321          ST->hasPredecessor(Op.getNode()))
1322        continue;
1323
1324      StackPtr = ST->getBasePtr();
1325      Ch = SDValue(ST, 0);
1326      break;
1327    }
1328  }
1329
1330  EVT VecVT = Vec.getValueType();
1331
1332  if (!Ch.getNode()) {
1333    // Store the value to a temporary stack slot, then LOAD the returned part.
1334    StackPtr = DAG.CreateStackTemporary(VecVT);
1335    Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1336                      MachinePointerInfo());
1337  }
1338
1339  StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1340
1341  SDValue NewLoad;
1342
1343  if (Op.getValueType().isVector())
1344    NewLoad =
1345        DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo());
1346  else
1347    NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1348                             MachinePointerInfo(),
1349                             VecVT.getVectorElementType());
1350
1351  // Replace the chain going out of the store, by the one out of the load.
1352  DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));
1353
1354  // We introduced a cycle though, so update the loads operands, making sure
1355  // to use the original store's chain as an incoming chain.
1356  SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(),
1357                                          NewLoad->op_end());
1358  NewLoadOperands[0] = Ch;
1359  NewLoad =
1360      SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0);
1361  return NewLoad;
1362}
1363
1364SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1365  assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1366
1367  SDValue Vec  = Op.getOperand(0);
1368  SDValue Part = Op.getOperand(1);
1369  SDValue Idx  = Op.getOperand(2);
1370  SDLoc dl(Op);
1371
1372  // Store the value to a temporary stack slot, then LOAD the returned part.
1373  EVT VecVT = Vec.getValueType();
1374  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1375  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1376  MachinePointerInfo PtrInfo =
1377      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1378
1379  // First store the whole vector.
1380  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo);
1381
1382  // Then store the inserted part.
1383  SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1384
1385  // Store the subvector.
1386  Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo());
1387
1388  // Finally, load the updated vector.
1389  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo);
1390}
1391
1392SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1393  // We can't handle this case efficiently.  Allocate a sufficiently
1394  // aligned object on the stack, store each element into it, then load
1395  // the result as a vector.
1396  // Create the stack frame object.
1397  EVT VT = Node->getValueType(0);
1398  EVT EltVT = VT.getVectorElementType();
1399  SDLoc dl(Node);
1400  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1401  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1402  MachinePointerInfo PtrInfo =
1403      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1404
1405  // Emit a store of each element to the stack slot.
1406  SmallVector<SDValue, 8> Stores;
1407  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1408  assert(TypeByteSize > 0 && "Vector element type too small for stack store!");
1409  // Store (in the right endianness) the elements to memory.
1410  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1411    // Ignore undef elements.
1412    if (Node->getOperand(i).isUndef()) continue;
1413
1414    unsigned Offset = TypeByteSize*i;
1415
1416    SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType());
1417    Idx = DAG.getMemBasePlusOffset(FIPtr, Idx, dl);
1418
1419    // If the destination vector element type is narrower than the source
1420    // element type, only store the bits necessary.
1421    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1422      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1423                                         Node->getOperand(i), Idx,
1424                                         PtrInfo.getWithOffset(Offset), EltVT));
1425    } else
1426      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1427                                    Idx, PtrInfo.getWithOffset(Offset)));
1428  }
1429
1430  SDValue StoreChain;
1431  if (!Stores.empty())    // Not all undef elements?
1432    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
1433  else
1434    StoreChain = DAG.getEntryNode();
1435
1436  // Result is a load from the stack slot.
1437  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo);
1438}
1439
1440/// Bitcast a floating-point value to an integer value. Only bitcast the part
1441/// containing the sign bit if the target has no integer value capable of
1442/// holding all bits of the floating-point value.
1443void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
1444                                             const SDLoc &DL,
1445                                             SDValue Value) const {
1446  EVT FloatVT = Value.getValueType();
1447  unsigned NumBits = FloatVT.getSizeInBits();
1448  State.FloatVT = FloatVT;
1449  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
1450  // Convert to an integer of the same size.
1451  if (TLI.isTypeLegal(IVT)) {
1452    State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value);
1453    State.SignMask = APInt::getSignMask(NumBits);
1454    State.SignBit = NumBits - 1;
1455    return;
1456  }
1457
1458  auto &DataLayout = DAG.getDataLayout();
1459  // Store the float to memory, then load the sign part out as an integer.
1460  MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8);
1461  // First create a temporary that is aligned for both the load and store.
1462  SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1463  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1464  // Then store the float to it.
1465  State.FloatPtr = StackPtr;
1466  MachineFunction &MF = DAG.getMachineFunction();
1467  State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI);
1468  State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr,
1469                             State.FloatPointerInfo);
1470
1471  SDValue IntPtr;
1472  if (DataLayout.isBigEndian()) {
1473    assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1474    // Load out a legal integer with the same sign bit as the float.
1475    IntPtr = StackPtr;
1476    State.IntPointerInfo = State.FloatPointerInfo;
1477  } else {
1478    // Advance the pointer so that the loaded byte will contain the sign bit.
1479    unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1;
1480    IntPtr = DAG.getMemBasePlusOffset(StackPtr, ByteOffset, DL);
1481    State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI,
1482                                                             ByteOffset);
1483  }
1484
1485  State.IntPtr = IntPtr;
1486  State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr,
1487                                  State.IntPointerInfo, MVT::i8);
1488  State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7);
1489  State.SignBit = 7;
1490}
1491
1492/// Replace the integer value produced by getSignAsIntValue() with a new value
1493/// and cast the result back to a floating-point type.
1494SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State,
1495                                              const SDLoc &DL,
1496                                              SDValue NewIntValue) const {
1497  if (!State.Chain)
1498    return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue);
1499
1500  // Override the part containing the sign bit in the value stored on the stack.
1501  SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr,
1502                                    State.IntPointerInfo, MVT::i8);
1503  return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr,
1504                     State.FloatPointerInfo);
1505}
1506
1507SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const {
1508  SDLoc DL(Node);
1509  SDValue Mag = Node->getOperand(0);
1510  SDValue Sign = Node->getOperand(1);
1511
1512  // Get sign bit into an integer value.
1513  FloatSignAsInt SignAsInt;
1514  getSignAsIntValue(SignAsInt, DL, Sign);
1515
1516  EVT IntVT = SignAsInt.IntValue.getValueType();
1517  SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
1518  SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue,
1519                                SignMask);
1520
1521  // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
1522  EVT FloatVT = Mag.getValueType();
1523  if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) &&
1524      TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) {
1525    SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag);
1526    SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue);
1527    SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit,
1528                                DAG.getConstant(0, DL, IntVT), ISD::SETNE);
1529    return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue);
1530  }
1531
1532  // Transform Mag value to integer, and clear the sign bit.
1533  FloatSignAsInt MagAsInt;
1534  getSignAsIntValue(MagAsInt, DL, Mag);
1535  EVT MagVT = MagAsInt.IntValue.getValueType();
1536  SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT);
1537  SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue,
1538                                    ClearSignMask);
1539
1540  // Get the signbit at the right position for MagAsInt.
1541  int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit;
1542  EVT ShiftVT = IntVT;
1543  if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) {
1544    SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit);
1545    ShiftVT = MagVT;
1546  }
1547  if (ShiftAmount > 0) {
1548    SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT);
1549    SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst);
1550  } else if (ShiftAmount < 0) {
1551    SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT);
1552    SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst);
1553  }
1554  if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) {
1555    SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit);
1556  }
1557
1558  // Store the part with the modified sign and convert back to float.
1559  SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit);
1560  return modifySignAsInt(MagAsInt, DL, CopiedSign);
1561}
1562
1563SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const {
1564  SDLoc DL(Node);
1565  SDValue Value = Node->getOperand(0);
1566
1567  // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
1568  EVT FloatVT = Value.getValueType();
1569  if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) {
1570    SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT);
1571    return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero);
1572  }
1573
1574  // Transform value to integer, clear the sign bit and transform back.
1575  FloatSignAsInt ValueAsInt;
1576  getSignAsIntValue(ValueAsInt, DL, Value);
1577  EVT IntVT = ValueAsInt.IntValue.getValueType();
1578  SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT);
1579  SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue,
1580                                    ClearSignMask);
1581  return modifySignAsInt(ValueAsInt, DL, ClearedSign);
1582}
1583
1584void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1585                                           SmallVectorImpl<SDValue> &Results) {
1586  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1587  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1588          " not tell us which reg is the stack pointer!");
1589  SDLoc dl(Node);
1590  EVT VT = Node->getValueType(0);
1591  SDValue Tmp1 = SDValue(Node, 0);
1592  SDValue Tmp2 = SDValue(Node, 1);
1593  SDValue Tmp3 = Node->getOperand(2);
1594  SDValue Chain = Tmp1.getOperand(0);
1595
1596  // Chain the dynamic stack allocation so that it doesn't modify the stack
1597  // pointer when other instructions are using the stack.
1598  Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
1599
1600  SDValue Size  = Tmp2.getOperand(1);
1601  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1602  Chain = SP.getValue(1);
1603  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1604  unsigned StackAlign =
1605      DAG.getSubtarget().getFrameLowering()->getStackAlignment();
1606  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1607  if (Align > StackAlign)
1608    Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
1609                       DAG.getConstant(-(uint64_t)Align, dl, VT));
1610  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1611
1612  Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
1613                            DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
1614
1615  Results.push_back(Tmp1);
1616  Results.push_back(Tmp2);
1617}
1618
1619/// Legalize a SETCC with given LHS and RHS and condition code CC on the current
1620/// target.
1621///
1622/// If the SETCC has been legalized using AND / OR, then the legalized node
1623/// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
1624/// will be set to false.
1625///
1626/// If the SETCC has been legalized by using getSetCCSwappedOperands(),
1627/// then the values of LHS and RHS will be swapped, CC will be set to the
1628/// new condition, and NeedInvert will be set to false.
1629///
1630/// If the SETCC has been legalized using the inverse condcode, then LHS and
1631/// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
1632/// will be set to true. The caller must invert the result of the SETCC with
1633/// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
1634/// of a true/false result.
1635///
1636/// \returns true if the SetCC has been legalized, false if it hasn't.
1637bool SelectionDAGLegalize::LegalizeSetCCCondCode(
1638    EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, bool &NeedInvert,
1639    const SDLoc &dl, SDValue &Chain, bool IsSignaling) {
1640  MVT OpVT = LHS.getSimpleValueType();
1641  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1642  NeedInvert = false;
1643  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1644  default: llvm_unreachable("Unknown condition code action!");
1645  case TargetLowering::Legal:
1646    // Nothing to do.
1647    break;
1648  case TargetLowering::Expand: {
1649    ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
1650    if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1651      std::swap(LHS, RHS);
1652      CC = DAG.getCondCode(InvCC);
1653      return true;
1654    }
1655    // Swapping operands didn't work. Try inverting the condition.
1656    bool NeedSwap = false;
1657    InvCC = getSetCCInverse(CCCode, OpVT);
1658    if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1659      // If inverting the condition is not enough, try swapping operands
1660      // on top of it.
1661      InvCC = ISD::getSetCCSwappedOperands(InvCC);
1662      NeedSwap = true;
1663    }
1664    if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1665      CC = DAG.getCondCode(InvCC);
1666      NeedInvert = true;
1667      if (NeedSwap)
1668        std::swap(LHS, RHS);
1669      return true;
1670    }
1671
1672    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1673    unsigned Opc = 0;
1674    switch (CCCode) {
1675    default: llvm_unreachable("Don't know how to expand this condition!");
1676    case ISD::SETO:
1677        assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT)
1678            && "If SETO is expanded, SETOEQ must be legal!");
1679        CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1680    case ISD::SETUO:
1681        assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT)
1682            && "If SETUO is expanded, SETUNE must be legal!");
1683        CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR;  break;
1684    case ISD::SETOEQ:
1685    case ISD::SETOGT:
1686    case ISD::SETOGE:
1687    case ISD::SETOLT:
1688    case ISD::SETOLE:
1689    case ISD::SETONE:
1690    case ISD::SETUEQ:
1691    case ISD::SETUNE:
1692    case ISD::SETUGT:
1693    case ISD::SETUGE:
1694    case ISD::SETULT:
1695    case ISD::SETULE:
1696        // If we are floating point, assign and break, otherwise fall through.
1697        if (!OpVT.isInteger()) {
1698          // We can use the 4th bit to tell if we are the unordered
1699          // or ordered version of the opcode.
1700          CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1701          Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1702          CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1703          break;
1704        }
1705        // Fallthrough if we are unsigned integer.
1706        LLVM_FALLTHROUGH;
1707    case ISD::SETLE:
1708    case ISD::SETGT:
1709    case ISD::SETGE:
1710    case ISD::SETLT:
1711    case ISD::SETNE:
1712    case ISD::SETEQ:
1713      // If all combinations of inverting the condition and swapping operands
1714      // didn't work then we have no means to expand the condition.
1715      llvm_unreachable("Don't know how to expand this condition!");
1716    }
1717
1718    SDValue SetCC1, SetCC2;
1719    if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1720      // If we aren't the ordered or unorder operation,
1721      // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1722      SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
1723      SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
1724    } else {
1725      // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1726      SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
1727      SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
1728    }
1729    if (Chain)
1730      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
1731                          SetCC2.getValue(1));
1732    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1733    RHS = SDValue();
1734    CC  = SDValue();
1735    return true;
1736  }
1737  }
1738  return false;
1739}
1740
1741/// Emit a store/load combination to the stack.  This stores
1742/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1743/// a load from the stack slot to DestVT, extending it if needed.
1744/// The resultant code need not be legal.
1745SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1746                                               EVT DestVT, const SDLoc &dl) {
1747  return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode());
1748}
1749
1750SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1751                                               EVT DestVT, const SDLoc &dl,
1752                                               SDValue Chain) {
1753  // Create the stack frame object.
1754  unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment(
1755      SrcOp.getValueType().getTypeForEVT(*DAG.getContext()));
1756  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1757
1758  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1759  int SPFI = StackPtrFI->getIndex();
1760  MachinePointerInfo PtrInfo =
1761      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
1762
1763  unsigned SrcSize = SrcOp.getValueSizeInBits();
1764  unsigned SlotSize = SlotVT.getSizeInBits();
1765  unsigned DestSize = DestVT.getSizeInBits();
1766  Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1767  unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType);
1768
1769  // Emit a store to the stack slot.  Use a truncstore if the input value is
1770  // later than DestVT.
1771  SDValue Store;
1772
1773  if (SrcSize > SlotSize)
1774    Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo,
1775                              SlotVT, SrcAlign);
1776  else {
1777    assert(SrcSize == SlotSize && "Invalid store");
1778    Store =
1779        DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign);
1780  }
1781
1782  // Result is a load from the stack slot.
1783  if (SlotSize == DestSize)
1784    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign);
1785
1786  assert(SlotSize < DestSize && "Unknown extension!");
1787  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT,
1788                        DestAlign);
1789}
1790
1791SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1792  SDLoc dl(Node);
1793  // Create a vector sized/aligned stack slot, store the value to element #0,
1794  // then load the whole vector back out.
1795  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1796
1797  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1798  int SPFI = StackPtrFI->getIndex();
1799
1800  SDValue Ch = DAG.getTruncStore(
1801      DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr,
1802      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI),
1803      Node->getValueType(0).getVectorElementType());
1804  return DAG.getLoad(
1805      Node->getValueType(0), dl, Ch, StackPtr,
1806      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
1807}
1808
1809static bool
1810ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
1811                     const TargetLowering &TLI, SDValue &Res) {
1812  unsigned NumElems = Node->getNumOperands();
1813  SDLoc dl(Node);
1814  EVT VT = Node->getValueType(0);
1815
1816  // Try to group the scalars into pairs, shuffle the pairs together, then
1817  // shuffle the pairs of pairs together, etc. until the vector has
1818  // been built. This will work only if all of the necessary shuffle masks
1819  // are legal.
1820
1821  // We do this in two phases; first to check the legality of the shuffles,
1822  // and next, assuming that all shuffles are legal, to create the new nodes.
1823  for (int Phase = 0; Phase < 2; ++Phase) {
1824    SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals,
1825                                                              NewIntermedVals;
1826    for (unsigned i = 0; i < NumElems; ++i) {
1827      SDValue V = Node->getOperand(i);
1828      if (V.isUndef())
1829        continue;
1830
1831      SDValue Vec;
1832      if (Phase)
1833        Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
1834      IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
1835    }
1836
1837    while (IntermedVals.size() > 2) {
1838      NewIntermedVals.clear();
1839      for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
1840        // This vector and the next vector are shuffled together (simply to
1841        // append the one to the other).
1842        SmallVector<int, 16> ShuffleVec(NumElems, -1);
1843
1844        SmallVector<int, 16> FinalIndices;
1845        FinalIndices.reserve(IntermedVals[i].second.size() +
1846                             IntermedVals[i+1].second.size());
1847
1848        int k = 0;
1849        for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
1850             ++j, ++k) {
1851          ShuffleVec[k] = j;
1852          FinalIndices.push_back(IntermedVals[i].second[j]);
1853        }
1854        for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
1855             ++j, ++k) {
1856          ShuffleVec[k] = NumElems + j;
1857          FinalIndices.push_back(IntermedVals[i+1].second[j]);
1858        }
1859
1860        SDValue Shuffle;
1861        if (Phase)
1862          Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
1863                                         IntermedVals[i+1].first,
1864                                         ShuffleVec);
1865        else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1866          return false;
1867        NewIntermedVals.push_back(
1868            std::make_pair(Shuffle, std::move(FinalIndices)));
1869      }
1870
1871      // If we had an odd number of defined values, then append the last
1872      // element to the array of new vectors.
1873      if ((IntermedVals.size() & 1) != 0)
1874        NewIntermedVals.push_back(IntermedVals.back());
1875
1876      IntermedVals.swap(NewIntermedVals);
1877    }
1878
1879    assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
1880           "Invalid number of intermediate vectors");
1881    SDValue Vec1 = IntermedVals[0].first;
1882    SDValue Vec2;
1883    if (IntermedVals.size() > 1)
1884      Vec2 = IntermedVals[1].first;
1885    else if (Phase)
1886      Vec2 = DAG.getUNDEF(VT);
1887
1888    SmallVector<int, 16> ShuffleVec(NumElems, -1);
1889    for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
1890      ShuffleVec[IntermedVals[0].second[i]] = i;
1891    for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
1892      ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
1893
1894    if (Phase)
1895      Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1896    else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1897      return false;
1898  }
1899
1900  return true;
1901}
1902
1903/// Expand a BUILD_VECTOR node on targets that don't
1904/// support the operation, but do support the resultant vector type.
1905SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1906  unsigned NumElems = Node->getNumOperands();
1907  SDValue Value1, Value2;
1908  SDLoc dl(Node);
1909  EVT VT = Node->getValueType(0);
1910  EVT OpVT = Node->getOperand(0).getValueType();
1911  EVT EltVT = VT.getVectorElementType();
1912
1913  // If the only non-undef value is the low element, turn this into a
1914  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1915  bool isOnlyLowElement = true;
1916  bool MoreThanTwoValues = false;
1917  bool isConstant = true;
1918  for (unsigned i = 0; i < NumElems; ++i) {
1919    SDValue V = Node->getOperand(i);
1920    if (V.isUndef())
1921      continue;
1922    if (i > 0)
1923      isOnlyLowElement = false;
1924    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1925      isConstant = false;
1926
1927    if (!Value1.getNode()) {
1928      Value1 = V;
1929    } else if (!Value2.getNode()) {
1930      if (V != Value1)
1931        Value2 = V;
1932    } else if (V != Value1 && V != Value2) {
1933      MoreThanTwoValues = true;
1934    }
1935  }
1936
1937  if (!Value1.getNode())
1938    return DAG.getUNDEF(VT);
1939
1940  if (isOnlyLowElement)
1941    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1942
1943  // If all elements are constants, create a load from the constant pool.
1944  if (isConstant) {
1945    SmallVector<Constant*, 16> CV;
1946    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1947      if (ConstantFPSDNode *V =
1948          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1949        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1950      } else if (ConstantSDNode *V =
1951                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1952        if (OpVT==EltVT)
1953          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1954        else {
1955          // If OpVT and EltVT don't match, EltVT is not legal and the
1956          // element values have been promoted/truncated earlier.  Undo this;
1957          // we don't want a v16i8 to become a v16i32 for example.
1958          const ConstantInt *CI = V->getConstantIntValue();
1959          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1960                                        CI->getZExtValue()));
1961        }
1962      } else {
1963        assert(Node->getOperand(i).isUndef());
1964        Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1965        CV.push_back(UndefValue::get(OpNTy));
1966      }
1967    }
1968    Constant *CP = ConstantVector::get(CV);
1969    SDValue CPIdx =
1970        DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout()));
1971    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1972    return DAG.getLoad(
1973        VT, dl, DAG.getEntryNode(), CPIdx,
1974        MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
1975        Alignment);
1976  }
1977
1978  SmallSet<SDValue, 16> DefinedValues;
1979  for (unsigned i = 0; i < NumElems; ++i) {
1980    if (Node->getOperand(i).isUndef())
1981      continue;
1982    DefinedValues.insert(Node->getOperand(i));
1983  }
1984
1985  if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
1986    if (!MoreThanTwoValues) {
1987      SmallVector<int, 8> ShuffleVec(NumElems, -1);
1988      for (unsigned i = 0; i < NumElems; ++i) {
1989        SDValue V = Node->getOperand(i);
1990        if (V.isUndef())
1991          continue;
1992        ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1993      }
1994      if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1995        // Get the splatted value into the low element of a vector register.
1996        SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1997        SDValue Vec2;
1998        if (Value2.getNode())
1999          Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
2000        else
2001          Vec2 = DAG.getUNDEF(VT);
2002
2003        // Return shuffle(LowValVec, undef, <0,0,0,0>)
2004        return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
2005      }
2006    } else {
2007      SDValue Res;
2008      if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
2009        return Res;
2010    }
2011  }
2012
2013  // Otherwise, we can't handle this case efficiently.
2014  return ExpandVectorBuildThroughStack(Node);
2015}
2016
2017SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) {
2018  SDLoc DL(Node);
2019  EVT VT = Node->getValueType(0);
2020  SDValue SplatVal = Node->getOperand(0);
2021
2022  return DAG.getSplatBuildVector(VT, DL, SplatVal);
2023}
2024
2025// Expand a node into a call to a libcall.  If the result value
2026// does not fit into a register, return the lo part and set the hi part to the
2027// by-reg argument.  If it does fit into a single register, return the result
2028// and leave the Hi part unset.
2029SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2030                                            bool isSigned) {
2031  TargetLowering::ArgListTy Args;
2032  TargetLowering::ArgListEntry Entry;
2033  for (const SDValue &Op : Node->op_values()) {
2034    EVT ArgVT = Op.getValueType();
2035    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2036    Entry.Node = Op;
2037    Entry.Ty = ArgTy;
2038    Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2039    Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2040    Args.push_back(Entry);
2041  }
2042  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2043                                         TLI.getPointerTy(DAG.getDataLayout()));
2044
2045  EVT RetVT = Node->getValueType(0);
2046  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2047
2048  // By default, the input chain to this libcall is the entry node of the
2049  // function. If the libcall is going to be emitted as a tail call then
2050  // TLI.isUsedByReturnOnly will change it to the right chain if the return
2051  // node which is being folded has a non-entry input chain.
2052  SDValue InChain = DAG.getEntryNode();
2053
2054  // isTailCall may be true since the callee does not reference caller stack
2055  // frame. Check if it's in the right position and that the return types match.
2056  SDValue TCChain = InChain;
2057  const Function &F = DAG.getMachineFunction().getFunction();
2058  bool isTailCall =
2059      TLI.isInTailCallPosition(DAG, Node, TCChain) &&
2060      (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy());
2061  if (isTailCall)
2062    InChain = TCChain;
2063
2064  TargetLowering::CallLoweringInfo CLI(DAG);
2065  bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned);
2066  CLI.setDebugLoc(SDLoc(Node))
2067      .setChain(InChain)
2068      .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2069                    std::move(Args))
2070      .setTailCall(isTailCall)
2071      .setSExtResult(signExtend)
2072      .setZExtResult(!signExtend)
2073      .setIsPostTypeLegalization(true);
2074
2075  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2076
2077  if (!CallInfo.second.getNode()) {
2078    LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG));
2079    // It's a tailcall, return the chain (which is the DAG root).
2080    return DAG.getRoot();
2081  }
2082
2083  LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG));
2084  return CallInfo.first;
2085}
2086
2087void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2088                                           RTLIB::Libcall Call_F32,
2089                                           RTLIB::Libcall Call_F64,
2090                                           RTLIB::Libcall Call_F80,
2091                                           RTLIB::Libcall Call_F128,
2092                                           RTLIB::Libcall Call_PPCF128,
2093                                           SmallVectorImpl<SDValue> &Results) {
2094  RTLIB::Libcall LC;
2095  switch (Node->getSimpleValueType(0).SimpleTy) {
2096  default: llvm_unreachable("Unexpected request for libcall!");
2097  case MVT::f32: LC = Call_F32; break;
2098  case MVT::f64: LC = Call_F64; break;
2099  case MVT::f80: LC = Call_F80; break;
2100  case MVT::f128: LC = Call_F128; break;
2101  case MVT::ppcf128: LC = Call_PPCF128; break;
2102  }
2103
2104  if (Node->isStrictFPOpcode()) {
2105    EVT RetVT = Node->getValueType(0);
2106    SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
2107    TargetLowering::MakeLibCallOptions CallOptions;
2108    // FIXME: This doesn't support tail calls.
2109    std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
2110                                                      Ops, CallOptions,
2111                                                      SDLoc(Node),
2112                                                      Node->getOperand(0));
2113    Results.push_back(Tmp.first);
2114    Results.push_back(Tmp.second);
2115  } else {
2116    SDValue Tmp = ExpandLibCall(LC, Node, false);
2117    Results.push_back(Tmp);
2118  }
2119}
2120
2121SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2122                                               RTLIB::Libcall Call_I8,
2123                                               RTLIB::Libcall Call_I16,
2124                                               RTLIB::Libcall Call_I32,
2125                                               RTLIB::Libcall Call_I64,
2126                                               RTLIB::Libcall Call_I128) {
2127  RTLIB::Libcall LC;
2128  switch (Node->getSimpleValueType(0).SimpleTy) {
2129  default: llvm_unreachable("Unexpected request for libcall!");
2130  case MVT::i8:   LC = Call_I8; break;
2131  case MVT::i16:  LC = Call_I16; break;
2132  case MVT::i32:  LC = Call_I32; break;
2133  case MVT::i64:  LC = Call_I64; break;
2134  case MVT::i128: LC = Call_I128; break;
2135  }
2136  return ExpandLibCall(LC, Node, isSigned);
2137}
2138
2139/// Expand the node to a libcall based on first argument type (for instance
2140/// lround and its variant).
2141void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node,
2142                                            RTLIB::Libcall Call_F32,
2143                                            RTLIB::Libcall Call_F64,
2144                                            RTLIB::Libcall Call_F80,
2145                                            RTLIB::Libcall Call_F128,
2146                                            RTLIB::Libcall Call_PPCF128,
2147                                            SmallVectorImpl<SDValue> &Results) {
2148  EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType();
2149
2150  RTLIB::Libcall LC;
2151  switch (InVT.getSimpleVT().SimpleTy) {
2152  default: llvm_unreachable("Unexpected request for libcall!");
2153  case MVT::f32:     LC = Call_F32; break;
2154  case MVT::f64:     LC = Call_F64; break;
2155  case MVT::f80:     LC = Call_F80; break;
2156  case MVT::f128:    LC = Call_F128; break;
2157  case MVT::ppcf128: LC = Call_PPCF128; break;
2158  }
2159
2160  if (Node->isStrictFPOpcode()) {
2161    EVT RetVT = Node->getValueType(0);
2162    SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
2163    TargetLowering::MakeLibCallOptions CallOptions;
2164    // FIXME: This doesn't support tail calls.
2165    std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
2166                                                      Ops, CallOptions,
2167                                                      SDLoc(Node),
2168                                                      Node->getOperand(0));
2169    Results.push_back(Tmp.first);
2170    Results.push_back(Tmp.second);
2171  } else {
2172    SDValue Tmp = ExpandLibCall(LC, Node, false);
2173    Results.push_back(Tmp);
2174  }
2175}
2176
2177/// Issue libcalls to __{u}divmod to compute div / rem pairs.
2178void
2179SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2180                                          SmallVectorImpl<SDValue> &Results) {
2181  unsigned Opcode = Node->getOpcode();
2182  bool isSigned = Opcode == ISD::SDIVREM;
2183
2184  RTLIB::Libcall LC;
2185  switch (Node->getSimpleValueType(0).SimpleTy) {
2186  default: llvm_unreachable("Unexpected request for libcall!");
2187  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2188  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2189  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2190  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2191  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2192  }
2193
2194  // The input chain to this libcall is the entry node of the function.
2195  // Legalizing the call will automatically add the previous call to the
2196  // dependence.
2197  SDValue InChain = DAG.getEntryNode();
2198
2199  EVT RetVT = Node->getValueType(0);
2200  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2201
2202  TargetLowering::ArgListTy Args;
2203  TargetLowering::ArgListEntry Entry;
2204  for (const SDValue &Op : Node->op_values()) {
2205    EVT ArgVT = Op.getValueType();
2206    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2207    Entry.Node = Op;
2208    Entry.Ty = ArgTy;
2209    Entry.IsSExt = isSigned;
2210    Entry.IsZExt = !isSigned;
2211    Args.push_back(Entry);
2212  }
2213
2214  // Also pass the return address of the remainder.
2215  SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2216  Entry.Node = FIPtr;
2217  Entry.Ty = RetTy->getPointerTo();
2218  Entry.IsSExt = isSigned;
2219  Entry.IsZExt = !isSigned;
2220  Args.push_back(Entry);
2221
2222  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2223                                         TLI.getPointerTy(DAG.getDataLayout()));
2224
2225  SDLoc dl(Node);
2226  TargetLowering::CallLoweringInfo CLI(DAG);
2227  CLI.setDebugLoc(dl)
2228      .setChain(InChain)
2229      .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2230                    std::move(Args))
2231      .setSExtResult(isSigned)
2232      .setZExtResult(!isSigned);
2233
2234  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2235
2236  // Remainder is loaded back from the stack frame.
2237  SDValue Rem =
2238      DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo());
2239  Results.push_back(CallInfo.first);
2240  Results.push_back(Rem);
2241}
2242
2243/// Return true if sincos libcall is available.
2244static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2245  RTLIB::Libcall LC;
2246  switch (Node->getSimpleValueType(0).SimpleTy) {
2247  default: llvm_unreachable("Unexpected request for libcall!");
2248  case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2249  case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2250  case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2251  case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2252  case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2253  }
2254  return TLI.getLibcallName(LC) != nullptr;
2255}
2256
2257/// Only issue sincos libcall if both sin and cos are needed.
2258static bool useSinCos(SDNode *Node) {
2259  unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2260    ? ISD::FCOS : ISD::FSIN;
2261
2262  SDValue Op0 = Node->getOperand(0);
2263  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2264       UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2265    SDNode *User = *UI;
2266    if (User == Node)
2267      continue;
2268    // The other user might have been turned into sincos already.
2269    if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2270      return true;
2271  }
2272  return false;
2273}
2274
2275/// Issue libcalls to sincos to compute sin / cos pairs.
2276void
2277SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2278                                          SmallVectorImpl<SDValue> &Results) {
2279  RTLIB::Libcall LC;
2280  switch (Node->getSimpleValueType(0).SimpleTy) {
2281  default: llvm_unreachable("Unexpected request for libcall!");
2282  case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2283  case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2284  case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2285  case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2286  case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2287  }
2288
2289  // The input chain to this libcall is the entry node of the function.
2290  // Legalizing the call will automatically add the previous call to the
2291  // dependence.
2292  SDValue InChain = DAG.getEntryNode();
2293
2294  EVT RetVT = Node->getValueType(0);
2295  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2296
2297  TargetLowering::ArgListTy Args;
2298  TargetLowering::ArgListEntry Entry;
2299
2300  // Pass the argument.
2301  Entry.Node = Node->getOperand(0);
2302  Entry.Ty = RetTy;
2303  Entry.IsSExt = false;
2304  Entry.IsZExt = false;
2305  Args.push_back(Entry);
2306
2307  // Pass the return address of sin.
2308  SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2309  Entry.Node = SinPtr;
2310  Entry.Ty = RetTy->getPointerTo();
2311  Entry.IsSExt = false;
2312  Entry.IsZExt = false;
2313  Args.push_back(Entry);
2314
2315  // Also pass the return address of the cos.
2316  SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2317  Entry.Node = CosPtr;
2318  Entry.Ty = RetTy->getPointerTo();
2319  Entry.IsSExt = false;
2320  Entry.IsZExt = false;
2321  Args.push_back(Entry);
2322
2323  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2324                                         TLI.getPointerTy(DAG.getDataLayout()));
2325
2326  SDLoc dl(Node);
2327  TargetLowering::CallLoweringInfo CLI(DAG);
2328  CLI.setDebugLoc(dl).setChain(InChain).setLibCallee(
2329      TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee,
2330      std::move(Args));
2331
2332  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2333
2334  Results.push_back(
2335      DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo()));
2336  Results.push_back(
2337      DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo()));
2338}
2339
2340/// This function is responsible for legalizing a
2341/// INT_TO_FP operation of the specified operand when the target requests that
2342/// we expand it.  At this point, we know that the result and operand types are
2343/// legal for the target.
2344SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node,
2345                                                   SDValue &Chain) {
2346  bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP ||
2347                   Node->getOpcode() == ISD::SINT_TO_FP);
2348  EVT DestVT = Node->getValueType(0);
2349  SDLoc dl(Node);
2350  unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
2351  SDValue Op0 = Node->getOperand(OpNo);
2352  EVT SrcVT = Op0.getValueType();
2353
2354  // TODO: Should any fast-math-flags be set for the created nodes?
2355  LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n");
2356  if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2357    LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double "
2358                         "expansion\n");
2359
2360    // Get the stack frame index of a 8 byte buffer.
2361    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2362
2363    // word offset constant for Hi/Lo address computation
2364    SDValue WordOff = DAG.getConstant(sizeof(int), dl,
2365                                      StackSlot.getValueType());
2366    // set up Hi and Lo (into buffer) address based on endian
2367    SDValue Hi = StackSlot;
2368    SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(),
2369                             StackSlot, WordOff);
2370    if (DAG.getDataLayout().isLittleEndian())
2371      std::swap(Hi, Lo);
2372
2373    // if signed map to unsigned space
2374    SDValue Op0Mapped;
2375    if (isSigned) {
2376      // constant used to invert sign bit (signed to unsigned mapping)
2377      SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32);
2378      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2379    } else {
2380      Op0Mapped = Op0;
2381    }
2382    // store the lo of the constructed double - based on integer input
2383    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo,
2384                                  MachinePointerInfo());
2385    // initial hi portion of constructed double
2386    SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32);
2387    // store the hi of the constructed double - biased exponent
2388    SDValue Store2 =
2389        DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo());
2390    // load the constructed double
2391    SDValue Load =
2392        DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo());
2393    // FP constant to bias correct the final result
2394    SDValue Bias = DAG.getConstantFP(isSigned ?
2395                                     BitsToDouble(0x4330000080000000ULL) :
2396                                     BitsToDouble(0x4330000000000000ULL),
2397                                     dl, MVT::f64);
2398    // Subtract the bias and get the final result.
2399    SDValue Sub;
2400    SDValue Result;
2401    if (Node->isStrictFPOpcode()) {
2402      Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other},
2403                        {Node->getOperand(0), Load, Bias});
2404      Chain = Sub.getValue(1);
2405      if (DestVT != Sub.getValueType()) {
2406        std::pair<SDValue, SDValue> ResultPair;
2407        ResultPair =
2408            DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT);
2409        Result = ResultPair.first;
2410        Chain = ResultPair.second;
2411      }
2412      else
2413        Result = Sub;
2414    } else {
2415      Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2416      Result = DAG.getFPExtendOrRound(Sub, dl, DestVT);
2417    }
2418    return Result;
2419  }
2420  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2421  // Code below here assumes !isSigned without checking again.
2422  // FIXME: This can produce slightly incorrect results. See details in
2423  // FIXME: https://reviews.llvm.org/D69275
2424
2425  SDValue Tmp1;
2426  if (Node->isStrictFPOpcode()) {
2427    Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
2428                       { Node->getOperand(0), Op0 });
2429  } else
2430    Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2431
2432  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0,
2433                                 DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2434  SDValue Zero = DAG.getIntPtrConstant(0, dl),
2435          Four = DAG.getIntPtrConstant(4, dl);
2436  SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
2437                                    SignSet, Four, Zero);
2438
2439  // If the sign bit of the integer is set, the large number will be treated
2440  // as a negative number.  To counteract this, the dynamic code adds an
2441  // offset depending on the data type.
2442  uint64_t FF;
2443  switch (SrcVT.getSimpleVT().SimpleTy) {
2444  default: llvm_unreachable("Unsupported integer type!");
2445  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2446  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2447  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2448  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2449  }
2450  if (DAG.getDataLayout().isLittleEndian())
2451    FF <<= 32;
2452  Constant *FudgeFactor = ConstantInt::get(
2453                                       Type::getInt64Ty(*DAG.getContext()), FF);
2454
2455  SDValue CPIdx =
2456      DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout()));
2457  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2458  CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
2459  Alignment = std::min(Alignment, 4u);
2460  SDValue FudgeInReg;
2461  if (DestVT == MVT::f32)
2462    FudgeInReg = DAG.getLoad(
2463        MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2464        MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2465        Alignment);
2466  else {
2467    SDValue Load = DAG.getExtLoad(
2468        ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx,
2469        MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
2470        Alignment);
2471    HandleSDNode Handle(Load);
2472    LegalizeOp(Load.getNode());
2473    FudgeInReg = Handle.getValue();
2474  }
2475
2476  if (Node->isStrictFPOpcode()) {
2477    SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
2478                                 { Tmp1.getValue(1), Tmp1, FudgeInReg });
2479    Chain = Result.getValue(1);
2480    return Result;
2481  }
2482
2483  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2484}
2485
2486/// This function is responsible for legalizing a
2487/// *INT_TO_FP operation of the specified operand when the target requests that
2488/// we promote it.  At this point, we know that the result and operand types are
2489/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2490/// operation that takes a larger input.
2491void SelectionDAGLegalize::PromoteLegalINT_TO_FP(
2492    SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) {
2493  bool IsStrict = N->isStrictFPOpcode();
2494  bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP ||
2495                  N->getOpcode() == ISD::STRICT_SINT_TO_FP;
2496  EVT DestVT = N->getValueType(0);
2497  SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
2498  unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP;
2499  unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP;
2500
2501  // First step, figure out the appropriate *INT_TO_FP operation to use.
2502  EVT NewInTy = LegalOp.getValueType();
2503
2504  unsigned OpToUse = 0;
2505
2506  // Scan for the appropriate larger type to use.
2507  while (true) {
2508    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2509    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2510
2511    // If the target supports SINT_TO_FP of this type, use it.
2512    if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) {
2513      OpToUse = SIntOp;
2514      break;
2515    }
2516    if (IsSigned)
2517      continue;
2518
2519    // If the target supports UINT_TO_FP of this type, use it.
2520    if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) {
2521      OpToUse = UIntOp;
2522      break;
2523    }
2524
2525    // Otherwise, try a larger type.
2526  }
2527
2528  // Okay, we found the operation and type to use.  Zero extend our input to the
2529  // desired type then run the operation on it.
2530  if (IsStrict) {
2531    SDValue Res =
2532        DAG.getNode(OpToUse, dl, {DestVT, MVT::Other},
2533                    {N->getOperand(0),
2534                     DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2535                                 dl, NewInTy, LegalOp)});
2536    Results.push_back(Res);
2537    Results.push_back(Res.getValue(1));
2538    return;
2539  }
2540
2541  Results.push_back(
2542      DAG.getNode(OpToUse, dl, DestVT,
2543                  DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2544                              dl, NewInTy, LegalOp)));
2545}
2546
2547/// This function is responsible for legalizing a
2548/// FP_TO_*INT operation of the specified operand when the target requests that
2549/// we promote it.  At this point, we know that the result and operand types are
2550/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2551/// operation that returns a larger result.
2552void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
2553                                                 SmallVectorImpl<SDValue> &Results) {
2554  bool IsStrict = N->isStrictFPOpcode();
2555  bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
2556                  N->getOpcode() == ISD::STRICT_FP_TO_SINT;
2557  EVT DestVT = N->getValueType(0);
2558  SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
2559  // First step, figure out the appropriate FP_TO*INT operation to use.
2560  EVT NewOutTy = DestVT;
2561
2562  unsigned OpToUse = 0;
2563
2564  // Scan for the appropriate larger type to use.
2565  while (true) {
2566    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2567    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2568
2569    // A larger signed type can hold all unsigned values of the requested type,
2570    // so using FP_TO_SINT is valid
2571    OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT;
2572    if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
2573      break;
2574
2575    // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2576    OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT;
2577    if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
2578      break;
2579
2580    // Otherwise, try a larger type.
2581  }
2582
2583  // Okay, we found the operation and type to use.
2584  SDValue Operation;
2585  if (IsStrict) {
2586    SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other);
2587    Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp);
2588  } else
2589    Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2590
2591  // Truncate the result of the extended FP_TO_*INT operation to the desired
2592  // size.
2593  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2594  Results.push_back(Trunc);
2595  if (IsStrict)
2596    Results.push_back(Operation.getValue(1));
2597}
2598
2599/// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts.
2600SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) {
2601  EVT VT = Op.getValueType();
2602  EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2603  unsigned Sz = VT.getScalarSizeInBits();
2604
2605  SDValue Tmp, Tmp2, Tmp3;
2606
2607  // If we can, perform BSWAP first and then the mask+swap the i4, then i2
2608  // and finally the i1 pairs.
2609  // TODO: We can easily support i4/i2 legal types if any target ever does.
2610  if (Sz >= 8 && isPowerOf2_32(Sz)) {
2611    // Create the masks - repeating the pattern every byte.
2612    APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0));
2613    APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC));
2614    APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA));
2615    APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F));
2616    APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33));
2617    APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55));
2618
2619    // BSWAP if the type is wider than a single byte.
2620    Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
2621
2622    // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
2623    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT));
2624    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT));
2625    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT));
2626    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
2627    Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2628
2629    // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
2630    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT));
2631    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT));
2632    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT));
2633    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
2634    Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2635
2636    // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
2637    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT));
2638    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT));
2639    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT));
2640    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
2641    Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2642    return Tmp;
2643  }
2644
2645  Tmp = DAG.getConstant(0, dl, VT);
2646  for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
2647    if (I < J)
2648      Tmp2 =
2649          DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
2650    else
2651      Tmp2 =
2652          DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
2653
2654    APInt Shift(Sz, 1);
2655    Shift <<= J;
2656    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
2657    Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
2658  }
2659
2660  return Tmp;
2661}
2662
2663/// Open code the operations for BSWAP of the specified operation.
2664SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) {
2665  EVT VT = Op.getValueType();
2666  EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2667  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2668  switch (VT.getSimpleVT().getScalarType().SimpleTy) {
2669  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2670  case MVT::i16:
2671    // Use a rotate by 8. This can be further expanded if necessary.
2672    return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2673  case MVT::i32:
2674    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2675    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2676    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2677    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2678    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2679                       DAG.getConstant(0xFF0000, dl, VT));
2680    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
2681    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2682    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2683    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2684  case MVT::i64:
2685    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2686    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2687    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2688    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2689    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2690    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2691    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2692    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2693    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
2694                       DAG.getConstant(255ULL<<48, dl, VT));
2695    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
2696                       DAG.getConstant(255ULL<<40, dl, VT));
2697    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
2698                       DAG.getConstant(255ULL<<32, dl, VT));
2699    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
2700                       DAG.getConstant(255ULL<<24, dl, VT));
2701    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2702                       DAG.getConstant(255ULL<<16, dl, VT));
2703    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
2704                       DAG.getConstant(255ULL<<8 , dl, VT));
2705    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2706    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2707    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2708    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2709    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2710    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2711    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2712  }
2713}
2714
2715bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2716  LLVM_DEBUG(dbgs() << "Trying to expand node\n");
2717  SmallVector<SDValue, 8> Results;
2718  SDLoc dl(Node);
2719  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2720  bool NeedInvert;
2721  switch (Node->getOpcode()) {
2722  case ISD::ABS:
2723    if (TLI.expandABS(Node, Tmp1, DAG))
2724      Results.push_back(Tmp1);
2725    break;
2726  case ISD::CTPOP:
2727    if (TLI.expandCTPOP(Node, Tmp1, DAG))
2728      Results.push_back(Tmp1);
2729    break;
2730  case ISD::CTLZ:
2731  case ISD::CTLZ_ZERO_UNDEF:
2732    if (TLI.expandCTLZ(Node, Tmp1, DAG))
2733      Results.push_back(Tmp1);
2734    break;
2735  case ISD::CTTZ:
2736  case ISD::CTTZ_ZERO_UNDEF:
2737    if (TLI.expandCTTZ(Node, Tmp1, DAG))
2738      Results.push_back(Tmp1);
2739    break;
2740  case ISD::BITREVERSE:
2741    Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl));
2742    break;
2743  case ISD::BSWAP:
2744    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2745    break;
2746  case ISD::FRAMEADDR:
2747  case ISD::RETURNADDR:
2748  case ISD::FRAME_TO_ARGS_OFFSET:
2749    Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
2750    break;
2751  case ISD::EH_DWARF_CFA: {
2752    SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl,
2753                                        TLI.getPointerTy(DAG.getDataLayout()));
2754    SDValue Offset = DAG.getNode(ISD::ADD, dl,
2755                                 CfaArg.getValueType(),
2756                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
2757                                             CfaArg.getValueType()),
2758                                 CfaArg);
2759    SDValue FA = DAG.getNode(
2760        ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()),
2761        DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())));
2762    Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(),
2763                                  FA, Offset));
2764    break;
2765  }
2766  case ISD::FLT_ROUNDS_:
2767    Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0)));
2768    break;
2769  case ISD::EH_RETURN:
2770  case ISD::EH_LABEL:
2771  case ISD::PREFETCH:
2772  case ISD::VAEND:
2773  case ISD::EH_SJLJ_LONGJMP:
2774    // If the target didn't expand these, there's nothing to do, so just
2775    // preserve the chain and be done.
2776    Results.push_back(Node->getOperand(0));
2777    break;
2778  case ISD::READCYCLECOUNTER:
2779    // If the target didn't expand this, just return 'zero' and preserve the
2780    // chain.
2781    Results.append(Node->getNumValues() - 1,
2782                   DAG.getConstant(0, dl, Node->getValueType(0)));
2783    Results.push_back(Node->getOperand(0));
2784    break;
2785  case ISD::EH_SJLJ_SETJMP:
2786    // If the target didn't expand this, just return 'zero' and preserve the
2787    // chain.
2788    Results.push_back(DAG.getConstant(0, dl, MVT::i32));
2789    Results.push_back(Node->getOperand(0));
2790    break;
2791  case ISD::ATOMIC_LOAD: {
2792    // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2793    SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0));
2794    SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2795    SDValue Swap = DAG.getAtomicCmpSwap(
2796        ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2797        Node->getOperand(0), Node->getOperand(1), Zero, Zero,
2798        cast<AtomicSDNode>(Node)->getMemOperand());
2799    Results.push_back(Swap.getValue(0));
2800    Results.push_back(Swap.getValue(1));
2801    break;
2802  }
2803  case ISD::ATOMIC_STORE: {
2804    // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2805    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2806                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2807                                 Node->getOperand(0),
2808                                 Node->getOperand(1), Node->getOperand(2),
2809                                 cast<AtomicSDNode>(Node)->getMemOperand());
2810    Results.push_back(Swap.getValue(1));
2811    break;
2812  }
2813  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
2814    // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
2815    // splits out the success value as a comparison. Expanding the resulting
2816    // ATOMIC_CMP_SWAP will produce a libcall.
2817    SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2818    SDValue Res = DAG.getAtomicCmpSwap(
2819        ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2820        Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
2821        Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand());
2822
2823    SDValue ExtRes = Res;
2824    SDValue LHS = Res;
2825    SDValue RHS = Node->getOperand(1);
2826
2827    EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT();
2828    EVT OuterType = Node->getValueType(0);
2829    switch (TLI.getExtendForAtomicOps()) {
2830    case ISD::SIGN_EXTEND:
2831      LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res,
2832                        DAG.getValueType(AtomicType));
2833      RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType,
2834                        Node->getOperand(2), DAG.getValueType(AtomicType));
2835      ExtRes = LHS;
2836      break;
2837    case ISD::ZERO_EXTEND:
2838      LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res,
2839                        DAG.getValueType(AtomicType));
2840      RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2841      ExtRes = LHS;
2842      break;
2843    case ISD::ANY_EXTEND:
2844      LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType);
2845      RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2846      break;
2847    default:
2848      llvm_unreachable("Invalid atomic op extension");
2849    }
2850
2851    SDValue Success =
2852        DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ);
2853
2854    Results.push_back(ExtRes.getValue(0));
2855    Results.push_back(Success);
2856    Results.push_back(Res.getValue(1));
2857    break;
2858  }
2859  case ISD::DYNAMIC_STACKALLOC:
2860    ExpandDYNAMIC_STACKALLOC(Node, Results);
2861    break;
2862  case ISD::MERGE_VALUES:
2863    for (unsigned i = 0; i < Node->getNumValues(); i++)
2864      Results.push_back(Node->getOperand(i));
2865    break;
2866  case ISD::UNDEF: {
2867    EVT VT = Node->getValueType(0);
2868    if (VT.isInteger())
2869      Results.push_back(DAG.getConstant(0, dl, VT));
2870    else {
2871      assert(VT.isFloatingPoint() && "Unknown value type!");
2872      Results.push_back(DAG.getConstantFP(0, dl, VT));
2873    }
2874    break;
2875  }
2876  case ISD::STRICT_FP_ROUND:
2877    // When strict mode is enforced we can't do expansion because it
2878    // does not honor the "strict" properties. Only libcall is allowed.
2879    if (TLI.isStrictFPEnabled())
2880      break;
2881    // We might as well mutate to FP_ROUND when FP_ROUND operation is legal
2882    // since this operation is more efficient than stack operation.
2883    if (TLI.getStrictFPOperationAction(Node->getOpcode(),
2884                                       Node->getValueType(0))
2885        == TargetLowering::Legal)
2886      break;
2887    // We fall back to use stack operation when the FP_ROUND operation
2888    // isn't available.
2889    Tmp1 = EmitStackConvert(Node->getOperand(1),
2890                            Node->getValueType(0),
2891                            Node->getValueType(0), dl, Node->getOperand(0));
2892    ReplaceNode(Node, Tmp1.getNode());
2893    LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n");
2894    return true;
2895  case ISD::FP_ROUND:
2896  case ISD::BITCAST:
2897    Tmp1 = EmitStackConvert(Node->getOperand(0),
2898                            Node->getValueType(0),
2899                            Node->getValueType(0), dl);
2900    Results.push_back(Tmp1);
2901    break;
2902  case ISD::STRICT_FP_EXTEND:
2903    // When strict mode is enforced we can't do expansion because it
2904    // does not honor the "strict" properties. Only libcall is allowed.
2905    if (TLI.isStrictFPEnabled())
2906      break;
2907    // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal
2908    // since this operation is more efficient than stack operation.
2909    if (TLI.getStrictFPOperationAction(Node->getOpcode(),
2910                                       Node->getValueType(0))
2911        == TargetLowering::Legal)
2912      break;
2913    // We fall back to use stack operation when the FP_EXTEND operation
2914    // isn't available.
2915    Tmp1 = EmitStackConvert(Node->getOperand(1),
2916                            Node->getOperand(1).getValueType(),
2917                            Node->getValueType(0), dl, Node->getOperand(0));
2918    ReplaceNode(Node, Tmp1.getNode());
2919    LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n");
2920    return true;
2921  case ISD::FP_EXTEND:
2922    Tmp1 = EmitStackConvert(Node->getOperand(0),
2923                            Node->getOperand(0).getValueType(),
2924                            Node->getValueType(0), dl);
2925    Results.push_back(Tmp1);
2926    break;
2927  case ISD::SIGN_EXTEND_INREG: {
2928    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2929    EVT VT = Node->getValueType(0);
2930
2931    // An in-register sign-extend of a boolean is a negation:
2932    // 'true' (1) sign-extended is -1.
2933    // 'false' (0) sign-extended is 0.
2934    // However, we must mask the high bits of the source operand because the
2935    // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero.
2936
2937    // TODO: Do this for vectors too?
2938    if (ExtraVT.getSizeInBits() == 1) {
2939      SDValue One = DAG.getConstant(1, dl, VT);
2940      SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One);
2941      SDValue Zero = DAG.getConstant(0, dl, VT);
2942      SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And);
2943      Results.push_back(Neg);
2944      break;
2945    }
2946
2947    // NOTE: we could fall back on load/store here too for targets without
2948    // SRA.  However, it is doubtful that any exist.
2949    EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2950    unsigned BitsDiff = VT.getScalarSizeInBits() -
2951                        ExtraVT.getScalarSizeInBits();
2952    SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
2953    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2954                       Node->getOperand(0), ShiftCst);
2955    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2956    Results.push_back(Tmp1);
2957    break;
2958  }
2959  case ISD::UINT_TO_FP:
2960  case ISD::STRICT_UINT_TO_FP:
2961    if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) {
2962      Results.push_back(Tmp1);
2963      if (Node->isStrictFPOpcode())
2964        Results.push_back(Tmp2);
2965      break;
2966    }
2967    LLVM_FALLTHROUGH;
2968  case ISD::SINT_TO_FP:
2969  case ISD::STRICT_SINT_TO_FP:
2970    Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2);
2971    Results.push_back(Tmp1);
2972    if (Node->isStrictFPOpcode())
2973      Results.push_back(Tmp2);
2974    break;
2975  case ISD::FP_TO_SINT:
2976    if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
2977      Results.push_back(Tmp1);
2978    break;
2979  case ISD::STRICT_FP_TO_SINT:
2980    if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) {
2981      ReplaceNode(Node, Tmp1.getNode());
2982      LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n");
2983      return true;
2984    }
2985    break;
2986  case ISD::FP_TO_UINT:
2987    if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG))
2988      Results.push_back(Tmp1);
2989    break;
2990  case ISD::STRICT_FP_TO_UINT:
2991    if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) {
2992      // Relink the chain.
2993      DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2);
2994      // Replace the new UINT result.
2995      ReplaceNodeWithValue(SDValue(Node, 0), Tmp1);
2996      LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n");
2997      return true;
2998    }
2999    break;
3000  case ISD::VAARG:
3001    Results.push_back(DAG.expandVAArg(Node));
3002    Results.push_back(Results[0].getValue(1));
3003    break;
3004  case ISD::VACOPY:
3005    Results.push_back(DAG.expandVACopy(Node));
3006    break;
3007  case ISD::EXTRACT_VECTOR_ELT:
3008    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
3009      // This must be an access of the only element.  Return it.
3010      Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
3011                         Node->getOperand(0));
3012    else
3013      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
3014    Results.push_back(Tmp1);
3015    break;
3016  case ISD::EXTRACT_SUBVECTOR:
3017    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
3018    break;
3019  case ISD::INSERT_SUBVECTOR:
3020    Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
3021    break;
3022  case ISD::CONCAT_VECTORS:
3023    Results.push_back(ExpandVectorBuildThroughStack(Node));
3024    break;
3025  case ISD::SCALAR_TO_VECTOR:
3026    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3027    break;
3028  case ISD::INSERT_VECTOR_ELT:
3029    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
3030                                              Node->getOperand(1),
3031                                              Node->getOperand(2), dl));
3032    break;
3033  case ISD::VECTOR_SHUFFLE: {
3034    SmallVector<int, 32> NewMask;
3035    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3036
3037    EVT VT = Node->getValueType(0);
3038    EVT EltVT = VT.getVectorElementType();
3039    SDValue Op0 = Node->getOperand(0);
3040    SDValue Op1 = Node->getOperand(1);
3041    if (!TLI.isTypeLegal(EltVT)) {
3042      EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
3043
3044      // BUILD_VECTOR operands are allowed to be wider than the element type.
3045      // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
3046      // it.
3047      if (NewEltVT.bitsLT(EltVT)) {
3048        // Convert shuffle node.
3049        // If original node was v4i64 and the new EltVT is i32,
3050        // cast operands to v8i32 and re-build the mask.
3051
3052        // Calculate new VT, the size of the new VT should be equal to original.
3053        EVT NewVT =
3054            EVT::getVectorVT(*DAG.getContext(), NewEltVT,
3055                             VT.getSizeInBits() / NewEltVT.getSizeInBits());
3056        assert(NewVT.bitsEq(VT));
3057
3058        // cast operands to new VT
3059        Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
3060        Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
3061
3062        // Convert the shuffle mask
3063        unsigned int factor =
3064                         NewVT.getVectorNumElements()/VT.getVectorNumElements();
3065
3066        // EltVT gets smaller
3067        assert(factor > 0);
3068
3069        for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
3070          if (Mask[i] < 0) {
3071            for (unsigned fi = 0; fi < factor; ++fi)
3072              NewMask.push_back(Mask[i]);
3073          }
3074          else {
3075            for (unsigned fi = 0; fi < factor; ++fi)
3076              NewMask.push_back(Mask[i]*factor+fi);
3077          }
3078        }
3079        Mask = NewMask;
3080        VT = NewVT;
3081      }
3082      EltVT = NewEltVT;
3083    }
3084    unsigned NumElems = VT.getVectorNumElements();
3085    SmallVector<SDValue, 16> Ops;
3086    for (unsigned i = 0; i != NumElems; ++i) {
3087      if (Mask[i] < 0) {
3088        Ops.push_back(DAG.getUNDEF(EltVT));
3089        continue;
3090      }
3091      unsigned Idx = Mask[i];
3092      if (Idx < NumElems)
3093        Ops.push_back(DAG.getNode(
3094            ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
3095            DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))));
3096      else
3097        Ops.push_back(DAG.getNode(
3098            ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1,
3099            DAG.getConstant(Idx - NumElems, dl,
3100                            TLI.getVectorIdxTy(DAG.getDataLayout()))));
3101    }
3102
3103    Tmp1 = DAG.getBuildVector(VT, dl, Ops);
3104    // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3105    Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
3106    Results.push_back(Tmp1);
3107    break;
3108  }
3109  case ISD::EXTRACT_ELEMENT: {
3110    EVT OpTy = Node->getOperand(0).getValueType();
3111    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3112      // 1 -> Hi
3113      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3114                         DAG.getConstant(OpTy.getSizeInBits() / 2, dl,
3115                                         TLI.getShiftAmountTy(
3116                                             Node->getOperand(0).getValueType(),
3117                                             DAG.getDataLayout())));
3118      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3119    } else {
3120      // 0 -> Lo
3121      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3122                         Node->getOperand(0));
3123    }
3124    Results.push_back(Tmp1);
3125    break;
3126  }
3127  case ISD::STACKSAVE:
3128    // Expand to CopyFromReg if the target set
3129    // StackPointerRegisterToSaveRestore.
3130    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3131      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3132                                           Node->getValueType(0)));
3133      Results.push_back(Results[0].getValue(1));
3134    } else {
3135      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3136      Results.push_back(Node->getOperand(0));
3137    }
3138    break;
3139  case ISD::STACKRESTORE:
3140    // Expand to CopyToReg if the target set
3141    // StackPointerRegisterToSaveRestore.
3142    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3143      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3144                                         Node->getOperand(1)));
3145    } else {
3146      Results.push_back(Node->getOperand(0));
3147    }
3148    break;
3149  case ISD::GET_DYNAMIC_AREA_OFFSET:
3150    Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
3151    Results.push_back(Results[0].getValue(0));
3152    break;
3153  case ISD::FCOPYSIGN:
3154    Results.push_back(ExpandFCOPYSIGN(Node));
3155    break;
3156  case ISD::FNEG:
3157    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
3158    Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0));
3159    // TODO: If FNEG has fast-math-flags, propagate them to the FSUB.
3160    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3161                       Node->getOperand(0));
3162    Results.push_back(Tmp1);
3163    break;
3164  case ISD::FABS:
3165    Results.push_back(ExpandFABS(Node));
3166    break;
3167  case ISD::SMIN:
3168  case ISD::SMAX:
3169  case ISD::UMIN:
3170  case ISD::UMAX: {
3171    // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
3172    ISD::CondCode Pred;
3173    switch (Node->getOpcode()) {
3174    default: llvm_unreachable("How did we get here?");
3175    case ISD::SMAX: Pred = ISD::SETGT; break;
3176    case ISD::SMIN: Pred = ISD::SETLT; break;
3177    case ISD::UMAX: Pred = ISD::SETUGT; break;
3178    case ISD::UMIN: Pred = ISD::SETULT; break;
3179    }
3180    Tmp1 = Node->getOperand(0);
3181    Tmp2 = Node->getOperand(1);
3182    Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
3183    Results.push_back(Tmp1);
3184    break;
3185  }
3186  case ISD::FMINNUM:
3187  case ISD::FMAXNUM: {
3188    if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG))
3189      Results.push_back(Expanded);
3190    break;
3191  }
3192  case ISD::FSIN:
3193  case ISD::FCOS: {
3194    EVT VT = Node->getValueType(0);
3195    // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3196    // fcos which share the same operand and both are used.
3197    if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3198         isSinCosLibcallAvailable(Node, TLI))
3199        && useSinCos(Node)) {
3200      SDVTList VTs = DAG.getVTList(VT, VT);
3201      Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3202      if (Node->getOpcode() == ISD::FCOS)
3203        Tmp1 = Tmp1.getValue(1);
3204      Results.push_back(Tmp1);
3205    }
3206    break;
3207  }
3208  case ISD::FMAD:
3209    llvm_unreachable("Illegal fmad should never be formed");
3210
3211  case ISD::FP16_TO_FP:
3212    if (Node->getValueType(0) != MVT::f32) {
3213      // We can extend to types bigger than f32 in two steps without changing
3214      // the result. Since "f16 -> f32" is much more commonly available, give
3215      // CodeGen the option of emitting that before resorting to a libcall.
3216      SDValue Res =
3217          DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
3218      Results.push_back(
3219          DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
3220    }
3221    break;
3222  case ISD::FP_TO_FP16:
3223    LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n");
3224    if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) {
3225      SDValue Op = Node->getOperand(0);
3226      MVT SVT = Op.getSimpleValueType();
3227      if ((SVT == MVT::f64 || SVT == MVT::f80) &&
3228          TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) {
3229        // Under fastmath, we can expand this node into a fround followed by
3230        // a float-half conversion.
3231        SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op,
3232                                       DAG.getIntPtrConstant(0, dl));
3233        Results.push_back(
3234            DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal));
3235      }
3236    }
3237    break;
3238  case ISD::ConstantFP: {
3239    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3240    // Check to see if this FP immediate is already legal.
3241    // If this is a legal constant, turn it into a TargetConstantFP node.
3242    if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0),
3243                          DAG.getMachineFunction().getFunction().hasOptSize()))
3244      Results.push_back(ExpandConstantFP(CFP, true));
3245    break;
3246  }
3247  case ISD::Constant: {
3248    ConstantSDNode *CP = cast<ConstantSDNode>(Node);
3249    Results.push_back(ExpandConstant(CP));
3250    break;
3251  }
3252  case ISD::FSUB: {
3253    EVT VT = Node->getValueType(0);
3254    if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3255        TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
3256      const SDNodeFlags Flags = Node->getFlags();
3257      Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3258      Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags);
3259      Results.push_back(Tmp1);
3260    }
3261    break;
3262  }
3263  case ISD::SUB: {
3264    EVT VT = Node->getValueType(0);
3265    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3266           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3267           "Don't know how to expand this subtraction!");
3268    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3269               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
3270                               VT));
3271    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT));
3272    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3273    break;
3274  }
3275  case ISD::UREM:
3276  case ISD::SREM: {
3277    EVT VT = Node->getValueType(0);
3278    bool isSigned = Node->getOpcode() == ISD::SREM;
3279    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3280    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3281    Tmp2 = Node->getOperand(0);
3282    Tmp3 = Node->getOperand(1);
3283    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3284      SDVTList VTs = DAG.getVTList(VT, VT);
3285      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3286      Results.push_back(Tmp1);
3287    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3288      // X % Y -> X-X/Y*Y
3289      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3290      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3291      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3292      Results.push_back(Tmp1);
3293    }
3294    break;
3295  }
3296  case ISD::UDIV:
3297  case ISD::SDIV: {
3298    bool isSigned = Node->getOpcode() == ISD::SDIV;
3299    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3300    EVT VT = Node->getValueType(0);
3301    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3302      SDVTList VTs = DAG.getVTList(VT, VT);
3303      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3304                         Node->getOperand(1));
3305      Results.push_back(Tmp1);
3306    }
3307    break;
3308  }
3309  case ISD::MULHU:
3310  case ISD::MULHS: {
3311    unsigned ExpandOpcode =
3312        Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI;
3313    EVT VT = Node->getValueType(0);
3314    SDVTList VTs = DAG.getVTList(VT, VT);
3315
3316    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3317                       Node->getOperand(1));
3318    Results.push_back(Tmp1.getValue(1));
3319    break;
3320  }
3321  case ISD::UMUL_LOHI:
3322  case ISD::SMUL_LOHI: {
3323    SDValue LHS = Node->getOperand(0);
3324    SDValue RHS = Node->getOperand(1);
3325    MVT VT = LHS.getSimpleValueType();
3326    unsigned MULHOpcode =
3327        Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS;
3328
3329    if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) {
3330      Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS));
3331      Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS));
3332      break;
3333    }
3334
3335    SmallVector<SDValue, 4> Halves;
3336    EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext());
3337    assert(TLI.isTypeLegal(HalfType));
3338    if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves,
3339                           HalfType, DAG,
3340                           TargetLowering::MulExpansionKind::Always)) {
3341      for (unsigned i = 0; i < 2; ++i) {
3342        SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]);
3343        SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]);
3344        SDValue Shift = DAG.getConstant(
3345            HalfType.getScalarSizeInBits(), dl,
3346            TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3347        Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3348        Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3349      }
3350      break;
3351    }
3352    break;
3353  }
3354  case ISD::MUL: {
3355    EVT VT = Node->getValueType(0);
3356    SDVTList VTs = DAG.getVTList(VT, VT);
3357    // See if multiply or divide can be lowered using two-result operations.
3358    // We just need the low half of the multiply; try both the signed
3359    // and unsigned forms. If the target supports both SMUL_LOHI and
3360    // UMUL_LOHI, form a preference by checking which forms of plain
3361    // MULH it supports.
3362    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3363    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3364    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3365    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3366    unsigned OpToUse = 0;
3367    if (HasSMUL_LOHI && !HasMULHS) {
3368      OpToUse = ISD::SMUL_LOHI;
3369    } else if (HasUMUL_LOHI && !HasMULHU) {
3370      OpToUse = ISD::UMUL_LOHI;
3371    } else if (HasSMUL_LOHI) {
3372      OpToUse = ISD::SMUL_LOHI;
3373    } else if (HasUMUL_LOHI) {
3374      OpToUse = ISD::UMUL_LOHI;
3375    }
3376    if (OpToUse) {
3377      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3378                                    Node->getOperand(1)));
3379      break;
3380    }
3381
3382    SDValue Lo, Hi;
3383    EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
3384    if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
3385        TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
3386        TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
3387        TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
3388        TLI.expandMUL(Node, Lo, Hi, HalfType, DAG,
3389                      TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) {
3390      Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3391      Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
3392      SDValue Shift =
3393          DAG.getConstant(HalfType.getSizeInBits(), dl,
3394                          TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3395      Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3396      Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3397    }
3398    break;
3399  }
3400  case ISD::FSHL:
3401  case ISD::FSHR:
3402    if (TLI.expandFunnelShift(Node, Tmp1, DAG))
3403      Results.push_back(Tmp1);
3404    break;
3405  case ISD::ROTL:
3406  case ISD::ROTR:
3407    if (TLI.expandROT(Node, Tmp1, DAG))
3408      Results.push_back(Tmp1);
3409    break;
3410  case ISD::SADDSAT:
3411  case ISD::UADDSAT:
3412  case ISD::SSUBSAT:
3413  case ISD::USUBSAT:
3414    Results.push_back(TLI.expandAddSubSat(Node, DAG));
3415    break;
3416  case ISD::SMULFIX:
3417  case ISD::SMULFIXSAT:
3418  case ISD::UMULFIX:
3419  case ISD::UMULFIXSAT:
3420    Results.push_back(TLI.expandFixedPointMul(Node, DAG));
3421    break;
3422  case ISD::SDIVFIX:
3423  case ISD::UDIVFIX:
3424    if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node),
3425                                            Node->getOperand(0),
3426                                            Node->getOperand(1),
3427                                            Node->getConstantOperandVal(2),
3428                                            DAG)) {
3429      Results.push_back(V);
3430      break;
3431    }
3432    // FIXME: We might want to retry here with a wider type if we fail, if that
3433    // type is legal.
3434    // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is
3435    // <= 128 (which is the case for all of the default Embedded-C types),
3436    // we will only get here with types and scales that we could always expand
3437    // if we were allowed to generate libcalls to division functions of illegal
3438    // type. But we cannot do that.
3439    llvm_unreachable("Cannot expand DIVFIX!");
3440  case ISD::ADDCARRY:
3441  case ISD::SUBCARRY: {
3442    SDValue LHS = Node->getOperand(0);
3443    SDValue RHS = Node->getOperand(1);
3444    SDValue Carry = Node->getOperand(2);
3445
3446    bool IsAdd = Node->getOpcode() == ISD::ADDCARRY;
3447
3448    // Initial add of the 2 operands.
3449    unsigned Op = IsAdd ? ISD::ADD : ISD::SUB;
3450    EVT VT = LHS.getValueType();
3451    SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS);
3452
3453    // Initial check for overflow.
3454    EVT CarryType = Node->getValueType(1);
3455    EVT SetCCType = getSetCCResultType(Node->getValueType(0));
3456    ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
3457    SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
3458
3459    // Add of the sum and the carry.
3460    SDValue CarryExt =
3461        DAG.getZeroExtendInReg(DAG.getZExtOrTrunc(Carry, dl, VT), dl, MVT::i1);
3462    SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt);
3463
3464    // Second check for overflow. If we are adding, we can only overflow if the
3465    // initial sum is all 1s ang the carry is set, resulting in a new sum of 0.
3466    // If we are subtracting, we can only overflow if the initial sum is 0 and
3467    // the carry is set, resulting in a new sum of all 1s.
3468    SDValue Zero = DAG.getConstant(0, dl, VT);
3469    SDValue Overflow2 =
3470        IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ)
3471              : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ);
3472    Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2,
3473                            DAG.getZExtOrTrunc(Carry, dl, SetCCType));
3474
3475    SDValue ResultCarry =
3476        DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2);
3477
3478    Results.push_back(Sum2);
3479    Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT));
3480    break;
3481  }
3482  case ISD::SADDO:
3483  case ISD::SSUBO: {
3484    SDValue Result, Overflow;
3485    TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
3486    Results.push_back(Result);
3487    Results.push_back(Overflow);
3488    break;
3489  }
3490  case ISD::UADDO:
3491  case ISD::USUBO: {
3492    SDValue Result, Overflow;
3493    TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
3494    Results.push_back(Result);
3495    Results.push_back(Overflow);
3496    break;
3497  }
3498  case ISD::UMULO:
3499  case ISD::SMULO: {
3500    SDValue Result, Overflow;
3501    if (TLI.expandMULO(Node, Result, Overflow, DAG)) {
3502      Results.push_back(Result);
3503      Results.push_back(Overflow);
3504    }
3505    break;
3506  }
3507  case ISD::BUILD_PAIR: {
3508    EVT PairTy = Node->getValueType(0);
3509    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3510    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3511    Tmp2 = DAG.getNode(
3512        ISD::SHL, dl, PairTy, Tmp2,
3513        DAG.getConstant(PairTy.getSizeInBits() / 2, dl,
3514                        TLI.getShiftAmountTy(PairTy, DAG.getDataLayout())));
3515    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3516    break;
3517  }
3518  case ISD::SELECT:
3519    Tmp1 = Node->getOperand(0);
3520    Tmp2 = Node->getOperand(1);
3521    Tmp3 = Node->getOperand(2);
3522    if (Tmp1.getOpcode() == ISD::SETCC) {
3523      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3524                             Tmp2, Tmp3,
3525                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3526    } else {
3527      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3528                             DAG.getConstant(0, dl, Tmp1.getValueType()),
3529                             Tmp2, Tmp3, ISD::SETNE);
3530    }
3531    Tmp1->setFlags(Node->getFlags());
3532    Results.push_back(Tmp1);
3533    break;
3534  case ISD::BR_JT: {
3535    SDValue Chain = Node->getOperand(0);
3536    SDValue Table = Node->getOperand(1);
3537    SDValue Index = Node->getOperand(2);
3538
3539    const DataLayout &TD = DAG.getDataLayout();
3540    EVT PTy = TLI.getPointerTy(TD);
3541
3542    unsigned EntrySize =
3543      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3544
3545    // For power-of-two jumptable entry sizes convert multiplication to a shift.
3546    // This transformation needs to be done here since otherwise the MIPS
3547    // backend will end up emitting a three instruction multiply sequence
3548    // instead of a single shift and MSP430 will call a runtime function.
3549    if (llvm::isPowerOf2_32(EntrySize))
3550      Index = DAG.getNode(
3551          ISD::SHL, dl, Index.getValueType(), Index,
3552          DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType()));
3553    else
3554      Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
3555                          DAG.getConstant(EntrySize, dl, Index.getValueType()));
3556    SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
3557                               Index, Table);
3558
3559    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3560    SDValue LD = DAG.getExtLoad(
3561        ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3562        MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT);
3563    Addr = LD;
3564    if (TLI.isJumpTableRelative()) {
3565      // For PIC, the sequence is:
3566      // BRIND(load(Jumptable + index) + RelocBase)
3567      // RelocBase can be JumpTable, GOT or some sort of global base.
3568      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3569                          TLI.getPICJumpTableRelocBase(Table, DAG));
3570    }
3571
3572    Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG);
3573    Results.push_back(Tmp1);
3574    break;
3575  }
3576  case ISD::BRCOND:
3577    // Expand brcond's setcc into its constituent parts and create a BR_CC
3578    // Node.
3579    Tmp1 = Node->getOperand(0);
3580    Tmp2 = Node->getOperand(1);
3581    if (Tmp2.getOpcode() == ISD::SETCC) {
3582      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3583                         Tmp1, Tmp2.getOperand(2),
3584                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3585                         Node->getOperand(2));
3586    } else {
3587      // We test only the i1 bit.  Skip the AND if UNDEF or another AND.
3588      if (Tmp2.isUndef() ||
3589          (Tmp2.getOpcode() == ISD::AND &&
3590           isa<ConstantSDNode>(Tmp2.getOperand(1)) &&
3591           cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1))
3592        Tmp3 = Tmp2;
3593      else
3594        Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3595                           DAG.getConstant(1, dl, Tmp2.getValueType()));
3596      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3597                         DAG.getCondCode(ISD::SETNE), Tmp3,
3598                         DAG.getConstant(0, dl, Tmp3.getValueType()),
3599                         Node->getOperand(2));
3600    }
3601    Results.push_back(Tmp1);
3602    break;
3603  case ISD::SETCC:
3604  case ISD::STRICT_FSETCC:
3605  case ISD::STRICT_FSETCCS: {
3606    bool IsStrict = Node->getOpcode() != ISD::SETCC;
3607    bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS;
3608    SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
3609    unsigned Offset = IsStrict ? 1 : 0;
3610    Tmp1 = Node->getOperand(0 + Offset);
3611    Tmp2 = Node->getOperand(1 + Offset);
3612    Tmp3 = Node->getOperand(2 + Offset);
3613    bool Legalized =
3614        LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3,
3615                              NeedInvert, dl, Chain, IsSignaling);
3616
3617    if (Legalized) {
3618      // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3619      // condition code, create a new SETCC node.
3620      if (Tmp3.getNode())
3621        Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3622                           Tmp1, Tmp2, Tmp3, Node->getFlags());
3623
3624      // If we expanded the SETCC by inverting the condition code, then wrap
3625      // the existing SETCC in a NOT to restore the intended condition.
3626      if (NeedInvert)
3627        Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
3628
3629      Results.push_back(Tmp1);
3630      if (IsStrict)
3631        Results.push_back(Chain);
3632
3633      break;
3634    }
3635
3636    // FIXME: It seems Legalized is false iff CCCode is Legal. I don't
3637    // understand if this code is useful for strict nodes.
3638    assert(!IsStrict && "Don't know how to expand for strict nodes.");
3639
3640    // Otherwise, SETCC for the given comparison type must be completely
3641    // illegal; expand it into a SELECT_CC.
3642    EVT VT = Node->getValueType(0);
3643    int TrueValue;
3644    switch (TLI.getBooleanContents(Tmp1.getValueType())) {
3645    case TargetLowering::ZeroOrOneBooleanContent:
3646    case TargetLowering::UndefinedBooleanContent:
3647      TrueValue = 1;
3648      break;
3649    case TargetLowering::ZeroOrNegativeOneBooleanContent:
3650      TrueValue = -1;
3651      break;
3652    }
3653    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3654                       DAG.getConstant(TrueValue, dl, VT),
3655                       DAG.getConstant(0, dl, VT),
3656                       Tmp3);
3657    Tmp1->setFlags(Node->getFlags());
3658    Results.push_back(Tmp1);
3659    break;
3660  }
3661  case ISD::SELECT_CC: {
3662    // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS
3663    Tmp1 = Node->getOperand(0);   // LHS
3664    Tmp2 = Node->getOperand(1);   // RHS
3665    Tmp3 = Node->getOperand(2);   // True
3666    Tmp4 = Node->getOperand(3);   // False
3667    EVT VT = Node->getValueType(0);
3668    SDValue Chain;
3669    SDValue CC = Node->getOperand(4);
3670    ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
3671
3672    if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) {
3673      // If the condition code is legal, then we need to expand this
3674      // node using SETCC and SELECT.
3675      EVT CmpVT = Tmp1.getValueType();
3676      assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
3677             "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3678             "expanded.");
3679      EVT CCVT = getSetCCResultType(CmpVT);
3680      SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags());
3681      Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
3682      break;
3683    }
3684
3685    // SELECT_CC is legal, so the condition code must not be.
3686    bool Legalized = false;
3687    // Try to legalize by inverting the condition.  This is for targets that
3688    // might support an ordered version of a condition, but not the unordered
3689    // version (or vice versa).
3690    ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType());
3691    if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) {
3692      // Use the new condition code and swap true and false
3693      Legalized = true;
3694      Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
3695      Tmp1->setFlags(Node->getFlags());
3696    } else {
3697      // If The inverse is not legal, then try to swap the arguments using
3698      // the inverse condition code.
3699      ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
3700      if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) {
3701        // The swapped inverse condition is legal, so swap true and false,
3702        // lhs and rhs.
3703        Legalized = true;
3704        Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
3705        Tmp1->setFlags(Node->getFlags());
3706      }
3707    }
3708
3709    if (!Legalized) {
3710      Legalized = LegalizeSetCCCondCode(getSetCCResultType(Tmp1.getValueType()),
3711                                        Tmp1, Tmp2, CC, NeedInvert, dl, Chain);
3712
3713      assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
3714
3715      // If we expanded the SETCC by inverting the condition code, then swap
3716      // the True/False operands to match.
3717      if (NeedInvert)
3718        std::swap(Tmp3, Tmp4);
3719
3720      // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3721      // condition code, create a new SELECT_CC node.
3722      if (CC.getNode()) {
3723        Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
3724                           Tmp1, Tmp2, Tmp3, Tmp4, CC);
3725      } else {
3726        Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType());
3727        CC = DAG.getCondCode(ISD::SETNE);
3728        Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
3729                           Tmp2, Tmp3, Tmp4, CC);
3730      }
3731      Tmp1->setFlags(Node->getFlags());
3732    }
3733    Results.push_back(Tmp1);
3734    break;
3735  }
3736  case ISD::BR_CC: {
3737    // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS
3738    SDValue Chain;
3739    Tmp1 = Node->getOperand(0);              // Chain
3740    Tmp2 = Node->getOperand(2);              // LHS
3741    Tmp3 = Node->getOperand(3);              // RHS
3742    Tmp4 = Node->getOperand(1);              // CC
3743
3744    bool Legalized =
3745        LegalizeSetCCCondCode(getSetCCResultType(Tmp2.getValueType()), Tmp2,
3746                              Tmp3, Tmp4, NeedInvert, dl, Chain);
3747    (void)Legalized;
3748    assert(Legalized && "Can't legalize BR_CC with legal condition!");
3749
3750    assert(!NeedInvert && "Don't know how to invert BR_CC!");
3751
3752    // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
3753    // node.
3754    if (Tmp4.getNode()) {
3755      Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
3756                         Tmp4, Tmp2, Tmp3, Node->getOperand(4));
3757    } else {
3758      Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType());
3759      Tmp4 = DAG.getCondCode(ISD::SETNE);
3760      Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
3761                         Tmp2, Tmp3, Node->getOperand(4));
3762    }
3763    Results.push_back(Tmp1);
3764    break;
3765  }
3766  case ISD::BUILD_VECTOR:
3767    Results.push_back(ExpandBUILD_VECTOR(Node));
3768    break;
3769  case ISD::SPLAT_VECTOR:
3770    Results.push_back(ExpandSPLAT_VECTOR(Node));
3771    break;
3772  case ISD::SRA:
3773  case ISD::SRL:
3774  case ISD::SHL: {
3775    // Scalarize vector SRA/SRL/SHL.
3776    EVT VT = Node->getValueType(0);
3777    assert(VT.isVector() && "Unable to legalize non-vector shift");
3778    assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3779    unsigned NumElem = VT.getVectorNumElements();
3780
3781    SmallVector<SDValue, 8> Scalars;
3782    for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3783      SDValue Ex = DAG.getNode(
3784          ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0),
3785          DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3786      SDValue Sh = DAG.getNode(
3787          ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1),
3788          DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3789      Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3790                                    VT.getScalarType(), Ex, Sh));
3791    }
3792
3793    SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars);
3794    Results.push_back(Result);
3795    break;
3796  }
3797  case ISD::VECREDUCE_FADD:
3798  case ISD::VECREDUCE_FMUL:
3799  case ISD::VECREDUCE_ADD:
3800  case ISD::VECREDUCE_MUL:
3801  case ISD::VECREDUCE_AND:
3802  case ISD::VECREDUCE_OR:
3803  case ISD::VECREDUCE_XOR:
3804  case ISD::VECREDUCE_SMAX:
3805  case ISD::VECREDUCE_SMIN:
3806  case ISD::VECREDUCE_UMAX:
3807  case ISD::VECREDUCE_UMIN:
3808  case ISD::VECREDUCE_FMAX:
3809  case ISD::VECREDUCE_FMIN:
3810    Results.push_back(TLI.expandVecReduce(Node, DAG));
3811    break;
3812  case ISD::GLOBAL_OFFSET_TABLE:
3813  case ISD::GlobalAddress:
3814  case ISD::GlobalTLSAddress:
3815  case ISD::ExternalSymbol:
3816  case ISD::ConstantPool:
3817  case ISD::JumpTable:
3818  case ISD::INTRINSIC_W_CHAIN:
3819  case ISD::INTRINSIC_WO_CHAIN:
3820  case ISD::INTRINSIC_VOID:
3821    // FIXME: Custom lowering for these operations shouldn't return null!
3822    // Return true so that we don't call ConvertNodeToLibcall which also won't
3823    // do anything.
3824    return true;
3825  }
3826
3827  if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) {
3828    // FIXME: We were asked to expand a strict floating-point operation,
3829    // but there is currently no expansion implemented that would preserve
3830    // the "strict" properties.  For now, we just fall back to the non-strict
3831    // version if that is legal on the target.  The actual mutation of the
3832    // operation will happen in SelectionDAGISel::DoInstructionSelection.
3833    switch (Node->getOpcode()) {
3834    default:
3835      if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3836                                         Node->getValueType(0))
3837          == TargetLowering::Legal)
3838        return true;
3839      break;
3840    case ISD::STRICT_LRINT:
3841    case ISD::STRICT_LLRINT:
3842    case ISD::STRICT_LROUND:
3843    case ISD::STRICT_LLROUND:
3844      // These are registered by the operand type instead of the value
3845      // type. Reflect that here.
3846      if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3847                                         Node->getOperand(1).getValueType())
3848          == TargetLowering::Legal)
3849        return true;
3850      break;
3851    }
3852  }
3853
3854  // Replace the original node with the legalized result.
3855  if (Results.empty()) {
3856    LLVM_DEBUG(dbgs() << "Cannot expand node\n");
3857    return false;
3858  }
3859
3860  LLVM_DEBUG(dbgs() << "Successfully expanded node\n");
3861  ReplaceNode(Node, Results.data());
3862  return true;
3863}
3864
3865void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
3866  LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n");
3867  SmallVector<SDValue, 8> Results;
3868  SDLoc dl(Node);
3869  // FIXME: Check flags on the node to see if we can use a finite call.
3870  unsigned Opc = Node->getOpcode();
3871  switch (Opc) {
3872  case ISD::ATOMIC_FENCE: {
3873    // If the target didn't lower this, lower it to '__sync_synchronize()' call
3874    // FIXME: handle "fence singlethread" more efficiently.
3875    TargetLowering::ArgListTy Args;
3876
3877    TargetLowering::CallLoweringInfo CLI(DAG);
3878    CLI.setDebugLoc(dl)
3879        .setChain(Node->getOperand(0))
3880        .setLibCallee(
3881            CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3882            DAG.getExternalSymbol("__sync_synchronize",
3883                                  TLI.getPointerTy(DAG.getDataLayout())),
3884            std::move(Args));
3885
3886    std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3887
3888    Results.push_back(CallResult.second);
3889    break;
3890  }
3891  // By default, atomic intrinsics are marked Legal and lowered. Targets
3892  // which don't support them directly, however, may want libcalls, in which
3893  // case they mark them Expand, and we get here.
3894  case ISD::ATOMIC_SWAP:
3895  case ISD::ATOMIC_LOAD_ADD:
3896  case ISD::ATOMIC_LOAD_SUB:
3897  case ISD::ATOMIC_LOAD_AND:
3898  case ISD::ATOMIC_LOAD_CLR:
3899  case ISD::ATOMIC_LOAD_OR:
3900  case ISD::ATOMIC_LOAD_XOR:
3901  case ISD::ATOMIC_LOAD_NAND:
3902  case ISD::ATOMIC_LOAD_MIN:
3903  case ISD::ATOMIC_LOAD_MAX:
3904  case ISD::ATOMIC_LOAD_UMIN:
3905  case ISD::ATOMIC_LOAD_UMAX:
3906  case ISD::ATOMIC_CMP_SWAP: {
3907    MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
3908    RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT);
3909    assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!");
3910
3911    EVT RetVT = Node->getValueType(0);
3912    SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
3913    TargetLowering::MakeLibCallOptions CallOptions;
3914    std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
3915                                                      Ops, CallOptions,
3916                                                      SDLoc(Node),
3917                                                      Node->getOperand(0));
3918    Results.push_back(Tmp.first);
3919    Results.push_back(Tmp.second);
3920    break;
3921  }
3922  case ISD::TRAP: {
3923    // If this operation is not supported, lower it to 'abort()' call
3924    TargetLowering::ArgListTy Args;
3925    TargetLowering::CallLoweringInfo CLI(DAG);
3926    CLI.setDebugLoc(dl)
3927        .setChain(Node->getOperand(0))
3928        .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3929                      DAG.getExternalSymbol(
3930                          "abort", TLI.getPointerTy(DAG.getDataLayout())),
3931                      std::move(Args));
3932    std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3933
3934    Results.push_back(CallResult.second);
3935    break;
3936  }
3937  case ISD::FMINNUM:
3938  case ISD::STRICT_FMINNUM:
3939    ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
3940                    RTLIB::FMIN_F80, RTLIB::FMIN_F128,
3941                    RTLIB::FMIN_PPCF128, Results);
3942    break;
3943  case ISD::FMAXNUM:
3944  case ISD::STRICT_FMAXNUM:
3945    ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
3946                    RTLIB::FMAX_F80, RTLIB::FMAX_F128,
3947                    RTLIB::FMAX_PPCF128, Results);
3948    break;
3949  case ISD::FSQRT:
3950  case ISD::STRICT_FSQRT:
3951    ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3952                    RTLIB::SQRT_F80, RTLIB::SQRT_F128,
3953                    RTLIB::SQRT_PPCF128, Results);
3954    break;
3955  case ISD::FCBRT:
3956    ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64,
3957                    RTLIB::CBRT_F80, RTLIB::CBRT_F128,
3958                    RTLIB::CBRT_PPCF128, Results);
3959    break;
3960  case ISD::FSIN:
3961  case ISD::STRICT_FSIN:
3962    ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3963                    RTLIB::SIN_F80, RTLIB::SIN_F128,
3964                    RTLIB::SIN_PPCF128, Results);
3965    break;
3966  case ISD::FCOS:
3967  case ISD::STRICT_FCOS:
3968    ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3969                    RTLIB::COS_F80, RTLIB::COS_F128,
3970                    RTLIB::COS_PPCF128, Results);
3971    break;
3972  case ISD::FSINCOS:
3973    // Expand into sincos libcall.
3974    ExpandSinCosLibCall(Node, Results);
3975    break;
3976  case ISD::FLOG:
3977  case ISD::STRICT_FLOG:
3978    ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80,
3979                    RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results);
3980    break;
3981  case ISD::FLOG2:
3982  case ISD::STRICT_FLOG2:
3983    ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80,
3984                    RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results);
3985    break;
3986  case ISD::FLOG10:
3987  case ISD::STRICT_FLOG10:
3988    ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80,
3989                    RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results);
3990    break;
3991  case ISD::FEXP:
3992  case ISD::STRICT_FEXP:
3993    ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80,
3994                    RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results);
3995    break;
3996  case ISD::FEXP2:
3997  case ISD::STRICT_FEXP2:
3998    ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80,
3999                    RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results);
4000    break;
4001  case ISD::FTRUNC:
4002  case ISD::STRICT_FTRUNC:
4003    ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
4004                    RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
4005                    RTLIB::TRUNC_PPCF128, Results);
4006    break;
4007  case ISD::FFLOOR:
4008  case ISD::STRICT_FFLOOR:
4009    ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
4010                    RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
4011                    RTLIB::FLOOR_PPCF128, Results);
4012    break;
4013  case ISD::FCEIL:
4014  case ISD::STRICT_FCEIL:
4015    ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
4016                    RTLIB::CEIL_F80, RTLIB::CEIL_F128,
4017                    RTLIB::CEIL_PPCF128, Results);
4018    break;
4019  case ISD::FRINT:
4020  case ISD::STRICT_FRINT:
4021    ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
4022                    RTLIB::RINT_F80, RTLIB::RINT_F128,
4023                    RTLIB::RINT_PPCF128, Results);
4024    break;
4025  case ISD::FNEARBYINT:
4026  case ISD::STRICT_FNEARBYINT:
4027    ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
4028                    RTLIB::NEARBYINT_F64,
4029                    RTLIB::NEARBYINT_F80,
4030                    RTLIB::NEARBYINT_F128,
4031                    RTLIB::NEARBYINT_PPCF128, Results);
4032    break;
4033  case ISD::FROUND:
4034  case ISD::STRICT_FROUND:
4035    ExpandFPLibCall(Node, RTLIB::ROUND_F32,
4036                    RTLIB::ROUND_F64,
4037                    RTLIB::ROUND_F80,
4038                    RTLIB::ROUND_F128,
4039                    RTLIB::ROUND_PPCF128, Results);
4040    break;
4041  case ISD::FPOWI:
4042  case ISD::STRICT_FPOWI: {
4043    RTLIB::Libcall LC;
4044    switch (Node->getSimpleValueType(0).SimpleTy) {
4045    default: llvm_unreachable("Unexpected request for libcall!");
4046    case MVT::f32: LC = RTLIB::POWI_F32; break;
4047    case MVT::f64: LC = RTLIB::POWI_F64; break;
4048    case MVT::f80: LC = RTLIB::POWI_F80; break;
4049    case MVT::f128: LC = RTLIB::POWI_F128; break;
4050    case MVT::ppcf128: LC = RTLIB::POWI_PPCF128; break;
4051    }
4052    if (!TLI.getLibcallName(LC)) {
4053      // Some targets don't have a powi libcall; use pow instead.
4054      SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node),
4055                                     Node->getValueType(0),
4056                                     Node->getOperand(1));
4057      Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node),
4058                                    Node->getValueType(0), Node->getOperand(0),
4059                                    Exponent));
4060      break;
4061    }
4062    ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
4063                    RTLIB::POWI_F80, RTLIB::POWI_F128,
4064                    RTLIB::POWI_PPCF128, Results);
4065    break;
4066  }
4067  case ISD::FPOW:
4068  case ISD::STRICT_FPOW:
4069    ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80,
4070                    RTLIB::POW_F128, RTLIB::POW_PPCF128, Results);
4071    break;
4072  case ISD::LROUND:
4073  case ISD::STRICT_LROUND:
4074    ExpandArgFPLibCall(Node, RTLIB::LROUND_F32,
4075                       RTLIB::LROUND_F64, RTLIB::LROUND_F80,
4076                       RTLIB::LROUND_F128,
4077                       RTLIB::LROUND_PPCF128, Results);
4078    break;
4079  case ISD::LLROUND:
4080  case ISD::STRICT_LLROUND:
4081    ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32,
4082                       RTLIB::LLROUND_F64, RTLIB::LLROUND_F80,
4083                       RTLIB::LLROUND_F128,
4084                       RTLIB::LLROUND_PPCF128, Results);
4085    break;
4086  case ISD::LRINT:
4087  case ISD::STRICT_LRINT:
4088    ExpandArgFPLibCall(Node, RTLIB::LRINT_F32,
4089                       RTLIB::LRINT_F64, RTLIB::LRINT_F80,
4090                       RTLIB::LRINT_F128,
4091                       RTLIB::LRINT_PPCF128, Results);
4092    break;
4093  case ISD::LLRINT:
4094  case ISD::STRICT_LLRINT:
4095    ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32,
4096                       RTLIB::LLRINT_F64, RTLIB::LLRINT_F80,
4097                       RTLIB::LLRINT_F128,
4098                       RTLIB::LLRINT_PPCF128, Results);
4099    break;
4100  case ISD::FDIV:
4101  case ISD::STRICT_FDIV:
4102    ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
4103                    RTLIB::DIV_F80, RTLIB::DIV_F128,
4104                    RTLIB::DIV_PPCF128, Results);
4105    break;
4106  case ISD::FREM:
4107  case ISD::STRICT_FREM:
4108    ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
4109                    RTLIB::REM_F80, RTLIB::REM_F128,
4110                    RTLIB::REM_PPCF128, Results);
4111    break;
4112  case ISD::FMA:
4113  case ISD::STRICT_FMA:
4114    ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
4115                    RTLIB::FMA_F80, RTLIB::FMA_F128,
4116                    RTLIB::FMA_PPCF128, Results);
4117    break;
4118  case ISD::FADD:
4119  case ISD::STRICT_FADD:
4120    ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
4121                    RTLIB::ADD_F80, RTLIB::ADD_F128,
4122                    RTLIB::ADD_PPCF128, Results);
4123    break;
4124  case ISD::FMUL:
4125  case ISD::STRICT_FMUL:
4126    ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
4127                    RTLIB::MUL_F80, RTLIB::MUL_F128,
4128                    RTLIB::MUL_PPCF128, Results);
4129    break;
4130  case ISD::FP16_TO_FP:
4131    if (Node->getValueType(0) == MVT::f32) {
4132      Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
4133    }
4134    break;
4135  case ISD::FP_TO_FP16: {
4136    RTLIB::Libcall LC =
4137        RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
4138    assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
4139    Results.push_back(ExpandLibCall(LC, Node, false));
4140    break;
4141  }
4142  case ISD::FSUB:
4143  case ISD::STRICT_FSUB:
4144    ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
4145                    RTLIB::SUB_F80, RTLIB::SUB_F128,
4146                    RTLIB::SUB_PPCF128, Results);
4147    break;
4148  case ISD::SREM:
4149    Results.push_back(ExpandIntLibCall(Node, true,
4150                                       RTLIB::SREM_I8,
4151                                       RTLIB::SREM_I16, RTLIB::SREM_I32,
4152                                       RTLIB::SREM_I64, RTLIB::SREM_I128));
4153    break;
4154  case ISD::UREM:
4155    Results.push_back(ExpandIntLibCall(Node, false,
4156                                       RTLIB::UREM_I8,
4157                                       RTLIB::UREM_I16, RTLIB::UREM_I32,
4158                                       RTLIB::UREM_I64, RTLIB::UREM_I128));
4159    break;
4160  case ISD::SDIV:
4161    Results.push_back(ExpandIntLibCall(Node, true,
4162                                       RTLIB::SDIV_I8,
4163                                       RTLIB::SDIV_I16, RTLIB::SDIV_I32,
4164                                       RTLIB::SDIV_I64, RTLIB::SDIV_I128));
4165    break;
4166  case ISD::UDIV:
4167    Results.push_back(ExpandIntLibCall(Node, false,
4168                                       RTLIB::UDIV_I8,
4169                                       RTLIB::UDIV_I16, RTLIB::UDIV_I32,
4170                                       RTLIB::UDIV_I64, RTLIB::UDIV_I128));
4171    break;
4172  case ISD::SDIVREM:
4173  case ISD::UDIVREM:
4174    // Expand into divrem libcall
4175    ExpandDivRemLibCall(Node, Results);
4176    break;
4177  case ISD::MUL:
4178    Results.push_back(ExpandIntLibCall(Node, false,
4179                                       RTLIB::MUL_I8,
4180                                       RTLIB::MUL_I16, RTLIB::MUL_I32,
4181                                       RTLIB::MUL_I64, RTLIB::MUL_I128));
4182    break;
4183  case ISD::CTLZ_ZERO_UNDEF:
4184    switch (Node->getSimpleValueType(0).SimpleTy) {
4185    default:
4186      llvm_unreachable("LibCall explicitly requested, but not available");
4187    case MVT::i32:
4188      Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false));
4189      break;
4190    case MVT::i64:
4191      Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false));
4192      break;
4193    case MVT::i128:
4194      Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false));
4195      break;
4196    }
4197    break;
4198  }
4199
4200  // Replace the original node with the legalized result.
4201  if (!Results.empty()) {
4202    LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n");
4203    ReplaceNode(Node, Results.data());
4204  } else
4205    LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n");
4206}
4207
4208// Determine the vector type to use in place of an original scalar element when
4209// promoting equally sized vectors.
4210static MVT getPromotedVectorElementType(const TargetLowering &TLI,
4211                                        MVT EltVT, MVT NewEltVT) {
4212  unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits();
4213  MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt);
4214  assert(TLI.isTypeLegal(MidVT) && "unexpected");
4215  return MidVT;
4216}
4217
4218void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
4219  LLVM_DEBUG(dbgs() << "Trying to promote node\n");
4220  SmallVector<SDValue, 8> Results;
4221  MVT OVT = Node->getSimpleValueType(0);
4222  if (Node->getOpcode() == ISD::UINT_TO_FP ||
4223      Node->getOpcode() == ISD::SINT_TO_FP ||
4224      Node->getOpcode() == ISD::SETCC ||
4225      Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
4226      Node->getOpcode() == ISD::INSERT_VECTOR_ELT) {
4227    OVT = Node->getOperand(0).getSimpleValueType();
4228  }
4229  if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP ||
4230      Node->getOpcode() == ISD::STRICT_SINT_TO_FP)
4231    OVT = Node->getOperand(1).getSimpleValueType();
4232  if (Node->getOpcode() == ISD::BR_CC)
4233    OVT = Node->getOperand(2).getSimpleValueType();
4234  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
4235  SDLoc dl(Node);
4236  SDValue Tmp1, Tmp2, Tmp3;
4237  switch (Node->getOpcode()) {
4238  case ISD::CTTZ:
4239  case ISD::CTTZ_ZERO_UNDEF:
4240  case ISD::CTLZ:
4241  case ISD::CTLZ_ZERO_UNDEF:
4242  case ISD::CTPOP:
4243    // Zero extend the argument.
4244    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4245    if (Node->getOpcode() == ISD::CTTZ) {
4246      // The count is the same in the promoted type except if the original
4247      // value was zero.  This can be handled by setting the bit just off
4248      // the top of the original type.
4249      auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(),
4250                                        OVT.getSizeInBits());
4251      Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1,
4252                         DAG.getConstant(TopBit, dl, NVT));
4253    }
4254    // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
4255    // already the correct result.
4256    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4257    if (Node->getOpcode() == ISD::CTLZ ||
4258        Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
4259      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4260      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
4261                          DAG.getConstant(NVT.getSizeInBits() -
4262                                          OVT.getSizeInBits(), dl, NVT));
4263    }
4264    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4265    break;
4266  case ISD::BITREVERSE:
4267  case ISD::BSWAP: {
4268    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
4269    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4270    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4271    Tmp1 = DAG.getNode(
4272        ISD::SRL, dl, NVT, Tmp1,
4273        DAG.getConstant(DiffBits, dl,
4274                        TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));
4275
4276    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4277    break;
4278  }
4279  case ISD::FP_TO_UINT:
4280  case ISD::STRICT_FP_TO_UINT:
4281  case ISD::FP_TO_SINT:
4282  case ISD::STRICT_FP_TO_SINT:
4283    PromoteLegalFP_TO_INT(Node, dl, Results);
4284    break;
4285  case ISD::UINT_TO_FP:
4286  case ISD::STRICT_UINT_TO_FP:
4287  case ISD::SINT_TO_FP:
4288  case ISD::STRICT_SINT_TO_FP:
4289    PromoteLegalINT_TO_FP(Node, dl, Results);
4290    break;
4291  case ISD::VAARG: {
4292    SDValue Chain = Node->getOperand(0); // Get the chain.
4293    SDValue Ptr = Node->getOperand(1); // Get the pointer.
4294
4295    unsigned TruncOp;
4296    if (OVT.isVector()) {
4297      TruncOp = ISD::BITCAST;
4298    } else {
4299      assert(OVT.isInteger()
4300        && "VAARG promotion is supported only for vectors or integer types");
4301      TruncOp = ISD::TRUNCATE;
4302    }
4303
4304    // Perform the larger operation, then convert back
4305    Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
4306             Node->getConstantOperandVal(3));
4307    Chain = Tmp1.getValue(1);
4308
4309    Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
4310
4311    // Modified the chain result - switch anything that used the old chain to
4312    // use the new one.
4313    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
4314    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
4315    if (UpdatedNodes) {
4316      UpdatedNodes->insert(Tmp2.getNode());
4317      UpdatedNodes->insert(Chain.getNode());
4318    }
4319    ReplacedNode(Node);
4320    break;
4321  }
4322  case ISD::MUL:
4323  case ISD::SDIV:
4324  case ISD::SREM:
4325  case ISD::UDIV:
4326  case ISD::UREM:
4327  case ISD::AND:
4328  case ISD::OR:
4329  case ISD::XOR: {
4330    unsigned ExtOp, TruncOp;
4331    if (OVT.isVector()) {
4332      ExtOp   = ISD::BITCAST;
4333      TruncOp = ISD::BITCAST;
4334    } else {
4335      assert(OVT.isInteger() && "Cannot promote logic operation");
4336
4337      switch (Node->getOpcode()) {
4338      default:
4339        ExtOp = ISD::ANY_EXTEND;
4340        break;
4341      case ISD::SDIV:
4342      case ISD::SREM:
4343        ExtOp = ISD::SIGN_EXTEND;
4344        break;
4345      case ISD::UDIV:
4346      case ISD::UREM:
4347        ExtOp = ISD::ZERO_EXTEND;
4348        break;
4349      }
4350      TruncOp = ISD::TRUNCATE;
4351    }
4352    // Promote each of the values to the new type.
4353    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4354    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4355    // Perform the larger operation, then convert back
4356    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4357    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
4358    break;
4359  }
4360  case ISD::UMUL_LOHI:
4361  case ISD::SMUL_LOHI: {
4362    // Promote to a multiply in a wider integer type.
4363    unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND
4364                                                         : ISD::SIGN_EXTEND;
4365    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4366    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4367    Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2);
4368
4369    auto &DL = DAG.getDataLayout();
4370    unsigned OriginalSize = OVT.getScalarSizeInBits();
4371    Tmp2 = DAG.getNode(
4372        ISD::SRL, dl, NVT, Tmp1,
4373        DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT)));
4374    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4375    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2));
4376    break;
4377  }
4378  case ISD::SELECT: {
4379    unsigned ExtOp, TruncOp;
4380    if (Node->getValueType(0).isVector() ||
4381        Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
4382      ExtOp   = ISD::BITCAST;
4383      TruncOp = ISD::BITCAST;
4384    } else if (Node->getValueType(0).isInteger()) {
4385      ExtOp   = ISD::ANY_EXTEND;
4386      TruncOp = ISD::TRUNCATE;
4387    } else {
4388      ExtOp   = ISD::FP_EXTEND;
4389      TruncOp = ISD::FP_ROUND;
4390    }
4391    Tmp1 = Node->getOperand(0);
4392    // Promote each of the values to the new type.
4393    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4394    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4395    // Perform the larger operation, then round down.
4396    Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
4397    Tmp1->setFlags(Node->getFlags());
4398    if (TruncOp != ISD::FP_ROUND)
4399      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
4400    else
4401      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
4402                         DAG.getIntPtrConstant(0, dl));
4403    Results.push_back(Tmp1);
4404    break;
4405  }
4406  case ISD::VECTOR_SHUFFLE: {
4407    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
4408
4409    // Cast the two input vectors.
4410    Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
4411    Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
4412
4413    // Convert the shuffle mask to the right # elements.
4414    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
4415    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
4416    Results.push_back(Tmp1);
4417    break;
4418  }
4419  case ISD::SETCC: {
4420    unsigned ExtOp = ISD::FP_EXTEND;
4421    if (NVT.isInteger()) {
4422      ISD::CondCode CCCode =
4423        cast<CondCodeSDNode>(Node->getOperand(2))->get();
4424      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4425    }
4426    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4427    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4428    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1,
4429                                  Tmp2, Node->getOperand(2), Node->getFlags()));
4430    break;
4431  }
4432  case ISD::BR_CC: {
4433    unsigned ExtOp = ISD::FP_EXTEND;
4434    if (NVT.isInteger()) {
4435      ISD::CondCode CCCode =
4436        cast<CondCodeSDNode>(Node->getOperand(1))->get();
4437      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4438    }
4439    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4440    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
4441    Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0),
4442                                  Node->getOperand(0), Node->getOperand(1),
4443                                  Tmp1, Tmp2, Node->getOperand(4)));
4444    break;
4445  }
4446  case ISD::FADD:
4447  case ISD::FSUB:
4448  case ISD::FMUL:
4449  case ISD::FDIV:
4450  case ISD::FREM:
4451  case ISD::FMINNUM:
4452  case ISD::FMAXNUM:
4453  case ISD::FPOW:
4454    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4455    Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4456    Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2,
4457                       Node->getFlags());
4458    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4459                                  Tmp3, DAG.getIntPtrConstant(0, dl)));
4460    break;
4461  case ISD::STRICT_FREM:
4462  case ISD::STRICT_FPOW:
4463    Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4464                       {Node->getOperand(0), Node->getOperand(1)});
4465    Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4466                       {Node->getOperand(0), Node->getOperand(2)});
4467    Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1),
4468                       Tmp2.getValue(1));
4469    Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
4470                       {Tmp3, Tmp1, Tmp2});
4471    Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
4472                       {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)});
4473    Results.push_back(Tmp1);
4474    Results.push_back(Tmp1.getValue(1));
4475    break;
4476  case ISD::FMA:
4477    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4478    Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4479    Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2));
4480    Results.push_back(
4481        DAG.getNode(ISD::FP_ROUND, dl, OVT,
4482                    DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
4483                    DAG.getIntPtrConstant(0, dl)));
4484    break;
4485  case ISD::FCOPYSIGN:
4486  case ISD::FPOWI: {
4487    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4488    Tmp2 = Node->getOperand(1);
4489    Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4490
4491    // fcopysign doesn't change anything but the sign bit, so
4492    //   (fp_round (fcopysign (fpext a), b))
4493    // is as precise as
4494    //   (fp_round (fpext a))
4495    // which is a no-op. Mark it as a TRUNCating FP_ROUND.
4496    const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN);
4497    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4498                                  Tmp3, DAG.getIntPtrConstant(isTrunc, dl)));
4499    break;
4500  }
4501  case ISD::FFLOOR:
4502  case ISD::FCEIL:
4503  case ISD::FRINT:
4504  case ISD::FNEARBYINT:
4505  case ISD::FROUND:
4506  case ISD::FTRUNC:
4507  case ISD::FNEG:
4508  case ISD::FSQRT:
4509  case ISD::FSIN:
4510  case ISD::FCOS:
4511  case ISD::FLOG:
4512  case ISD::FLOG2:
4513  case ISD::FLOG10:
4514  case ISD::FABS:
4515  case ISD::FEXP:
4516  case ISD::FEXP2:
4517    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4518    Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4519    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4520                                  Tmp2, DAG.getIntPtrConstant(0, dl)));
4521    break;
4522  case ISD::STRICT_FFLOOR:
4523  case ISD::STRICT_FCEIL:
4524  case ISD::STRICT_FSIN:
4525  case ISD::STRICT_FCOS:
4526  case ISD::STRICT_FLOG:
4527  case ISD::STRICT_FLOG10:
4528  case ISD::STRICT_FEXP:
4529    Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4530                       {Node->getOperand(0), Node->getOperand(1)});
4531    Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
4532                       {Tmp1.getValue(1), Tmp1});
4533    Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
4534                       {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)});
4535    Results.push_back(Tmp3);
4536    Results.push_back(Tmp3.getValue(1));
4537    break;
4538  case ISD::BUILD_VECTOR: {
4539    MVT EltVT = OVT.getVectorElementType();
4540    MVT NewEltVT = NVT.getVectorElementType();
4541
4542    // Handle bitcasts to a different vector type with the same total bit size
4543    //
4544    // e.g. v2i64 = build_vector i64:x, i64:y => v4i32
4545    //  =>
4546    //  v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
4547
4548    assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4549           "Invalid promote type for build_vector");
4550    assert(NewEltVT.bitsLT(EltVT) && "not handled");
4551
4552    MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4553
4554    SmallVector<SDValue, 8> NewOps;
4555    for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
4556      SDValue Op = Node->getOperand(I);
4557      NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op));
4558    }
4559
4560    SDLoc SL(Node);
4561    SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps);
4562    SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4563    Results.push_back(CvtVec);
4564    break;
4565  }
4566  case ISD::EXTRACT_VECTOR_ELT: {
4567    MVT EltVT = OVT.getVectorElementType();
4568    MVT NewEltVT = NVT.getVectorElementType();
4569
4570    // Handle bitcasts to a different vector type with the same total bit size.
4571    //
4572    // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
4573    //  =>
4574    //  v4i32:castx = bitcast x:v2i64
4575    //
4576    // i64 = bitcast
4577    //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
4578    //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
4579    //
4580
4581    assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4582           "Invalid promote type for extract_vector_elt");
4583    assert(NewEltVT.bitsLT(EltVT) && "not handled");
4584
4585    MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4586    unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4587
4588    SDValue Idx = Node->getOperand(1);
4589    EVT IdxVT = Idx.getValueType();
4590    SDLoc SL(Node);
4591    SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT);
4592    SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4593
4594    SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4595
4596    SmallVector<SDValue, 8> NewOps;
4597    for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4598      SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4599      SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4600
4601      SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4602                                CastVec, TmpIdx);
4603      NewOps.push_back(Elt);
4604    }
4605
4606    SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps);
4607    Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec));
4608    break;
4609  }
4610  case ISD::INSERT_VECTOR_ELT: {
4611    MVT EltVT = OVT.getVectorElementType();
4612    MVT NewEltVT = NVT.getVectorElementType();
4613
4614    // Handle bitcasts to a different vector type with the same total bit size
4615    //
4616    // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
4617    //  =>
4618    //  v4i32:castx = bitcast x:v2i64
4619    //  v2i32:casty = bitcast y:i64
4620    //
4621    // v2i64 = bitcast
4622    //   (v4i32 insert_vector_elt
4623    //       (v4i32 insert_vector_elt v4i32:castx,
4624    //                                (extract_vector_elt casty, 0), 2 * z),
4625    //        (extract_vector_elt casty, 1), (2 * z + 1))
4626
4627    assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4628           "Invalid promote type for insert_vector_elt");
4629    assert(NewEltVT.bitsLT(EltVT) && "not handled");
4630
4631    MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4632    unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4633
4634    SDValue Val = Node->getOperand(1);
4635    SDValue Idx = Node->getOperand(2);
4636    EVT IdxVT = Idx.getValueType();
4637    SDLoc SL(Node);
4638
4639    SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT);
4640    SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4641
4642    SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4643    SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4644
4645    SDValue NewVec = CastVec;
4646    for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4647      SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4648      SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4649
4650      SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4651                                CastVal, IdxOffset);
4652
4653      NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT,
4654                           NewVec, Elt, InEltIdx);
4655    }
4656
4657    Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec));
4658    break;
4659  }
4660  case ISD::SCALAR_TO_VECTOR: {
4661    MVT EltVT = OVT.getVectorElementType();
4662    MVT NewEltVT = NVT.getVectorElementType();
4663
4664    // Handle bitcasts to different vector type with the same total bit size.
4665    //
4666    // e.g. v2i64 = scalar_to_vector x:i64
4667    //   =>
4668    //  concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
4669    //
4670
4671    MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4672    SDValue Val = Node->getOperand(0);
4673    SDLoc SL(Node);
4674
4675    SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4676    SDValue Undef = DAG.getUNDEF(MidVT);
4677
4678    SmallVector<SDValue, 8> NewElts;
4679    NewElts.push_back(CastVal);
4680    for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I)
4681      NewElts.push_back(Undef);
4682
4683    SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts);
4684    SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4685    Results.push_back(CvtVec);
4686    break;
4687  }
4688  case ISD::ATOMIC_SWAP: {
4689    AtomicSDNode *AM = cast<AtomicSDNode>(Node);
4690    SDLoc SL(Node);
4691    SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal());
4692    assert(NVT.getSizeInBits() == OVT.getSizeInBits() &&
4693           "unexpected promotion type");
4694    assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() &&
4695           "unexpected atomic_swap with illegal type");
4696
4697    SDValue NewAtomic
4698      = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT,
4699                      DAG.getVTList(NVT, MVT::Other),
4700                      { AM->getChain(), AM->getBasePtr(), CastVal },
4701                      AM->getMemOperand());
4702    Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic));
4703    Results.push_back(NewAtomic.getValue(1));
4704    break;
4705  }
4706  }
4707
4708  // Replace the original node with the legalized result.
4709  if (!Results.empty()) {
4710    LLVM_DEBUG(dbgs() << "Successfully promoted node\n");
4711    ReplaceNode(Node, Results.data());
4712  } else
4713    LLVM_DEBUG(dbgs() << "Could not promote node\n");
4714}
4715
4716/// This is the entry point for the file.
4717void SelectionDAG::Legalize() {
4718  AssignTopologicalOrder();
4719
4720  SmallPtrSet<SDNode *, 16> LegalizedNodes;
4721  // Use a delete listener to remove nodes which were deleted during
4722  // legalization from LegalizeNodes. This is needed to handle the situation
4723  // where a new node is allocated by the object pool to the same address of a
4724  // previously deleted node.
4725  DAGNodeDeletedListener DeleteListener(
4726      *this,
4727      [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); });
4728
4729  SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
4730
4731  // Visit all the nodes. We start in topological order, so that we see
4732  // nodes with their original operands intact. Legalization can produce
4733  // new nodes which may themselves need to be legalized. Iterate until all
4734  // nodes have been legalized.
4735  while (true) {
4736    bool AnyLegalized = false;
4737    for (auto NI = allnodes_end(); NI != allnodes_begin();) {
4738      --NI;
4739
4740      SDNode *N = &*NI;
4741      if (N->use_empty() && N != getRoot().getNode()) {
4742        ++NI;
4743        DeleteNode(N);
4744        continue;
4745      }
4746
4747      if (LegalizedNodes.insert(N).second) {
4748        AnyLegalized = true;
4749        Legalizer.LegalizeOp(N);
4750
4751        if (N->use_empty() && N != getRoot().getNode()) {
4752          ++NI;
4753          DeleteNode(N);
4754        }
4755      }
4756    }
4757    if (!AnyLegalized)
4758      break;
4759
4760  }
4761
4762  // Remove dead nodes now.
4763  RemoveDeadNodes();
4764}
4765
4766bool SelectionDAG::LegalizeOp(SDNode *N,
4767                              SmallSetVector<SDNode *, 16> &UpdatedNodes) {
4768  SmallPtrSet<SDNode *, 16> LegalizedNodes;
4769  SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
4770
4771  // Directly insert the node in question, and legalize it. This will recurse
4772  // as needed through operands.
4773  LegalizedNodes.insert(N);
4774  Legalizer.LegalizeOp(N);
4775
4776  return LegalizedNodes.count(N);
4777}
4778