RegisterCoalescer.cpp revision 355940
1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the generic RegisterCoalescer interface which
10// is used as the common interface used by all clients and
11// implementations of register coalescing.
12//
13//===----------------------------------------------------------------------===//
14
15#include "RegisterCoalescer.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/DenseSet.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/LiveInterval.h"
25#include "llvm/CodeGen/LiveIntervals.h"
26#include "llvm/CodeGen/LiveRangeEdit.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineLoopInfo.h"
33#include "llvm/CodeGen/MachineOperand.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/Passes.h"
36#include "llvm/CodeGen/RegisterClassInfo.h"
37#include "llvm/CodeGen/SlotIndexes.h"
38#include "llvm/CodeGen/TargetInstrInfo.h"
39#include "llvm/CodeGen/TargetOpcodes.h"
40#include "llvm/CodeGen/TargetRegisterInfo.h"
41#include "llvm/CodeGen/TargetSubtargetInfo.h"
42#include "llvm/IR/DebugLoc.h"
43#include "llvm/MC/LaneBitmask.h"
44#include "llvm/MC/MCInstrDesc.h"
45#include "llvm/MC/MCRegisterInfo.h"
46#include "llvm/Pass.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Compiler.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/raw_ostream.h"
52#include <algorithm>
53#include <cassert>
54#include <iterator>
55#include <limits>
56#include <tuple>
57#include <utility>
58#include <vector>
59
60using namespace llvm;
61
62#define DEBUG_TYPE "regalloc"
63
64STATISTIC(numJoins    , "Number of interval joins performed");
65STATISTIC(numCrossRCs , "Number of cross class joins performed");
66STATISTIC(numCommutes , "Number of instruction commuting performed");
67STATISTIC(numExtends  , "Number of copies extended");
68STATISTIC(NumReMats   , "Number of instructions re-materialized");
69STATISTIC(NumInflated , "Number of register classes inflated");
70STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
71STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
72STATISTIC(NumShrinkToUses,  "Number of shrinkToUses called");
73
74static cl::opt<bool> EnableJoining("join-liveintervals",
75                                   cl::desc("Coalesce copies (default=true)"),
76                                   cl::init(true), cl::Hidden);
77
78static cl::opt<bool> UseTerminalRule("terminal-rule",
79                                     cl::desc("Apply the terminal rule"),
80                                     cl::init(false), cl::Hidden);
81
82/// Temporary flag to test critical edge unsplitting.
83static cl::opt<bool>
84EnableJoinSplits("join-splitedges",
85  cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
86
87/// Temporary flag to test global copy optimization.
88static cl::opt<cl::boolOrDefault>
89EnableGlobalCopies("join-globalcopies",
90  cl::desc("Coalesce copies that span blocks (default=subtarget)"),
91  cl::init(cl::BOU_UNSET), cl::Hidden);
92
93static cl::opt<bool>
94VerifyCoalescing("verify-coalescing",
95         cl::desc("Verify machine instrs before and after register coalescing"),
96         cl::Hidden);
97
98static cl::opt<unsigned> LateRematUpdateThreshold(
99    "late-remat-update-threshold", cl::Hidden,
100    cl::desc("During rematerialization for a copy, if the def instruction has "
101             "many other copy uses to be rematerialized, delay the multiple "
102             "separate live interval update work and do them all at once after "
103             "all those rematerialization are done. It will save a lot of "
104             "repeated work. "),
105    cl::init(100));
106
107static cl::opt<unsigned> LargeIntervalSizeThreshold(
108    "large-interval-size-threshold", cl::Hidden,
109    cl::desc("If the valnos size of an interval is larger than the threshold, "
110             "it is regarded as a large interval. "),
111    cl::init(100));
112
113static cl::opt<unsigned> LargeIntervalFreqThreshold(
114    "large-interval-freq-threshold", cl::Hidden,
115    cl::desc("For a large interval, if it is coalesed with other live "
116             "intervals many times more than the threshold, stop its "
117             "coalescing to control the compile time. "),
118    cl::init(100));
119
120namespace {
121
122  class RegisterCoalescer : public MachineFunctionPass,
123                            private LiveRangeEdit::Delegate {
124    MachineFunction* MF;
125    MachineRegisterInfo* MRI;
126    const TargetRegisterInfo* TRI;
127    const TargetInstrInfo* TII;
128    LiveIntervals *LIS;
129    const MachineLoopInfo* Loops;
130    AliasAnalysis *AA;
131    RegisterClassInfo RegClassInfo;
132
133    /// A LaneMask to remember on which subregister live ranges we need to call
134    /// shrinkToUses() later.
135    LaneBitmask ShrinkMask;
136
137    /// True if the main range of the currently coalesced intervals should be
138    /// checked for smaller live intervals.
139    bool ShrinkMainRange;
140
141    /// True if the coalescer should aggressively coalesce global copies
142    /// in favor of keeping local copies.
143    bool JoinGlobalCopies;
144
145    /// True if the coalescer should aggressively coalesce fall-thru
146    /// blocks exclusively containing copies.
147    bool JoinSplitEdges;
148
149    /// Copy instructions yet to be coalesced.
150    SmallVector<MachineInstr*, 8> WorkList;
151    SmallVector<MachineInstr*, 8> LocalWorkList;
152
153    /// Set of instruction pointers that have been erased, and
154    /// that may be present in WorkList.
155    SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
156
157    /// Dead instructions that are about to be deleted.
158    SmallVector<MachineInstr*, 8> DeadDefs;
159
160    /// Virtual registers to be considered for register class inflation.
161    SmallVector<unsigned, 8> InflateRegs;
162
163    /// The collection of live intervals which should have been updated
164    /// immediately after rematerialiation but delayed until
165    /// lateLiveIntervalUpdate is called.
166    DenseSet<unsigned> ToBeUpdated;
167
168    /// Record how many times the large live interval with many valnos
169    /// has been tried to join with other live interval.
170    DenseMap<unsigned, unsigned long> LargeLIVisitCounter;
171
172    /// Recursively eliminate dead defs in DeadDefs.
173    void eliminateDeadDefs();
174
175    /// LiveRangeEdit callback for eliminateDeadDefs().
176    void LRE_WillEraseInstruction(MachineInstr *MI) override;
177
178    /// Coalesce the LocalWorkList.
179    void coalesceLocals();
180
181    /// Join compatible live intervals
182    void joinAllIntervals();
183
184    /// Coalesce copies in the specified MBB, putting
185    /// copies that cannot yet be coalesced into WorkList.
186    void copyCoalesceInMBB(MachineBasicBlock *MBB);
187
188    /// Tries to coalesce all copies in CurrList. Returns true if any progress
189    /// was made.
190    bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
191
192    /// If one def has many copy like uses, and those copy uses are all
193    /// rematerialized, the live interval update needed for those
194    /// rematerializations will be delayed and done all at once instead
195    /// of being done multiple times. This is to save compile cost because
196    /// live interval update is costly.
197    void lateLiveIntervalUpdate();
198
199    /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
200    /// src/dst of the copy instruction CopyMI.  This returns true if the copy
201    /// was successfully coalesced away. If it is not currently possible to
202    /// coalesce this interval, but it may be possible if other things get
203    /// coalesced, then it returns true by reference in 'Again'.
204    bool joinCopy(MachineInstr *CopyMI, bool &Again);
205
206    /// Attempt to join these two intervals.  On failure, this
207    /// returns false.  The output "SrcInt" will not have been modified, so we
208    /// can use this information below to update aliases.
209    bool joinIntervals(CoalescerPair &CP);
210
211    /// Attempt joining two virtual registers. Return true on success.
212    bool joinVirtRegs(CoalescerPair &CP);
213
214    /// If a live interval has many valnos and is coalesced with other
215    /// live intervals many times, we regard such live interval as having
216    /// high compile time cost.
217    bool isHighCostLiveInterval(LiveInterval &LI);
218
219    /// Attempt joining with a reserved physreg.
220    bool joinReservedPhysReg(CoalescerPair &CP);
221
222    /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
223    /// Subranges in @p LI which only partially interfere with the desired
224    /// LaneMask are split as necessary. @p LaneMask are the lanes that
225    /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
226    /// lanemasks already adjusted to the coalesced register.
227    void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
228                           LaneBitmask LaneMask, CoalescerPair &CP);
229
230    /// Join the liveranges of two subregisters. Joins @p RRange into
231    /// @p LRange, @p RRange may be invalid afterwards.
232    void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
233                          LaneBitmask LaneMask, const CoalescerPair &CP);
234
235    /// We found a non-trivially-coalescable copy. If the source value number is
236    /// defined by a copy from the destination reg see if we can merge these two
237    /// destination reg valno# into a single value number, eliminating a copy.
238    /// This returns true if an interval was modified.
239    bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
240
241    /// Return true if there are definitions of IntB
242    /// other than BValNo val# that can reach uses of AValno val# of IntA.
243    bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
244                              VNInfo *AValNo, VNInfo *BValNo);
245
246    /// We found a non-trivially-coalescable copy.
247    /// If the source value number is defined by a commutable instruction and
248    /// its other operand is coalesced to the copy dest register, see if we
249    /// can transform the copy into a noop by commuting the definition.
250    /// This returns a pair of two flags:
251    /// - the first element is true if an interval was modified,
252    /// - the second element is true if the destination interval needs
253    ///   to be shrunk after deleting the copy.
254    std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
255                                                  MachineInstr *CopyMI);
256
257    /// We found a copy which can be moved to its less frequent predecessor.
258    bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
259
260    /// If the source of a copy is defined by a
261    /// trivial computation, replace the copy by rematerialize the definition.
262    bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
263                                 bool &IsDefCopy);
264
265    /// Return true if a copy involving a physreg should be joined.
266    bool canJoinPhys(const CoalescerPair &CP);
267
268    /// Replace all defs and uses of SrcReg to DstReg and update the subregister
269    /// number if it is not zero. If DstReg is a physical register and the
270    /// existing subregister number of the def / use being updated is not zero,
271    /// make sure to set it to the correct physical subregister.
272    void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
273
274    /// If the given machine operand reads only undefined lanes add an undef
275    /// flag.
276    /// This can happen when undef uses were previously concealed by a copy
277    /// which we coalesced. Example:
278    ///    %0:sub0<def,read-undef> = ...
279    ///    %1 = COPY %0           <-- Coalescing COPY reveals undef
280    ///       = use %1:sub1       <-- hidden undef use
281    void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
282                      MachineOperand &MO, unsigned SubRegIdx);
283
284    /// Handle copies of undef values. If the undef value is an incoming
285    /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
286    /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
287    /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
288    MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
289
290    /// Check whether or not we should apply the terminal rule on the
291    /// destination (Dst) of \p Copy.
292    /// When the terminal rule applies, Copy is not profitable to
293    /// coalesce.
294    /// Dst is terminal if it has exactly one affinity (Dst, Src) and
295    /// at least one interference (Dst, Dst2). If Dst is terminal, the
296    /// terminal rule consists in checking that at least one of
297    /// interfering node, say Dst2, has an affinity of equal or greater
298    /// weight with Src.
299    /// In that case, Dst2 and Dst will not be able to be both coalesced
300    /// with Src. Since Dst2 exposes more coalescing opportunities than
301    /// Dst, we can drop \p Copy.
302    bool applyTerminalRule(const MachineInstr &Copy) const;
303
304    /// Wrapper method for \see LiveIntervals::shrinkToUses.
305    /// This method does the proper fixing of the live-ranges when the afore
306    /// mentioned method returns true.
307    void shrinkToUses(LiveInterval *LI,
308                      SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
309      NumShrinkToUses++;
310      if (LIS->shrinkToUses(LI, Dead)) {
311        /// Check whether or not \p LI is composed by multiple connected
312        /// components and if that is the case, fix that.
313        SmallVector<LiveInterval*, 8> SplitLIs;
314        LIS->splitSeparateComponents(*LI, SplitLIs);
315      }
316    }
317
318    /// Wrapper Method to do all the necessary work when an Instruction is
319    /// deleted.
320    /// Optimizations should use this to make sure that deleted instructions
321    /// are always accounted for.
322    void deleteInstr(MachineInstr* MI) {
323      ErasedInstrs.insert(MI);
324      LIS->RemoveMachineInstrFromMaps(*MI);
325      MI->eraseFromParent();
326    }
327
328  public:
329    static char ID; ///< Class identification, replacement for typeinfo
330
331    RegisterCoalescer() : MachineFunctionPass(ID) {
332      initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
333    }
334
335    void getAnalysisUsage(AnalysisUsage &AU) const override;
336
337    void releaseMemory() override;
338
339    /// This is the pass entry point.
340    bool runOnMachineFunction(MachineFunction&) override;
341
342    /// Implement the dump method.
343    void print(raw_ostream &O, const Module* = nullptr) const override;
344  };
345
346} // end anonymous namespace
347
348char RegisterCoalescer::ID = 0;
349
350char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
351
352INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
353                      "Simple Register Coalescing", false, false)
354INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
355INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
356INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
357INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
358INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
359                    "Simple Register Coalescing", false, false)
360
361LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri,
362                                       const MachineInstr *MI, unsigned &Src,
363                                       unsigned &Dst, unsigned &SrcSub,
364                                       unsigned &DstSub) {
365  if (MI->isCopy()) {
366    Dst = MI->getOperand(0).getReg();
367    DstSub = MI->getOperand(0).getSubReg();
368    Src = MI->getOperand(1).getReg();
369    SrcSub = MI->getOperand(1).getSubReg();
370  } else if (MI->isSubregToReg()) {
371    Dst = MI->getOperand(0).getReg();
372    DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
373                                      MI->getOperand(3).getImm());
374    Src = MI->getOperand(2).getReg();
375    SrcSub = MI->getOperand(2).getSubReg();
376  } else
377    return false;
378  return true;
379}
380
381/// Return true if this block should be vacated by the coalescer to eliminate
382/// branches. The important cases to handle in the coalescer are critical edges
383/// split during phi elimination which contain only copies. Simple blocks that
384/// contain non-branches should also be vacated, but this can be handled by an
385/// earlier pass similar to early if-conversion.
386static bool isSplitEdge(const MachineBasicBlock *MBB) {
387  if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
388    return false;
389
390  for (const auto &MI : *MBB) {
391    if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
392      return false;
393  }
394  return true;
395}
396
397bool CoalescerPair::setRegisters(const MachineInstr *MI) {
398  SrcReg = DstReg = 0;
399  SrcIdx = DstIdx = 0;
400  NewRC = nullptr;
401  Flipped = CrossClass = false;
402
403  unsigned Src, Dst, SrcSub, DstSub;
404  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
405    return false;
406  Partial = SrcSub || DstSub;
407
408  // If one register is a physreg, it must be Dst.
409  if (TargetRegisterInfo::isPhysicalRegister(Src)) {
410    if (TargetRegisterInfo::isPhysicalRegister(Dst))
411      return false;
412    std::swap(Src, Dst);
413    std::swap(SrcSub, DstSub);
414    Flipped = true;
415  }
416
417  const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
418
419  if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
420    // Eliminate DstSub on a physreg.
421    if (DstSub) {
422      Dst = TRI.getSubReg(Dst, DstSub);
423      if (!Dst) return false;
424      DstSub = 0;
425    }
426
427    // Eliminate SrcSub by picking a corresponding Dst superregister.
428    if (SrcSub) {
429      Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
430      if (!Dst) return false;
431    } else if (!MRI.getRegClass(Src)->contains(Dst)) {
432      return false;
433    }
434  } else {
435    // Both registers are virtual.
436    const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
437    const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
438
439    // Both registers have subreg indices.
440    if (SrcSub && DstSub) {
441      // Copies between different sub-registers are never coalescable.
442      if (Src == Dst && SrcSub != DstSub)
443        return false;
444
445      NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
446                                         SrcIdx, DstIdx);
447      if (!NewRC)
448        return false;
449    } else if (DstSub) {
450      // SrcReg will be merged with a sub-register of DstReg.
451      SrcIdx = DstSub;
452      NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
453    } else if (SrcSub) {
454      // DstReg will be merged with a sub-register of SrcReg.
455      DstIdx = SrcSub;
456      NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
457    } else {
458      // This is a straight copy without sub-registers.
459      NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
460    }
461
462    // The combined constraint may be impossible to satisfy.
463    if (!NewRC)
464      return false;
465
466    // Prefer SrcReg to be a sub-register of DstReg.
467    // FIXME: Coalescer should support subregs symmetrically.
468    if (DstIdx && !SrcIdx) {
469      std::swap(Src, Dst);
470      std::swap(SrcIdx, DstIdx);
471      Flipped = !Flipped;
472    }
473
474    CrossClass = NewRC != DstRC || NewRC != SrcRC;
475  }
476  // Check our invariants
477  assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
478  assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
479         "Cannot have a physical SubIdx");
480  SrcReg = Src;
481  DstReg = Dst;
482  return true;
483}
484
485bool CoalescerPair::flip() {
486  if (TargetRegisterInfo::isPhysicalRegister(DstReg))
487    return false;
488  std::swap(SrcReg, DstReg);
489  std::swap(SrcIdx, DstIdx);
490  Flipped = !Flipped;
491  return true;
492}
493
494bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
495  if (!MI)
496    return false;
497  unsigned Src, Dst, SrcSub, DstSub;
498  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
499    return false;
500
501  // Find the virtual register that is SrcReg.
502  if (Dst == SrcReg) {
503    std::swap(Src, Dst);
504    std::swap(SrcSub, DstSub);
505  } else if (Src != SrcReg) {
506    return false;
507  }
508
509  // Now check that Dst matches DstReg.
510  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
511    if (!TargetRegisterInfo::isPhysicalRegister(Dst))
512      return false;
513    assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
514    // DstSub could be set for a physreg from INSERT_SUBREG.
515    if (DstSub)
516      Dst = TRI.getSubReg(Dst, DstSub);
517    // Full copy of Src.
518    if (!SrcSub)
519      return DstReg == Dst;
520    // This is a partial register copy. Check that the parts match.
521    return TRI.getSubReg(DstReg, SrcSub) == Dst;
522  } else {
523    // DstReg is virtual.
524    if (DstReg != Dst)
525      return false;
526    // Registers match, do the subregisters line up?
527    return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
528           TRI.composeSubRegIndices(DstIdx, DstSub);
529  }
530}
531
532void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
533  AU.setPreservesCFG();
534  AU.addRequired<AAResultsWrapperPass>();
535  AU.addRequired<LiveIntervals>();
536  AU.addPreserved<LiveIntervals>();
537  AU.addPreserved<SlotIndexes>();
538  AU.addRequired<MachineLoopInfo>();
539  AU.addPreserved<MachineLoopInfo>();
540  AU.addPreservedID(MachineDominatorsID);
541  MachineFunctionPass::getAnalysisUsage(AU);
542}
543
544void RegisterCoalescer::eliminateDeadDefs() {
545  SmallVector<unsigned, 8> NewRegs;
546  LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
547                nullptr, this).eliminateDeadDefs(DeadDefs);
548}
549
550void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
551  // MI may be in WorkList. Make sure we don't visit it.
552  ErasedInstrs.insert(MI);
553}
554
555bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
556                                             MachineInstr *CopyMI) {
557  assert(!CP.isPartial() && "This doesn't work for partial copies.");
558  assert(!CP.isPhys() && "This doesn't work for physreg copies.");
559
560  LiveInterval &IntA =
561    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
562  LiveInterval &IntB =
563    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
564  SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
565
566  // We have a non-trivially-coalescable copy with IntA being the source and
567  // IntB being the dest, thus this defines a value number in IntB.  If the
568  // source value number (in IntA) is defined by a copy from B, see if we can
569  // merge these two pieces of B into a single value number, eliminating a copy.
570  // For example:
571  //
572  //  A3 = B0
573  //    ...
574  //  B1 = A3      <- this copy
575  //
576  // In this case, B0 can be extended to where the B1 copy lives, allowing the
577  // B1 value number to be replaced with B0 (which simplifies the B
578  // liveinterval).
579
580  // BValNo is a value number in B that is defined by a copy from A.  'B1' in
581  // the example above.
582  LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
583  if (BS == IntB.end()) return false;
584  VNInfo *BValNo = BS->valno;
585
586  // Get the location that B is defined at.  Two options: either this value has
587  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
588  // can't process it.
589  if (BValNo->def != CopyIdx) return false;
590
591  // AValNo is the value number in A that defines the copy, A3 in the example.
592  SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
593  LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
594  // The live segment might not exist after fun with physreg coalescing.
595  if (AS == IntA.end()) return false;
596  VNInfo *AValNo = AS->valno;
597
598  // If AValNo is defined as a copy from IntB, we can potentially process this.
599  // Get the instruction that defines this value number.
600  MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
601  // Don't allow any partial copies, even if isCoalescable() allows them.
602  if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
603    return false;
604
605  // Get the Segment in IntB that this value number starts with.
606  LiveInterval::iterator ValS =
607    IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
608  if (ValS == IntB.end())
609    return false;
610
611  // Make sure that the end of the live segment is inside the same block as
612  // CopyMI.
613  MachineInstr *ValSEndInst =
614    LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
615  if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
616    return false;
617
618  // Okay, we now know that ValS ends in the same block that the CopyMI
619  // live-range starts.  If there are no intervening live segments between them
620  // in IntB, we can merge them.
621  if (ValS+1 != BS) return false;
622
623  LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI));
624
625  SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
626  // We are about to delete CopyMI, so need to remove it as the 'instruction
627  // that defines this value #'. Update the valnum with the new defining
628  // instruction #.
629  BValNo->def = FillerStart;
630
631  // Okay, we can merge them.  We need to insert a new liverange:
632  // [ValS.end, BS.begin) of either value number, then we merge the
633  // two value numbers.
634  IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
635
636  // Okay, merge "B1" into the same value number as "B0".
637  if (BValNo != ValS->valno)
638    IntB.MergeValueNumberInto(BValNo, ValS->valno);
639
640  // Do the same for the subregister segments.
641  for (LiveInterval::SubRange &S : IntB.subranges()) {
642    // Check for SubRange Segments of the form [1234r,1234d:0) which can be
643    // removed to prevent creating bogus SubRange Segments.
644    LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
645    if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
646      S.removeSegment(*SS, true);
647      continue;
648    }
649    VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
650    S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
651    VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
652    if (SubBValNo != SubValSNo)
653      S.MergeValueNumberInto(SubBValNo, SubValSNo);
654  }
655
656  LLVM_DEBUG(dbgs() << "   result = " << IntB << '\n');
657
658  // If the source instruction was killing the source register before the
659  // merge, unset the isKill marker given the live range has been extended.
660  int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
661  if (UIdx != -1) {
662    ValSEndInst->getOperand(UIdx).setIsKill(false);
663  }
664
665  // Rewrite the copy.
666  CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
667  // If the copy instruction was killing the destination register or any
668  // subrange before the merge trim the live range.
669  bool RecomputeLiveRange = AS->end == CopyIdx;
670  if (!RecomputeLiveRange) {
671    for (LiveInterval::SubRange &S : IntA.subranges()) {
672      LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
673      if (SS != S.end() && SS->end == CopyIdx) {
674        RecomputeLiveRange = true;
675        break;
676      }
677    }
678  }
679  if (RecomputeLiveRange)
680    shrinkToUses(&IntA);
681
682  ++numExtends;
683  return true;
684}
685
686bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
687                                             LiveInterval &IntB,
688                                             VNInfo *AValNo,
689                                             VNInfo *BValNo) {
690  // If AValNo has PHI kills, conservatively assume that IntB defs can reach
691  // the PHI values.
692  if (LIS->hasPHIKill(IntA, AValNo))
693    return true;
694
695  for (LiveRange::Segment &ASeg : IntA.segments) {
696    if (ASeg.valno != AValNo) continue;
697    LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start);
698    if (BI != IntB.begin())
699      --BI;
700    for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
701      if (BI->valno == BValNo)
702        continue;
703      if (BI->start <= ASeg.start && BI->end > ASeg.start)
704        return true;
705      if (BI->start > ASeg.start && BI->start < ASeg.end)
706        return true;
707    }
708  }
709  return false;
710}
711
712/// Copy segments with value number @p SrcValNo from liverange @p Src to live
713/// range @Dst and use value number @p DstValNo there.
714static std::pair<bool,bool>
715addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
716                     const VNInfo *SrcValNo) {
717  bool Changed = false;
718  bool MergedWithDead = false;
719  for (const LiveRange::Segment &S : Src.segments) {
720    if (S.valno != SrcValNo)
721      continue;
722    // This is adding a segment from Src that ends in a copy that is about
723    // to be removed. This segment is going to be merged with a pre-existing
724    // segment in Dst. This works, except in cases when the corresponding
725    // segment in Dst is dead. For example: adding [192r,208r:1) from Src
726    // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
727    // Recognized such cases, so that the segments can be shrunk.
728    LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
729    LiveRange::Segment &Merged = *Dst.addSegment(Added);
730    if (Merged.end.isDead())
731      MergedWithDead = true;
732    Changed = true;
733  }
734  return std::make_pair(Changed, MergedWithDead);
735}
736
737std::pair<bool,bool>
738RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
739                                            MachineInstr *CopyMI) {
740  assert(!CP.isPhys());
741
742  LiveInterval &IntA =
743      LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
744  LiveInterval &IntB =
745      LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
746
747  // We found a non-trivially-coalescable copy with IntA being the source and
748  // IntB being the dest, thus this defines a value number in IntB.  If the
749  // source value number (in IntA) is defined by a commutable instruction and
750  // its other operand is coalesced to the copy dest register, see if we can
751  // transform the copy into a noop by commuting the definition. For example,
752  //
753  //  A3 = op A2 killed B0
754  //    ...
755  //  B1 = A3      <- this copy
756  //    ...
757  //     = op A3   <- more uses
758  //
759  // ==>
760  //
761  //  B2 = op B0 killed A2
762  //    ...
763  //  B1 = B2      <- now an identity copy
764  //    ...
765  //     = op B2   <- more uses
766
767  // BValNo is a value number in B that is defined by a copy from A. 'B1' in
768  // the example above.
769  SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
770  VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
771  assert(BValNo != nullptr && BValNo->def == CopyIdx);
772
773  // AValNo is the value number in A that defines the copy, A3 in the example.
774  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
775  assert(AValNo && !AValNo->isUnused() && "COPY source not live");
776  if (AValNo->isPHIDef())
777    return { false, false };
778  MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
779  if (!DefMI)
780    return { false, false };
781  if (!DefMI->isCommutable())
782    return { false, false };
783  // If DefMI is a two-address instruction then commuting it will change the
784  // destination register.
785  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
786  assert(DefIdx != -1);
787  unsigned UseOpIdx;
788  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
789    return { false, false };
790
791  // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
792  // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
793  // passed to the method. That _other_ operand is chosen by
794  // the findCommutedOpIndices() method.
795  //
796  // That is obviously an area for improvement in case of instructions having
797  // more than 2 operands. For example, if some instruction has 3 commutable
798  // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
799  // op#2<->op#3) of commute transformation should be considered/tried here.
800  unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
801  if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
802    return { false, false };
803
804  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
805  unsigned NewReg = NewDstMO.getReg();
806  if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
807    return { false, false };
808
809  // Make sure there are no other definitions of IntB that would reach the
810  // uses which the new definition can reach.
811  if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
812    return { false, false };
813
814  // If some of the uses of IntA.reg is already coalesced away, return false.
815  // It's not possible to determine whether it's safe to perform the coalescing.
816  for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
817    MachineInstr *UseMI = MO.getParent();
818    unsigned OpNo = &MO - &UseMI->getOperand(0);
819    SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
820    LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
821    if (US == IntA.end() || US->valno != AValNo)
822      continue;
823    // If this use is tied to a def, we can't rewrite the register.
824    if (UseMI->isRegTiedToDefOperand(OpNo))
825      return { false, false };
826  }
827
828  LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
829                    << *DefMI);
830
831  // At this point we have decided that it is legal to do this
832  // transformation.  Start by commuting the instruction.
833  MachineBasicBlock *MBB = DefMI->getParent();
834  MachineInstr *NewMI =
835      TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
836  if (!NewMI)
837    return { false, false };
838  if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
839      TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
840      !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
841    return { false, false };
842  if (NewMI != DefMI) {
843    LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
844    MachineBasicBlock::iterator Pos = DefMI;
845    MBB->insert(Pos, NewMI);
846    MBB->erase(DefMI);
847  }
848
849  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
850  // A = or A, B
851  // ...
852  // B = A
853  // ...
854  // C = killed A
855  // ...
856  //   = B
857
858  // Update uses of IntA of the specific Val# with IntB.
859  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
860                                         UE = MRI->use_end();
861       UI != UE; /* ++UI is below because of possible MI removal */) {
862    MachineOperand &UseMO = *UI;
863    ++UI;
864    if (UseMO.isUndef())
865      continue;
866    MachineInstr *UseMI = UseMO.getParent();
867    if (UseMI->isDebugValue()) {
868      // FIXME These don't have an instruction index.  Not clear we have enough
869      // info to decide whether to do this replacement or not.  For now do it.
870      UseMO.setReg(NewReg);
871      continue;
872    }
873    SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
874    LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
875    assert(US != IntA.end() && "Use must be live");
876    if (US->valno != AValNo)
877      continue;
878    // Kill flags are no longer accurate. They are recomputed after RA.
879    UseMO.setIsKill(false);
880    if (TargetRegisterInfo::isPhysicalRegister(NewReg))
881      UseMO.substPhysReg(NewReg, *TRI);
882    else
883      UseMO.setReg(NewReg);
884    if (UseMI == CopyMI)
885      continue;
886    if (!UseMI->isCopy())
887      continue;
888    if (UseMI->getOperand(0).getReg() != IntB.reg ||
889        UseMI->getOperand(0).getSubReg())
890      continue;
891
892    // This copy will become a noop. If it's defining a new val#, merge it into
893    // BValNo.
894    SlotIndex DefIdx = UseIdx.getRegSlot();
895    VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
896    if (!DVNI)
897      continue;
898    LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
899    assert(DVNI->def == DefIdx);
900    BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
901    for (LiveInterval::SubRange &S : IntB.subranges()) {
902      VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
903      if (!SubDVNI)
904        continue;
905      VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
906      assert(SubBValNo->def == CopyIdx);
907      S.MergeValueNumberInto(SubDVNI, SubBValNo);
908    }
909
910    deleteInstr(UseMI);
911  }
912
913  // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
914  // is updated.
915  bool ShrinkB = false;
916  BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
917  if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
918    if (!IntA.hasSubRanges()) {
919      LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg);
920      IntA.createSubRangeFrom(Allocator, Mask, IntA);
921    } else if (!IntB.hasSubRanges()) {
922      LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg);
923      IntB.createSubRangeFrom(Allocator, Mask, IntB);
924    }
925    SlotIndex AIdx = CopyIdx.getRegSlot(true);
926    LaneBitmask MaskA;
927    const SlotIndexes &Indexes = *LIS->getSlotIndexes();
928    for (LiveInterval::SubRange &SA : IntA.subranges()) {
929      VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
930      // Even if we are dealing with a full copy, some lanes can
931      // still be undefined.
932      // E.g.,
933      // undef A.subLow = ...
934      // B = COPY A <== A.subHigh is undefined here and does
935      //                not have a value number.
936      if (!ASubValNo)
937        continue;
938      MaskA |= SA.LaneMask;
939
940      IntB.refineSubRanges(
941          Allocator, SA.LaneMask,
942          [&Allocator, &SA, CopyIdx, ASubValNo,
943           &ShrinkB](LiveInterval::SubRange &SR) {
944            VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator)
945                                           : SR.getVNInfoAt(CopyIdx);
946            assert(BSubValNo != nullptr);
947            auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
948            ShrinkB |= P.second;
949            if (P.first)
950              BSubValNo->def = ASubValNo->def;
951          },
952          Indexes, *TRI);
953    }
954    // Go over all subranges of IntB that have not been covered by IntA,
955    // and delete the segments starting at CopyIdx. This can happen if
956    // IntA has undef lanes that are defined in IntB.
957    for (LiveInterval::SubRange &SB : IntB.subranges()) {
958      if ((SB.LaneMask & MaskA).any())
959        continue;
960      if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
961        if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
962          SB.removeSegment(*S, true);
963    }
964  }
965
966  BValNo->def = AValNo->def;
967  auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
968  ShrinkB |= P.second;
969  LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
970
971  LIS->removeVRegDefAt(IntA, AValNo->def);
972
973  LLVM_DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
974  ++numCommutes;
975  return { true, ShrinkB };
976}
977
978/// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
979/// predecessor of BB2, and if B is not redefined on the way from A = B
980/// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
981/// execution goes through the path from BB0 to BB2. We may move B = A
982/// to the predecessor without such reversed copy.
983/// So we will transform the program from:
984///   BB0:
985///      A = B;    BB1:
986///       ...         ...
987///     /     \      /
988///             BB2:
989///               ...
990///               B = A;
991///
992/// to:
993///
994///   BB0:         BB1:
995///      A = B;        ...
996///       ...          B = A;
997///     /     \       /
998///             BB2:
999///               ...
1000///
1001/// A special case is when BB0 and BB2 are the same BB which is the only
1002/// BB in a loop:
1003///   BB1:
1004///        ...
1005///   BB0/BB2:  ----
1006///        B = A;   |
1007///        ...      |
1008///        A = B;   |
1009///          |-------
1010///          |
1011/// We may hoist B = A from BB0/BB2 to BB1.
1012///
1013/// The major preconditions for correctness to remove such partial
1014/// redundancy include:
1015/// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1016///    the PHI is defined by the reversed copy A = B in BB0.
1017/// 2. No B is referenced from the start of BB2 to B = A.
1018/// 3. No B is defined from A = B to the end of BB0.
1019/// 4. BB1 has only one successor.
1020///
1021/// 2 and 4 implicitly ensure B is not live at the end of BB1.
1022/// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1023/// colder place, which not only prevent endless loop, but also make sure
1024/// the movement of copy is beneficial.
1025bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
1026                                                MachineInstr &CopyMI) {
1027  assert(!CP.isPhys());
1028  if (!CopyMI.isFullCopy())
1029    return false;
1030
1031  MachineBasicBlock &MBB = *CopyMI.getParent();
1032  if (MBB.isEHPad())
1033    return false;
1034
1035  if (MBB.pred_size() != 2)
1036    return false;
1037
1038  LiveInterval &IntA =
1039      LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1040  LiveInterval &IntB =
1041      LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1042
1043  // A is defined by PHI at the entry of MBB.
1044  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
1045  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
1046  assert(AValNo && !AValNo->isUnused() && "COPY source not live");
1047  if (!AValNo->isPHIDef())
1048    return false;
1049
1050  // No B is referenced before CopyMI in MBB.
1051  if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
1052    return false;
1053
1054  // MBB has two predecessors: one contains A = B so no copy will be inserted
1055  // for it. The other one will have a copy moved from MBB.
1056  bool FoundReverseCopy = false;
1057  MachineBasicBlock *CopyLeftBB = nullptr;
1058  for (MachineBasicBlock *Pred : MBB.predecessors()) {
1059    VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
1060    MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
1061    if (!DefMI || !DefMI->isFullCopy()) {
1062      CopyLeftBB = Pred;
1063      continue;
1064    }
1065    // Check DefMI is a reverse copy and it is in BB Pred.
1066    if (DefMI->getOperand(0).getReg() != IntA.reg ||
1067        DefMI->getOperand(1).getReg() != IntB.reg ||
1068        DefMI->getParent() != Pred) {
1069      CopyLeftBB = Pred;
1070      continue;
1071    }
1072    // If there is any other def of B after DefMI and before the end of Pred,
1073    // we need to keep the copy of B = A at the end of Pred if we remove
1074    // B = A from MBB.
1075    bool ValB_Changed = false;
1076    for (auto VNI : IntB.valnos) {
1077      if (VNI->isUnused())
1078        continue;
1079      if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
1080        ValB_Changed = true;
1081        break;
1082      }
1083    }
1084    if (ValB_Changed) {
1085      CopyLeftBB = Pred;
1086      continue;
1087    }
1088    FoundReverseCopy = true;
1089  }
1090
1091  // If no reverse copy is found in predecessors, nothing to do.
1092  if (!FoundReverseCopy)
1093    return false;
1094
1095  // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1096  // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1097  // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1098  // update IntA/IntB.
1099  //
1100  // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1101  // MBB is hotter than CopyLeftBB.
1102  if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1103    return false;
1104
1105  // Now (almost sure it's) ok to move copy.
1106  if (CopyLeftBB) {
1107    // Position in CopyLeftBB where we should insert new copy.
1108    auto InsPos = CopyLeftBB->getFirstTerminator();
1109
1110    // Make sure that B isn't referenced in the terminators (if any) at the end
1111    // of the predecessor since we're about to insert a new definition of B
1112    // before them.
1113    if (InsPos != CopyLeftBB->end()) {
1114      SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
1115      if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
1116        return false;
1117    }
1118
1119    LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1120                      << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
1121
1122    // Insert new copy to CopyLeftBB.
1123    MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
1124                                      TII->get(TargetOpcode::COPY), IntB.reg)
1125                                  .addReg(IntA.reg);
1126    SlotIndex NewCopyIdx =
1127        LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
1128    IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1129    for (LiveInterval::SubRange &SR : IntB.subranges())
1130      SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1131
1132    // If the newly created Instruction has an address of an instruction that was
1133    // deleted before (object recycled by the allocator) it needs to be removed from
1134    // the deleted list.
1135    ErasedInstrs.erase(NewCopyMI);
1136  } else {
1137    LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1138                      << printMBBReference(MBB) << '\t' << CopyMI);
1139  }
1140
1141  // Remove CopyMI.
1142  // Note: This is fine to remove the copy before updating the live-ranges.
1143  // While updating the live-ranges, we only look at slot indices and
1144  // never go back to the instruction.
1145  // Mark instructions as deleted.
1146  deleteInstr(&CopyMI);
1147
1148  // Update the liveness.
1149  SmallVector<SlotIndex, 8> EndPoints;
1150  VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
1151  LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
1152                  &EndPoints);
1153  BValNo->markUnused();
1154  // Extend IntB to the EndPoints of its original live interval.
1155  LIS->extendToIndices(IntB, EndPoints);
1156
1157  // Now, do the same for its subranges.
1158  for (LiveInterval::SubRange &SR : IntB.subranges()) {
1159    EndPoints.clear();
1160    VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1161    assert(BValNo && "All sublanes should be live");
1162    LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
1163    BValNo->markUnused();
1164    // We can have a situation where the result of the original copy is live,
1165    // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1166    // the copy appear as an endpoint from pruneValue(), but we don't want it
1167    // to because the copy has been removed.  We can go ahead and remove that
1168    // endpoint; there is no other situation here that there could be a use at
1169    // the same place as we know that the copy is a full copy.
1170    for (unsigned I = 0; I != EndPoints.size(); ) {
1171      if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
1172        EndPoints[I] = EndPoints.back();
1173        EndPoints.pop_back();
1174        continue;
1175      }
1176      ++I;
1177    }
1178    LIS->extendToIndices(SR, EndPoints);
1179  }
1180  // If any dead defs were extended, truncate them.
1181  shrinkToUses(&IntB);
1182
1183  // Finally, update the live-range of IntA.
1184  shrinkToUses(&IntA);
1185  return true;
1186}
1187
1188/// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1189/// defining a subregister.
1190static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
1191  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) &&
1192         "This code cannot handle physreg aliasing");
1193  for (const MachineOperand &Op : MI.operands()) {
1194    if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
1195      continue;
1196    // Return true if we define the full register or don't care about the value
1197    // inside other subregisters.
1198    if (Op.getSubReg() == 0 || Op.isUndef())
1199      return true;
1200  }
1201  return false;
1202}
1203
1204bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1205                                                MachineInstr *CopyMI,
1206                                                bool &IsDefCopy) {
1207  IsDefCopy = false;
1208  unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1209  unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1210  unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1211  unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1212  if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
1213    return false;
1214
1215  LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1216  SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1217  VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
1218  if (!ValNo)
1219    return false;
1220  if (ValNo->isPHIDef() || ValNo->isUnused())
1221    return false;
1222  MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
1223  if (!DefMI)
1224    return false;
1225  if (DefMI->isCopyLike()) {
1226    IsDefCopy = true;
1227    return false;
1228  }
1229  if (!TII->isAsCheapAsAMove(*DefMI))
1230    return false;
1231  if (!TII->isTriviallyReMaterializable(*DefMI, AA))
1232    return false;
1233  if (!definesFullReg(*DefMI, SrcReg))
1234    return false;
1235  bool SawStore = false;
1236  if (!DefMI->isSafeToMove(AA, SawStore))
1237    return false;
1238  const MCInstrDesc &MCID = DefMI->getDesc();
1239  if (MCID.getNumDefs() != 1)
1240    return false;
1241  // Only support subregister destinations when the def is read-undef.
1242  MachineOperand &DstOperand = CopyMI->getOperand(0);
1243  unsigned CopyDstReg = DstOperand.getReg();
1244  if (DstOperand.getSubReg() && !DstOperand.isUndef())
1245    return false;
1246
1247  // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1248  // the register substantially (beyond both source and dest size). This is bad
1249  // for performance since it can cascade through a function, introducing many
1250  // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1251  // around after a few subreg copies).
1252  if (SrcIdx && DstIdx)
1253    return false;
1254
1255  const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
1256  if (!DefMI->isImplicitDef()) {
1257    if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
1258      unsigned NewDstReg = DstReg;
1259
1260      unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
1261                                              DefMI->getOperand(0).getSubReg());
1262      if (NewDstIdx)
1263        NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
1264
1265      // Finally, make sure that the physical subregister that will be
1266      // constructed later is permitted for the instruction.
1267      if (!DefRC->contains(NewDstReg))
1268        return false;
1269    } else {
1270      // Theoretically, some stack frame reference could exist. Just make sure
1271      // it hasn't actually happened.
1272      assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
1273             "Only expect to deal with virtual or physical registers");
1274    }
1275  }
1276
1277  DebugLoc DL = CopyMI->getDebugLoc();
1278  MachineBasicBlock *MBB = CopyMI->getParent();
1279  MachineBasicBlock::iterator MII =
1280    std::next(MachineBasicBlock::iterator(CopyMI));
1281  TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
1282  MachineInstr &NewMI = *std::prev(MII);
1283  NewMI.setDebugLoc(DL);
1284
1285  // In a situation like the following:
1286  //     %0:subreg = instr              ; DefMI, subreg = DstIdx
1287  //     %1        = copy %0:subreg ; CopyMI, SrcIdx = 0
1288  // instead of widening %1 to the register class of %0 simply do:
1289  //     %1 = instr
1290  const TargetRegisterClass *NewRC = CP.getNewRC();
1291  if (DstIdx != 0) {
1292    MachineOperand &DefMO = NewMI.getOperand(0);
1293    if (DefMO.getSubReg() == DstIdx) {
1294      assert(SrcIdx == 0 && CP.isFlipped()
1295             && "Shouldn't have SrcIdx+DstIdx at this point");
1296      const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
1297      const TargetRegisterClass *CommonRC =
1298        TRI->getCommonSubClass(DefRC, DstRC);
1299      if (CommonRC != nullptr) {
1300        NewRC = CommonRC;
1301        DstIdx = 0;
1302        DefMO.setSubReg(0);
1303        DefMO.setIsUndef(false); // Only subregs can have def+undef.
1304      }
1305    }
1306  }
1307
1308  // CopyMI may have implicit operands, save them so that we can transfer them
1309  // over to the newly materialized instruction after CopyMI is removed.
1310  SmallVector<MachineOperand, 4> ImplicitOps;
1311  ImplicitOps.reserve(CopyMI->getNumOperands() -
1312                      CopyMI->getDesc().getNumOperands());
1313  for (unsigned I = CopyMI->getDesc().getNumOperands(),
1314                E = CopyMI->getNumOperands();
1315       I != E; ++I) {
1316    MachineOperand &MO = CopyMI->getOperand(I);
1317    if (MO.isReg()) {
1318      assert(MO.isImplicit() && "No explicit operands after implicit operands.");
1319      // Discard VReg implicit defs.
1320      if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1321        ImplicitOps.push_back(MO);
1322    }
1323  }
1324
1325  LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
1326  CopyMI->eraseFromParent();
1327  ErasedInstrs.insert(CopyMI);
1328
1329  // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1330  // We need to remember these so we can add intervals once we insert
1331  // NewMI into SlotIndexes.
1332  SmallVector<unsigned, 4> NewMIImplDefs;
1333  for (unsigned i = NewMI.getDesc().getNumOperands(),
1334                e = NewMI.getNumOperands();
1335       i != e; ++i) {
1336    MachineOperand &MO = NewMI.getOperand(i);
1337    if (MO.isReg() && MO.isDef()) {
1338      assert(MO.isImplicit() && MO.isDead() &&
1339             TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
1340      NewMIImplDefs.push_back(MO.getReg());
1341    }
1342  }
1343
1344  if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
1345    unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1346
1347    if (DefRC != nullptr) {
1348      if (NewIdx)
1349        NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1350      else
1351        NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1352      assert(NewRC && "subreg chosen for remat incompatible with instruction");
1353    }
1354    // Remap subranges to new lanemask and change register class.
1355    LiveInterval &DstInt = LIS->getInterval(DstReg);
1356    for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1357      SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1358    }
1359    MRI->setRegClass(DstReg, NewRC);
1360
1361    // Update machine operands and add flags.
1362    updateRegDefsUses(DstReg, DstReg, DstIdx);
1363    NewMI.getOperand(0).setSubReg(NewIdx);
1364    // updateRegDefUses can add an "undef" flag to the definition, since
1365    // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1366    // sure that "undef" is not set.
1367    if (NewIdx == 0)
1368      NewMI.getOperand(0).setIsUndef(false);
1369    // Add dead subregister definitions if we are defining the whole register
1370    // but only part of it is live.
1371    // This could happen if the rematerialization instruction is rematerializing
1372    // more than actually is used in the register.
1373    // An example would be:
1374    // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1375    // ; Copying only part of the register here, but the rest is undef.
1376    // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1377    // ==>
1378    // ; Materialize all the constants but only using one
1379    // %2 = LOAD_CONSTANTS 5, 8
1380    //
1381    // at this point for the part that wasn't defined before we could have
1382    // subranges missing the definition.
1383    if (NewIdx == 0 && DstInt.hasSubRanges()) {
1384      SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1385      SlotIndex DefIndex =
1386          CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1387      LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1388      VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1389      for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1390        if (!SR.liveAt(DefIndex))
1391          SR.createDeadDef(DefIndex, Alloc);
1392        MaxMask &= ~SR.LaneMask;
1393      }
1394      if (MaxMask.any()) {
1395        LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1396        SR->createDeadDef(DefIndex, Alloc);
1397      }
1398    }
1399
1400    // Make sure that the subrange for resultant undef is removed
1401    // For example:
1402    //   %1:sub1<def,read-undef> = LOAD CONSTANT 1
1403    //   %2 = COPY %1
1404    // ==>
1405    //   %2:sub1<def, read-undef> = LOAD CONSTANT 1
1406    //     ; Correct but need to remove the subrange for %2:sub0
1407    //     ; as it is now undef
1408    if (NewIdx != 0 && DstInt.hasSubRanges()) {
1409      // The affected subregister segments can be removed.
1410      SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1411      LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
1412      bool UpdatedSubRanges = false;
1413      for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1414        if ((SR.LaneMask & DstMask).none()) {
1415          LLVM_DEBUG(dbgs()
1416                     << "Removing undefined SubRange "
1417                     << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
1418          // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1419          if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
1420            SR.removeValNo(RmValNo);
1421            UpdatedSubRanges = true;
1422          }
1423        }
1424      }
1425      if (UpdatedSubRanges)
1426        DstInt.removeEmptySubRanges();
1427    }
1428  } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1429    // The New instruction may be defining a sub-register of what's actually
1430    // been asked for. If so it must implicitly define the whole thing.
1431    assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&
1432           "Only expect virtual or physical registers in remat");
1433    NewMI.getOperand(0).setIsDead(true);
1434    NewMI.addOperand(MachineOperand::CreateReg(
1435        CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1436    // Record small dead def live-ranges for all the subregisters
1437    // of the destination register.
1438    // Otherwise, variables that live through may miss some
1439    // interferences, thus creating invalid allocation.
1440    // E.g., i386 code:
1441    // %1 = somedef ; %1 GR8
1442    // %2 = remat ; %2 GR32
1443    // CL = COPY %2.sub_8bit
1444    // = somedef %1 ; %1 GR8
1445    // =>
1446    // %1 = somedef ; %1 GR8
1447    // dead ECX = remat ; implicit-def CL
1448    // = somedef %1 ; %1 GR8
1449    // %1 will see the interferences with CL but not with CH since
1450    // no live-ranges would have been created for ECX.
1451    // Fix that!
1452    SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1453    for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1454         Units.isValid(); ++Units)
1455      if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1456        LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1457  }
1458
1459  if (NewMI.getOperand(0).getSubReg())
1460    NewMI.getOperand(0).setIsUndef();
1461
1462  // Transfer over implicit operands to the rematerialized instruction.
1463  for (MachineOperand &MO : ImplicitOps)
1464    NewMI.addOperand(MO);
1465
1466  SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1467  for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1468    unsigned Reg = NewMIImplDefs[i];
1469    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1470      if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1471        LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1472  }
1473
1474  LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
1475  ++NumReMats;
1476
1477  // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1478  // to describe DstReg instead.
1479  if (MRI->use_nodbg_empty(SrcReg)) {
1480    for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
1481      MachineInstr *UseMI = UseMO.getParent();
1482      if (UseMI->isDebugValue()) {
1483        if (TargetRegisterInfo::isPhysicalRegister(DstReg))
1484          UseMO.substPhysReg(DstReg, *TRI);
1485        else
1486          UseMO.setReg(DstReg);
1487        // Move the debug value directly after the def of the rematerialized
1488        // value in DstReg.
1489        MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
1490        LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1491      }
1492    }
1493  }
1494
1495  if (ToBeUpdated.count(SrcReg))
1496    return true;
1497
1498  unsigned NumCopyUses = 0;
1499  for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
1500    if (UseMO.getParent()->isCopyLike())
1501      NumCopyUses++;
1502  }
1503  if (NumCopyUses < LateRematUpdateThreshold) {
1504    // The source interval can become smaller because we removed a use.
1505    shrinkToUses(&SrcInt, &DeadDefs);
1506    if (!DeadDefs.empty())
1507      eliminateDeadDefs();
1508  } else {
1509    ToBeUpdated.insert(SrcReg);
1510  }
1511  return true;
1512}
1513
1514MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1515  // ProcessImplicitDefs may leave some copies of <undef> values, it only
1516  // removes local variables. When we have a copy like:
1517  //
1518  //   %1 = COPY undef %2
1519  //
1520  // We delete the copy and remove the corresponding value number from %1.
1521  // Any uses of that value number are marked as <undef>.
1522
1523  // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1524  // CoalescerPair may have a new register class with adjusted subreg indices
1525  // at this point.
1526  unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1527  if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
1528    return nullptr;
1529
1530  SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1531  const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1532  // CopyMI is undef iff SrcReg is not live before the instruction.
1533  if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1534    LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1535    for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1536      if ((SR.LaneMask & SrcMask).none())
1537        continue;
1538      if (SR.liveAt(Idx))
1539        return nullptr;
1540    }
1541  } else if (SrcLI.liveAt(Idx))
1542    return nullptr;
1543
1544  // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1545  // then replace it with an IMPLICIT_DEF.
1546  LiveInterval &DstLI = LIS->getInterval(DstReg);
1547  SlotIndex RegIndex = Idx.getRegSlot();
1548  LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
1549  assert(Seg != nullptr && "No segment for defining instruction");
1550  if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) {
1551    if (V->isPHIDef()) {
1552      CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1553      for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1554        MachineOperand &MO = CopyMI->getOperand(i-1);
1555        if (MO.isReg() && MO.isUse())
1556          CopyMI->RemoveOperand(i-1);
1557      }
1558      LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1559                           "implicit def\n");
1560      return CopyMI;
1561    }
1562  }
1563
1564  // Remove any DstReg segments starting at the instruction.
1565  LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1566
1567  // Remove value or merge with previous one in case of a subregister def.
1568  if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1569    VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1570    DstLI.MergeValueNumberInto(VNI, PrevVNI);
1571
1572    // The affected subregister segments can be removed.
1573    LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1574    for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1575      if ((SR.LaneMask & DstMask).none())
1576        continue;
1577
1578      VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1579      assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1580      SR.removeValNo(SVNI);
1581    }
1582    DstLI.removeEmptySubRanges();
1583  } else
1584    LIS->removeVRegDefAt(DstLI, RegIndex);
1585
1586  // Mark uses as undef.
1587  for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1588    if (MO.isDef() /*|| MO.isUndef()*/)
1589      continue;
1590    const MachineInstr &MI = *MO.getParent();
1591    SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1592    LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1593    bool isLive;
1594    if (!UseMask.all() && DstLI.hasSubRanges()) {
1595      isLive = false;
1596      for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1597        if ((SR.LaneMask & UseMask).none())
1598          continue;
1599        if (SR.liveAt(UseIdx)) {
1600          isLive = true;
1601          break;
1602        }
1603      }
1604    } else
1605      isLive = DstLI.liveAt(UseIdx);
1606    if (isLive)
1607      continue;
1608    MO.setIsUndef(true);
1609    LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1610  }
1611
1612  // A def of a subregister may be a use of the other subregisters, so
1613  // deleting a def of a subregister may also remove uses. Since CopyMI
1614  // is still part of the function (but about to be erased), mark all
1615  // defs of DstReg in it as <undef>, so that shrinkToUses would
1616  // ignore them.
1617  for (MachineOperand &MO : CopyMI->operands())
1618    if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1619      MO.setIsUndef(true);
1620  LIS->shrinkToUses(&DstLI);
1621
1622  return CopyMI;
1623}
1624
1625void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1626                                     MachineOperand &MO, unsigned SubRegIdx) {
1627  LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1628  if (MO.isDef())
1629    Mask = ~Mask;
1630  bool IsUndef = true;
1631  for (const LiveInterval::SubRange &S : Int.subranges()) {
1632    if ((S.LaneMask & Mask).none())
1633      continue;
1634    if (S.liveAt(UseIdx)) {
1635      IsUndef = false;
1636      break;
1637    }
1638  }
1639  if (IsUndef) {
1640    MO.setIsUndef(true);
1641    // We found out some subregister use is actually reading an undefined
1642    // value. In some cases the whole vreg has become undefined at this
1643    // point so we have to potentially shrink the main range if the
1644    // use was ending a live segment there.
1645    LiveQueryResult Q = Int.Query(UseIdx);
1646    if (Q.valueOut() == nullptr)
1647      ShrinkMainRange = true;
1648  }
1649}
1650
1651void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
1652                                          unsigned DstReg,
1653                                          unsigned SubIdx) {
1654  bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1655  LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1656
1657  if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1658    for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1659      unsigned SubReg = MO.getSubReg();
1660      if (SubReg == 0 || MO.isUndef())
1661        continue;
1662      MachineInstr &MI = *MO.getParent();
1663      if (MI.isDebugValue())
1664        continue;
1665      SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1666      addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1667    }
1668  }
1669
1670  SmallPtrSet<MachineInstr*, 8> Visited;
1671  for (MachineRegisterInfo::reg_instr_iterator
1672       I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1673       I != E; ) {
1674    MachineInstr *UseMI = &*(I++);
1675
1676    // Each instruction can only be rewritten once because sub-register
1677    // composition is not always idempotent. When SrcReg != DstReg, rewriting
1678    // the UseMI operands removes them from the SrcReg use-def chain, but when
1679    // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1680    // operands mentioning the virtual register.
1681    if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1682      continue;
1683
1684    SmallVector<unsigned,8> Ops;
1685    bool Reads, Writes;
1686    std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1687
1688    // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1689    // because SrcReg is a sub-register.
1690    if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue())
1691      Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1692
1693    // Replace SrcReg with DstReg in all UseMI operands.
1694    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1695      MachineOperand &MO = UseMI->getOperand(Ops[i]);
1696
1697      // Adjust <undef> flags in case of sub-register joins. We don't want to
1698      // turn a full def into a read-modify-write sub-register def and vice
1699      // versa.
1700      if (SubIdx && MO.isDef())
1701        MO.setIsUndef(!Reads);
1702
1703      // A subreg use of a partially undef (super) register may be a complete
1704      // undef use now and then has to be marked that way.
1705      if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
1706        if (!DstInt->hasSubRanges()) {
1707          BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1708          LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg);
1709          DstInt->createSubRangeFrom(Allocator, Mask, *DstInt);
1710        }
1711        SlotIndex MIIdx = UseMI->isDebugValue()
1712                              ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1713                              : LIS->getInstructionIndex(*UseMI);
1714        SlotIndex UseIdx = MIIdx.getRegSlot(true);
1715        addUndefFlag(*DstInt, UseIdx, MO, SubIdx);
1716      }
1717
1718      if (DstIsPhys)
1719        MO.substPhysReg(DstReg, *TRI);
1720      else
1721        MO.substVirtReg(DstReg, SubIdx, *TRI);
1722    }
1723
1724    LLVM_DEBUG({
1725      dbgs() << "\t\tupdated: ";
1726      if (!UseMI->isDebugValue())
1727        dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1728      dbgs() << *UseMI;
1729    });
1730  }
1731}
1732
1733bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1734  // Always join simple intervals that are defined by a single copy from a
1735  // reserved register. This doesn't increase register pressure, so it is
1736  // always beneficial.
1737  if (!MRI->isReserved(CP.getDstReg())) {
1738    LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1739    return false;
1740  }
1741
1742  LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1743  if (JoinVInt.containsOneValue())
1744    return true;
1745
1746  LLVM_DEBUG(
1747      dbgs() << "\tCannot join complex intervals into reserved register.\n");
1748  return false;
1749}
1750
1751bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1752  Again = false;
1753  LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1754
1755  CoalescerPair CP(*TRI);
1756  if (!CP.setRegisters(CopyMI)) {
1757    LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1758    return false;
1759  }
1760
1761  if (CP.getNewRC()) {
1762    auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1763    auto DstRC = MRI->getRegClass(CP.getDstReg());
1764    unsigned SrcIdx = CP.getSrcIdx();
1765    unsigned DstIdx = CP.getDstIdx();
1766    if (CP.isFlipped()) {
1767      std::swap(SrcIdx, DstIdx);
1768      std::swap(SrcRC, DstRC);
1769    }
1770    if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1771                             CP.getNewRC(), *LIS)) {
1772      LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1773      return false;
1774    }
1775  }
1776
1777  // Dead code elimination. This really should be handled by MachineDCE, but
1778  // sometimes dead copies slip through, and we can't generate invalid live
1779  // ranges.
1780  if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1781    LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1782    DeadDefs.push_back(CopyMI);
1783    eliminateDeadDefs();
1784    return true;
1785  }
1786
1787  // Eliminate undefs.
1788  if (!CP.isPhys()) {
1789    // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1790    if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
1791      if (UndefMI->isImplicitDef())
1792        return false;
1793      deleteInstr(CopyMI);
1794      return false;  // Not coalescable.
1795    }
1796  }
1797
1798  // Coalesced copies are normally removed immediately, but transformations
1799  // like removeCopyByCommutingDef() can inadvertently create identity copies.
1800  // When that happens, just join the values and remove the copy.
1801  if (CP.getSrcReg() == CP.getDstReg()) {
1802    LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1803    LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1804    const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1805    LiveQueryResult LRQ = LI.Query(CopyIdx);
1806    if (VNInfo *DefVNI = LRQ.valueDefined()) {
1807      VNInfo *ReadVNI = LRQ.valueIn();
1808      assert(ReadVNI && "No value before copy and no <undef> flag.");
1809      assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1810      LI.MergeValueNumberInto(DefVNI, ReadVNI);
1811
1812      // Process subregister liveranges.
1813      for (LiveInterval::SubRange &S : LI.subranges()) {
1814        LiveQueryResult SLRQ = S.Query(CopyIdx);
1815        if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1816          VNInfo *SReadVNI = SLRQ.valueIn();
1817          S.MergeValueNumberInto(SDefVNI, SReadVNI);
1818        }
1819      }
1820      LLVM_DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
1821    }
1822    deleteInstr(CopyMI);
1823    return true;
1824  }
1825
1826  // Enforce policies.
1827  if (CP.isPhys()) {
1828    LLVM_DEBUG(dbgs() << "\tConsidering merging "
1829                      << printReg(CP.getSrcReg(), TRI) << " with "
1830                      << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
1831    if (!canJoinPhys(CP)) {
1832      // Before giving up coalescing, if definition of source is defined by
1833      // trivial computation, try rematerializing it.
1834      bool IsDefCopy;
1835      if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1836        return true;
1837      if (IsDefCopy)
1838        Again = true;  // May be possible to coalesce later.
1839      return false;
1840    }
1841  } else {
1842    // When possible, let DstReg be the larger interval.
1843    if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1844                           LIS->getInterval(CP.getDstReg()).size())
1845      CP.flip();
1846
1847    LLVM_DEBUG({
1848      dbgs() << "\tConsidering merging to "
1849             << TRI->getRegClassName(CP.getNewRC()) << " with ";
1850      if (CP.getDstIdx() && CP.getSrcIdx())
1851        dbgs() << printReg(CP.getDstReg()) << " in "
1852               << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1853               << printReg(CP.getSrcReg()) << " in "
1854               << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1855      else
1856        dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
1857               << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1858    });
1859  }
1860
1861  ShrinkMask = LaneBitmask::getNone();
1862  ShrinkMainRange = false;
1863
1864  // Okay, attempt to join these two intervals.  On failure, this returns false.
1865  // Otherwise, if one of the intervals being joined is a physreg, this method
1866  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1867  // been modified, so we can use this information below to update aliases.
1868  if (!joinIntervals(CP)) {
1869    // Coalescing failed.
1870
1871    // If definition of source is defined by trivial computation, try
1872    // rematerializing it.
1873    bool IsDefCopy;
1874    if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1875      return true;
1876
1877    // If we can eliminate the copy without merging the live segments, do so
1878    // now.
1879    if (!CP.isPartial() && !CP.isPhys()) {
1880      bool Changed = adjustCopiesBackFrom(CP, CopyMI);
1881      bool Shrink = false;
1882      if (!Changed)
1883        std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
1884      if (Changed) {
1885        deleteInstr(CopyMI);
1886        if (Shrink) {
1887          unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1888          LiveInterval &DstLI = LIS->getInterval(DstReg);
1889          shrinkToUses(&DstLI);
1890          LLVM_DEBUG(dbgs() << "\t\tshrunk:   " << DstLI << '\n');
1891        }
1892        LLVM_DEBUG(dbgs() << "\tTrivial!\n");
1893        return true;
1894      }
1895    }
1896
1897    // Try and see if we can partially eliminate the copy by moving the copy to
1898    // its predecessor.
1899    if (!CP.isPartial() && !CP.isPhys())
1900      if (removePartialRedundancy(CP, *CopyMI))
1901        return true;
1902
1903    // Otherwise, we are unable to join the intervals.
1904    LLVM_DEBUG(dbgs() << "\tInterference!\n");
1905    Again = true;  // May be possible to coalesce later.
1906    return false;
1907  }
1908
1909  // Coalescing to a virtual register that is of a sub-register class of the
1910  // other. Make sure the resulting register is set to the right register class.
1911  if (CP.isCrossClass()) {
1912    ++numCrossRCs;
1913    MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1914  }
1915
1916  // Removing sub-register copies can ease the register class constraints.
1917  // Make sure we attempt to inflate the register class of DstReg.
1918  if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1919    InflateRegs.push_back(CP.getDstReg());
1920
1921  // CopyMI has been erased by joinIntervals at this point. Remove it from
1922  // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1923  // to the work list. This keeps ErasedInstrs from growing needlessly.
1924  ErasedInstrs.erase(CopyMI);
1925
1926  // Rewrite all SrcReg operands to DstReg.
1927  // Also update DstReg operands to include DstIdx if it is set.
1928  if (CP.getDstIdx())
1929    updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1930  updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1931
1932  // Shrink subregister ranges if necessary.
1933  if (ShrinkMask.any()) {
1934    LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1935    for (LiveInterval::SubRange &S : LI.subranges()) {
1936      if ((S.LaneMask & ShrinkMask).none())
1937        continue;
1938      LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
1939                        << ")\n");
1940      LIS->shrinkToUses(S, LI.reg);
1941    }
1942    LI.removeEmptySubRanges();
1943  }
1944
1945  // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
1946  // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
1947  // is not up-to-date, need to update the merged live interval here.
1948  if (ToBeUpdated.count(CP.getSrcReg()))
1949    ShrinkMainRange = true;
1950
1951  if (ShrinkMainRange) {
1952    LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1953    shrinkToUses(&LI);
1954  }
1955
1956  // SrcReg is guaranteed to be the register whose live interval that is
1957  // being merged.
1958  LIS->removeInterval(CP.getSrcReg());
1959
1960  // Update regalloc hint.
1961  TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1962
1963  LLVM_DEBUG({
1964    dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
1965           << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
1966    dbgs() << "\tResult = ";
1967    if (CP.isPhys())
1968      dbgs() << printReg(CP.getDstReg(), TRI);
1969    else
1970      dbgs() << LIS->getInterval(CP.getDstReg());
1971    dbgs() << '\n';
1972  });
1973
1974  ++numJoins;
1975  return true;
1976}
1977
1978bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1979  unsigned DstReg = CP.getDstReg();
1980  unsigned SrcReg = CP.getSrcReg();
1981  assert(CP.isPhys() && "Must be a physreg copy");
1982  assert(MRI->isReserved(DstReg) && "Not a reserved register");
1983  LiveInterval &RHS = LIS->getInterval(SrcReg);
1984  LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
1985
1986  assert(RHS.containsOneValue() && "Invalid join with reserved register");
1987
1988  // Optimization for reserved registers like ESP. We can only merge with a
1989  // reserved physreg if RHS has a single value that is a copy of DstReg.
1990  // The live range of the reserved register will look like a set of dead defs
1991  // - we don't properly track the live range of reserved registers.
1992
1993  // Deny any overlapping intervals.  This depends on all the reserved
1994  // register live ranges to look like dead defs.
1995  if (!MRI->isConstantPhysReg(DstReg)) {
1996    for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
1997      // Abort if not all the regunits are reserved.
1998      for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
1999        if (!MRI->isReserved(*RI))
2000          return false;
2001      }
2002      if (RHS.overlaps(LIS->getRegUnit(*UI))) {
2003        LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
2004                          << '\n');
2005        return false;
2006      }
2007    }
2008
2009    // We must also check for overlaps with regmask clobbers.
2010    BitVector RegMaskUsable;
2011    if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
2012        !RegMaskUsable.test(DstReg)) {
2013      LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2014      return false;
2015    }
2016  }
2017
2018  // Skip any value computations, we are not adding new values to the
2019  // reserved register.  Also skip merging the live ranges, the reserved
2020  // register live range doesn't need to be accurate as long as all the
2021  // defs are there.
2022
2023  // Delete the identity copy.
2024  MachineInstr *CopyMI;
2025  if (CP.isFlipped()) {
2026    // Physreg is copied into vreg
2027    //   %y = COPY %physreg_x
2028    //   ...  //< no other def of %physreg_x here
2029    //   use %y
2030    // =>
2031    //   ...
2032    //   use %physreg_x
2033    CopyMI = MRI->getVRegDef(SrcReg);
2034  } else {
2035    // VReg is copied into physreg:
2036    //   %y = def
2037    //   ... //< no other def or use of %physreg_x here
2038    //   %physreg_x = COPY %y
2039    // =>
2040    //   %physreg_x = def
2041    //   ...
2042    if (!MRI->hasOneNonDBGUse(SrcReg)) {
2043      LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2044      return false;
2045    }
2046
2047    if (!LIS->intervalIsInOneMBB(RHS)) {
2048      LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2049      return false;
2050    }
2051
2052    MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
2053    CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
2054    SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
2055    SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
2056
2057    if (!MRI->isConstantPhysReg(DstReg)) {
2058      // We checked above that there are no interfering defs of the physical
2059      // register. However, for this case, where we intend to move up the def of
2060      // the physical register, we also need to check for interfering uses.
2061      SlotIndexes *Indexes = LIS->getSlotIndexes();
2062      for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
2063           SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
2064        MachineInstr *MI = LIS->getInstructionFromIndex(SI);
2065        if (MI->readsRegister(DstReg, TRI)) {
2066          LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
2067          return false;
2068        }
2069      }
2070    }
2071
2072    // We're going to remove the copy which defines a physical reserved
2073    // register, so remove its valno, etc.
2074    LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2075                      << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
2076
2077    LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
2078    // Create a new dead def at the new def location.
2079    for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2080      LiveRange &LR = LIS->getRegUnit(*UI);
2081      LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
2082    }
2083  }
2084
2085  deleteInstr(CopyMI);
2086
2087  // We don't track kills for reserved registers.
2088  MRI->clearKillFlags(CP.getSrcReg());
2089
2090  return true;
2091}
2092
2093//===----------------------------------------------------------------------===//
2094//                 Interference checking and interval joining
2095//===----------------------------------------------------------------------===//
2096//
2097// In the easiest case, the two live ranges being joined are disjoint, and
2098// there is no interference to consider. It is quite common, though, to have
2099// overlapping live ranges, and we need to check if the interference can be
2100// resolved.
2101//
2102// The live range of a single SSA value forms a sub-tree of the dominator tree.
2103// This means that two SSA values overlap if and only if the def of one value
2104// is contained in the live range of the other value. As a special case, the
2105// overlapping values can be defined at the same index.
2106//
2107// The interference from an overlapping def can be resolved in these cases:
2108//
2109// 1. Coalescable copies. The value is defined by a copy that would become an
2110//    identity copy after joining SrcReg and DstReg. The copy instruction will
2111//    be removed, and the value will be merged with the source value.
2112//
2113//    There can be several copies back and forth, causing many values to be
2114//    merged into one. We compute a list of ultimate values in the joined live
2115//    range as well as a mappings from the old value numbers.
2116//
2117// 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2118//    predecessors have a live out value. It doesn't cause real interference,
2119//    and can be merged into the value it overlaps. Like a coalescable copy, it
2120//    can be erased after joining.
2121//
2122// 3. Copy of external value. The overlapping def may be a copy of a value that
2123//    is already in the other register. This is like a coalescable copy, but
2124//    the live range of the source register must be trimmed after erasing the
2125//    copy instruction:
2126//
2127//      %src = COPY %ext
2128//      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
2129//
2130// 4. Clobbering undefined lanes. Vector registers are sometimes built by
2131//    defining one lane at a time:
2132//
2133//      %dst:ssub0<def,read-undef> = FOO
2134//      %src = BAR
2135//      %dst:ssub1 = COPY %src
2136//
2137//    The live range of %src overlaps the %dst value defined by FOO, but
2138//    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2139//    which was undef anyway.
2140//
2141//    The value mapping is more complicated in this case. The final live range
2142//    will have different value numbers for both FOO and BAR, but there is no
2143//    simple mapping from old to new values. It may even be necessary to add
2144//    new PHI values.
2145//
2146// 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2147//    is live, but never read. This can happen because we don't compute
2148//    individual live ranges per lane.
2149//
2150//      %dst = FOO
2151//      %src = BAR
2152//      %dst:ssub1 = COPY %src
2153//
2154//    This kind of interference is only resolved locally. If the clobbered
2155//    lane value escapes the block, the join is aborted.
2156
2157namespace {
2158
2159/// Track information about values in a single virtual register about to be
2160/// joined. Objects of this class are always created in pairs - one for each
2161/// side of the CoalescerPair (or one for each lane of a side of the coalescer
2162/// pair)
2163class JoinVals {
2164  /// Live range we work on.
2165  LiveRange &LR;
2166
2167  /// (Main) register we work on.
2168  const unsigned Reg;
2169
2170  /// Reg (and therefore the values in this liverange) will end up as
2171  /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2172  /// CP.SrcIdx.
2173  const unsigned SubIdx;
2174
2175  /// The LaneMask that this liverange will occupy the coalesced register. May
2176  /// be smaller than the lanemask produced by SubIdx when merging subranges.
2177  const LaneBitmask LaneMask;
2178
2179  /// This is true when joining sub register ranges, false when joining main
2180  /// ranges.
2181  const bool SubRangeJoin;
2182
2183  /// Whether the current LiveInterval tracks subregister liveness.
2184  const bool TrackSubRegLiveness;
2185
2186  /// Values that will be present in the final live range.
2187  SmallVectorImpl<VNInfo*> &NewVNInfo;
2188
2189  const CoalescerPair &CP;
2190  LiveIntervals *LIS;
2191  SlotIndexes *Indexes;
2192  const TargetRegisterInfo *TRI;
2193
2194  /// Value number assignments. Maps value numbers in LI to entries in
2195  /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2196  SmallVector<int, 8> Assignments;
2197
2198  /// Conflict resolution for overlapping values.
2199  enum ConflictResolution {
2200    /// No overlap, simply keep this value.
2201    CR_Keep,
2202
2203    /// Merge this value into OtherVNI and erase the defining instruction.
2204    /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2205    /// values.
2206    CR_Erase,
2207
2208    /// Merge this value into OtherVNI but keep the defining instruction.
2209    /// This is for the special case where OtherVNI is defined by the same
2210    /// instruction.
2211    CR_Merge,
2212
2213    /// Keep this value, and have it replace OtherVNI where possible. This
2214    /// complicates value mapping since OtherVNI maps to two different values
2215    /// before and after this def.
2216    /// Used when clobbering undefined or dead lanes.
2217    CR_Replace,
2218
2219    /// Unresolved conflict. Visit later when all values have been mapped.
2220    CR_Unresolved,
2221
2222    /// Unresolvable conflict. Abort the join.
2223    CR_Impossible
2224  };
2225
2226  /// Per-value info for LI. The lane bit masks are all relative to the final
2227  /// joined register, so they can be compared directly between SrcReg and
2228  /// DstReg.
2229  struct Val {
2230    ConflictResolution Resolution = CR_Keep;
2231
2232    /// Lanes written by this def, 0 for unanalyzed values.
2233    LaneBitmask WriteLanes;
2234
2235    /// Lanes with defined values in this register. Other lanes are undef and
2236    /// safe to clobber.
2237    LaneBitmask ValidLanes;
2238
2239    /// Value in LI being redefined by this def.
2240    VNInfo *RedefVNI = nullptr;
2241
2242    /// Value in the other live range that overlaps this def, if any.
2243    VNInfo *OtherVNI = nullptr;
2244
2245    /// Is this value an IMPLICIT_DEF that can be erased?
2246    ///
2247    /// IMPLICIT_DEF values should only exist at the end of a basic block that
2248    /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2249    /// safely erased if they are overlapping a live value in the other live
2250    /// interval.
2251    ///
2252    /// Weird control flow graphs and incomplete PHI handling in
2253    /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2254    /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2255    /// normal values.
2256    bool ErasableImplicitDef = false;
2257
2258    /// True when the live range of this value will be pruned because of an
2259    /// overlapping CR_Replace value in the other live range.
2260    bool Pruned = false;
2261
2262    /// True once Pruned above has been computed.
2263    bool PrunedComputed = false;
2264
2265    /// True if this value is determined to be identical to OtherVNI
2266    /// (in valuesIdentical). This is used with CR_Erase where the erased
2267    /// copy is redundant, i.e. the source value is already the same as
2268    /// the destination. In such cases the subranges need to be updated
2269    /// properly. See comment at pruneSubRegValues for more info.
2270    bool Identical = false;
2271
2272    Val() = default;
2273
2274    bool isAnalyzed() const { return WriteLanes.any(); }
2275  };
2276
2277  /// One entry per value number in LI.
2278  SmallVector<Val, 8> Vals;
2279
2280  /// Compute the bitmask of lanes actually written by DefMI.
2281  /// Set Redef if there are any partial register definitions that depend on the
2282  /// previous value of the register.
2283  LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2284
2285  /// Find the ultimate value that VNI was copied from.
2286  std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
2287
2288  bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
2289
2290  /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2291  /// Return a conflict resolution when possible, but leave the hard cases as
2292  /// CR_Unresolved.
2293  /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2294  /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2295  /// The recursion always goes upwards in the dominator tree, making loops
2296  /// impossible.
2297  ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2298
2299  /// Compute the value assignment for ValNo in RI.
2300  /// This may be called recursively by analyzeValue(), but never for a ValNo on
2301  /// the stack.
2302  void computeAssignment(unsigned ValNo, JoinVals &Other);
2303
2304  /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2305  /// the extent of the tainted lanes in the block.
2306  ///
2307  /// Multiple values in Other.LR can be affected since partial redefinitions
2308  /// can preserve previously tainted lanes.
2309  ///
2310  ///   1 %dst = VLOAD           <-- Define all lanes in %dst
2311  ///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
2312  ///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
2313  ///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2314  ///
2315  /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2316  /// entry to TaintedVals.
2317  ///
2318  /// Returns false if the tainted lanes extend beyond the basic block.
2319  bool
2320  taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2321              SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2322
2323  /// Return true if MI uses any of the given Lanes from Reg.
2324  /// This does not include partial redefinitions of Reg.
2325  bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const;
2326
2327  /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2328  /// be pruned:
2329  ///
2330  ///   %dst = COPY %src
2331  ///   %src = COPY %dst  <-- This value to be pruned.
2332  ///   %dst = COPY %src  <-- This value is a copy of a pruned value.
2333  bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2334
2335public:
2336  JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask,
2337           SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
2338           LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2339           bool TrackSubRegLiveness)
2340    : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2341      SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2342      NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2343      TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {}
2344
2345  /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2346  /// Returns false if any conflicts were impossible to resolve.
2347  bool mapValues(JoinVals &Other);
2348
2349  /// Try to resolve conflicts that require all values to be mapped.
2350  /// Returns false if any conflicts were impossible to resolve.
2351  bool resolveConflicts(JoinVals &Other);
2352
2353  /// Prune the live range of values in Other.LR where they would conflict with
2354  /// CR_Replace values in LR. Collect end points for restoring the live range
2355  /// after joining.
2356  void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2357                   bool changeInstrs);
2358
2359  /// Removes subranges starting at copies that get removed. This sometimes
2360  /// happens when undefined subranges are copied around. These ranges contain
2361  /// no useful information and can be removed.
2362  void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2363
2364  /// Pruning values in subranges can lead to removing segments in these
2365  /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2366  /// the main range also need to be removed. This function will mark
2367  /// the corresponding values in the main range as pruned, so that
2368  /// eraseInstrs can do the final cleanup.
2369  /// The parameter @p LI must be the interval whose main range is the
2370  /// live range LR.
2371  void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2372
2373  /// Erase any machine instructions that have been coalesced away.
2374  /// Add erased instructions to ErasedInstrs.
2375  /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2376  /// the erased instrs.
2377  void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2378                   SmallVectorImpl<unsigned> &ShrinkRegs,
2379                   LiveInterval *LI = nullptr);
2380
2381  /// Remove liverange defs at places where implicit defs will be removed.
2382  void removeImplicitDefs();
2383
2384  /// Get the value assignments suitable for passing to LiveInterval::join.
2385  const int *getAssignments() const { return Assignments.data(); }
2386};
2387
2388} // end anonymous namespace
2389
2390LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2391  const {
2392  LaneBitmask L;
2393  for (const MachineOperand &MO : DefMI->operands()) {
2394    if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
2395      continue;
2396    L |= TRI->getSubRegIndexLaneMask(
2397           TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
2398    if (MO.readsReg())
2399      Redef = true;
2400  }
2401  return L;
2402}
2403
2404std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
2405    const VNInfo *VNI) const {
2406  unsigned TrackReg = Reg;
2407
2408  while (!VNI->isPHIDef()) {
2409    SlotIndex Def = VNI->def;
2410    MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2411    assert(MI && "No defining instruction");
2412    if (!MI->isFullCopy())
2413      return std::make_pair(VNI, TrackReg);
2414    unsigned SrcReg = MI->getOperand(1).getReg();
2415    if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
2416      return std::make_pair(VNI, TrackReg);
2417
2418    const LiveInterval &LI = LIS->getInterval(SrcReg);
2419    const VNInfo *ValueIn;
2420    // No subrange involved.
2421    if (!SubRangeJoin || !LI.hasSubRanges()) {
2422      LiveQueryResult LRQ = LI.Query(Def);
2423      ValueIn = LRQ.valueIn();
2424    } else {
2425      // Query subranges. Ensure that all matching ones take us to the same def
2426      // (allowing some of them to be undef).
2427      ValueIn = nullptr;
2428      for (const LiveInterval::SubRange &S : LI.subranges()) {
2429        // Transform lanemask to a mask in the joined live interval.
2430        LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2431        if ((SMask & LaneMask).none())
2432          continue;
2433        LiveQueryResult LRQ = S.Query(Def);
2434        if (!ValueIn) {
2435          ValueIn = LRQ.valueIn();
2436          continue;
2437        }
2438        if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2439          return std::make_pair(VNI, TrackReg);
2440      }
2441    }
2442    if (ValueIn == nullptr) {
2443      // Reaching an undefined value is legitimate, for example:
2444      //
2445      // 1   undef %0.sub1 = ...  ;; %0.sub0 == undef
2446      // 2   %1 = COPY %0         ;; %1 is defined here.
2447      // 3   %0 = COPY %1         ;; Now %0.sub0 has a definition,
2448      //                          ;; but it's equivalent to "undef".
2449      return std::make_pair(nullptr, SrcReg);
2450    }
2451    VNI = ValueIn;
2452    TrackReg = SrcReg;
2453  }
2454  return std::make_pair(VNI, TrackReg);
2455}
2456
2457bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2458                               const JoinVals &Other) const {
2459  const VNInfo *Orig0;
2460  unsigned Reg0;
2461  std::tie(Orig0, Reg0) = followCopyChain(Value0);
2462  if (Orig0 == Value1 && Reg0 == Other.Reg)
2463    return true;
2464
2465  const VNInfo *Orig1;
2466  unsigned Reg1;
2467  std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
2468  // If both values are undefined, and the source registers are the same
2469  // register, the values are identical. Filter out cases where only one
2470  // value is defined.
2471  if (Orig0 == nullptr || Orig1 == nullptr)
2472    return Orig0 == Orig1 && Reg0 == Reg1;
2473
2474  // The values are equal if they are defined at the same place and use the
2475  // same register. Note that we cannot compare VNInfos directly as some of
2476  // them might be from a copy created in mergeSubRangeInto()  while the other
2477  // is from the original LiveInterval.
2478  return Orig0->def == Orig1->def && Reg0 == Reg1;
2479}
2480
2481JoinVals::ConflictResolution
2482JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2483  Val &V = Vals[ValNo];
2484  assert(!V.isAnalyzed() && "Value has already been analyzed!");
2485  VNInfo *VNI = LR.getValNumInfo(ValNo);
2486  if (VNI->isUnused()) {
2487    V.WriteLanes = LaneBitmask::getAll();
2488    return CR_Keep;
2489  }
2490
2491  // Get the instruction defining this value, compute the lanes written.
2492  const MachineInstr *DefMI = nullptr;
2493  if (VNI->isPHIDef()) {
2494    // Conservatively assume that all lanes in a PHI are valid.
2495    LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
2496                                     : TRI->getSubRegIndexLaneMask(SubIdx);
2497    V.ValidLanes = V.WriteLanes = Lanes;
2498  } else {
2499    DefMI = Indexes->getInstructionFromIndex(VNI->def);
2500    assert(DefMI != nullptr);
2501    if (SubRangeJoin) {
2502      // We don't care about the lanes when joining subregister ranges.
2503      V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
2504      if (DefMI->isImplicitDef()) {
2505        V.ValidLanes = LaneBitmask::getNone();
2506        V.ErasableImplicitDef = true;
2507      }
2508    } else {
2509      bool Redef = false;
2510      V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2511
2512      // If this is a read-modify-write instruction, there may be more valid
2513      // lanes than the ones written by this instruction.
2514      // This only covers partial redef operands. DefMI may have normal use
2515      // operands reading the register. They don't contribute valid lanes.
2516      //
2517      // This adds ssub1 to the set of valid lanes in %src:
2518      //
2519      //   %src:ssub1 = FOO
2520      //
2521      // This leaves only ssub1 valid, making any other lanes undef:
2522      //
2523      //   %src:ssub1<def,read-undef> = FOO %src:ssub2
2524      //
2525      // The <read-undef> flag on the def operand means that old lane values are
2526      // not important.
2527      if (Redef) {
2528        V.RedefVNI = LR.Query(VNI->def).valueIn();
2529        assert((TrackSubRegLiveness || V.RedefVNI) &&
2530               "Instruction is reading nonexistent value");
2531        if (V.RedefVNI != nullptr) {
2532          computeAssignment(V.RedefVNI->id, Other);
2533          V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2534        }
2535      }
2536
2537      // An IMPLICIT_DEF writes undef values.
2538      if (DefMI->isImplicitDef()) {
2539        // We normally expect IMPLICIT_DEF values to be live only until the end
2540        // of their block. If the value is really live longer and gets pruned in
2541        // another block, this flag is cleared again.
2542        //
2543        // Clearing the valid lanes is deferred until it is sure this can be
2544        // erased.
2545        V.ErasableImplicitDef = true;
2546      }
2547    }
2548  }
2549
2550  // Find the value in Other that overlaps VNI->def, if any.
2551  LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2552
2553  // It is possible that both values are defined by the same instruction, or
2554  // the values are PHIs defined in the same block. When that happens, the two
2555  // values should be merged into one, but not into any preceding value.
2556  // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2557  if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2558    assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2559
2560    // One value stays, the other is merged. Keep the earlier one, or the first
2561    // one we see.
2562    if (OtherVNI->def < VNI->def)
2563      Other.computeAssignment(OtherVNI->id, *this);
2564    else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2565      // This is an early-clobber def overlapping a live-in value in the other
2566      // register. Not mergeable.
2567      V.OtherVNI = OtherLRQ.valueIn();
2568      return CR_Impossible;
2569    }
2570    V.OtherVNI = OtherVNI;
2571    Val &OtherV = Other.Vals[OtherVNI->id];
2572    // Keep this value, check for conflicts when analyzing OtherVNI.
2573    if (!OtherV.isAnalyzed())
2574      return CR_Keep;
2575    // Both sides have been analyzed now.
2576    // Allow overlapping PHI values. Any real interference would show up in a
2577    // predecessor, the PHI itself can't introduce any conflicts.
2578    if (VNI->isPHIDef())
2579      return CR_Merge;
2580    if ((V.ValidLanes & OtherV.ValidLanes).any())
2581      // Overlapping lanes can't be resolved.
2582      return CR_Impossible;
2583    else
2584      return CR_Merge;
2585  }
2586
2587  // No simultaneous def. Is Other live at the def?
2588  V.OtherVNI = OtherLRQ.valueIn();
2589  if (!V.OtherVNI)
2590    // No overlap, no conflict.
2591    return CR_Keep;
2592
2593  assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2594
2595  // We have overlapping values, or possibly a kill of Other.
2596  // Recursively compute assignments up the dominator tree.
2597  Other.computeAssignment(V.OtherVNI->id, *this);
2598  Val &OtherV = Other.Vals[V.OtherVNI->id];
2599
2600  if (OtherV.ErasableImplicitDef) {
2601    // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2602    // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2603    // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2604    // technically.
2605    //
2606    // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2607    // to erase the IMPLICIT_DEF instruction.
2608    if (DefMI &&
2609        DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2610      LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2611                 << " extends into "
2612                 << printMBBReference(*DefMI->getParent())
2613                 << ", keeping it.\n");
2614      OtherV.ErasableImplicitDef = false;
2615    } else {
2616      // We deferred clearing these lanes in case we needed to save them
2617      OtherV.ValidLanes &= ~OtherV.WriteLanes;
2618    }
2619  }
2620
2621  // Allow overlapping PHI values. Any real interference would show up in a
2622  // predecessor, the PHI itself can't introduce any conflicts.
2623  if (VNI->isPHIDef())
2624    return CR_Replace;
2625
2626  // Check for simple erasable conflicts.
2627  if (DefMI->isImplicitDef()) {
2628    // We need the def for the subregister if there is nothing else live at the
2629    // subrange at this point.
2630    if (TrackSubRegLiveness
2631        && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none())
2632      return CR_Replace;
2633    return CR_Erase;
2634  }
2635
2636  // Include the non-conflict where DefMI is a coalescable copy that kills
2637  // OtherVNI. We still want the copy erased and value numbers merged.
2638  if (CP.isCoalescable(DefMI)) {
2639    // Some of the lanes copied from OtherVNI may be undef, making them undef
2640    // here too.
2641    V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2642    return CR_Erase;
2643  }
2644
2645  // This may not be a real conflict if DefMI simply kills Other and defines
2646  // VNI.
2647  if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2648    return CR_Keep;
2649
2650  // Handle the case where VNI and OtherVNI can be proven to be identical:
2651  //
2652  //   %other = COPY %ext
2653  //   %this  = COPY %ext <-- Erase this copy
2654  //
2655  if (DefMI->isFullCopy() && !CP.isPartial() &&
2656      valuesIdentical(VNI, V.OtherVNI, Other)) {
2657    V.Identical = true;
2658    return CR_Erase;
2659  }
2660
2661  // The remaining checks apply to the lanes, which aren't tracked here.  This
2662  // was already decided to be OK via the following CR_Replace condition.
2663  // CR_Replace.
2664  if (SubRangeJoin)
2665    return CR_Replace;
2666
2667  // If the lanes written by this instruction were all undef in OtherVNI, it is
2668  // still safe to join the live ranges. This can't be done with a simple value
2669  // mapping, though - OtherVNI will map to multiple values:
2670  //
2671  //   1 %dst:ssub0 = FOO                <-- OtherVNI
2672  //   2 %src = BAR                      <-- VNI
2673  //   3 %dst:ssub1 = COPY killed %src    <-- Eliminate this copy.
2674  //   4 BAZ killed %dst
2675  //   5 QUUX killed %src
2676  //
2677  // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2678  // handles this complex value mapping.
2679  if ((V.WriteLanes & OtherV.ValidLanes).none())
2680    return CR_Replace;
2681
2682  // If the other live range is killed by DefMI and the live ranges are still
2683  // overlapping, it must be because we're looking at an early clobber def:
2684  //
2685  //   %dst<def,early-clobber> = ASM killed %src
2686  //
2687  // In this case, it is illegal to merge the two live ranges since the early
2688  // clobber def would clobber %src before it was read.
2689  if (OtherLRQ.isKill()) {
2690    // This case where the def doesn't overlap the kill is handled above.
2691    assert(VNI->def.isEarlyClobber() &&
2692           "Only early clobber defs can overlap a kill");
2693    return CR_Impossible;
2694  }
2695
2696  // VNI is clobbering live lanes in OtherVNI, but there is still the
2697  // possibility that no instructions actually read the clobbered lanes.
2698  // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2699  // Otherwise Other.RI wouldn't be live here.
2700  if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
2701    return CR_Impossible;
2702
2703  // We need to verify that no instructions are reading the clobbered lanes. To
2704  // save compile time, we'll only check that locally. Don't allow the tainted
2705  // value to escape the basic block.
2706  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2707  if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2708    return CR_Impossible;
2709
2710  // There are still some things that could go wrong besides clobbered lanes
2711  // being read, for example OtherVNI may be only partially redefined in MBB,
2712  // and some clobbered lanes could escape the block. Save this analysis for
2713  // resolveConflicts() when all values have been mapped. We need to know
2714  // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2715  // that now - the recursive analyzeValue() calls must go upwards in the
2716  // dominator tree.
2717  return CR_Unresolved;
2718}
2719
2720void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2721  Val &V = Vals[ValNo];
2722  if (V.isAnalyzed()) {
2723    // Recursion should always move up the dominator tree, so ValNo is not
2724    // supposed to reappear before it has been assigned.
2725    assert(Assignments[ValNo] != -1 && "Bad recursion?");
2726    return;
2727  }
2728  switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2729  case CR_Erase:
2730  case CR_Merge:
2731    // Merge this ValNo into OtherVNI.
2732    assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2733    assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2734    Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2735    LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
2736                      << LR.getValNumInfo(ValNo)->def << " into "
2737                      << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2738                      << V.OtherVNI->def << " --> @"
2739                      << NewVNInfo[Assignments[ValNo]]->def << '\n');
2740    break;
2741  case CR_Replace:
2742  case CR_Unresolved: {
2743    // The other value is going to be pruned if this join is successful.
2744    assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2745    Val &OtherV = Other.Vals[V.OtherVNI->id];
2746    // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2747    // its lanes.
2748    if (OtherV.ErasableImplicitDef &&
2749        TrackSubRegLiveness &&
2750        (OtherV.WriteLanes & ~V.ValidLanes).any()) {
2751      LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
2752
2753      OtherV.ErasableImplicitDef = false;
2754      // The valid lanes written by the implicit_def were speculatively cleared
2755      // before, so make this more conservative. It may be better to track this,
2756      // I haven't found a testcase where it matters.
2757      OtherV.ValidLanes = LaneBitmask::getAll();
2758    }
2759
2760    OtherV.Pruned = true;
2761    LLVM_FALLTHROUGH;
2762  }
2763  default:
2764    // This value number needs to go in the final joined live range.
2765    Assignments[ValNo] = NewVNInfo.size();
2766    NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2767    break;
2768  }
2769}
2770
2771bool JoinVals::mapValues(JoinVals &Other) {
2772  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2773    computeAssignment(i, Other);
2774    if (Vals[i].Resolution == CR_Impossible) {
2775      LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
2776                        << '@' << LR.getValNumInfo(i)->def << '\n');
2777      return false;
2778    }
2779  }
2780  return true;
2781}
2782
2783bool JoinVals::
2784taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2785            SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
2786  VNInfo *VNI = LR.getValNumInfo(ValNo);
2787  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2788  SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2789
2790  // Scan Other.LR from VNI.def to MBBEnd.
2791  LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2792  assert(OtherI != Other.LR.end() && "No conflict?");
2793  do {
2794    // OtherI is pointing to a tainted value. Abort the join if the tainted
2795    // lanes escape the block.
2796    SlotIndex End = OtherI->end;
2797    if (End >= MBBEnd) {
2798      LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
2799                        << OtherI->valno->id << '@' << OtherI->start << '\n');
2800      return false;
2801    }
2802    LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
2803                      << OtherI->valno->id << '@' << OtherI->start << " to "
2804                      << End << '\n');
2805    // A dead def is not a problem.
2806    if (End.isDead())
2807      break;
2808    TaintExtent.push_back(std::make_pair(End, TaintedLanes));
2809
2810    // Check for another def in the MBB.
2811    if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
2812      break;
2813
2814    // Lanes written by the new def are no longer tainted.
2815    const Val &OV = Other.Vals[OtherI->valno->id];
2816    TaintedLanes &= ~OV.WriteLanes;
2817    if (!OV.RedefVNI)
2818      break;
2819  } while (TaintedLanes.any());
2820  return true;
2821}
2822
2823bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx,
2824                         LaneBitmask Lanes) const {
2825  if (MI.isDebugInstr())
2826    return false;
2827  for (const MachineOperand &MO : MI.operands()) {
2828    if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
2829      continue;
2830    if (!MO.readsReg())
2831      continue;
2832    unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
2833    if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
2834      return true;
2835  }
2836  return false;
2837}
2838
2839bool JoinVals::resolveConflicts(JoinVals &Other) {
2840  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2841    Val &V = Vals[i];
2842    assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
2843    if (V.Resolution != CR_Unresolved)
2844      continue;
2845    LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
2846                      << LR.getValNumInfo(i)->def << '\n');
2847    if (SubRangeJoin)
2848      return false;
2849
2850    ++NumLaneConflicts;
2851    assert(V.OtherVNI && "Inconsistent conflict resolution.");
2852    VNInfo *VNI = LR.getValNumInfo(i);
2853    const Val &OtherV = Other.Vals[V.OtherVNI->id];
2854
2855    // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2856    // join, those lanes will be tainted with a wrong value. Get the extent of
2857    // the tainted lanes.
2858    LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
2859    SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
2860    if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
2861      // Tainted lanes would extend beyond the basic block.
2862      return false;
2863
2864    assert(!TaintExtent.empty() && "There should be at least one conflict.");
2865
2866    // Now look at the instructions from VNI->def to TaintExtent (inclusive).
2867    MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2868    MachineBasicBlock::iterator MI = MBB->begin();
2869    if (!VNI->isPHIDef()) {
2870      MI = Indexes->getInstructionFromIndex(VNI->def);
2871      // No need to check the instruction defining VNI for reads.
2872      ++MI;
2873    }
2874    assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
2875           "Interference ends on VNI->def. Should have been handled earlier");
2876    MachineInstr *LastMI =
2877      Indexes->getInstructionFromIndex(TaintExtent.front().first);
2878    assert(LastMI && "Range must end at a proper instruction");
2879    unsigned TaintNum = 0;
2880    while (true) {
2881      assert(MI != MBB->end() && "Bad LastMI");
2882      if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
2883        LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
2884        return false;
2885      }
2886      // LastMI is the last instruction to use the current value.
2887      if (&*MI == LastMI) {
2888        if (++TaintNum == TaintExtent.size())
2889          break;
2890        LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
2891        assert(LastMI && "Range must end at a proper instruction");
2892        TaintedLanes = TaintExtent[TaintNum].second;
2893      }
2894      ++MI;
2895    }
2896
2897    // The tainted lanes are unused.
2898    V.Resolution = CR_Replace;
2899    ++NumLaneResolves;
2900  }
2901  return true;
2902}
2903
2904bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
2905  Val &V = Vals[ValNo];
2906  if (V.Pruned || V.PrunedComputed)
2907    return V.Pruned;
2908
2909  if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
2910    return V.Pruned;
2911
2912  // Follow copies up the dominator tree and check if any intermediate value
2913  // has been pruned.
2914  V.PrunedComputed = true;
2915  V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
2916  return V.Pruned;
2917}
2918
2919void JoinVals::pruneValues(JoinVals &Other,
2920                           SmallVectorImpl<SlotIndex> &EndPoints,
2921                           bool changeInstrs) {
2922  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2923    SlotIndex Def = LR.getValNumInfo(i)->def;
2924    switch (Vals[i].Resolution) {
2925    case CR_Keep:
2926      break;
2927    case CR_Replace: {
2928      // This value takes precedence over the value in Other.LR.
2929      LIS->pruneValue(Other.LR, Def, &EndPoints);
2930      // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
2931      // instructions are only inserted to provide a live-out value for PHI
2932      // predecessors, so the instruction should simply go away once its value
2933      // has been replaced.
2934      Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
2935      bool EraseImpDef = OtherV.ErasableImplicitDef &&
2936                         OtherV.Resolution == CR_Keep;
2937      if (!Def.isBlock()) {
2938        if (changeInstrs) {
2939          // Remove <def,read-undef> flags. This def is now a partial redef.
2940          // Also remove dead flags since the joined live range will
2941          // continue past this instruction.
2942          for (MachineOperand &MO :
2943               Indexes->getInstructionFromIndex(Def)->operands()) {
2944            if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
2945              if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
2946                MO.setIsUndef(false);
2947              MO.setIsDead(false);
2948            }
2949          }
2950        }
2951        // This value will reach instructions below, but we need to make sure
2952        // the live range also reaches the instruction at Def.
2953        if (!EraseImpDef)
2954          EndPoints.push_back(Def);
2955      }
2956      LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
2957                        << ": " << Other.LR << '\n');
2958      break;
2959    }
2960    case CR_Erase:
2961    case CR_Merge:
2962      if (isPrunedValue(i, Other)) {
2963        // This value is ultimately a copy of a pruned value in LR or Other.LR.
2964        // We can no longer trust the value mapping computed by
2965        // computeAssignment(), the value that was originally copied could have
2966        // been replaced.
2967        LIS->pruneValue(LR, Def, &EndPoints);
2968        LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
2969                          << Def << ": " << LR << '\n');
2970      }
2971      break;
2972    case CR_Unresolved:
2973    case CR_Impossible:
2974      llvm_unreachable("Unresolved conflicts");
2975    }
2976  }
2977}
2978
2979/// Consider the following situation when coalescing the copy between
2980/// %31 and %45 at 800. (The vertical lines represent live range segments.)
2981///
2982///                              Main range         Subrange 0004 (sub2)
2983///                              %31    %45           %31    %45
2984///  544    %45 = COPY %28               +                    +
2985///                                      | v1                 | v1
2986///  560B bb.1:                          +                    +
2987///  624        = %45.sub2               | v2                 | v2
2988///  800    %31 = COPY %45        +      +             +      +
2989///                               | v0                 | v0
2990///  816    %31.sub1 = ...        +                    |
2991///  880    %30 = COPY %31        | v1                 +
2992///  928    %45 = COPY %30        |      +                    +
2993///                               |      | v0                 | v0  <--+
2994///  992B   ; backedge -> bb.1    |      +                    +        |
2995/// 1040        = %31.sub0        +                                    |
2996///                                                 This value must remain
2997///                                                 live-out!
2998///
2999/// Assuming that %31 is coalesced into %45, the copy at 928 becomes
3000/// redundant, since it copies the value from %45 back into it. The
3001/// conflict resolution for the main range determines that %45.v0 is
3002/// to be erased, which is ok since %31.v1 is identical to it.
3003/// The problem happens with the subrange for sub2: it has to be live
3004/// on exit from the block, but since 928 was actually a point of
3005/// definition of %45.sub2, %45.sub2 was not live immediately prior
3006/// to that definition. As a result, when 928 was erased, the value v0
3007/// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
3008/// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3009/// providing an incorrect value to the use at 624.
3010///
3011/// Since the main-range values %31.v1 and %45.v0 were proved to be
3012/// identical, the corresponding values in subranges must also be the
3013/// same. A redundant copy is removed because it's not needed, and not
3014/// because it copied an undefined value, so any liveness that originated
3015/// from that copy cannot disappear. When pruning a value that started
3016/// at the removed copy, the corresponding identical value must be
3017/// extended to replace it.
3018void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
3019  // Look for values being erased.
3020  bool DidPrune = false;
3021  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3022    Val &V = Vals[i];
3023    // We should trigger in all cases in which eraseInstrs() does something.
3024    // match what eraseInstrs() is doing, print a message so
3025    if (V.Resolution != CR_Erase &&
3026        (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
3027      continue;
3028
3029    // Check subranges at the point where the copy will be removed.
3030    SlotIndex Def = LR.getValNumInfo(i)->def;
3031    SlotIndex OtherDef;
3032    if (V.Identical)
3033      OtherDef = V.OtherVNI->def;
3034
3035    // Print message so mismatches with eraseInstrs() can be diagnosed.
3036    LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3037                      << '\n');
3038    for (LiveInterval::SubRange &S : LI.subranges()) {
3039      LiveQueryResult Q = S.Query(Def);
3040
3041      // If a subrange starts at the copy then an undefined value has been
3042      // copied and we must remove that subrange value as well.
3043      VNInfo *ValueOut = Q.valueOutOrDead();
3044      if (ValueOut != nullptr && (Q.valueIn() == nullptr ||
3045                                  (V.Identical && V.Resolution == CR_Erase &&
3046                                   ValueOut->def == Def))) {
3047        LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
3048                          << " at " << Def << "\n");
3049        SmallVector<SlotIndex,8> EndPoints;
3050        LIS->pruneValue(S, Def, &EndPoints);
3051        DidPrune = true;
3052        // Mark value number as unused.
3053        ValueOut->markUnused();
3054
3055        if (V.Identical && S.Query(OtherDef).valueOutOrDead()) {
3056          // If V is identical to V.OtherVNI (and S was live at OtherDef),
3057          // then we can't simply prune V from S. V needs to be replaced
3058          // with V.OtherVNI.
3059          LIS->extendToIndices(S, EndPoints);
3060        }
3061        continue;
3062      }
3063      // If a subrange ends at the copy, then a value was copied but only
3064      // partially used later. Shrink the subregister range appropriately.
3065      if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
3066        LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3067                          << PrintLaneMask(S.LaneMask) << " at " << Def
3068                          << "\n");
3069        ShrinkMask |= S.LaneMask;
3070      }
3071    }
3072  }
3073  if (DidPrune)
3074    LI.removeEmptySubRanges();
3075}
3076
3077/// Check if any of the subranges of @p LI contain a definition at @p Def.
3078static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
3079  for (LiveInterval::SubRange &SR : LI.subranges()) {
3080    if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
3081      if (VNI->def == Def)
3082        return true;
3083  }
3084  return false;
3085}
3086
3087void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3088  assert(&static_cast<LiveRange&>(LI) == &LR);
3089
3090  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3091    if (Vals[i].Resolution != CR_Keep)
3092      continue;
3093    VNInfo *VNI = LR.getValNumInfo(i);
3094    if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
3095      continue;
3096    Vals[i].Pruned = true;
3097    ShrinkMainRange = true;
3098  }
3099}
3100
3101void JoinVals::removeImplicitDefs() {
3102  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3103    Val &V = Vals[i];
3104    if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3105      continue;
3106
3107    VNInfo *VNI = LR.getValNumInfo(i);
3108    VNI->markUnused();
3109    LR.removeValNo(VNI);
3110  }
3111}
3112
3113void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
3114                           SmallVectorImpl<unsigned> &ShrinkRegs,
3115                           LiveInterval *LI) {
3116  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3117    // Get the def location before markUnused() below invalidates it.
3118    SlotIndex Def = LR.getValNumInfo(i)->def;
3119    switch (Vals[i].Resolution) {
3120    case CR_Keep: {
3121      // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3122      // longer. The IMPLICIT_DEF instructions are only inserted by
3123      // PHIElimination to guarantee that all PHI predecessors have a value.
3124      if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3125        break;
3126      // Remove value number i from LR.
3127      // For intervals with subranges, removing a segment from the main range
3128      // may require extending the previous segment: for each definition of
3129      // a subregister, there will be a corresponding def in the main range.
3130      // That def may fall in the middle of a segment from another subrange.
3131      // In such cases, removing this def from the main range must be
3132      // complemented by extending the main range to account for the liveness
3133      // of the other subrange.
3134      VNInfo *VNI = LR.getValNumInfo(i);
3135      SlotIndex Def = VNI->def;
3136      // The new end point of the main range segment to be extended.
3137      SlotIndex NewEnd;
3138      if (LI != nullptr) {
3139        LiveRange::iterator I = LR.FindSegmentContaining(Def);
3140        assert(I != LR.end());
3141        // Do not extend beyond the end of the segment being removed.
3142        // The segment may have been pruned in preparation for joining
3143        // live ranges.
3144        NewEnd = I->end;
3145      }
3146
3147      LR.removeValNo(VNI);
3148      // Note that this VNInfo is reused and still referenced in NewVNInfo,
3149      // make it appear like an unused value number.
3150      VNI->markUnused();
3151
3152      if (LI != nullptr && LI->hasSubRanges()) {
3153        assert(static_cast<LiveRange*>(LI) == &LR);
3154        // Determine the end point based on the subrange information:
3155        // minimum of (earliest def of next segment,
3156        //             latest end point of containing segment)
3157        SlotIndex ED, LE;
3158        for (LiveInterval::SubRange &SR : LI->subranges()) {
3159          LiveRange::iterator I = SR.find(Def);
3160          if (I == SR.end())
3161            continue;
3162          if (I->start > Def)
3163            ED = ED.isValid() ? std::min(ED, I->start) : I->start;
3164          else
3165            LE = LE.isValid() ? std::max(LE, I->end) : I->end;
3166        }
3167        if (LE.isValid())
3168          NewEnd = std::min(NewEnd, LE);
3169        if (ED.isValid())
3170          NewEnd = std::min(NewEnd, ED);
3171
3172        // We only want to do the extension if there was a subrange that
3173        // was live across Def.
3174        if (LE.isValid()) {
3175          LiveRange::iterator S = LR.find(Def);
3176          if (S != LR.begin())
3177            std::prev(S)->end = NewEnd;
3178        }
3179      }
3180      LLVM_DEBUG({
3181        dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
3182        if (LI != nullptr)
3183          dbgs() << "\t\t  LHS = " << *LI << '\n';
3184      });
3185      LLVM_FALLTHROUGH;
3186    }
3187
3188    case CR_Erase: {
3189      MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
3190      assert(MI && "No instruction to erase");
3191      if (MI->isCopy()) {
3192        unsigned Reg = MI->getOperand(1).getReg();
3193        if (TargetRegisterInfo::isVirtualRegister(Reg) &&
3194            Reg != CP.getSrcReg() && Reg != CP.getDstReg())
3195          ShrinkRegs.push_back(Reg);
3196      }
3197      ErasedInstrs.insert(MI);
3198      LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
3199      LIS->RemoveMachineInstrFromMaps(*MI);
3200      MI->eraseFromParent();
3201      break;
3202    }
3203    default:
3204      break;
3205    }
3206  }
3207}
3208
3209void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3210                                         LaneBitmask LaneMask,
3211                                         const CoalescerPair &CP) {
3212  SmallVector<VNInfo*, 16> NewVNInfo;
3213  JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
3214                   NewVNInfo, CP, LIS, TRI, true, true);
3215  JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
3216                   NewVNInfo, CP, LIS, TRI, true, true);
3217
3218  // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3219  // We should be able to resolve all conflicts here as we could successfully do
3220  // it on the mainrange already. There is however a problem when multiple
3221  // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3222  // interferences.
3223  if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
3224    // We already determined that it is legal to merge the intervals, so this
3225    // should never fail.
3226    llvm_unreachable("*** Couldn't join subrange!\n");
3227  }
3228  if (!LHSVals.resolveConflicts(RHSVals) ||
3229      !RHSVals.resolveConflicts(LHSVals)) {
3230    // We already determined that it is legal to merge the intervals, so this
3231    // should never fail.
3232    llvm_unreachable("*** Couldn't join subrange!\n");
3233  }
3234
3235  // The merging algorithm in LiveInterval::join() can't handle conflicting
3236  // value mappings, so we need to remove any live ranges that overlap a
3237  // CR_Replace resolution. Collect a set of end points that can be used to
3238  // restore the live range after joining.
3239  SmallVector<SlotIndex, 8> EndPoints;
3240  LHSVals.pruneValues(RHSVals, EndPoints, false);
3241  RHSVals.pruneValues(LHSVals, EndPoints, false);
3242
3243  LHSVals.removeImplicitDefs();
3244  RHSVals.removeImplicitDefs();
3245
3246  LRange.verify();
3247  RRange.verify();
3248
3249  // Join RRange into LHS.
3250  LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
3251              NewVNInfo);
3252
3253  LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
3254                    << ' ' << LRange << "\n");
3255  if (EndPoints.empty())
3256    return;
3257
3258  // Recompute the parts of the live range we had to remove because of
3259  // CR_Replace conflicts.
3260  LLVM_DEBUG({
3261    dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3262    for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3263      dbgs() << EndPoints[i];
3264      if (i != n-1)
3265        dbgs() << ',';
3266    }
3267    dbgs() << ":  " << LRange << '\n';
3268  });
3269  LIS->extendToIndices(LRange, EndPoints);
3270}
3271
3272void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3273                                          const LiveRange &ToMerge,
3274                                          LaneBitmask LaneMask,
3275                                          CoalescerPair &CP) {
3276  BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3277  LI.refineSubRanges(
3278      Allocator, LaneMask,
3279      [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) {
3280        if (SR.empty()) {
3281          SR.assign(ToMerge, Allocator);
3282        } else {
3283          // joinSubRegRange() destroys the merged range, so we need a copy.
3284          LiveRange RangeCopy(ToMerge, Allocator);
3285          joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
3286        }
3287      },
3288      *LIS->getSlotIndexes(), *TRI);
3289}
3290
3291bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
3292  if (LI.valnos.size() < LargeIntervalSizeThreshold)
3293    return false;
3294  auto &Counter = LargeLIVisitCounter[LI.reg];
3295  if (Counter < LargeIntervalFreqThreshold) {
3296    Counter++;
3297    return false;
3298  }
3299  return true;
3300}
3301
3302bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3303  SmallVector<VNInfo*, 16> NewVNInfo;
3304  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
3305  LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
3306  bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
3307  JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3308                   NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3309  JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3310                   NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3311
3312  LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
3313
3314  if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS))
3315    return false;
3316
3317  // First compute NewVNInfo and the simple value mappings.
3318  // Detect impossible conflicts early.
3319  if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3320    return false;
3321
3322  // Some conflicts can only be resolved after all values have been mapped.
3323  if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3324    return false;
3325
3326  // All clear, the live ranges can be merged.
3327  if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3328    BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3329
3330    // Transform lanemasks from the LHS to masks in the coalesced register and
3331    // create initial subranges if necessary.
3332    unsigned DstIdx = CP.getDstIdx();
3333    if (!LHS.hasSubRanges()) {
3334      LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3335                                     : TRI->getSubRegIndexLaneMask(DstIdx);
3336      // LHS must support subregs or we wouldn't be in this codepath.
3337      assert(Mask.any());
3338      LHS.createSubRangeFrom(Allocator, Mask, LHS);
3339    } else if (DstIdx != 0) {
3340      // Transform LHS lanemasks to new register class if necessary.
3341      for (LiveInterval::SubRange &R : LHS.subranges()) {
3342        LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
3343        R.LaneMask = Mask;
3344      }
3345    }
3346    LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
3347                      << '\n');
3348
3349    // Determine lanemasks of RHS in the coalesced register and merge subranges.
3350    unsigned SrcIdx = CP.getSrcIdx();
3351    if (!RHS.hasSubRanges()) {
3352      LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3353                                     : TRI->getSubRegIndexLaneMask(SrcIdx);
3354      mergeSubRangeInto(LHS, RHS, Mask, CP);
3355    } else {
3356      // Pair up subranges and merge.
3357      for (LiveInterval::SubRange &R : RHS.subranges()) {
3358        LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
3359        mergeSubRangeInto(LHS, R, Mask, CP);
3360      }
3361    }
3362    LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
3363
3364    // Pruning implicit defs from subranges may result in the main range
3365    // having stale segments.
3366    LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
3367
3368    LHSVals.pruneSubRegValues(LHS, ShrinkMask);
3369    RHSVals.pruneSubRegValues(LHS, ShrinkMask);
3370  }
3371
3372  // The merging algorithm in LiveInterval::join() can't handle conflicting
3373  // value mappings, so we need to remove any live ranges that overlap a
3374  // CR_Replace resolution. Collect a set of end points that can be used to
3375  // restore the live range after joining.
3376  SmallVector<SlotIndex, 8> EndPoints;
3377  LHSVals.pruneValues(RHSVals, EndPoints, true);
3378  RHSVals.pruneValues(LHSVals, EndPoints, true);
3379
3380  // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3381  // registers to require trimming.
3382  SmallVector<unsigned, 8> ShrinkRegs;
3383  LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
3384  RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3385  while (!ShrinkRegs.empty())
3386    shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
3387
3388  // Join RHS into LHS.
3389  LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3390
3391  // Kill flags are going to be wrong if the live ranges were overlapping.
3392  // Eventually, we should simply clear all kill flags when computing live
3393  // ranges. They are reinserted after register allocation.
3394  MRI->clearKillFlags(LHS.reg);
3395  MRI->clearKillFlags(RHS.reg);
3396
3397  if (!EndPoints.empty()) {
3398    // Recompute the parts of the live range we had to remove because of
3399    // CR_Replace conflicts.
3400    LLVM_DEBUG({
3401      dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3402      for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3403        dbgs() << EndPoints[i];
3404        if (i != n-1)
3405          dbgs() << ',';
3406      }
3407      dbgs() << ":  " << LHS << '\n';
3408    });
3409    LIS->extendToIndices((LiveRange&)LHS, EndPoints);
3410  }
3411
3412  return true;
3413}
3414
3415bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3416  return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3417}
3418
3419namespace {
3420
3421/// Information concerning MBB coalescing priority.
3422struct MBBPriorityInfo {
3423  MachineBasicBlock *MBB;
3424  unsigned Depth;
3425  bool IsSplit;
3426
3427  MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3428    : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3429};
3430
3431} // end anonymous namespace
3432
3433/// C-style comparator that sorts first based on the loop depth of the basic
3434/// block (the unsigned), and then on the MBB number.
3435///
3436/// EnableGlobalCopies assumes that the primary sort key is loop depth.
3437static int compareMBBPriority(const MBBPriorityInfo *LHS,
3438                              const MBBPriorityInfo *RHS) {
3439  // Deeper loops first
3440  if (LHS->Depth != RHS->Depth)
3441    return LHS->Depth > RHS->Depth ? -1 : 1;
3442
3443  // Try to unsplit critical edges next.
3444  if (LHS->IsSplit != RHS->IsSplit)
3445    return LHS->IsSplit ? -1 : 1;
3446
3447  // Prefer blocks that are more connected in the CFG. This takes care of
3448  // the most difficult copies first while intervals are short.
3449  unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3450  unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3451  if (cl != cr)
3452    return cl > cr ? -1 : 1;
3453
3454  // As a last resort, sort by block number.
3455  return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3456}
3457
3458/// \returns true if the given copy uses or defines a local live range.
3459static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3460  if (!Copy->isCopy())
3461    return false;
3462
3463  if (Copy->getOperand(1).isUndef())
3464    return false;
3465
3466  unsigned SrcReg = Copy->getOperand(1).getReg();
3467  unsigned DstReg = Copy->getOperand(0).getReg();
3468  if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
3469      || TargetRegisterInfo::isPhysicalRegister(DstReg))
3470    return false;
3471
3472  return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
3473    || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
3474}
3475
3476void RegisterCoalescer::lateLiveIntervalUpdate() {
3477  for (unsigned reg : ToBeUpdated) {
3478    if (!LIS->hasInterval(reg))
3479      continue;
3480    LiveInterval &LI = LIS->getInterval(reg);
3481    shrinkToUses(&LI, &DeadDefs);
3482    if (!DeadDefs.empty())
3483      eliminateDeadDefs();
3484  }
3485  ToBeUpdated.clear();
3486}
3487
3488bool RegisterCoalescer::
3489copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3490  bool Progress = false;
3491  for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
3492    if (!CurrList[i])
3493      continue;
3494    // Skip instruction pointers that have already been erased, for example by
3495    // dead code elimination.
3496    if (ErasedInstrs.count(CurrList[i])) {
3497      CurrList[i] = nullptr;
3498      continue;
3499    }
3500    bool Again = false;
3501    bool Success = joinCopy(CurrList[i], Again);
3502    Progress |= Success;
3503    if (Success || !Again)
3504      CurrList[i] = nullptr;
3505  }
3506  return Progress;
3507}
3508
3509/// Check if DstReg is a terminal node.
3510/// I.e., it does not have any affinity other than \p Copy.
3511static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
3512                          const MachineRegisterInfo *MRI) {
3513  assert(Copy.isCopyLike());
3514  // Check if the destination of this copy as any other affinity.
3515  for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
3516    if (&MI != &Copy && MI.isCopyLike())
3517      return false;
3518  return true;
3519}
3520
3521bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
3522  assert(Copy.isCopyLike());
3523  if (!UseTerminalRule)
3524    return false;
3525  unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
3526  if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg))
3527    return false;
3528  // Check if the destination of this copy has any other affinity.
3529  if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
3530      // If SrcReg is a physical register, the copy won't be coalesced.
3531      // Ignoring it may have other side effect (like missing
3532      // rematerialization). So keep it.
3533      TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
3534      !isTerminalReg(DstReg, Copy, MRI))
3535    return false;
3536
3537  // DstReg is a terminal node. Check if it interferes with any other
3538  // copy involving SrcReg.
3539  const MachineBasicBlock *OrigBB = Copy.getParent();
3540  const LiveInterval &DstLI = LIS->getInterval(DstReg);
3541  for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
3542    // Technically we should check if the weight of the new copy is
3543    // interesting compared to the other one and update the weight
3544    // of the copies accordingly. However, this would only work if
3545    // we would gather all the copies first then coalesce, whereas
3546    // right now we interleave both actions.
3547    // For now, just consider the copies that are in the same block.
3548    if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
3549      continue;
3550    unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
3551    if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
3552                OtherSubReg))
3553      return false;
3554    if (OtherReg == SrcReg)
3555      OtherReg = OtherSrcReg;
3556    // Check if OtherReg is a non-terminal.
3557    if (TargetRegisterInfo::isPhysicalRegister(OtherReg) ||
3558        isTerminalReg(OtherReg, MI, MRI))
3559      continue;
3560    // Check that OtherReg interfere with DstReg.
3561    if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
3562      LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
3563                        << '\n');
3564      return true;
3565    }
3566  }
3567  return false;
3568}
3569
3570void
3571RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
3572  LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
3573
3574  // Collect all copy-like instructions in MBB. Don't start coalescing anything
3575  // yet, it might invalidate the iterator.
3576  const unsigned PrevSize = WorkList.size();
3577  if (JoinGlobalCopies) {
3578    SmallVector<MachineInstr*, 2> LocalTerminals;
3579    SmallVector<MachineInstr*, 2> GlobalTerminals;
3580    // Coalesce copies bottom-up to coalesce local defs before local uses. They
3581    // are not inherently easier to resolve, but slightly preferable until we
3582    // have local live range splitting. In particular this is required by
3583    // cmp+jmp macro fusion.
3584    for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
3585         MII != E; ++MII) {
3586      if (!MII->isCopyLike())
3587        continue;
3588      bool ApplyTerminalRule = applyTerminalRule(*MII);
3589      if (isLocalCopy(&(*MII), LIS)) {
3590        if (ApplyTerminalRule)
3591          LocalTerminals.push_back(&(*MII));
3592        else
3593          LocalWorkList.push_back(&(*MII));
3594      } else {
3595        if (ApplyTerminalRule)
3596          GlobalTerminals.push_back(&(*MII));
3597        else
3598          WorkList.push_back(&(*MII));
3599      }
3600    }
3601    // Append the copies evicted by the terminal rule at the end of the list.
3602    LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
3603    WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
3604  }
3605  else {
3606    SmallVector<MachineInstr*, 2> Terminals;
3607    for (MachineInstr &MII : *MBB)
3608      if (MII.isCopyLike()) {
3609        if (applyTerminalRule(MII))
3610          Terminals.push_back(&MII);
3611        else
3612          WorkList.push_back(&MII);
3613      }
3614    // Append the copies evicted by the terminal rule at the end of the list.
3615    WorkList.append(Terminals.begin(), Terminals.end());
3616  }
3617  // Try coalescing the collected copies immediately, and remove the nulls.
3618  // This prevents the WorkList from getting too large since most copies are
3619  // joinable on the first attempt.
3620  MutableArrayRef<MachineInstr*>
3621    CurrList(WorkList.begin() + PrevSize, WorkList.end());
3622  if (copyCoalesceWorkList(CurrList))
3623    WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
3624                               nullptr), WorkList.end());
3625}
3626
3627void RegisterCoalescer::coalesceLocals() {
3628  copyCoalesceWorkList(LocalWorkList);
3629  for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
3630    if (LocalWorkList[j])
3631      WorkList.push_back(LocalWorkList[j]);
3632  }
3633  LocalWorkList.clear();
3634}
3635
3636void RegisterCoalescer::joinAllIntervals() {
3637  LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
3638  assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
3639
3640  std::vector<MBBPriorityInfo> MBBs;
3641  MBBs.reserve(MF->size());
3642  for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
3643    MachineBasicBlock *MBB = &*I;
3644    MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
3645                                   JoinSplitEdges && isSplitEdge(MBB)));
3646  }
3647  array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
3648
3649  // Coalesce intervals in MBB priority order.
3650  unsigned CurrDepth = std::numeric_limits<unsigned>::max();
3651  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
3652    // Try coalescing the collected local copies for deeper loops.
3653    if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
3654      coalesceLocals();
3655      CurrDepth = MBBs[i].Depth;
3656    }
3657    copyCoalesceInMBB(MBBs[i].MBB);
3658  }
3659  lateLiveIntervalUpdate();
3660  coalesceLocals();
3661
3662  // Joining intervals can allow other intervals to be joined.  Iteratively join
3663  // until we make no progress.
3664  while (copyCoalesceWorkList(WorkList))
3665    /* empty */ ;
3666  lateLiveIntervalUpdate();
3667}
3668
3669void RegisterCoalescer::releaseMemory() {
3670  ErasedInstrs.clear();
3671  WorkList.clear();
3672  DeadDefs.clear();
3673  InflateRegs.clear();
3674  LargeLIVisitCounter.clear();
3675}
3676
3677bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
3678  MF = &fn;
3679  MRI = &fn.getRegInfo();
3680  const TargetSubtargetInfo &STI = fn.getSubtarget();
3681  TRI = STI.getRegisterInfo();
3682  TII = STI.getInstrInfo();
3683  LIS = &getAnalysis<LiveIntervals>();
3684  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3685  Loops = &getAnalysis<MachineLoopInfo>();
3686  if (EnableGlobalCopies == cl::BOU_UNSET)
3687    JoinGlobalCopies = STI.enableJoinGlobalCopies();
3688  else
3689    JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
3690
3691  // The MachineScheduler does not currently require JoinSplitEdges. This will
3692  // either be enabled unconditionally or replaced by a more general live range
3693  // splitting optimization.
3694  JoinSplitEdges = EnableJoinSplits;
3695
3696  LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
3697                    << "********** Function: " << MF->getName() << '\n');
3698
3699  if (VerifyCoalescing)
3700    MF->verify(this, "Before register coalescing");
3701
3702  RegClassInfo.runOnMachineFunction(fn);
3703
3704  // Join (coalesce) intervals if requested.
3705  if (EnableJoining)
3706    joinAllIntervals();
3707
3708  // After deleting a lot of copies, register classes may be less constrained.
3709  // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
3710  // DPR inflation.
3711  array_pod_sort(InflateRegs.begin(), InflateRegs.end());
3712  InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
3713                    InflateRegs.end());
3714  LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
3715                    << " regs.\n");
3716  for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
3717    unsigned Reg = InflateRegs[i];
3718    if (MRI->reg_nodbg_empty(Reg))
3719      continue;
3720    if (MRI->recomputeRegClass(Reg)) {
3721      LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
3722                        << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
3723      ++NumInflated;
3724
3725      LiveInterval &LI = LIS->getInterval(Reg);
3726      if (LI.hasSubRanges()) {
3727        // If the inflated register class does not support subregisters anymore
3728        // remove the subranges.
3729        if (!MRI->shouldTrackSubRegLiveness(Reg)) {
3730          LI.clearSubRanges();
3731        } else {
3732#ifndef NDEBUG
3733          LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3734          // If subranges are still supported, then the same subregs
3735          // should still be supported.
3736          for (LiveInterval::SubRange &S : LI.subranges()) {
3737            assert((S.LaneMask & ~MaxMask).none());
3738          }
3739#endif
3740        }
3741      }
3742    }
3743  }
3744
3745  LLVM_DEBUG(dump());
3746  if (VerifyCoalescing)
3747    MF->verify(this, "After register coalescing");
3748  return true;
3749}
3750
3751void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
3752   LIS->print(O, m);
3753}
3754