ScheduleDAGInstrs.cpp revision 234353
1193323Sed//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11193323Sed// of MachineInstrs.
12193323Sed//
13193323Sed//===----------------------------------------------------------------------===//
14193323Sed
15193323Sed#define DEBUG_TYPE "sched-instrs"
16198090Srdivacky#include "llvm/Operator.h"
17193323Sed#include "llvm/Analysis/AliasAnalysis.h"
18218893Sdim#include "llvm/Analysis/ValueTracking.h"
19234353Sdim#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20193323Sed#include "llvm/CodeGen/MachineFunctionPass.h"
21198090Srdivacky#include "llvm/CodeGen/MachineMemOperand.h"
22193323Sed#include "llvm/CodeGen/MachineRegisterInfo.h"
23193323Sed#include "llvm/CodeGen/PseudoSourceValue.h"
24234353Sdim#include "llvm/CodeGen/ScheduleDAGInstrs.h"
25224145Sdim#include "llvm/MC/MCInstrItineraries.h"
26193323Sed#include "llvm/Target/TargetMachine.h"
27193323Sed#include "llvm/Target/TargetInstrInfo.h"
28193323Sed#include "llvm/Target/TargetRegisterInfo.h"
29224145Sdim#include "llvm/Target/TargetSubtargetInfo.h"
30193323Sed#include "llvm/Support/Debug.h"
31193323Sed#include "llvm/Support/raw_ostream.h"
32193323Sed#include "llvm/ADT/SmallSet.h"
33193323Sedusing namespace llvm;
34193323Sed
35193323SedScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
36193323Sed                                     const MachineLoopInfo &mli,
37234353Sdim                                     const MachineDominatorTree &mdt,
38234353Sdim                                     bool IsPostRAFlag,
39234353Sdim                                     LiveIntervals *lis)
40218893Sdim  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
41234353Sdim    InstrItins(mf.getTarget().getInstrItineraryData()), LIS(lis),
42234353Sdim    IsPostRA(IsPostRAFlag), UnitLatencies(false), LoopRegs(MLI, MDT),
43234353Sdim    FirstDbgValue(0) {
44234353Sdim  assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
45223017Sdim  DbgValues.clear();
46234353Sdim  assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
47234353Sdim         "Virtual registers must be removed prior to PostRA scheduling");
48198396Srdivacky}
49193323Sed
50193323Sed/// getUnderlyingObjectFromInt - This is the function that does the work of
51193323Sed/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
52193323Sedstatic const Value *getUnderlyingObjectFromInt(const Value *V) {
53193323Sed  do {
54198090Srdivacky    if (const Operator *U = dyn_cast<Operator>(V)) {
55193323Sed      // If we find a ptrtoint, we can transfer control back to the
56193323Sed      // regular getUnderlyingObjectFromInt.
57198090Srdivacky      if (U->getOpcode() == Instruction::PtrToInt)
58193323Sed        return U->getOperand(0);
59193323Sed      // If we find an add of a constant or a multiplied value, it's
60193323Sed      // likely that the other operand will lead us to the base
61193323Sed      // object. We don't have to worry about the case where the
62198090Srdivacky      // object address is somehow being computed by the multiply,
63193323Sed      // because our callers only care when the result is an
64193323Sed      // identifibale object.
65198090Srdivacky      if (U->getOpcode() != Instruction::Add ||
66193323Sed          (!isa<ConstantInt>(U->getOperand(1)) &&
67198090Srdivacky           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
68193323Sed        return V;
69193323Sed      V = U->getOperand(0);
70193323Sed    } else {
71193323Sed      return V;
72193323Sed    }
73204642Srdivacky    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
74193323Sed  } while (1);
75193323Sed}
76193323Sed
77218893Sdim/// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
78193323Sed/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
79193323Sedstatic const Value *getUnderlyingObject(const Value *V) {
80193323Sed  // First just call Value::getUnderlyingObject to let it do what it does.
81193323Sed  do {
82218893Sdim    V = GetUnderlyingObject(V);
83193323Sed    // If it found an inttoptr, use special code to continue climing.
84198090Srdivacky    if (Operator::getOpcode(V) != Instruction::IntToPtr)
85193323Sed      break;
86193323Sed    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
87193323Sed    // If that succeeded in finding a pointer, continue the search.
88204642Srdivacky    if (!O->getType()->isPointerTy())
89193323Sed      break;
90193323Sed    V = O;
91193323Sed  } while (1);
92193323Sed  return V;
93193323Sed}
94193323Sed
95193323Sed/// getUnderlyingObjectForInstr - If this machine instr has memory reference
96193323Sed/// information and it can be tracked to a normal reference to a known
97193323Sed/// object, return the Value for that object. Otherwise return null.
98198396Srdivackystatic const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
99198892Srdivacky                                                const MachineFrameInfo *MFI,
100198892Srdivacky                                                bool &MayAlias) {
101198892Srdivacky  MayAlias = true;
102193323Sed  if (!MI->hasOneMemOperand() ||
103198090Srdivacky      !(*MI->memoperands_begin())->getValue() ||
104198090Srdivacky      (*MI->memoperands_begin())->isVolatile())
105193323Sed    return 0;
106193323Sed
107198090Srdivacky  const Value *V = (*MI->memoperands_begin())->getValue();
108193323Sed  if (!V)
109193323Sed    return 0;
110193323Sed
111193323Sed  V = getUnderlyingObject(V);
112198396Srdivacky  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
113198396Srdivacky    // For now, ignore PseudoSourceValues which may alias LLVM IR values
114198396Srdivacky    // because the code that uses this function has no way to cope with
115198396Srdivacky    // such aliases.
116198396Srdivacky    if (PSV->isAliased(MFI))
117198396Srdivacky      return 0;
118223017Sdim
119199481Srdivacky    MayAlias = PSV->mayAlias(MFI);
120198396Srdivacky    return V;
121198396Srdivacky  }
122193323Sed
123198396Srdivacky  if (isIdentifiedObject(V))
124198396Srdivacky    return V;
125198396Srdivacky
126198396Srdivacky  return 0;
127193323Sed}
128193323Sed
129234353Sdimvoid ScheduleDAGInstrs::startBlock(MachineBasicBlock *BB) {
130226633Sdim  LoopRegs.Deps.clear();
131193323Sed  if (MachineLoop *ML = MLI.getLoopFor(BB))
132234353Sdim    if (BB == ML->getLoopLatch())
133193323Sed      LoopRegs.VisitLoop(ML);
134193323Sed}
135193323Sed
136234353Sdimvoid ScheduleDAGInstrs::finishBlock() {
137234353Sdim  // Nothing to do.
138234353Sdim}
139234353Sdim
140234353Sdim/// Initialize the map with the number of registers.
141234353Sdimvoid Reg2SUnitsMap::setRegLimit(unsigned Limit) {
142234353Sdim  PhysRegSet.setUniverse(Limit);
143234353Sdim  SUnits.resize(Limit);
144234353Sdim}
145234353Sdim
146234353Sdim/// Clear the map without deallocating storage.
147234353Sdimvoid Reg2SUnitsMap::clear() {
148234353Sdim  for (const_iterator I = reg_begin(), E = reg_end(); I != E; ++I) {
149234353Sdim    SUnits[*I].clear();
150234353Sdim  }
151234353Sdim  PhysRegSet.clear();
152234353Sdim}
153234353Sdim
154234353Sdim/// Initialize the DAG and common scheduler state for the current scheduling
155234353Sdim/// region. This does not actually create the DAG, only clears it. The
156234353Sdim/// scheduling driver may call BuildSchedGraph multiple times per scheduling
157234353Sdim/// region.
158234353Sdimvoid ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
159234353Sdim                                    MachineBasicBlock::iterator begin,
160234353Sdim                                    MachineBasicBlock::iterator end,
161234353Sdim                                    unsigned endcount) {
162234353Sdim  BB = bb;
163234353Sdim  RegionBegin = begin;
164234353Sdim  RegionEnd = end;
165234353Sdim  EndIndex = endcount;
166234353Sdim  MISUnitMap.clear();
167234353Sdim
168234353Sdim  // Check to see if the scheduler cares about latencies.
169234353Sdim  UnitLatencies = forceUnitLatencies();
170234353Sdim
171234353Sdim  ScheduleDAG::clearDAG();
172234353Sdim}
173234353Sdim
174234353Sdim/// Close the current scheduling region. Don't clear any state in case the
175234353Sdim/// driver wants to refer to the previous scheduling region.
176234353Sdimvoid ScheduleDAGInstrs::exitRegion() {
177234353Sdim  // Nothing to do.
178234353Sdim}
179234353Sdim
180234353Sdim/// addSchedBarrierDeps - Add dependencies from instructions in the current
181218893Sdim/// list of instructions being scheduled to scheduling barrier by adding
182218893Sdim/// the exit SU to the register defs and use list. This is because we want to
183218893Sdim/// make sure instructions which define registers that are either used by
184218893Sdim/// the terminator or are live-out are properly scheduled. This is
185218893Sdim/// especially important when the definition latency of the return value(s)
186218893Sdim/// are too high to be hidden by the branch or when the liveout registers
187218893Sdim/// used by instructions in the fallthrough block.
188234353Sdimvoid ScheduleDAGInstrs::addSchedBarrierDeps() {
189234353Sdim  MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
190218893Sdim  ExitSU.setInstr(ExitMI);
191218893Sdim  bool AllDepKnown = ExitMI &&
192234353Sdim    (ExitMI->isCall() || ExitMI->isBarrier());
193218893Sdim  if (ExitMI && AllDepKnown) {
194218893Sdim    // If it's a call or a barrier, add dependencies on the defs and uses of
195218893Sdim    // instruction.
196218893Sdim    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
197218893Sdim      const MachineOperand &MO = ExitMI->getOperand(i);
198218893Sdim      if (!MO.isReg() || MO.isDef()) continue;
199218893Sdim      unsigned Reg = MO.getReg();
200218893Sdim      if (Reg == 0) continue;
201218893Sdim
202234353Sdim      if (TRI->isPhysicalRegister(Reg))
203234353Sdim        Uses[Reg].push_back(&ExitSU);
204234353Sdim      else {
205234353Sdim        assert(!IsPostRA && "Virtual register encountered after regalloc.");
206234353Sdim        addVRegUseDeps(&ExitSU, i);
207234353Sdim      }
208218893Sdim    }
209218893Sdim  } else {
210218893Sdim    // For others, e.g. fallthrough, conditional branch, assume the exit
211218893Sdim    // uses all the registers that are livein to the successor blocks.
212234353Sdim    assert(Uses.empty() && "Uses in set before adding deps?");
213218893Sdim    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
214218893Sdim           SE = BB->succ_end(); SI != SE; ++SI)
215218893Sdim      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
216223017Sdim             E = (*SI)->livein_end(); I != E; ++I) {
217218893Sdim        unsigned Reg = *I;
218234353Sdim        if (!Uses.contains(Reg))
219218893Sdim          Uses[Reg].push_back(&ExitSU);
220218893Sdim      }
221218893Sdim  }
222218893Sdim}
223218893Sdim
224234353Sdim/// MO is an operand of SU's instruction that defines a physical register. Add
225234353Sdim/// data dependencies from SU to any uses of the physical register.
226234353Sdimvoid ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU,
227234353Sdim                                           const MachineOperand &MO) {
228234353Sdim  assert(MO.isDef() && "expect physreg def");
229234353Sdim
230234353Sdim  // Ask the target if address-backscheduling is desirable, and if so how much.
231234353Sdim  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
232234353Sdim  unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
233234353Sdim  unsigned DataLatency = SU->Latency;
234234353Sdim
235234353Sdim  for (const uint16_t *Alias = TRI->getOverlaps(MO.getReg()); *Alias; ++Alias) {
236234353Sdim    if (!Uses.contains(*Alias))
237234353Sdim      continue;
238234353Sdim    std::vector<SUnit*> &UseList = Uses[*Alias];
239234353Sdim    for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
240234353Sdim      SUnit *UseSU = UseList[i];
241234353Sdim      if (UseSU == SU)
242234353Sdim        continue;
243234353Sdim      unsigned LDataLatency = DataLatency;
244234353Sdim      // Optionally add in a special extra latency for nodes that
245234353Sdim      // feed addresses.
246234353Sdim      // TODO: Perhaps we should get rid of
247234353Sdim      // SpecialAddressLatency and just move this into
248234353Sdim      // adjustSchedDependency for the targets that care about it.
249234353Sdim      if (SpecialAddressLatency != 0 && !UnitLatencies &&
250234353Sdim          UseSU != &ExitSU) {
251234353Sdim        MachineInstr *UseMI = UseSU->getInstr();
252234353Sdim        const MCInstrDesc &UseMCID = UseMI->getDesc();
253234353Sdim        int RegUseIndex = UseMI->findRegisterUseOperandIdx(*Alias);
254234353Sdim        assert(RegUseIndex >= 0 && "UseMI doesn't use register!");
255234353Sdim        if (RegUseIndex >= 0 &&
256234353Sdim            (UseMI->mayLoad() || UseMI->mayStore()) &&
257234353Sdim            (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
258234353Sdim            UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
259234353Sdim          LDataLatency += SpecialAddressLatency;
260234353Sdim      }
261234353Sdim      // Adjust the dependence latency using operand def/use
262234353Sdim      // information (if any), and then allow the target to
263234353Sdim      // perform its own adjustments.
264234353Sdim      const SDep& dep = SDep(SU, SDep::Data, LDataLatency, *Alias);
265234353Sdim      if (!UnitLatencies) {
266234353Sdim        computeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
267234353Sdim        ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
268234353Sdim      }
269234353Sdim      UseSU->addPred(dep);
270234353Sdim    }
271234353Sdim  }
272234353Sdim}
273234353Sdim
274234353Sdim/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
275234353Sdim/// this SUnit to following instructions in the same scheduling region that
276234353Sdim/// depend the physical register referenced at OperIdx.
277234353Sdimvoid ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
278234353Sdim  const MachineInstr *MI = SU->getInstr();
279234353Sdim  const MachineOperand &MO = MI->getOperand(OperIdx);
280234353Sdim
281234353Sdim  // Optionally add output and anti dependencies. For anti
282234353Sdim  // dependencies we use a latency of 0 because for a multi-issue
283234353Sdim  // target we want to allow the defining instruction to issue
284234353Sdim  // in the same cycle as the using instruction.
285234353Sdim  // TODO: Using a latency of 1 here for output dependencies assumes
286234353Sdim  //       there's no cost for reusing registers.
287234353Sdim  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
288234353Sdim  for (const uint16_t *Alias = TRI->getOverlaps(MO.getReg()); *Alias; ++Alias) {
289234353Sdim    if (!Defs.contains(*Alias))
290234353Sdim      continue;
291234353Sdim    std::vector<SUnit *> &DefList = Defs[*Alias];
292234353Sdim    for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
293234353Sdim      SUnit *DefSU = DefList[i];
294234353Sdim      if (DefSU == &ExitSU)
295234353Sdim        continue;
296234353Sdim      if (DefSU != SU &&
297234353Sdim          (Kind != SDep::Output || !MO.isDead() ||
298234353Sdim           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
299234353Sdim        if (Kind == SDep::Anti)
300234353Sdim          DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/*Alias));
301234353Sdim        else {
302234353Sdim          unsigned AOLat = TII->getOutputLatency(InstrItins, MI, OperIdx,
303234353Sdim                                                 DefSU->getInstr());
304234353Sdim          DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/*Alias));
305234353Sdim        }
306234353Sdim      }
307234353Sdim    }
308234353Sdim  }
309234353Sdim
310234353Sdim  if (!MO.isDef()) {
311234353Sdim    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
312234353Sdim    // retrieve the existing SUnits list for this register's uses.
313234353Sdim    // Push this SUnit on the use list.
314234353Sdim    Uses[MO.getReg()].push_back(SU);
315234353Sdim  }
316234353Sdim  else {
317234353Sdim    addPhysRegDataDeps(SU, MO);
318234353Sdim
319234353Sdim    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
320234353Sdim    // retrieve the existing SUnits list for this register's defs.
321234353Sdim    std::vector<SUnit *> &DefList = Defs[MO.getReg()];
322234353Sdim
323234353Sdim    // If a def is going to wrap back around to the top of the loop,
324234353Sdim    // backschedule it.
325234353Sdim    if (!UnitLatencies && DefList.empty()) {
326234353Sdim      LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(MO.getReg());
327234353Sdim      if (I != LoopRegs.Deps.end()) {
328234353Sdim        const MachineOperand *UseMO = I->second.first;
329234353Sdim        unsigned Count = I->second.second;
330234353Sdim        const MachineInstr *UseMI = UseMO->getParent();
331234353Sdim        unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
332234353Sdim        const MCInstrDesc &UseMCID = UseMI->getDesc();
333234353Sdim        const TargetSubtargetInfo &ST =
334234353Sdim          TM.getSubtarget<TargetSubtargetInfo>();
335234353Sdim        unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
336234353Sdim        // TODO: If we knew the total depth of the region here, we could
337234353Sdim        // handle the case where the whole loop is inside the region but
338234353Sdim        // is large enough that the isScheduleHigh trick isn't needed.
339234353Sdim        if (UseMOIdx < UseMCID.getNumOperands()) {
340234353Sdim          // Currently, we only support scheduling regions consisting of
341234353Sdim          // single basic blocks. Check to see if the instruction is in
342234353Sdim          // the same region by checking to see if it has the same parent.
343234353Sdim          if (UseMI->getParent() != MI->getParent()) {
344234353Sdim            unsigned Latency = SU->Latency;
345234353Sdim            if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
346234353Sdim              Latency += SpecialAddressLatency;
347234353Sdim            // This is a wild guess as to the portion of the latency which
348234353Sdim            // will be overlapped by work done outside the current
349234353Sdim            // scheduling region.
350234353Sdim            Latency -= std::min(Latency, Count);
351234353Sdim            // Add the artificial edge.
352234353Sdim            ExitSU.addPred(SDep(SU, SDep::Order, Latency,
353234353Sdim                                /*Reg=*/0, /*isNormalMemory=*/false,
354234353Sdim                                /*isMustAlias=*/false,
355234353Sdim                                /*isArtificial=*/true));
356234353Sdim          } else if (SpecialAddressLatency > 0 &&
357234353Sdim                     UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
358234353Sdim            // The entire loop body is within the current scheduling region
359234353Sdim            // and the latency of this operation is assumed to be greater
360234353Sdim            // than the latency of the loop.
361234353Sdim            // TODO: Recursively mark data-edge predecessors as
362234353Sdim            //       isScheduleHigh too.
363234353Sdim            SU->isScheduleHigh = true;
364234353Sdim          }
365234353Sdim        }
366234353Sdim        LoopRegs.Deps.erase(I);
367234353Sdim      }
368234353Sdim    }
369234353Sdim
370234353Sdim    // clear this register's use list
371234353Sdim    if (Uses.contains(MO.getReg()))
372234353Sdim      Uses[MO.getReg()].clear();
373234353Sdim
374234353Sdim    if (!MO.isDead())
375234353Sdim      DefList.clear();
376234353Sdim
377234353Sdim    // Calls will not be reordered because of chain dependencies (see
378234353Sdim    // below). Since call operands are dead, calls may continue to be added
379234353Sdim    // to the DefList making dependence checking quadratic in the size of
380234353Sdim    // the block. Instead, we leave only one call at the back of the
381234353Sdim    // DefList.
382234353Sdim    if (SU->isCall) {
383234353Sdim      while (!DefList.empty() && DefList.back()->isCall)
384234353Sdim        DefList.pop_back();
385234353Sdim    }
386234353Sdim    // Defs are pushed in the order they are visited and never reordered.
387234353Sdim    DefList.push_back(SU);
388234353Sdim  }
389234353Sdim}
390234353Sdim
391234353Sdim/// addVRegDefDeps - Add register output and data dependencies from this SUnit
392234353Sdim/// to instructions that occur later in the same scheduling region if they read
393234353Sdim/// from or write to the virtual register defined at OperIdx.
394234353Sdim///
395234353Sdim/// TODO: Hoist loop induction variable increments. This has to be
396234353Sdim/// reevaluated. Generally, IV scheduling should be done before coalescing.
397234353Sdimvoid ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
398234353Sdim  const MachineInstr *MI = SU->getInstr();
399234353Sdim  unsigned Reg = MI->getOperand(OperIdx).getReg();
400234353Sdim
401234353Sdim  // SSA defs do not have output/anti dependencies.
402234353Sdim  // The current operand is a def, so we have at least one.
403234353Sdim  if (llvm::next(MRI.def_begin(Reg)) == MRI.def_end())
404234353Sdim    return;
405234353Sdim
406234353Sdim  // Add output dependence to the next nearest def of this vreg.
407234353Sdim  //
408234353Sdim  // Unless this definition is dead, the output dependence should be
409234353Sdim  // transitively redundant with antidependencies from this definition's
410234353Sdim  // uses. We're conservative for now until we have a way to guarantee the uses
411234353Sdim  // are not eliminated sometime during scheduling. The output dependence edge
412234353Sdim  // is also useful if output latency exceeds def-use latency.
413234353Sdim  VReg2SUnitMap::iterator DefI = findVRegDef(Reg);
414234353Sdim  if (DefI == VRegDefs.end())
415234353Sdim    VRegDefs.insert(VReg2SUnit(Reg, SU));
416234353Sdim  else {
417234353Sdim    SUnit *DefSU = DefI->SU;
418234353Sdim    if (DefSU != SU && DefSU != &ExitSU) {
419234353Sdim      unsigned OutLatency = TII->getOutputLatency(InstrItins, MI, OperIdx,
420234353Sdim                                                  DefSU->getInstr());
421234353Sdim      DefSU->addPred(SDep(SU, SDep::Output, OutLatency, Reg));
422234353Sdim    }
423234353Sdim    DefI->SU = SU;
424234353Sdim  }
425234353Sdim}
426234353Sdim
427234353Sdim/// addVRegUseDeps - Add a register data dependency if the instruction that
428234353Sdim/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
429234353Sdim/// register antidependency from this SUnit to instructions that occur later in
430234353Sdim/// the same scheduling region if they write the virtual register.
431234353Sdim///
432234353Sdim/// TODO: Handle ExitSU "uses" properly.
433234353Sdimvoid ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
434234353Sdim  MachineInstr *MI = SU->getInstr();
435234353Sdim  unsigned Reg = MI->getOperand(OperIdx).getReg();
436234353Sdim
437234353Sdim  // Lookup this operand's reaching definition.
438234353Sdim  assert(LIS && "vreg dependencies requires LiveIntervals");
439234353Sdim  SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot();
440234353Sdim  LiveInterval *LI = &LIS->getInterval(Reg);
441234353Sdim  VNInfo *VNI = LI->getVNInfoBefore(UseIdx);
442234353Sdim  // VNI will be valid because MachineOperand::readsReg() is checked by caller.
443234353Sdim  MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
444234353Sdim  // Phis and other noninstructions (after coalescing) have a NULL Def.
445234353Sdim  if (Def) {
446234353Sdim    SUnit *DefSU = getSUnit(Def);
447234353Sdim    if (DefSU) {
448234353Sdim      // The reaching Def lives within this scheduling region.
449234353Sdim      // Create a data dependence.
450234353Sdim      //
451234353Sdim      // TODO: Handle "special" address latencies cleanly.
452234353Sdim      const SDep &dep = SDep(DefSU, SDep::Data, DefSU->Latency, Reg);
453234353Sdim      if (!UnitLatencies) {
454234353Sdim        // Adjust the dependence latency using operand def/use information, then
455234353Sdim        // allow the target to perform its own adjustments.
456234353Sdim        computeOperandLatency(DefSU, SU, const_cast<SDep &>(dep));
457234353Sdim        const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
458234353Sdim        ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
459234353Sdim      }
460234353Sdim      SU->addPred(dep);
461234353Sdim    }
462234353Sdim  }
463234353Sdim
464234353Sdim  // Add antidependence to the following def of the vreg it uses.
465234353Sdim  VReg2SUnitMap::iterator DefI = findVRegDef(Reg);
466234353Sdim  if (DefI != VRegDefs.end() && DefI->SU != SU)
467234353Sdim    DefI->SU->addPred(SDep(SU, SDep::Anti, 0, Reg));
468234353Sdim}
469234353Sdim
470234353Sdim/// Create an SUnit for each real instruction, numbered in top-down toplological
471234353Sdim/// order. The instruction order A < B, implies that no edge exists from B to A.
472234353Sdim///
473234353Sdim/// Map each real instruction to its SUnit.
474234353Sdim///
475234353Sdim/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
476234353Sdim/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
477234353Sdim/// instead of pointers.
478234353Sdim///
479234353Sdim/// MachineScheduler relies on initSUnits numbering the nodes by their order in
480234353Sdim/// the original instruction list.
481234353Sdimvoid ScheduleDAGInstrs::initSUnits() {
482234353Sdim  // We'll be allocating one SUnit for each real instruction in the region,
483234353Sdim  // which is contained within a basic block.
484193323Sed  SUnits.reserve(BB->size());
485193323Sed
486234353Sdim  for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
487234353Sdim    MachineInstr *MI = I;
488234353Sdim    if (MI->isDebugValue())
489234353Sdim      continue;
490234353Sdim
491234353Sdim    SUnit *SU = newSUnit(MI);
492234353Sdim    MISUnitMap[MI] = SU;
493234353Sdim
494234353Sdim    SU->isCall = MI->isCall();
495234353Sdim    SU->isCommutable = MI->isCommutable();
496234353Sdim
497234353Sdim    // Assign the Latency field of SU using target-provided information.
498234353Sdim    if (UnitLatencies)
499234353Sdim      SU->Latency = 1;
500234353Sdim    else
501234353Sdim      computeLatency(SU);
502234353Sdim  }
503234353Sdim}
504234353Sdim
505234353Sdimvoid ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA) {
506234353Sdim  // Create an SUnit for each real instruction.
507234353Sdim  initSUnits();
508234353Sdim
509193323Sed  // We build scheduling units by walking a block's instruction list from bottom
510193323Sed  // to top.
511193323Sed
512199481Srdivacky  // Remember where a generic side-effecting instruction is as we procede.
513199481Srdivacky  SUnit *BarrierChain = 0, *AliasChain = 0;
514193323Sed
515199481Srdivacky  // Memory references to specific known memory locations are tracked
516199481Srdivacky  // so that they can be given more precise dependencies. We track
517199481Srdivacky  // separately the known memory locations that may alias and those
518199481Srdivacky  // that are known not to alias
519199481Srdivacky  std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
520199481Srdivacky  std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
521193323Sed
522205218Srdivacky  // Remove any stale debug info; sometimes BuildSchedGraph is called again
523205218Srdivacky  // without emitting the info from the previous call.
524223017Sdim  DbgValues.clear();
525223017Sdim  FirstDbgValue = NULL;
526205218Srdivacky
527234353Sdim  assert(Defs.empty() && Uses.empty() &&
528234353Sdim         "Only BuildGraph should update Defs/Uses");
529234353Sdim  Defs.setRegLimit(TRI->getNumRegs());
530234353Sdim  Uses.setRegLimit(TRI->getNumRegs());
531234353Sdim
532234353Sdim  assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
533234353Sdim  // FIXME: Allow SparseSet to reserve space for the creation of virtual
534234353Sdim  // registers during scheduling. Don't artificially inflate the Universe
535234353Sdim  // because we want to assert that vregs are not created during DAG building.
536234353Sdim  VRegDefs.setUniverse(MRI.getNumVirtRegs());
537234353Sdim
538218893Sdim  // Model data dependencies between instructions being scheduled and the
539218893Sdim  // ExitSU.
540234353Sdim  addSchedBarrierDeps();
541218893Sdim
542193323Sed  // Walk the list of instructions, from bottom moving up.
543223017Sdim  MachineInstr *PrevMI = NULL;
544234353Sdim  for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
545193323Sed       MII != MIE; --MII) {
546193323Sed    MachineInstr *MI = prior(MII);
547223017Sdim    if (MI && PrevMI) {
548223017Sdim      DbgValues.push_back(std::make_pair(PrevMI, MI));
549223017Sdim      PrevMI = NULL;
550223017Sdim    }
551223017Sdim
552205218Srdivacky    if (MI->isDebugValue()) {
553223017Sdim      PrevMI = MI;
554205218Srdivacky      continue;
555205218Srdivacky    }
556223017Sdim
557234353Sdim    assert(!MI->isTerminator() && !MI->isLabel() &&
558193323Sed           "Cannot schedule terminators or labels!");
559193323Sed
560234353Sdim    SUnit *SU = MISUnitMap[MI];
561234353Sdim    assert(SU && "No SUnit mapped to this MI");
562193323Sed
563193323Sed    // Add register-based dependencies (data, anti, and output).
564193323Sed    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
565193323Sed      const MachineOperand &MO = MI->getOperand(j);
566193323Sed      if (!MO.isReg()) continue;
567193323Sed      unsigned Reg = MO.getReg();
568193323Sed      if (Reg == 0) continue;
569193323Sed
570234353Sdim      if (TRI->isPhysicalRegister(Reg))
571234353Sdim        addPhysRegDeps(SU, j);
572234353Sdim      else {
573234353Sdim        assert(!IsPostRA && "Virtual register encountered!");
574234353Sdim        if (MO.isDef())
575234353Sdim          addVRegDefDeps(SU, j);
576234353Sdim        else if (MO.readsReg()) // ignore undef operands
577234353Sdim          addVRegUseDeps(SU, j);
578193323Sed      }
579193323Sed    }
580193323Sed
581193323Sed    // Add chain dependencies.
582198892Srdivacky    // Chain dependencies used to enforce memory order should have
583198892Srdivacky    // latency of 0 (except for true dependency of Store followed by
584198892Srdivacky    // aliased Load... we estimate that with a single cycle of latency
585198892Srdivacky    // assuming the hardware will bypass)
586193323Sed    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
587193323Sed    // after stack slots are lowered to actual addresses.
588193323Sed    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
589193323Sed    // produce more precise dependence information.
590198892Srdivacky#define STORE_LOAD_LATENCY 1
591198892Srdivacky    unsigned TrueMemOrderLatency = 0;
592234353Sdim    if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
593223017Sdim        (MI->hasVolatileMemoryRef() &&
594234353Sdim         (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) {
595199481Srdivacky      // Be conservative with these and add dependencies on all memory
596199481Srdivacky      // references, even those that are known to not alias.
597223017Sdim      for (std::map<const Value *, SUnit *>::iterator I =
598199481Srdivacky             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
599199481Srdivacky        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
600199481Srdivacky      }
601199481Srdivacky      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
602199481Srdivacky             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
603199481Srdivacky        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
604199481Srdivacky          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
605199481Srdivacky      }
606199481Srdivacky      NonAliasMemDefs.clear();
607199481Srdivacky      NonAliasMemUses.clear();
608199481Srdivacky      // Add SU to the barrier chain.
609199481Srdivacky      if (BarrierChain)
610199481Srdivacky        BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
611199481Srdivacky      BarrierChain = SU;
612199481Srdivacky
613199481Srdivacky      // fall-through
614199481Srdivacky    new_alias_chain:
615199481Srdivacky      // Chain all possibly aliasing memory references though SU.
616199481Srdivacky      if (AliasChain)
617199481Srdivacky        AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
618199481Srdivacky      AliasChain = SU;
619193323Sed      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
620198892Srdivacky        PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
621199481Srdivacky      for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
622199481Srdivacky           E = AliasMemDefs.end(); I != E; ++I) {
623198892Srdivacky        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
624193323Sed      }
625193323Sed      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
626199481Srdivacky           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
627193323Sed        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
628198892Srdivacky          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
629193323Sed      }
630199481Srdivacky      PendingLoads.clear();
631199481Srdivacky      AliasMemDefs.clear();
632199481Srdivacky      AliasMemUses.clear();
633234353Sdim    } else if (MI->mayStore()) {
634198892Srdivacky      bool MayAlias = true;
635198892Srdivacky      TrueMemOrderLatency = STORE_LOAD_LATENCY;
636198892Srdivacky      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
637193323Sed        // A store to a specific PseudoSourceValue. Add precise dependencies.
638199481Srdivacky        // Record the def in MemDefs, first adding a dep if there is
639199481Srdivacky        // an existing def.
640223017Sdim        std::map<const Value *, SUnit *>::iterator I =
641199481Srdivacky          ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
642223017Sdim        std::map<const Value *, SUnit *>::iterator IE =
643199481Srdivacky          ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
644199481Srdivacky        if (I != IE) {
645198892Srdivacky          I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
646193323Sed                                  /*isNormalMemory=*/true));
647193323Sed          I->second = SU;
648193323Sed        } else {
649199481Srdivacky          if (MayAlias)
650199481Srdivacky            AliasMemDefs[V] = SU;
651199481Srdivacky          else
652199481Srdivacky            NonAliasMemDefs[V] = SU;
653193323Sed        }
654193323Sed        // Handle the uses in MemUses, if there are any.
655193323Sed        std::map<const Value *, std::vector<SUnit *> >::iterator J =
656199481Srdivacky          ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
657199481Srdivacky        std::map<const Value *, std::vector<SUnit *> >::iterator JE =
658199481Srdivacky          ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
659199481Srdivacky        if (J != JE) {
660193323Sed          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
661198892Srdivacky            J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
662198892Srdivacky                                       /*Reg=*/0, /*isNormalMemory=*/true));
663193323Sed          J->second.clear();
664193323Sed        }
665198892Srdivacky        if (MayAlias) {
666199481Srdivacky          // Add dependencies from all the PendingLoads, i.e. loads
667199481Srdivacky          // with no underlying object.
668198892Srdivacky          for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
669198892Srdivacky            PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
670199481Srdivacky          // Add dependence on alias chain, if needed.
671199481Srdivacky          if (AliasChain)
672199481Srdivacky            AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
673198892Srdivacky        }
674199481Srdivacky        // Add dependence on barrier chain, if needed.
675199481Srdivacky        if (BarrierChain)
676199481Srdivacky          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
677198953Srdivacky      } else {
678193323Sed        // Treat all other stores conservatively.
679199481Srdivacky        goto new_alias_chain;
680198892Srdivacky      }
681218893Sdim
682218893Sdim      if (!ExitSU.isPred(SU))
683218893Sdim        // Push store's up a bit to avoid them getting in between cmp
684218893Sdim        // and branches.
685218893Sdim        ExitSU.addPred(SDep(SU, SDep::Order, 0,
686218893Sdim                            /*Reg=*/0, /*isNormalMemory=*/false,
687218893Sdim                            /*isMustAlias=*/false,
688218893Sdim                            /*isArtificial=*/true));
689234353Sdim    } else if (MI->mayLoad()) {
690198892Srdivacky      bool MayAlias = true;
691198892Srdivacky      TrueMemOrderLatency = 0;
692198090Srdivacky      if (MI->isInvariantLoad(AA)) {
693193323Sed        // Invariant load, no chain dependencies needed!
694198953Srdivacky      } else {
695223017Sdim        if (const Value *V =
696199481Srdivacky            getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
697199481Srdivacky          // A load from a specific PseudoSourceValue. Add precise dependencies.
698223017Sdim          std::map<const Value *, SUnit *>::iterator I =
699199481Srdivacky            ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
700223017Sdim          std::map<const Value *, SUnit *>::iterator IE =
701199481Srdivacky            ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
702199481Srdivacky          if (I != IE)
703199481Srdivacky            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
704199481Srdivacky                                    /*isNormalMemory=*/true));
705199481Srdivacky          if (MayAlias)
706199481Srdivacky            AliasMemUses[V].push_back(SU);
707223017Sdim          else
708199481Srdivacky            NonAliasMemUses[V].push_back(SU);
709199481Srdivacky        } else {
710199481Srdivacky          // A load with no underlying object. Depend on all
711199481Srdivacky          // potentially aliasing stores.
712223017Sdim          for (std::map<const Value *, SUnit *>::iterator I =
713199481Srdivacky                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
714199481Srdivacky            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
715223017Sdim
716199481Srdivacky          PendingLoads.push_back(SU);
717199481Srdivacky          MayAlias = true;
718198892Srdivacky        }
719223017Sdim
720199481Srdivacky        // Add dependencies on alias and barrier chains, if needed.
721199481Srdivacky        if (MayAlias && AliasChain)
722199481Srdivacky          AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
723199481Srdivacky        if (BarrierChain)
724199481Srdivacky          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
725223017Sdim      }
726193323Sed    }
727193323Sed  }
728223017Sdim  if (PrevMI)
729223017Sdim    FirstDbgValue = PrevMI;
730193323Sed
731234353Sdim  Defs.clear();
732234353Sdim  Uses.clear();
733234353Sdim  VRegDefs.clear();
734193323Sed  PendingLoads.clear();
735193323Sed}
736193323Sed
737234353Sdimvoid ScheduleDAGInstrs::computeLatency(SUnit *SU) {
738198090Srdivacky  // Compute the latency for the node.
739218893Sdim  if (!InstrItins || InstrItins->isEmpty()) {
740218893Sdim    SU->Latency = 1;
741193323Sed
742218893Sdim    // Simplistic target-independent heuristic: assume that loads take
743218893Sdim    // extra time.
744234353Sdim    if (SU->getInstr()->mayLoad())
745193323Sed      SU->Latency += 2;
746218893Sdim  } else {
747218893Sdim    SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
748218893Sdim  }
749193323Sed}
750193323Sed
751234353Sdimvoid ScheduleDAGInstrs::computeOperandLatency(SUnit *Def, SUnit *Use,
752198090Srdivacky                                              SDep& dep) const {
753218893Sdim  if (!InstrItins || InstrItins->isEmpty())
754198090Srdivacky    return;
755223017Sdim
756198090Srdivacky  // For a data dependency with a known register...
757198090Srdivacky  if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
758198090Srdivacky    return;
759198090Srdivacky
760198090Srdivacky  const unsigned Reg = dep.getReg();
761198090Srdivacky
762198090Srdivacky  // ... find the definition of the register in the defining
763198090Srdivacky  // instruction
764198090Srdivacky  MachineInstr *DefMI = Def->getInstr();
765198090Srdivacky  int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
766198090Srdivacky  if (DefIdx != -1) {
767218893Sdim    const MachineOperand &MO = DefMI->getOperand(DefIdx);
768218893Sdim    if (MO.isReg() && MO.isImplicit() &&
769218893Sdim        DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
770218893Sdim      // This is an implicit def, getOperandLatency() won't return the correct
771218893Sdim      // latency. e.g.
772218893Sdim      //   %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
773218893Sdim      //   %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
774218893Sdim      // What we want is to compute latency between def of %D6/%D7 and use of
775218893Sdim      // %Q3 instead.
776234353Sdim      unsigned Op2 = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
777234353Sdim      if (DefMI->getOperand(Op2).isReg())
778234353Sdim        DefIdx = Op2;
779218893Sdim    }
780218893Sdim    MachineInstr *UseMI = Use->getInstr();
781218893Sdim    // For all uses of the register, calculate the maxmimum latency
782218893Sdim    int Latency = -1;
783218893Sdim    if (UseMI) {
784198090Srdivacky      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
785198090Srdivacky        const MachineOperand &MO = UseMI->getOperand(i);
786198090Srdivacky        if (!MO.isReg() || !MO.isUse())
787198090Srdivacky          continue;
788198090Srdivacky        unsigned MOReg = MO.getReg();
789198090Srdivacky        if (MOReg != Reg)
790198090Srdivacky          continue;
791198090Srdivacky
792218893Sdim        int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
793218893Sdim                                              UseMI, i);
794218893Sdim        Latency = std::max(Latency, UseCycle);
795198090Srdivacky      }
796218893Sdim    } else {
797218893Sdim      // UseMI is null, then it must be a scheduling barrier.
798218893Sdim      if (!InstrItins || InstrItins->isEmpty())
799218893Sdim        return;
800218893Sdim      unsigned DefClass = DefMI->getDesc().getSchedClass();
801218893Sdim      Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
802218893Sdim    }
803198090Srdivacky
804218893Sdim    // If we found a latency, then replace the existing dependence latency.
805218893Sdim    if (Latency >= 0)
806218893Sdim      dep.setLatency(Latency);
807198090Srdivacky  }
808198090Srdivacky}
809198090Srdivacky
810193323Sedvoid ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
811193323Sed  SU->getInstr()->dump();
812193323Sed}
813193323Sed
814193323Sedstd::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
815193323Sed  std::string s;
816193323Sed  raw_string_ostream oss(s);
817193323Sed  if (SU == &EntrySU)
818193323Sed    oss << "<entry>";
819193323Sed  else if (SU == &ExitSU)
820193323Sed    oss << "<exit>";
821193323Sed  else
822193323Sed    SU->getInstr()->print(oss);
823193323Sed  return oss.str();
824193323Sed}
825193323Sed
826234353Sdim/// Return the basic block label. It is not necessarilly unique because a block
827234353Sdim/// contains multiple scheduling regions. But it is fine for visualization.
828234353Sdimstd::string ScheduleDAGInstrs::getDAGName() const {
829234353Sdim  return "dag." + BB->getFullName();
830193323Sed}
831