ScheduleDAGInstrs.cpp revision 198396
1193323Sed//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11193323Sed// of MachineInstrs.
12193323Sed//
13193323Sed//===----------------------------------------------------------------------===//
14193323Sed
15193323Sed#define DEBUG_TYPE "sched-instrs"
16193323Sed#include "ScheduleDAGInstrs.h"
17198090Srdivacky#include "llvm/Operator.h"
18193323Sed#include "llvm/Analysis/AliasAnalysis.h"
19193323Sed#include "llvm/CodeGen/MachineFunctionPass.h"
20198090Srdivacky#include "llvm/CodeGen/MachineMemOperand.h"
21193323Sed#include "llvm/CodeGen/MachineRegisterInfo.h"
22193323Sed#include "llvm/CodeGen/PseudoSourceValue.h"
23193323Sed#include "llvm/Target/TargetMachine.h"
24193323Sed#include "llvm/Target/TargetInstrInfo.h"
25193323Sed#include "llvm/Target/TargetRegisterInfo.h"
26193323Sed#include "llvm/Target/TargetSubtarget.h"
27193323Sed#include "llvm/Support/Debug.h"
28193323Sed#include "llvm/Support/raw_ostream.h"
29193323Sed#include "llvm/ADT/SmallSet.h"
30193323Sedusing namespace llvm;
31193323Sed
32193323SedScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
33193323Sed                                     const MachineLoopInfo &mli,
34193323Sed                                     const MachineDominatorTree &mdt)
35198396Srdivacky  : ScheduleDAG(mf), MLI(mli), MDT(mdt), LoopRegs(MLI, MDT) {
36198396Srdivacky  MFI = mf.getFrameInfo();
37198396Srdivacky}
38193323Sed
39193323Sed/// Run - perform scheduling.
40193323Sed///
41193323Sedvoid ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
42193323Sed                            MachineBasicBlock::iterator begin,
43193323Sed                            MachineBasicBlock::iterator end,
44193323Sed                            unsigned endcount) {
45193323Sed  BB = bb;
46193323Sed  Begin = begin;
47193323Sed  InsertPosIndex = endcount;
48193323Sed
49193323Sed  ScheduleDAG::Run(bb, end);
50193323Sed}
51193323Sed
52193323Sed/// getUnderlyingObjectFromInt - This is the function that does the work of
53193323Sed/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
54193323Sedstatic const Value *getUnderlyingObjectFromInt(const Value *V) {
55193323Sed  do {
56198090Srdivacky    if (const Operator *U = dyn_cast<Operator>(V)) {
57193323Sed      // If we find a ptrtoint, we can transfer control back to the
58193323Sed      // regular getUnderlyingObjectFromInt.
59198090Srdivacky      if (U->getOpcode() == Instruction::PtrToInt)
60193323Sed        return U->getOperand(0);
61193323Sed      // If we find an add of a constant or a multiplied value, it's
62193323Sed      // likely that the other operand will lead us to the base
63193323Sed      // object. We don't have to worry about the case where the
64198090Srdivacky      // object address is somehow being computed by the multiply,
65193323Sed      // because our callers only care when the result is an
66193323Sed      // identifibale object.
67198090Srdivacky      if (U->getOpcode() != Instruction::Add ||
68193323Sed          (!isa<ConstantInt>(U->getOperand(1)) &&
69198090Srdivacky           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
70193323Sed        return V;
71193323Sed      V = U->getOperand(0);
72193323Sed    } else {
73193323Sed      return V;
74193323Sed    }
75193323Sed    assert(isa<IntegerType>(V->getType()) && "Unexpected operand type!");
76193323Sed  } while (1);
77193323Sed}
78193323Sed
79193323Sed/// getUnderlyingObject - This is a wrapper around Value::getUnderlyingObject
80193323Sed/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
81193323Sedstatic const Value *getUnderlyingObject(const Value *V) {
82193323Sed  // First just call Value::getUnderlyingObject to let it do what it does.
83193323Sed  do {
84193323Sed    V = V->getUnderlyingObject();
85193323Sed    // If it found an inttoptr, use special code to continue climing.
86198090Srdivacky    if (Operator::getOpcode(V) != Instruction::IntToPtr)
87193323Sed      break;
88193323Sed    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
89193323Sed    // If that succeeded in finding a pointer, continue the search.
90193323Sed    if (!isa<PointerType>(O->getType()))
91193323Sed      break;
92193323Sed    V = O;
93193323Sed  } while (1);
94193323Sed  return V;
95193323Sed}
96193323Sed
97193323Sed/// getUnderlyingObjectForInstr - If this machine instr has memory reference
98193323Sed/// information and it can be tracked to a normal reference to a known
99193323Sed/// object, return the Value for that object. Otherwise return null.
100198396Srdivackystatic const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
101198396Srdivacky                                                const MachineFrameInfo *MFI) {
102193323Sed  if (!MI->hasOneMemOperand() ||
103198090Srdivacky      !(*MI->memoperands_begin())->getValue() ||
104198090Srdivacky      (*MI->memoperands_begin())->isVolatile())
105193323Sed    return 0;
106193323Sed
107198090Srdivacky  const Value *V = (*MI->memoperands_begin())->getValue();
108193323Sed  if (!V)
109193323Sed    return 0;
110193323Sed
111193323Sed  V = getUnderlyingObject(V);
112198396Srdivacky  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
113198396Srdivacky    // For now, ignore PseudoSourceValues which may alias LLVM IR values
114198396Srdivacky    // because the code that uses this function has no way to cope with
115198396Srdivacky    // such aliases.
116198396Srdivacky    if (PSV->isAliased(MFI))
117198396Srdivacky      return 0;
118198396Srdivacky    return V;
119198396Srdivacky  }
120193323Sed
121198396Srdivacky  if (isIdentifiedObject(V))
122198396Srdivacky    return V;
123198396Srdivacky
124198396Srdivacky  return 0;
125193323Sed}
126193323Sed
127193323Sedvoid ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
128193323Sed  if (MachineLoop *ML = MLI.getLoopFor(BB))
129193323Sed    if (BB == ML->getLoopLatch()) {
130193323Sed      MachineBasicBlock *Header = ML->getHeader();
131193323Sed      for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
132193323Sed           E = Header->livein_end(); I != E; ++I)
133193323Sed        LoopLiveInRegs.insert(*I);
134193323Sed      LoopRegs.VisitLoop(ML);
135193323Sed    }
136193323Sed}
137193323Sed
138198090Srdivackyvoid ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
139193323Sed  // We'll be allocating one SUnit for each instruction, plus one for
140193323Sed  // the region exit node.
141193323Sed  SUnits.reserve(BB->size());
142193323Sed
143193323Sed  // We build scheduling units by walking a block's instruction list from bottom
144193323Sed  // to top.
145193323Sed
146193323Sed  // Remember where a generic side-effecting instruction is as we procede. If
147193323Sed  // ChainMMO is null, this is assumed to have arbitrary side-effects. If
148193323Sed  // ChainMMO is non-null, then Chain makes only a single memory reference.
149193323Sed  SUnit *Chain = 0;
150193323Sed  MachineMemOperand *ChainMMO = 0;
151193323Sed
152193323Sed  // Memory references to specific known memory locations are tracked so that
153193323Sed  // they can be given more precise dependencies.
154193323Sed  std::map<const Value *, SUnit *> MemDefs;
155193323Sed  std::map<const Value *, std::vector<SUnit *> > MemUses;
156193323Sed
157193323Sed  // Check to see if the scheduler cares about latencies.
158193323Sed  bool UnitLatencies = ForceUnitLatencies();
159193323Sed
160193323Sed  // Ask the target if address-backscheduling is desirable, and if so how much.
161198090Srdivacky  const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
162198090Srdivacky  unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
163193323Sed
164193323Sed  // Walk the list of instructions, from bottom moving up.
165193323Sed  for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
166193323Sed       MII != MIE; --MII) {
167193323Sed    MachineInstr *MI = prior(MII);
168193323Sed    const TargetInstrDesc &TID = MI->getDesc();
169193323Sed    assert(!TID.isTerminator() && !MI->isLabel() &&
170193323Sed           "Cannot schedule terminators or labels!");
171193323Sed    // Create the SUnit for this MI.
172193323Sed    SUnit *SU = NewSUnit(MI);
173193323Sed
174193323Sed    // Assign the Latency field of SU using target-provided information.
175193323Sed    if (UnitLatencies)
176193323Sed      SU->Latency = 1;
177193323Sed    else
178193323Sed      ComputeLatency(SU);
179193323Sed
180193323Sed    // Add register-based dependencies (data, anti, and output).
181193323Sed    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
182193323Sed      const MachineOperand &MO = MI->getOperand(j);
183193323Sed      if (!MO.isReg()) continue;
184193323Sed      unsigned Reg = MO.getReg();
185193323Sed      if (Reg == 0) continue;
186193323Sed
187193323Sed      assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
188193323Sed      std::vector<SUnit *> &UseList = Uses[Reg];
189193323Sed      std::vector<SUnit *> &DefList = Defs[Reg];
190198090Srdivacky      // Optionally add output and anti dependencies. For anti
191198090Srdivacky      // dependencies we use a latency of 0 because for a multi-issue
192198090Srdivacky      // target we want to allow the defining instruction to issue
193198090Srdivacky      // in the same cycle as the using instruction.
194198090Srdivacky      // TODO: Using a latency of 1 here for output dependencies assumes
195198090Srdivacky      //       there's no cost for reusing registers.
196193323Sed      SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
197198090Srdivacky      unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
198193323Sed      for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
199193323Sed        SUnit *DefSU = DefList[i];
200193323Sed        if (DefSU != SU &&
201193323Sed            (Kind != SDep::Output || !MO.isDead() ||
202193323Sed             !DefSU->getInstr()->registerDefIsDead(Reg)))
203198090Srdivacky          DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
204193323Sed      }
205193323Sed      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
206193323Sed        std::vector<SUnit *> &DefList = Defs[*Alias];
207193323Sed        for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
208193323Sed          SUnit *DefSU = DefList[i];
209193323Sed          if (DefSU != SU &&
210193323Sed              (Kind != SDep::Output || !MO.isDead() ||
211193323Sed               !DefSU->getInstr()->registerDefIsDead(Reg)))
212198090Srdivacky            DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
213193323Sed        }
214193323Sed      }
215193323Sed
216193323Sed      if (MO.isDef()) {
217193323Sed        // Add any data dependencies.
218193323Sed        unsigned DataLatency = SU->Latency;
219193323Sed        for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
220193323Sed          SUnit *UseSU = UseList[i];
221193323Sed          if (UseSU != SU) {
222193323Sed            unsigned LDataLatency = DataLatency;
223193323Sed            // Optionally add in a special extra latency for nodes that
224193323Sed            // feed addresses.
225193323Sed            // TODO: Do this for register aliases too.
226198090Srdivacky            // TODO: Perhaps we should get rid of
227198090Srdivacky            // SpecialAddressLatency and just move this into
228198090Srdivacky            // adjustSchedDependency for the targets that care about
229198090Srdivacky            // it.
230193323Sed            if (SpecialAddressLatency != 0 && !UnitLatencies) {
231193323Sed              MachineInstr *UseMI = UseSU->getInstr();
232193323Sed              const TargetInstrDesc &UseTID = UseMI->getDesc();
233193323Sed              int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
234193323Sed              assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
235193323Sed              if ((UseTID.mayLoad() || UseTID.mayStore()) &&
236193323Sed                  (unsigned)RegUseIndex < UseTID.getNumOperands() &&
237193323Sed                  UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
238193323Sed                LDataLatency += SpecialAddressLatency;
239193323Sed            }
240198090Srdivacky            // Adjust the dependence latency using operand def/use
241198090Srdivacky            // information (if any), and then allow the target to
242198090Srdivacky            // perform its own adjustments.
243198090Srdivacky            const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
244198090Srdivacky            if (!UnitLatencies) {
245198090Srdivacky              ComputeOperandLatency(SU, UseSU, (SDep &)dep);
246198090Srdivacky              ST.adjustSchedDependency(SU, UseSU, (SDep &)dep);
247198090Srdivacky            }
248198090Srdivacky            UseSU->addPred(dep);
249193323Sed          }
250193323Sed        }
251193323Sed        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
252193323Sed          std::vector<SUnit *> &UseList = Uses[*Alias];
253193323Sed          for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
254193323Sed            SUnit *UseSU = UseList[i];
255198090Srdivacky            if (UseSU != SU) {
256198090Srdivacky              const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
257198090Srdivacky              if (!UnitLatencies) {
258198090Srdivacky                ComputeOperandLatency(SU, UseSU, (SDep &)dep);
259198090Srdivacky                ST.adjustSchedDependency(SU, UseSU, (SDep &)dep);
260198090Srdivacky              }
261198090Srdivacky              UseSU->addPred(dep);
262198090Srdivacky            }
263193323Sed          }
264193323Sed        }
265193323Sed
266193323Sed        // If a def is going to wrap back around to the top of the loop,
267193323Sed        // backschedule it.
268193323Sed        if (!UnitLatencies && DefList.empty()) {
269193323Sed          LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
270193323Sed          if (I != LoopRegs.Deps.end()) {
271193323Sed            const MachineOperand *UseMO = I->second.first;
272193323Sed            unsigned Count = I->second.second;
273193323Sed            const MachineInstr *UseMI = UseMO->getParent();
274193323Sed            unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
275193323Sed            const TargetInstrDesc &UseTID = UseMI->getDesc();
276193323Sed            // TODO: If we knew the total depth of the region here, we could
277193323Sed            // handle the case where the whole loop is inside the region but
278193323Sed            // is large enough that the isScheduleHigh trick isn't needed.
279193323Sed            if (UseMOIdx < UseTID.getNumOperands()) {
280193323Sed              // Currently, we only support scheduling regions consisting of
281193323Sed              // single basic blocks. Check to see if the instruction is in
282193323Sed              // the same region by checking to see if it has the same parent.
283193323Sed              if (UseMI->getParent() != MI->getParent()) {
284193323Sed                unsigned Latency = SU->Latency;
285193323Sed                if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
286193323Sed                  Latency += SpecialAddressLatency;
287193323Sed                // This is a wild guess as to the portion of the latency which
288193323Sed                // will be overlapped by work done outside the current
289193323Sed                // scheduling region.
290193323Sed                Latency -= std::min(Latency, Count);
291193323Sed                // Add the artifical edge.
292193323Sed                ExitSU.addPred(SDep(SU, SDep::Order, Latency,
293193323Sed                                    /*Reg=*/0, /*isNormalMemory=*/false,
294193323Sed                                    /*isMustAlias=*/false,
295193323Sed                                    /*isArtificial=*/true));
296193323Sed              } else if (SpecialAddressLatency > 0 &&
297193323Sed                         UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
298193323Sed                // The entire loop body is within the current scheduling region
299193323Sed                // and the latency of this operation is assumed to be greater
300193323Sed                // than the latency of the loop.
301193323Sed                // TODO: Recursively mark data-edge predecessors as
302193323Sed                //       isScheduleHigh too.
303193323Sed                SU->isScheduleHigh = true;
304193323Sed              }
305193323Sed            }
306193323Sed            LoopRegs.Deps.erase(I);
307193323Sed          }
308193323Sed        }
309193323Sed
310193323Sed        UseList.clear();
311193323Sed        if (!MO.isDead())
312193323Sed          DefList.clear();
313193323Sed        DefList.push_back(SU);
314193323Sed      } else {
315193323Sed        UseList.push_back(SU);
316193323Sed      }
317193323Sed    }
318193323Sed
319193323Sed    // Add chain dependencies.
320193323Sed    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
321193323Sed    // after stack slots are lowered to actual addresses.
322193323Sed    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
323193323Sed    // produce more precise dependence information.
324193323Sed    if (TID.isCall() || TID.hasUnmodeledSideEffects()) {
325193323Sed    new_chain:
326193323Sed      // This is the conservative case. Add dependencies on all memory
327193323Sed      // references.
328193323Sed      if (Chain)
329193323Sed        Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
330193323Sed      Chain = SU;
331193323Sed      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
332193323Sed        PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency));
333193323Sed      PendingLoads.clear();
334193323Sed      for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
335193323Sed           E = MemDefs.end(); I != E; ++I) {
336193323Sed        I->second->addPred(SDep(SU, SDep::Order, SU->Latency));
337193323Sed        I->second = SU;
338193323Sed      }
339193323Sed      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
340193323Sed           MemUses.begin(), E = MemUses.end(); I != E; ++I) {
341193323Sed        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
342193323Sed          I->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency));
343193323Sed        I->second.clear();
344193323Sed      }
345193323Sed      // See if it is known to just have a single memory reference.
346193323Sed      MachineInstr *ChainMI = Chain->getInstr();
347193323Sed      const TargetInstrDesc &ChainTID = ChainMI->getDesc();
348193323Sed      if (!ChainTID.isCall() &&
349193323Sed          !ChainTID.hasUnmodeledSideEffects() &&
350193323Sed          ChainMI->hasOneMemOperand() &&
351198090Srdivacky          !(*ChainMI->memoperands_begin())->isVolatile() &&
352198090Srdivacky          (*ChainMI->memoperands_begin())->getValue())
353193323Sed        // We know that the Chain accesses one specific memory location.
354198090Srdivacky        ChainMMO = *ChainMI->memoperands_begin();
355193323Sed      else
356193323Sed        // Unknown memory accesses. Assume the worst.
357193323Sed        ChainMMO = 0;
358193323Sed    } else if (TID.mayStore()) {
359198396Srdivacky      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI)) {
360193323Sed        // A store to a specific PseudoSourceValue. Add precise dependencies.
361193323Sed        // Handle the def in MemDefs, if there is one.
362193323Sed        std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
363193323Sed        if (I != MemDefs.end()) {
364193323Sed          I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
365193323Sed                                  /*isNormalMemory=*/true));
366193323Sed          I->second = SU;
367193323Sed        } else {
368193323Sed          MemDefs[V] = SU;
369193323Sed        }
370193323Sed        // Handle the uses in MemUses, if there are any.
371193323Sed        std::map<const Value *, std::vector<SUnit *> >::iterator J =
372193323Sed          MemUses.find(V);
373193323Sed        if (J != MemUses.end()) {
374193323Sed          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
375193323Sed            J->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
376193323Sed                                       /*isNormalMemory=*/true));
377193323Sed          J->second.clear();
378193323Sed        }
379193323Sed        // Add dependencies from all the PendingLoads, since without
380193323Sed        // memoperands we must assume they alias anything.
381193323Sed        for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
382193323Sed          PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency));
383193323Sed        // Add a general dependence too, if needed.
384193323Sed        if (Chain)
385193323Sed          Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
386193323Sed      } else
387193323Sed        // Treat all other stores conservatively.
388193323Sed        goto new_chain;
389193323Sed    } else if (TID.mayLoad()) {
390198090Srdivacky      if (MI->isInvariantLoad(AA)) {
391193323Sed        // Invariant load, no chain dependencies needed!
392198396Srdivacky      } else if (const Value *V = getUnderlyingObjectForInstr(MI, MFI)) {
393193323Sed        // A load from a specific PseudoSourceValue. Add precise dependencies.
394193323Sed        std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
395193323Sed        if (I != MemDefs.end())
396193323Sed          I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
397193323Sed                                  /*isNormalMemory=*/true));
398193323Sed        MemUses[V].push_back(SU);
399193323Sed
400193323Sed        // Add a general dependence too, if needed.
401193323Sed        if (Chain && (!ChainMMO ||
402193323Sed                      (ChainMMO->isStore() || ChainMMO->isVolatile())))
403193323Sed          Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
404193323Sed      } else if (MI->hasVolatileMemoryRef()) {
405193323Sed        // Treat volatile loads conservatively. Note that this includes
406193323Sed        // cases where memoperand information is unavailable.
407193323Sed        goto new_chain;
408193323Sed      } else {
409193323Sed        // A normal load. Depend on the general chain, as well as on
410193323Sed        // all stores. In the absense of MachineMemOperand information,
411193323Sed        // we can't even assume that the load doesn't alias well-behaved
412193323Sed        // memory locations.
413193323Sed        if (Chain)
414193323Sed          Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
415193323Sed        for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
416193323Sed             E = MemDefs.end(); I != E; ++I)
417193323Sed          I->second->addPred(SDep(SU, SDep::Order, SU->Latency));
418193323Sed        PendingLoads.push_back(SU);
419193323Sed      }
420193323Sed    }
421193323Sed  }
422193323Sed
423193323Sed  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
424193323Sed    Defs[i].clear();
425193323Sed    Uses[i].clear();
426193323Sed  }
427193323Sed  PendingLoads.clear();
428193323Sed}
429193323Sed
430193323Sedvoid ScheduleDAGInstrs::FinishBlock() {
431193323Sed  // Nothing to do.
432193323Sed}
433193323Sed
434193323Sedvoid ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
435193323Sed  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
436193323Sed
437198090Srdivacky  // Compute the latency for the node.
438193323Sed  SU->Latency =
439198090Srdivacky    InstrItins.getStageLatency(SU->getInstr()->getDesc().getSchedClass());
440193323Sed
441193323Sed  // Simplistic target-independent heuristic: assume that loads take
442193323Sed  // extra time.
443193323Sed  if (InstrItins.isEmpty())
444193323Sed    if (SU->getInstr()->getDesc().mayLoad())
445193323Sed      SU->Latency += 2;
446193323Sed}
447193323Sed
448198090Srdivackyvoid ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
449198090Srdivacky                                              SDep& dep) const {
450198090Srdivacky  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
451198090Srdivacky  if (InstrItins.isEmpty())
452198090Srdivacky    return;
453198090Srdivacky
454198090Srdivacky  // For a data dependency with a known register...
455198090Srdivacky  if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
456198090Srdivacky    return;
457198090Srdivacky
458198090Srdivacky  const unsigned Reg = dep.getReg();
459198090Srdivacky
460198090Srdivacky  // ... find the definition of the register in the defining
461198090Srdivacky  // instruction
462198090Srdivacky  MachineInstr *DefMI = Def->getInstr();
463198090Srdivacky  int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
464198090Srdivacky  if (DefIdx != -1) {
465198090Srdivacky    int DefCycle = InstrItins.getOperandCycle(DefMI->getDesc().getSchedClass(), DefIdx);
466198090Srdivacky    if (DefCycle >= 0) {
467198090Srdivacky      MachineInstr *UseMI = Use->getInstr();
468198090Srdivacky      const unsigned UseClass = UseMI->getDesc().getSchedClass();
469198090Srdivacky
470198090Srdivacky      // For all uses of the register, calculate the maxmimum latency
471198090Srdivacky      int Latency = -1;
472198090Srdivacky      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
473198090Srdivacky        const MachineOperand &MO = UseMI->getOperand(i);
474198090Srdivacky        if (!MO.isReg() || !MO.isUse())
475198090Srdivacky          continue;
476198090Srdivacky        unsigned MOReg = MO.getReg();
477198090Srdivacky        if (MOReg != Reg)
478198090Srdivacky          continue;
479198090Srdivacky
480198090Srdivacky        int UseCycle = InstrItins.getOperandCycle(UseClass, i);
481198090Srdivacky        if (UseCycle >= 0)
482198090Srdivacky          Latency = std::max(Latency, DefCycle - UseCycle + 1);
483198090Srdivacky      }
484198090Srdivacky
485198090Srdivacky      // If we found a latency, then replace the existing dependence latency.
486198090Srdivacky      if (Latency >= 0)
487198090Srdivacky        dep.setLatency(Latency);
488198090Srdivacky    }
489198090Srdivacky  }
490198090Srdivacky}
491198090Srdivacky
492193323Sedvoid ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
493193323Sed  SU->getInstr()->dump();
494193323Sed}
495193323Sed
496193323Sedstd::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
497193323Sed  std::string s;
498193323Sed  raw_string_ostream oss(s);
499193323Sed  if (SU == &EntrySU)
500193323Sed    oss << "<entry>";
501193323Sed  else if (SU == &ExitSU)
502193323Sed    oss << "<exit>";
503193323Sed  else
504193323Sed    SU->getInstr()->print(oss);
505193323Sed  return oss.str();
506193323Sed}
507193323Sed
508193323Sed// EmitSchedule - Emit the machine code in scheduled order.
509198090SrdivackyMachineBasicBlock *ScheduleDAGInstrs::
510198090SrdivackyEmitSchedule(DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) {
511193323Sed  // For MachineInstr-based scheduling, we're rescheduling the instructions in
512193323Sed  // the block, so start by removing them from the block.
513193323Sed  while (Begin != InsertPos) {
514193323Sed    MachineBasicBlock::iterator I = Begin;
515193323Sed    ++Begin;
516193323Sed    BB->remove(I);
517193323Sed  }
518193323Sed
519193323Sed  // Then re-insert them according to the given schedule.
520193323Sed  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
521193323Sed    SUnit *SU = Sequence[i];
522193323Sed    if (!SU) {
523193323Sed      // Null SUnit* is a noop.
524193323Sed      EmitNoop();
525193323Sed      continue;
526193323Sed    }
527193323Sed
528193323Sed    BB->insert(InsertPos, SU->getInstr());
529193323Sed  }
530193323Sed
531193323Sed  // Update the Begin iterator, as the first instruction in the block
532193323Sed  // may have been scheduled later.
533193323Sed  if (!Sequence.empty())
534193323Sed    Begin = Sequence[0]->getInstr();
535193323Sed
536193323Sed  return BB;
537193323Sed}
538