ScheduleDAGInstrs.cpp revision 288943
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/CodeGen/ScheduleDAGInstrs.h"
16#include "llvm/ADT/MapVector.h"
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/ValueTracking.h"
21#include "llvm/CodeGen/LiveIntervalAnalysis.h"
22#include "llvm/CodeGen/MachineFunctionPass.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineMemOperand.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/PseudoSourceValue.h"
28#include "llvm/CodeGen/RegisterPressure.h"
29#include "llvm/CodeGen/ScheduleDFS.h"
30#include "llvm/IR/Operator.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/Format.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetRegisterInfo.h"
38#include "llvm/Target/TargetSubtargetInfo.h"
39#include <queue>
40
41using namespace llvm;
42
43#define DEBUG_TYPE "misched"
44
45static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
46    cl::ZeroOrMore, cl::init(false),
47    cl::desc("Enable use of AA during MI DAG construction"));
48
49static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
50    cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
51
52ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
53                                     const MachineLoopInfo *mli,
54                                     bool IsPostRAFlag, bool RemoveKillFlags,
55                                     LiveIntervals *lis)
56    : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), LIS(lis),
57      IsPostRA(IsPostRAFlag), RemoveKillFlags(RemoveKillFlags),
58      CanHandleTerminators(false), FirstDbgValue(nullptr) {
59  assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
60  DbgValues.clear();
61  assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
62         "Virtual registers must be removed prior to PostRA scheduling");
63
64  const TargetSubtargetInfo &ST = mf.getSubtarget();
65  SchedModel.init(ST.getSchedModel(), &ST, TII);
66}
67
68/// getUnderlyingObjectFromInt - This is the function that does the work of
69/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
70static const Value *getUnderlyingObjectFromInt(const Value *V) {
71  do {
72    if (const Operator *U = dyn_cast<Operator>(V)) {
73      // If we find a ptrtoint, we can transfer control back to the
74      // regular getUnderlyingObjectFromInt.
75      if (U->getOpcode() == Instruction::PtrToInt)
76        return U->getOperand(0);
77      // If we find an add of a constant, a multiplied value, or a phi, it's
78      // likely that the other operand will lead us to the base
79      // object. We don't have to worry about the case where the
80      // object address is somehow being computed by the multiply,
81      // because our callers only care when the result is an
82      // identifiable object.
83      if (U->getOpcode() != Instruction::Add ||
84          (!isa<ConstantInt>(U->getOperand(1)) &&
85           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
86           !isa<PHINode>(U->getOperand(1))))
87        return V;
88      V = U->getOperand(0);
89    } else {
90      return V;
91    }
92    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
93  } while (1);
94}
95
96/// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
97/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
98static void getUnderlyingObjects(const Value *V,
99                                 SmallVectorImpl<Value *> &Objects,
100                                 const DataLayout &DL) {
101  SmallPtrSet<const Value *, 16> Visited;
102  SmallVector<const Value *, 4> Working(1, V);
103  do {
104    V = Working.pop_back_val();
105
106    SmallVector<Value *, 4> Objs;
107    GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
108
109    for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
110         I != IE; ++I) {
111      V = *I;
112      if (!Visited.insert(V).second)
113        continue;
114      if (Operator::getOpcode(V) == Instruction::IntToPtr) {
115        const Value *O =
116          getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
117        if (O->getType()->isPointerTy()) {
118          Working.push_back(O);
119          continue;
120        }
121      }
122      Objects.push_back(const_cast<Value *>(V));
123    }
124  } while (!Working.empty());
125}
126
127typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType;
128typedef SmallVector<PointerIntPair<ValueType, 1, bool>, 4>
129UnderlyingObjectsVector;
130
131/// getUnderlyingObjectsForInstr - If this machine instr has memory reference
132/// information and it can be tracked to a normal reference to a known
133/// object, return the Value for that object.
134static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
135                                         const MachineFrameInfo *MFI,
136                                         UnderlyingObjectsVector &Objects,
137                                         const DataLayout &DL) {
138  if (!MI->hasOneMemOperand() ||
139      (!(*MI->memoperands_begin())->getValue() &&
140       !(*MI->memoperands_begin())->getPseudoValue()) ||
141      (*MI->memoperands_begin())->isVolatile())
142    return;
143
144  if (const PseudoSourceValue *PSV =
145      (*MI->memoperands_begin())->getPseudoValue()) {
146    // Function that contain tail calls don't have unique PseudoSourceValue
147    // objects. Two PseudoSourceValues might refer to the same or overlapping
148    // locations. The client code calling this function assumes this is not the
149    // case. So return a conservative answer of no known object.
150    if (MFI->hasTailCall())
151      return;
152
153    // For now, ignore PseudoSourceValues which may alias LLVM IR values
154    // because the code that uses this function has no way to cope with
155    // such aliases.
156    if (!PSV->isAliased(MFI)) {
157      bool MayAlias = PSV->mayAlias(MFI);
158      Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
159    }
160    return;
161  }
162
163  const Value *V = (*MI->memoperands_begin())->getValue();
164  if (!V)
165    return;
166
167  SmallVector<Value *, 4> Objs;
168  getUnderlyingObjects(V, Objs, DL);
169
170  for (Value *V : Objs) {
171    if (!isIdentifiedObject(V)) {
172      Objects.clear();
173      return;
174    }
175
176    Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
177  }
178}
179
180void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
181  BB = bb;
182}
183
184void ScheduleDAGInstrs::finishBlock() {
185  // Subclasses should no longer refer to the old block.
186  BB = nullptr;
187}
188
189/// Initialize the DAG and common scheduler state for the current scheduling
190/// region. This does not actually create the DAG, only clears it. The
191/// scheduling driver may call BuildSchedGraph multiple times per scheduling
192/// region.
193void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
194                                    MachineBasicBlock::iterator begin,
195                                    MachineBasicBlock::iterator end,
196                                    unsigned regioninstrs) {
197  assert(bb == BB && "startBlock should set BB");
198  RegionBegin = begin;
199  RegionEnd = end;
200  NumRegionInstrs = regioninstrs;
201}
202
203/// Close the current scheduling region. Don't clear any state in case the
204/// driver wants to refer to the previous scheduling region.
205void ScheduleDAGInstrs::exitRegion() {
206  // Nothing to do.
207}
208
209/// addSchedBarrierDeps - Add dependencies from instructions in the current
210/// list of instructions being scheduled to scheduling barrier by adding
211/// the exit SU to the register defs and use list. This is because we want to
212/// make sure instructions which define registers that are either used by
213/// the terminator or are live-out are properly scheduled. This is
214/// especially important when the definition latency of the return value(s)
215/// are too high to be hidden by the branch or when the liveout registers
216/// used by instructions in the fallthrough block.
217void ScheduleDAGInstrs::addSchedBarrierDeps() {
218  MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
219  ExitSU.setInstr(ExitMI);
220  bool AllDepKnown = ExitMI &&
221    (ExitMI->isCall() || ExitMI->isBarrier());
222  if (ExitMI && AllDepKnown) {
223    // If it's a call or a barrier, add dependencies on the defs and uses of
224    // instruction.
225    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
226      const MachineOperand &MO = ExitMI->getOperand(i);
227      if (!MO.isReg() || MO.isDef()) continue;
228      unsigned Reg = MO.getReg();
229      if (Reg == 0) continue;
230
231      if (TRI->isPhysicalRegister(Reg))
232        Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
233      else {
234        assert(!IsPostRA && "Virtual register encountered after regalloc.");
235        if (MO.readsReg()) // ignore undef operands
236          addVRegUseDeps(&ExitSU, i);
237      }
238    }
239  } else {
240    // For others, e.g. fallthrough, conditional branch, assume the exit
241    // uses all the registers that are livein to the successor blocks.
242    assert(Uses.empty() && "Uses in set before adding deps?");
243    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
244           SE = BB->succ_end(); SI != SE; ++SI)
245      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
246             E = (*SI)->livein_end(); I != E; ++I) {
247        unsigned Reg = *I;
248        if (!Uses.contains(Reg))
249          Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
250      }
251  }
252}
253
254/// MO is an operand of SU's instruction that defines a physical register. Add
255/// data dependencies from SU to any uses of the physical register.
256void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
257  const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
258  assert(MO.isDef() && "expect physreg def");
259
260  // Ask the target if address-backscheduling is desirable, and if so how much.
261  const TargetSubtargetInfo &ST = MF.getSubtarget();
262
263  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
264       Alias.isValid(); ++Alias) {
265    if (!Uses.contains(*Alias))
266      continue;
267    for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
268      SUnit *UseSU = I->SU;
269      if (UseSU == SU)
270        continue;
271
272      // Adjust the dependence latency using operand def/use information,
273      // then allow the target to perform its own adjustments.
274      int UseOp = I->OpIdx;
275      MachineInstr *RegUse = nullptr;
276      SDep Dep;
277      if (UseOp < 0)
278        Dep = SDep(SU, SDep::Artificial);
279      else {
280        // Set the hasPhysRegDefs only for physreg defs that have a use within
281        // the scheduling region.
282        SU->hasPhysRegDefs = true;
283        Dep = SDep(SU, SDep::Data, *Alias);
284        RegUse = UseSU->getInstr();
285      }
286      Dep.setLatency(
287        SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
288                                         UseOp));
289
290      ST.adjustSchedDependency(SU, UseSU, Dep);
291      UseSU->addPred(Dep);
292    }
293  }
294}
295
296/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
297/// this SUnit to following instructions in the same scheduling region that
298/// depend the physical register referenced at OperIdx.
299void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
300  MachineInstr *MI = SU->getInstr();
301  MachineOperand &MO = MI->getOperand(OperIdx);
302
303  // Optionally add output and anti dependencies. For anti
304  // dependencies we use a latency of 0 because for a multi-issue
305  // target we want to allow the defining instruction to issue
306  // in the same cycle as the using instruction.
307  // TODO: Using a latency of 1 here for output dependencies assumes
308  //       there's no cost for reusing registers.
309  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
310  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
311       Alias.isValid(); ++Alias) {
312    if (!Defs.contains(*Alias))
313      continue;
314    for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
315      SUnit *DefSU = I->SU;
316      if (DefSU == &ExitSU)
317        continue;
318      if (DefSU != SU &&
319          (Kind != SDep::Output || !MO.isDead() ||
320           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
321        if (Kind == SDep::Anti)
322          DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
323        else {
324          SDep Dep(SU, Kind, /*Reg=*/*Alias);
325          Dep.setLatency(
326            SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
327          DefSU->addPred(Dep);
328        }
329      }
330    }
331  }
332
333  if (!MO.isDef()) {
334    SU->hasPhysRegUses = true;
335    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
336    // retrieve the existing SUnits list for this register's uses.
337    // Push this SUnit on the use list.
338    Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
339    if (RemoveKillFlags)
340      MO.setIsKill(false);
341  }
342  else {
343    addPhysRegDataDeps(SU, OperIdx);
344    unsigned Reg = MO.getReg();
345
346    // clear this register's use list
347    if (Uses.contains(Reg))
348      Uses.eraseAll(Reg);
349
350    if (!MO.isDead()) {
351      Defs.eraseAll(Reg);
352    } else if (SU->isCall) {
353      // Calls will not be reordered because of chain dependencies (see
354      // below). Since call operands are dead, calls may continue to be added
355      // to the DefList making dependence checking quadratic in the size of
356      // the block. Instead, we leave only one call at the back of the
357      // DefList.
358      Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
359      Reg2SUnitsMap::iterator B = P.first;
360      Reg2SUnitsMap::iterator I = P.second;
361      for (bool isBegin = I == B; !isBegin; /* empty */) {
362        isBegin = (--I) == B;
363        if (!I->SU->isCall)
364          break;
365        I = Defs.erase(I);
366      }
367    }
368
369    // Defs are pushed in the order they are visited and never reordered.
370    Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
371  }
372}
373
374/// addVRegDefDeps - Add register output and data dependencies from this SUnit
375/// to instructions that occur later in the same scheduling region if they read
376/// from or write to the virtual register defined at OperIdx.
377///
378/// TODO: Hoist loop induction variable increments. This has to be
379/// reevaluated. Generally, IV scheduling should be done before coalescing.
380void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
381  const MachineInstr *MI = SU->getInstr();
382  unsigned Reg = MI->getOperand(OperIdx).getReg();
383
384  // Singly defined vregs do not have output/anti dependencies.
385  // The current operand is a def, so we have at least one.
386  // Check here if there are any others...
387  if (MRI.hasOneDef(Reg))
388    return;
389
390  // Add output dependence to the next nearest def of this vreg.
391  //
392  // Unless this definition is dead, the output dependence should be
393  // transitively redundant with antidependencies from this definition's
394  // uses. We're conservative for now until we have a way to guarantee the uses
395  // are not eliminated sometime during scheduling. The output dependence edge
396  // is also useful if output latency exceeds def-use latency.
397  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
398  if (DefI == VRegDefs.end())
399    VRegDefs.insert(VReg2SUnit(Reg, SU));
400  else {
401    SUnit *DefSU = DefI->SU;
402    if (DefSU != SU && DefSU != &ExitSU) {
403      SDep Dep(SU, SDep::Output, Reg);
404      Dep.setLatency(
405        SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
406      DefSU->addPred(Dep);
407    }
408    DefI->SU = SU;
409  }
410}
411
412/// addVRegUseDeps - Add a register data dependency if the instruction that
413/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
414/// register antidependency from this SUnit to instructions that occur later in
415/// the same scheduling region if they write the virtual register.
416///
417/// TODO: Handle ExitSU "uses" properly.
418void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
419  MachineInstr *MI = SU->getInstr();
420  unsigned Reg = MI->getOperand(OperIdx).getReg();
421
422  // Record this local VReg use.
423  VReg2UseMap::iterator UI = VRegUses.find(Reg);
424  for (; UI != VRegUses.end(); ++UI) {
425    if (UI->SU == SU)
426      break;
427  }
428  if (UI == VRegUses.end())
429    VRegUses.insert(VReg2SUnit(Reg, SU));
430
431  // Lookup this operand's reaching definition.
432  assert(LIS && "vreg dependencies requires LiveIntervals");
433  LiveQueryResult LRQ
434    = LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI));
435  VNInfo *VNI = LRQ.valueIn();
436
437  // VNI will be valid because MachineOperand::readsReg() is checked by caller.
438  assert(VNI && "No value to read by operand");
439  MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
440  // Phis and other noninstructions (after coalescing) have a NULL Def.
441  if (Def) {
442    SUnit *DefSU = getSUnit(Def);
443    if (DefSU) {
444      // The reaching Def lives within this scheduling region.
445      // Create a data dependence.
446      SDep dep(DefSU, SDep::Data, Reg);
447      // Adjust the dependence latency using operand def/use information, then
448      // allow the target to perform its own adjustments.
449      int DefOp = Def->findRegisterDefOperandIdx(Reg);
450      dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx));
451
452      const TargetSubtargetInfo &ST = MF.getSubtarget();
453      ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
454      SU->addPred(dep);
455    }
456  }
457
458  // Add antidependence to the following def of the vreg it uses.
459  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
460  if (DefI != VRegDefs.end() && DefI->SU != SU)
461    DefI->SU->addPred(SDep(SU, SDep::Anti, Reg));
462}
463
464/// Return true if MI is an instruction we are unable to reason about
465/// (like a call or something with unmodeled side effects).
466static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
467  if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
468      (MI->hasOrderedMemoryRef() &&
469       (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
470    return true;
471  return false;
472}
473
474// This MI might have either incomplete info, or known to be unsafe
475// to deal with (i.e. volatile object).
476static inline bool isUnsafeMemoryObject(MachineInstr *MI,
477                                        const MachineFrameInfo *MFI,
478                                        const DataLayout &DL) {
479  if (!MI || MI->memoperands_empty())
480    return true;
481  // We purposefully do no check for hasOneMemOperand() here
482  // in hope to trigger an assert downstream in order to
483  // finish implementation.
484  if ((*MI->memoperands_begin())->isVolatile() ||
485       MI->hasUnmodeledSideEffects())
486    return true;
487
488  if ((*MI->memoperands_begin())->getPseudoValue()) {
489    // Similarly to getUnderlyingObjectForInstr:
490    // For now, ignore PseudoSourceValues which may alias LLVM IR values
491    // because the code that uses this function has no way to cope with
492    // such aliases.
493    return true;
494  }
495
496  const Value *V = (*MI->memoperands_begin())->getValue();
497  if (!V)
498    return true;
499
500  SmallVector<Value *, 4> Objs;
501  getUnderlyingObjects(V, Objs, DL);
502  for (Value *V : Objs) {
503    // Does this pointer refer to a distinct and identifiable object?
504    if (!isIdentifiedObject(V))
505      return true;
506  }
507
508  return false;
509}
510
511/// This returns true if the two MIs need a chain edge betwee them.
512/// If these are not even memory operations, we still may need
513/// chain deps between them. The question really is - could
514/// these two MIs be reordered during scheduling from memory dependency
515/// point of view.
516static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
517                             const DataLayout &DL, MachineInstr *MIa,
518                             MachineInstr *MIb) {
519  const MachineFunction *MF = MIa->getParent()->getParent();
520  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
521
522  // Cover a trivial case - no edge is need to itself.
523  if (MIa == MIb)
524    return false;
525
526  // Let the target decide if memory accesses cannot possibly overlap.
527  if ((MIa->mayLoad() || MIa->mayStore()) &&
528      (MIb->mayLoad() || MIb->mayStore()))
529    if (TII->areMemAccessesTriviallyDisjoint(MIa, MIb, AA))
530      return false;
531
532  // FIXME: Need to handle multiple memory operands to support all targets.
533  if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
534    return true;
535
536  if (isUnsafeMemoryObject(MIa, MFI, DL) || isUnsafeMemoryObject(MIb, MFI, DL))
537    return true;
538
539  // If we are dealing with two "normal" loads, we do not need an edge
540  // between them - they could be reordered.
541  if (!MIa->mayStore() && !MIb->mayStore())
542    return false;
543
544  // To this point analysis is generic. From here on we do need AA.
545  if (!AA)
546    return true;
547
548  MachineMemOperand *MMOa = *MIa->memoperands_begin();
549  MachineMemOperand *MMOb = *MIb->memoperands_begin();
550
551  if (!MMOa->getValue() || !MMOb->getValue())
552    return true;
553
554  // The following interface to AA is fashioned after DAGCombiner::isAlias
555  // and operates with MachineMemOperand offset with some important
556  // assumptions:
557  //   - LLVM fundamentally assumes flat address spaces.
558  //   - MachineOperand offset can *only* result from legalization and
559  //     cannot affect queries other than the trivial case of overlap
560  //     checking.
561  //   - These offsets never wrap and never step outside
562  //     of allocated objects.
563  //   - There should never be any negative offsets here.
564  //
565  // FIXME: Modify API to hide this math from "user"
566  // FIXME: Even before we go to AA we can reason locally about some
567  // memory objects. It can save compile time, and possibly catch some
568  // corner cases not currently covered.
569
570  assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
571  assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
572
573  int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
574  int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
575  int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
576
577  AliasResult AAResult =
578      AA->alias(MemoryLocation(MMOa->getValue(), Overlapa,
579                               UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
580                MemoryLocation(MMOb->getValue(), Overlapb,
581                               UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
582
583  return (AAResult != NoAlias);
584}
585
586/// This recursive function iterates over chain deps of SUb looking for
587/// "latest" node that needs a chain edge to SUa.
588static unsigned iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
589                                 const DataLayout &DL, SUnit *SUa, SUnit *SUb,
590                                 SUnit *ExitSU, unsigned *Depth,
591                                 SmallPtrSetImpl<const SUnit *> &Visited) {
592  if (!SUa || !SUb || SUb == ExitSU)
593    return *Depth;
594
595  // Remember visited nodes.
596  if (!Visited.insert(SUb).second)
597      return *Depth;
598  // If there is _some_ dependency already in place, do not
599  // descend any further.
600  // TODO: Need to make sure that if that dependency got eliminated or ignored
601  // for any reason in the future, we would not violate DAG topology.
602  // Currently it does not happen, but makes an implicit assumption about
603  // future implementation.
604  //
605  // Independently, if we encounter node that is some sort of global
606  // object (like a call) we already have full set of dependencies to it
607  // and we can stop descending.
608  if (SUa->isSucc(SUb) ||
609      isGlobalMemoryObject(AA, SUb->getInstr()))
610    return *Depth;
611
612  // If we do need an edge, or we have exceeded depth budget,
613  // add that edge to the predecessors chain of SUb,
614  // and stop descending.
615  if (*Depth > 200 ||
616      MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) {
617    SUb->addPred(SDep(SUa, SDep::MayAliasMem));
618    return *Depth;
619  }
620  // Track current depth.
621  (*Depth)++;
622  // Iterate over memory dependencies only.
623  for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
624       I != E; ++I)
625    if (I->isNormalMemoryOrBarrier())
626      iterateChainSucc(AA, MFI, DL, SUa, I->getSUnit(), ExitSU, Depth, Visited);
627  return *Depth;
628}
629
630/// This function assumes that "downward" from SU there exist
631/// tail/leaf of already constructed DAG. It iterates downward and
632/// checks whether SU can be aliasing any node dominated
633/// by it.
634static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
635                            const DataLayout &DL, SUnit *SU, SUnit *ExitSU,
636                            std::set<SUnit *> &CheckList,
637                            unsigned LatencyToLoad) {
638  if (!SU)
639    return;
640
641  SmallPtrSet<const SUnit*, 16> Visited;
642  unsigned Depth = 0;
643
644  for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
645       I != IE; ++I) {
646    if (SU == *I)
647      continue;
648    if (MIsNeedChainEdge(AA, MFI, DL, SU->getInstr(), (*I)->getInstr())) {
649      SDep Dep(SU, SDep::MayAliasMem);
650      Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
651      (*I)->addPred(Dep);
652    }
653
654    // Iterate recursively over all previously added memory chain
655    // successors. Keep track of visited nodes.
656    for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
657         JE = (*I)->Succs.end(); J != JE; ++J)
658      if (J->isNormalMemoryOrBarrier())
659        iterateChainSucc(AA, MFI, DL, SU, J->getSUnit(), ExitSU, &Depth,
660                         Visited);
661  }
662}
663
664/// Check whether two objects need a chain edge, if so, add it
665/// otherwise remember the rejected SU.
666static inline void addChainDependency(AliasAnalysis *AA,
667                                      const MachineFrameInfo *MFI,
668                                      const DataLayout &DL, SUnit *SUa,
669                                      SUnit *SUb, std::set<SUnit *> &RejectList,
670                                      unsigned TrueMemOrderLatency = 0,
671                                      bool isNormalMemory = false) {
672  // If this is a false dependency,
673  // do not add the edge, but rememeber the rejected node.
674  if (MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) {
675    SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
676    Dep.setLatency(TrueMemOrderLatency);
677    SUb->addPred(Dep);
678  }
679  else {
680    // Duplicate entries should be ignored.
681    RejectList.insert(SUb);
682    DEBUG(dbgs() << "\tReject chain dep between SU("
683          << SUa->NodeNum << ") and SU("
684          << SUb->NodeNum << ")\n");
685  }
686}
687
688/// Create an SUnit for each real instruction, numbered in top-down toplological
689/// order. The instruction order A < B, implies that no edge exists from B to A.
690///
691/// Map each real instruction to its SUnit.
692///
693/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
694/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
695/// instead of pointers.
696///
697/// MachineScheduler relies on initSUnits numbering the nodes by their order in
698/// the original instruction list.
699void ScheduleDAGInstrs::initSUnits() {
700  // We'll be allocating one SUnit for each real instruction in the region,
701  // which is contained within a basic block.
702  SUnits.reserve(NumRegionInstrs);
703
704  for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
705    MachineInstr *MI = I;
706    if (MI->isDebugValue())
707      continue;
708
709    SUnit *SU = newSUnit(MI);
710    MISUnitMap[MI] = SU;
711
712    SU->isCall = MI->isCall();
713    SU->isCommutable = MI->isCommutable();
714
715    // Assign the Latency field of SU using target-provided information.
716    SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
717
718    // If this SUnit uses a reserved or unbuffered resource, mark it as such.
719    //
720    // Reserved resources block an instruction from issuing and stall the
721    // entire pipeline. These are identified by BufferSize=0.
722    //
723    // Unbuffered resources prevent execution of subsequent instructions that
724    // require the same resources. This is used for in-order execution pipelines
725    // within an out-of-order core. These are identified by BufferSize=1.
726    if (SchedModel.hasInstrSchedModel()) {
727      const MCSchedClassDesc *SC = getSchedClass(SU);
728      for (TargetSchedModel::ProcResIter
729             PI = SchedModel.getWriteProcResBegin(SC),
730             PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
731        switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) {
732        case 0:
733          SU->hasReservedResource = true;
734          break;
735        case 1:
736          SU->isUnbuffered = true;
737          break;
738        default:
739          break;
740        }
741      }
742    }
743  }
744}
745
746/// If RegPressure is non-null, compute register pressure as a side effect. The
747/// DAG builder is an efficient place to do it because it already visits
748/// operands.
749void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
750                                        RegPressureTracker *RPTracker,
751                                        PressureDiffs *PDiffs) {
752  const TargetSubtargetInfo &ST = MF.getSubtarget();
753  bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
754                                                       : ST.useAA();
755  AliasAnalysis *AAForDep = UseAA ? AA : nullptr;
756
757  MISUnitMap.clear();
758  ScheduleDAG::clearDAG();
759
760  // Create an SUnit for each real instruction.
761  initSUnits();
762
763  if (PDiffs)
764    PDiffs->init(SUnits.size());
765
766  // We build scheduling units by walking a block's instruction list from bottom
767  // to top.
768
769  // Remember where a generic side-effecting instruction is as we procede.
770  SUnit *BarrierChain = nullptr, *AliasChain = nullptr;
771
772  // Memory references to specific known memory locations are tracked
773  // so that they can be given more precise dependencies. We track
774  // separately the known memory locations that may alias and those
775  // that are known not to alias
776  MapVector<ValueType, std::vector<SUnit *> > AliasMemDefs, NonAliasMemDefs;
777  MapVector<ValueType, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
778  std::set<SUnit*> RejectMemNodes;
779
780  // Remove any stale debug info; sometimes BuildSchedGraph is called again
781  // without emitting the info from the previous call.
782  DbgValues.clear();
783  FirstDbgValue = nullptr;
784
785  assert(Defs.empty() && Uses.empty() &&
786         "Only BuildGraph should update Defs/Uses");
787  Defs.setUniverse(TRI->getNumRegs());
788  Uses.setUniverse(TRI->getNumRegs());
789
790  assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
791  VRegUses.clear();
792  VRegDefs.setUniverse(MRI.getNumVirtRegs());
793  VRegUses.setUniverse(MRI.getNumVirtRegs());
794
795  // Model data dependencies between instructions being scheduled and the
796  // ExitSU.
797  addSchedBarrierDeps();
798
799  // Walk the list of instructions, from bottom moving up.
800  MachineInstr *DbgMI = nullptr;
801  for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
802       MII != MIE; --MII) {
803    MachineInstr *MI = std::prev(MII);
804    if (MI && DbgMI) {
805      DbgValues.push_back(std::make_pair(DbgMI, MI));
806      DbgMI = nullptr;
807    }
808
809    if (MI->isDebugValue()) {
810      DbgMI = MI;
811      continue;
812    }
813    SUnit *SU = MISUnitMap[MI];
814    assert(SU && "No SUnit mapped to this MI");
815
816    if (RPTracker) {
817      PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : nullptr;
818      RPTracker->recede(/*LiveUses=*/nullptr, PDiff);
819      assert(RPTracker->getPos() == std::prev(MII) &&
820             "RPTracker can't find MI");
821    }
822
823    assert(
824        (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) &&
825        "Cannot schedule terminators or labels!");
826
827    // Add register-based dependencies (data, anti, and output).
828    bool HasVRegDef = false;
829    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
830      const MachineOperand &MO = MI->getOperand(j);
831      if (!MO.isReg()) continue;
832      unsigned Reg = MO.getReg();
833      if (Reg == 0) continue;
834
835      if (TRI->isPhysicalRegister(Reg))
836        addPhysRegDeps(SU, j);
837      else {
838        assert(!IsPostRA && "Virtual register encountered!");
839        if (MO.isDef()) {
840          HasVRegDef = true;
841          addVRegDefDeps(SU, j);
842        }
843        else if (MO.readsReg()) // ignore undef operands
844          addVRegUseDeps(SU, j);
845      }
846    }
847    // If we haven't seen any uses in this scheduling region, create a
848    // dependence edge to ExitSU to model the live-out latency. This is required
849    // for vreg defs with no in-region use, and prefetches with no vreg def.
850    //
851    // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
852    // check currently relies on being called before adding chain deps.
853    if (SU->NumSuccs == 0 && SU->Latency > 1
854        && (HasVRegDef || MI->mayLoad())) {
855      SDep Dep(SU, SDep::Artificial);
856      Dep.setLatency(SU->Latency - 1);
857      ExitSU.addPred(Dep);
858    }
859
860    // Add chain dependencies.
861    // Chain dependencies used to enforce memory order should have
862    // latency of 0 (except for true dependency of Store followed by
863    // aliased Load... we estimate that with a single cycle of latency
864    // assuming the hardware will bypass)
865    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
866    // after stack slots are lowered to actual addresses.
867    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
868    // produce more precise dependence information.
869    unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
870    if (isGlobalMemoryObject(AA, MI)) {
871      // Be conservative with these and add dependencies on all memory
872      // references, even those that are known to not alias.
873      for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
874             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
875        for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
876          I->second[i]->addPred(SDep(SU, SDep::Barrier));
877        }
878      }
879      for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
880             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
881        for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
882          SDep Dep(SU, SDep::Barrier);
883          Dep.setLatency(TrueMemOrderLatency);
884          I->second[i]->addPred(Dep);
885        }
886      }
887      // Add SU to the barrier chain.
888      if (BarrierChain)
889        BarrierChain->addPred(SDep(SU, SDep::Barrier));
890      BarrierChain = SU;
891      // This is a barrier event that acts as a pivotal node in the DAG,
892      // so it is safe to clear list of exposed nodes.
893      adjustChainDeps(AA, MFI, *TM.getDataLayout(), SU, &ExitSU, RejectMemNodes,
894                      TrueMemOrderLatency);
895      RejectMemNodes.clear();
896      NonAliasMemDefs.clear();
897      NonAliasMemUses.clear();
898
899      // fall-through
900    new_alias_chain:
901      // Chain all possibly aliasing memory references through SU.
902      if (AliasChain) {
903        unsigned ChainLatency = 0;
904        if (AliasChain->getInstr()->mayLoad())
905          ChainLatency = TrueMemOrderLatency;
906        addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU, AliasChain,
907                           RejectMemNodes, ChainLatency);
908      }
909      AliasChain = SU;
910      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
911        addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
912                           PendingLoads[k], RejectMemNodes,
913                           TrueMemOrderLatency);
914      for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
915           AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) {
916        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
917          addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
918                             I->second[i], RejectMemNodes);
919      }
920      for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
921           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
922        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
923          addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
924                             I->second[i], RejectMemNodes, TrueMemOrderLatency);
925      }
926      adjustChainDeps(AA, MFI, *TM.getDataLayout(), SU, &ExitSU, RejectMemNodes,
927                      TrueMemOrderLatency);
928      PendingLoads.clear();
929      AliasMemDefs.clear();
930      AliasMemUses.clear();
931    } else if (MI->mayStore()) {
932      // Add dependence on barrier chain, if needed.
933      // There is no point to check aliasing on barrier event. Even if
934      // SU and barrier _could_ be reordered, they should not. In addition,
935      // we have lost all RejectMemNodes below barrier.
936      if (BarrierChain)
937        BarrierChain->addPred(SDep(SU, SDep::Barrier));
938
939      UnderlyingObjectsVector Objs;
940      getUnderlyingObjectsForInstr(MI, MFI, Objs, *TM.getDataLayout());
941
942      if (Objs.empty()) {
943        // Treat all other stores conservatively.
944        goto new_alias_chain;
945      }
946
947      bool MayAlias = false;
948      for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end();
949           K != KE; ++K) {
950        ValueType V = K->getPointer();
951        bool ThisMayAlias = K->getInt();
952        if (ThisMayAlias)
953          MayAlias = true;
954
955        // A store to a specific PseudoSourceValue. Add precise dependencies.
956        // Record the def in MemDefs, first adding a dep if there is
957        // an existing def.
958        MapVector<ValueType, std::vector<SUnit *> >::iterator I =
959          ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
960        MapVector<ValueType, std::vector<SUnit *> >::iterator IE =
961          ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
962        if (I != IE) {
963          for (unsigned i = 0, e = I->second.size(); i != e; ++i)
964            addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
965                               I->second[i], RejectMemNodes, 0, true);
966
967          // If we're not using AA, then we only need one store per object.
968          if (!AAForDep)
969            I->second.clear();
970          I->second.push_back(SU);
971        } else {
972          if (ThisMayAlias) {
973            if (!AAForDep)
974              AliasMemDefs[V].clear();
975            AliasMemDefs[V].push_back(SU);
976          } else {
977            if (!AAForDep)
978              NonAliasMemDefs[V].clear();
979            NonAliasMemDefs[V].push_back(SU);
980          }
981        }
982        // Handle the uses in MemUses, if there are any.
983        MapVector<ValueType, std::vector<SUnit *> >::iterator J =
984          ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
985        MapVector<ValueType, std::vector<SUnit *> >::iterator JE =
986          ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
987        if (J != JE) {
988          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
989            addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
990                               J->second[i], RejectMemNodes,
991                               TrueMemOrderLatency, true);
992          J->second.clear();
993        }
994      }
995      if (MayAlias) {
996        // Add dependencies from all the PendingLoads, i.e. loads
997        // with no underlying object.
998        for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
999          addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
1000                             PendingLoads[k], RejectMemNodes,
1001                             TrueMemOrderLatency);
1002        // Add dependence on alias chain, if needed.
1003        if (AliasChain)
1004          addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU, AliasChain,
1005                             RejectMemNodes);
1006      }
1007      adjustChainDeps(AA, MFI, *TM.getDataLayout(), SU, &ExitSU, RejectMemNodes,
1008                      TrueMemOrderLatency);
1009    } else if (MI->mayLoad()) {
1010      bool MayAlias = true;
1011      if (MI->isInvariantLoad(AA)) {
1012        // Invariant load, no chain dependencies needed!
1013      } else {
1014        UnderlyingObjectsVector Objs;
1015        getUnderlyingObjectsForInstr(MI, MFI, Objs, *TM.getDataLayout());
1016
1017        if (Objs.empty()) {
1018          // A load with no underlying object. Depend on all
1019          // potentially aliasing stores.
1020          for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1021                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
1022            for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1023              addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
1024                                 I->second[i], RejectMemNodes);
1025
1026          PendingLoads.push_back(SU);
1027          MayAlias = true;
1028        } else {
1029          MayAlias = false;
1030        }
1031
1032        for (UnderlyingObjectsVector::iterator
1033             J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
1034          ValueType V = J->getPointer();
1035          bool ThisMayAlias = J->getInt();
1036
1037          if (ThisMayAlias)
1038            MayAlias = true;
1039
1040          // A load from a specific PseudoSourceValue. Add precise dependencies.
1041          MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1042            ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
1043          MapVector<ValueType, std::vector<SUnit *> >::iterator IE =
1044            ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
1045          if (I != IE)
1046            for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1047              addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
1048                                 I->second[i], RejectMemNodes, 0, true);
1049          if (ThisMayAlias)
1050            AliasMemUses[V].push_back(SU);
1051          else
1052            NonAliasMemUses[V].push_back(SU);
1053        }
1054        if (MayAlias)
1055          adjustChainDeps(AA, MFI, *TM.getDataLayout(), SU, &ExitSU,
1056                          RejectMemNodes, /*Latency=*/0);
1057        // Add dependencies on alias and barrier chains, if needed.
1058        if (MayAlias && AliasChain)
1059          addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU, AliasChain,
1060                             RejectMemNodes);
1061        if (BarrierChain)
1062          BarrierChain->addPred(SDep(SU, SDep::Barrier));
1063      }
1064    }
1065  }
1066  if (DbgMI)
1067    FirstDbgValue = DbgMI;
1068
1069  Defs.clear();
1070  Uses.clear();
1071  VRegDefs.clear();
1072  PendingLoads.clear();
1073}
1074
1075/// \brief Initialize register live-range state for updating kills.
1076void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) {
1077  // Start with no live registers.
1078  LiveRegs.reset();
1079
1080  // Examine the live-in regs of all successors.
1081  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
1082       SE = BB->succ_end(); SI != SE; ++SI) {
1083    for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
1084         E = (*SI)->livein_end(); I != E; ++I) {
1085      unsigned Reg = *I;
1086      // Repeat, for reg and all subregs.
1087      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1088           SubRegs.isValid(); ++SubRegs)
1089        LiveRegs.set(*SubRegs);
1090    }
1091  }
1092}
1093
1094/// \brief If we change a kill flag on the bundle instruction implicit register
1095/// operands, then we also need to propagate that to any instructions inside
1096/// the bundle which had the same kill state.
1097static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg,
1098                                 bool NewKillState) {
1099  if (MI->getOpcode() != TargetOpcode::BUNDLE)
1100    return;
1101
1102  // Walk backwards from the last instruction in the bundle to the first.
1103  // Once we set a kill flag on an instruction, we bail out, as otherwise we
1104  // might set it on too many operands.  We will clear as many flags as we
1105  // can though.
1106  MachineBasicBlock::instr_iterator Begin = MI;
1107  MachineBasicBlock::instr_iterator End = getBundleEnd(MI);
1108  while (Begin != End) {
1109    for (MachineOperand &MO : (--End)->operands()) {
1110      if (!MO.isReg() || MO.isDef() || Reg != MO.getReg())
1111        continue;
1112
1113      // DEBUG_VALUE nodes do not contribute to code generation and should
1114      // always be ignored.  Failure to do so may result in trying to modify
1115      // KILL flags on DEBUG_VALUE nodes, which is distressing.
1116      if (MO.isDebug())
1117        continue;
1118
1119      // If the register has the internal flag then it could be killing an
1120      // internal def of the register.  In this case, just skip.  We only want
1121      // to toggle the flag on operands visible outside the bundle.
1122      if (MO.isInternalRead())
1123        continue;
1124
1125      if (MO.isKill() == NewKillState)
1126        continue;
1127      MO.setIsKill(NewKillState);
1128      if (NewKillState)
1129        return;
1130    }
1131  }
1132}
1133
1134bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) {
1135  // Setting kill flag...
1136  if (!MO.isKill()) {
1137    MO.setIsKill(true);
1138    toggleBundleKillFlag(MI, MO.getReg(), true);
1139    return false;
1140  }
1141
1142  // If MO itself is live, clear the kill flag...
1143  if (LiveRegs.test(MO.getReg())) {
1144    MO.setIsKill(false);
1145    toggleBundleKillFlag(MI, MO.getReg(), false);
1146    return false;
1147  }
1148
1149  // If any subreg of MO is live, then create an imp-def for that
1150  // subreg and keep MO marked as killed.
1151  MO.setIsKill(false);
1152  toggleBundleKillFlag(MI, MO.getReg(), false);
1153  bool AllDead = true;
1154  const unsigned SuperReg = MO.getReg();
1155  MachineInstrBuilder MIB(MF, MI);
1156  for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
1157    if (LiveRegs.test(*SubRegs)) {
1158      MIB.addReg(*SubRegs, RegState::ImplicitDefine);
1159      AllDead = false;
1160    }
1161  }
1162
1163  if(AllDead) {
1164    MO.setIsKill(true);
1165    toggleBundleKillFlag(MI, MO.getReg(), true);
1166  }
1167  return false;
1168}
1169
1170// FIXME: Reuse the LivePhysRegs utility for this.
1171void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) {
1172  DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
1173
1174  LiveRegs.resize(TRI->getNumRegs());
1175  BitVector killedRegs(TRI->getNumRegs());
1176
1177  startBlockForKills(MBB);
1178
1179  // Examine block from end to start...
1180  unsigned Count = MBB->size();
1181  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
1182       I != E; --Count) {
1183    MachineInstr *MI = --I;
1184    if (MI->isDebugValue())
1185      continue;
1186
1187    // Update liveness.  Registers that are defed but not used in this
1188    // instruction are now dead. Mark register and all subregs as they
1189    // are completely defined.
1190    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1191      MachineOperand &MO = MI->getOperand(i);
1192      if (MO.isRegMask())
1193        LiveRegs.clearBitsNotInMask(MO.getRegMask());
1194      if (!MO.isReg()) continue;
1195      unsigned Reg = MO.getReg();
1196      if (Reg == 0) continue;
1197      if (!MO.isDef()) continue;
1198      // Ignore two-addr defs.
1199      if (MI->isRegTiedToUseOperand(i)) continue;
1200
1201      // Repeat for reg and all subregs.
1202      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1203           SubRegs.isValid(); ++SubRegs)
1204        LiveRegs.reset(*SubRegs);
1205    }
1206
1207    // Examine all used registers and set/clear kill flag. When a
1208    // register is used multiple times we only set the kill flag on
1209    // the first use. Don't set kill flags on undef operands.
1210    killedRegs.reset();
1211    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1212      MachineOperand &MO = MI->getOperand(i);
1213      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1214      unsigned Reg = MO.getReg();
1215      if ((Reg == 0) || MRI.isReserved(Reg)) continue;
1216
1217      bool kill = false;
1218      if (!killedRegs.test(Reg)) {
1219        kill = true;
1220        // A register is not killed if any subregs are live...
1221        for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
1222          if (LiveRegs.test(*SubRegs)) {
1223            kill = false;
1224            break;
1225          }
1226        }
1227
1228        // If subreg is not live, then register is killed if it became
1229        // live in this instruction
1230        if (kill)
1231          kill = !LiveRegs.test(Reg);
1232      }
1233
1234      if (MO.isKill() != kill) {
1235        DEBUG(dbgs() << "Fixing " << MO << " in ");
1236        // Warning: toggleKillFlag may invalidate MO.
1237        toggleKillFlag(MI, MO);
1238        DEBUG(MI->dump());
1239        DEBUG(if (MI->getOpcode() == TargetOpcode::BUNDLE) {
1240          MachineBasicBlock::instr_iterator Begin = MI;
1241          MachineBasicBlock::instr_iterator End = getBundleEnd(MI);
1242          while (++Begin != End)
1243            DEBUG(Begin->dump());
1244        });
1245      }
1246
1247      killedRegs.set(Reg);
1248    }
1249
1250    // Mark any used register (that is not using undef) and subregs as
1251    // now live...
1252    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1253      MachineOperand &MO = MI->getOperand(i);
1254      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1255      unsigned Reg = MO.getReg();
1256      if ((Reg == 0) || MRI.isReserved(Reg)) continue;
1257
1258      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1259           SubRegs.isValid(); ++SubRegs)
1260        LiveRegs.set(*SubRegs);
1261    }
1262  }
1263}
1264
1265void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
1266#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1267  SU->getInstr()->dump();
1268#endif
1269}
1270
1271std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1272  std::string s;
1273  raw_string_ostream oss(s);
1274  if (SU == &EntrySU)
1275    oss << "<entry>";
1276  else if (SU == &ExitSU)
1277    oss << "<exit>";
1278  else
1279    SU->getInstr()->print(oss, /*SkipOpers=*/true);
1280  return oss.str();
1281}
1282
1283/// Return the basic block label. It is not necessarilly unique because a block
1284/// contains multiple scheduling regions. But it is fine for visualization.
1285std::string ScheduleDAGInstrs::getDAGName() const {
1286  return "dag." + BB->getFullName();
1287}
1288
1289//===----------------------------------------------------------------------===//
1290// SchedDFSResult Implementation
1291//===----------------------------------------------------------------------===//
1292
1293namespace llvm {
1294/// \brief Internal state used to compute SchedDFSResult.
1295class SchedDFSImpl {
1296  SchedDFSResult &R;
1297
1298  /// Join DAG nodes into equivalence classes by their subtree.
1299  IntEqClasses SubtreeClasses;
1300  /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1301  std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
1302
1303  struct RootData {
1304    unsigned NodeID;
1305    unsigned ParentNodeID;  // Parent node (member of the parent subtree).
1306    unsigned SubInstrCount; // Instr count in this tree only, not children.
1307
1308    RootData(unsigned id): NodeID(id),
1309                           ParentNodeID(SchedDFSResult::InvalidSubtreeID),
1310                           SubInstrCount(0) {}
1311
1312    unsigned getSparseSetIndex() const { return NodeID; }
1313  };
1314
1315  SparseSet<RootData> RootSet;
1316
1317public:
1318  SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1319    RootSet.setUniverse(R.DFSNodeData.size());
1320  }
1321
1322  /// Return true if this node been visited by the DFS traversal.
1323  ///
1324  /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1325  /// ID. Later, SubtreeID is updated but remains valid.
1326  bool isVisited(const SUnit *SU) const {
1327    return R.DFSNodeData[SU->NodeNum].SubtreeID
1328      != SchedDFSResult::InvalidSubtreeID;
1329  }
1330
1331  /// Initialize this node's instruction count. We don't need to flag the node
1332  /// visited until visitPostorder because the DAG cannot have cycles.
1333  void visitPreorder(const SUnit *SU) {
1334    R.DFSNodeData[SU->NodeNum].InstrCount =
1335      SU->getInstr()->isTransient() ? 0 : 1;
1336  }
1337
1338  /// Called once for each node after all predecessors are visited. Revisit this
1339  /// node's predecessors and potentially join them now that we know the ILP of
1340  /// the other predecessors.
1341  void visitPostorderNode(const SUnit *SU) {
1342    // Mark this node as the root of a subtree. It may be joined with its
1343    // successors later.
1344    R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1345    RootData RData(SU->NodeNum);
1346    RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1347
1348    // If any predecessors are still in their own subtree, they either cannot be
1349    // joined or are large enough to remain separate. If this parent node's
1350    // total instruction count is not greater than a child subtree by at least
1351    // the subtree limit, then try to join it now since splitting subtrees is
1352    // only useful if multiple high-pressure paths are possible.
1353    unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1354    for (SUnit::const_pred_iterator
1355           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1356      if (PI->getKind() != SDep::Data)
1357        continue;
1358      unsigned PredNum = PI->getSUnit()->NodeNum;
1359      if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1360        joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
1361
1362      // Either link or merge the TreeData entry from the child to the parent.
1363      if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1364        // If the predecessor's parent is invalid, this is a tree edge and the
1365        // current node is the parent.
1366        if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1367          RootSet[PredNum].ParentNodeID = SU->NodeNum;
1368      }
1369      else if (RootSet.count(PredNum)) {
1370        // The predecessor is not a root, but is still in the root set. This
1371        // must be the new parent that it was just joined to. Note that
1372        // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1373        // set to the original parent.
1374        RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1375        RootSet.erase(PredNum);
1376      }
1377    }
1378    RootSet[SU->NodeNum] = RData;
1379  }
1380
1381  /// Called once for each tree edge after calling visitPostOrderNode on the
1382  /// predecessor. Increment the parent node's instruction count and
1383  /// preemptively join this subtree to its parent's if it is small enough.
1384  void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1385    R.DFSNodeData[Succ->NodeNum].InstrCount
1386      += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1387    joinPredSubtree(PredDep, Succ);
1388  }
1389
1390  /// Add a connection for cross edges.
1391  void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1392    ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1393  }
1394
1395  /// Set each node's subtree ID to the representative ID and record connections
1396  /// between trees.
1397  void finalize() {
1398    SubtreeClasses.compress();
1399    R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1400    assert(SubtreeClasses.getNumClasses() == RootSet.size()
1401           && "number of roots should match trees");
1402    for (SparseSet<RootData>::const_iterator
1403           RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
1404      unsigned TreeID = SubtreeClasses[RI->NodeID];
1405      if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1406        R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
1407      R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
1408      // Note that SubInstrCount may be greater than InstrCount if we joined
1409      // subtrees across a cross edge. InstrCount will be attributed to the
1410      // original parent, while SubInstrCount will be attributed to the joined
1411      // parent.
1412    }
1413    R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1414    R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1415    DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1416    for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1417      R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1418      DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
1419            << R.DFSNodeData[Idx].SubtreeID << '\n');
1420    }
1421    for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
1422           I = ConnectionPairs.begin(), E = ConnectionPairs.end();
1423         I != E; ++I) {
1424      unsigned PredTree = SubtreeClasses[I->first->NodeNum];
1425      unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
1426      if (PredTree == SuccTree)
1427        continue;
1428      unsigned Depth = I->first->getDepth();
1429      addConnection(PredTree, SuccTree, Depth);
1430      addConnection(SuccTree, PredTree, Depth);
1431    }
1432  }
1433
1434protected:
1435  /// Join the predecessor subtree with the successor that is its DFS
1436  /// parent. Apply some heuristics before joining.
1437  bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1438                       bool CheckLimit = true) {
1439    assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1440
1441    // Check if the predecessor is already joined.
1442    const SUnit *PredSU = PredDep.getSUnit();
1443    unsigned PredNum = PredSU->NodeNum;
1444    if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1445      return false;
1446
1447    // Four is the magic number of successors before a node is considered a
1448    // pinch point.
1449    unsigned NumDataSucs = 0;
1450    for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
1451           SE = PredSU->Succs.end(); SI != SE; ++SI) {
1452      if (SI->getKind() == SDep::Data) {
1453        if (++NumDataSucs >= 4)
1454          return false;
1455      }
1456    }
1457    if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1458      return false;
1459    R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1460    SubtreeClasses.join(Succ->NodeNum, PredNum);
1461    return true;
1462  }
1463
1464  /// Called by finalize() to record a connection between trees.
1465  void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1466    if (!Depth)
1467      return;
1468
1469    do {
1470      SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1471        R.SubtreeConnections[FromTree];
1472      for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
1473             I = Connections.begin(), E = Connections.end(); I != E; ++I) {
1474        if (I->TreeID == ToTree) {
1475          I->Level = std::max(I->Level, Depth);
1476          return;
1477        }
1478      }
1479      Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1480      FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1481    } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1482  }
1483};
1484} // namespace llvm
1485
1486namespace {
1487/// \brief Manage the stack used by a reverse depth-first search over the DAG.
1488class SchedDAGReverseDFS {
1489  std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
1490public:
1491  bool isComplete() const { return DFSStack.empty(); }
1492
1493  void follow(const SUnit *SU) {
1494    DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1495  }
1496  void advance() { ++DFSStack.back().second; }
1497
1498  const SDep *backtrack() {
1499    DFSStack.pop_back();
1500    return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
1501  }
1502
1503  const SUnit *getCurr() const { return DFSStack.back().first; }
1504
1505  SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1506
1507  SUnit::const_pred_iterator getPredEnd() const {
1508    return getCurr()->Preds.end();
1509  }
1510};
1511} // anonymous
1512
1513static bool hasDataSucc(const SUnit *SU) {
1514  for (SUnit::const_succ_iterator
1515         SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
1516    if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
1517      return true;
1518  }
1519  return false;
1520}
1521
1522/// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
1523/// search from this root.
1524void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1525  if (!IsBottomUp)
1526    llvm_unreachable("Top-down ILP metric is unimplemnted");
1527
1528  SchedDFSImpl Impl(*this);
1529  for (ArrayRef<SUnit>::const_iterator
1530         SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
1531    const SUnit *SU = &*SI;
1532    if (Impl.isVisited(SU) || hasDataSucc(SU))
1533      continue;
1534
1535    SchedDAGReverseDFS DFS;
1536    Impl.visitPreorder(SU);
1537    DFS.follow(SU);
1538    for (;;) {
1539      // Traverse the leftmost path as far as possible.
1540      while (DFS.getPred() != DFS.getPredEnd()) {
1541        const SDep &PredDep = *DFS.getPred();
1542        DFS.advance();
1543        // Ignore non-data edges.
1544        if (PredDep.getKind() != SDep::Data
1545            || PredDep.getSUnit()->isBoundaryNode()) {
1546          continue;
1547        }
1548        // An already visited edge is a cross edge, assuming an acyclic DAG.
1549        if (Impl.isVisited(PredDep.getSUnit())) {
1550          Impl.visitCrossEdge(PredDep, DFS.getCurr());
1551          continue;
1552        }
1553        Impl.visitPreorder(PredDep.getSUnit());
1554        DFS.follow(PredDep.getSUnit());
1555      }
1556      // Visit the top of the stack in postorder and backtrack.
1557      const SUnit *Child = DFS.getCurr();
1558      const SDep *PredDep = DFS.backtrack();
1559      Impl.visitPostorderNode(Child);
1560      if (PredDep)
1561        Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1562      if (DFS.isComplete())
1563        break;
1564    }
1565  }
1566  Impl.finalize();
1567}
1568
1569/// The root of the given SubtreeID was just scheduled. For all subtrees
1570/// connected to this tree, record the depth of the connection so that the
1571/// nearest connected subtrees can be prioritized.
1572void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1573  for (SmallVectorImpl<Connection>::const_iterator
1574         I = SubtreeConnections[SubtreeID].begin(),
1575         E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
1576    SubtreeConnectLevels[I->TreeID] =
1577      std::max(SubtreeConnectLevels[I->TreeID], I->Level);
1578    DEBUG(dbgs() << "  Tree: " << I->TreeID
1579          << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
1580  }
1581}
1582
1583LLVM_DUMP_METHOD
1584void ILPValue::print(raw_ostream &OS) const {
1585  OS << InstrCount << " / " << Length << " = ";
1586  if (!Length)
1587    OS << "BADILP";
1588  else
1589    OS << format("%g", ((double)InstrCount / Length));
1590}
1591
1592LLVM_DUMP_METHOD
1593void ILPValue::dump() const {
1594  dbgs() << *this << '\n';
1595}
1596
1597namespace llvm {
1598
1599LLVM_DUMP_METHOD
1600raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1601  Val.print(OS);
1602  return OS;
1603}
1604
1605} // namespace llvm
1606