RegisterCoalescer.cpp revision 296417
1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic RegisterCoalescer interface which
11// is used as the common interface used by all clients and
12// implementations of register coalescing.
13//
14//===----------------------------------------------------------------------===//
15
16#include "RegisterCoalescer.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/CodeGen/LiveIntervalAnalysis.h"
22#include "llvm/CodeGen/LiveRangeEdit.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/MachineLoopInfo.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/Passes.h"
28#include "llvm/CodeGen/RegisterClassInfo.h"
29#include "llvm/CodeGen/VirtRegMap.h"
30#include "llvm/IR/Value.h"
31#include "llvm/Pass.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetMachine.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetSubtargetInfo.h"
40#include <algorithm>
41#include <cmath>
42using namespace llvm;
43
44#define DEBUG_TYPE "regalloc"
45
46STATISTIC(numJoins    , "Number of interval joins performed");
47STATISTIC(numCrossRCs , "Number of cross class joins performed");
48STATISTIC(numCommutes , "Number of instruction commuting performed");
49STATISTIC(numExtends  , "Number of copies extended");
50STATISTIC(NumReMats   , "Number of instructions re-materialized");
51STATISTIC(NumInflated , "Number of register classes inflated");
52STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
53STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
54
55static cl::opt<bool>
56EnableJoining("join-liveintervals",
57              cl::desc("Coalesce copies (default=true)"),
58              cl::init(true));
59
60static cl::opt<bool> UseTerminalRule("terminal-rule",
61                                     cl::desc("Apply the terminal rule"),
62                                     cl::init(false), cl::Hidden);
63
64/// Temporary flag to test critical edge unsplitting.
65static cl::opt<bool>
66EnableJoinSplits("join-splitedges",
67  cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
68
69/// Temporary flag to test global copy optimization.
70static cl::opt<cl::boolOrDefault>
71EnableGlobalCopies("join-globalcopies",
72  cl::desc("Coalesce copies that span blocks (default=subtarget)"),
73  cl::init(cl::BOU_UNSET), cl::Hidden);
74
75static cl::opt<bool>
76VerifyCoalescing("verify-coalescing",
77         cl::desc("Verify machine instrs before and after register coalescing"),
78         cl::Hidden);
79
80namespace {
81  class RegisterCoalescer : public MachineFunctionPass,
82                            private LiveRangeEdit::Delegate {
83    MachineFunction* MF;
84    MachineRegisterInfo* MRI;
85    const TargetMachine* TM;
86    const TargetRegisterInfo* TRI;
87    const TargetInstrInfo* TII;
88    LiveIntervals *LIS;
89    const MachineLoopInfo* Loops;
90    AliasAnalysis *AA;
91    RegisterClassInfo RegClassInfo;
92
93    /// A LaneMask to remember on which subregister live ranges we need to call
94    /// shrinkToUses() later.
95    LaneBitmask ShrinkMask;
96
97    /// True if the main range of the currently coalesced intervals should be
98    /// checked for smaller live intervals.
99    bool ShrinkMainRange;
100
101    /// \brief True if the coalescer should aggressively coalesce global copies
102    /// in favor of keeping local copies.
103    bool JoinGlobalCopies;
104
105    /// \brief True if the coalescer should aggressively coalesce fall-thru
106    /// blocks exclusively containing copies.
107    bool JoinSplitEdges;
108
109    /// Copy instructions yet to be coalesced.
110    SmallVector<MachineInstr*, 8> WorkList;
111    SmallVector<MachineInstr*, 8> LocalWorkList;
112
113    /// Set of instruction pointers that have been erased, and
114    /// that may be present in WorkList.
115    SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
116
117    /// Dead instructions that are about to be deleted.
118    SmallVector<MachineInstr*, 8> DeadDefs;
119
120    /// Virtual registers to be considered for register class inflation.
121    SmallVector<unsigned, 8> InflateRegs;
122
123    /// Recursively eliminate dead defs in DeadDefs.
124    void eliminateDeadDefs();
125
126    /// LiveRangeEdit callback for eliminateDeadDefs().
127    void LRE_WillEraseInstruction(MachineInstr *MI) override;
128
129    /// Coalesce the LocalWorkList.
130    void coalesceLocals();
131
132    /// Join compatible live intervals
133    void joinAllIntervals();
134
135    /// Coalesce copies in the specified MBB, putting
136    /// copies that cannot yet be coalesced into WorkList.
137    void copyCoalesceInMBB(MachineBasicBlock *MBB);
138
139    /// Tries to coalesce all copies in CurrList. Returns true if any progress
140    /// was made.
141    bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
142
143    /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
144    /// src/dst of the copy instruction CopyMI.  This returns true if the copy
145    /// was successfully coalesced away. If it is not currently possible to
146    /// coalesce this interval, but it may be possible if other things get
147    /// coalesced, then it returns true by reference in 'Again'.
148    bool joinCopy(MachineInstr *TheCopy, bool &Again);
149
150    /// Attempt to join these two intervals.  On failure, this
151    /// returns false.  The output "SrcInt" will not have been modified, so we
152    /// can use this information below to update aliases.
153    bool joinIntervals(CoalescerPair &CP);
154
155    /// Attempt joining two virtual registers. Return true on success.
156    bool joinVirtRegs(CoalescerPair &CP);
157
158    /// Attempt joining with a reserved physreg.
159    bool joinReservedPhysReg(CoalescerPair &CP);
160
161    /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
162    /// Subranges in @p LI which only partially interfere with the desired
163    /// LaneMask are split as necessary. @p LaneMask are the lanes that
164    /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
165    /// lanemasks already adjusted to the coalesced register.
166    void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
167                           LaneBitmask LaneMask, CoalescerPair &CP);
168
169    /// Join the liveranges of two subregisters. Joins @p RRange into
170    /// @p LRange, @p RRange may be invalid afterwards.
171    void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
172                          LaneBitmask LaneMask, const CoalescerPair &CP);
173
174    /// We found a non-trivially-coalescable copy. If the source value number is
175    /// defined by a copy from the destination reg see if we can merge these two
176    /// destination reg valno# into a single value number, eliminating a copy.
177    /// This returns true if an interval was modified.
178    bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
179
180    /// Return true if there are definitions of IntB
181    /// other than BValNo val# that can reach uses of AValno val# of IntA.
182    bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
183                              VNInfo *AValNo, VNInfo *BValNo);
184
185    /// We found a non-trivially-coalescable copy.
186    /// If the source value number is defined by a commutable instruction and
187    /// its other operand is coalesced to the copy dest register, see if we
188    /// can transform the copy into a noop by commuting the definition.
189    /// This returns true if an interval was modified.
190    bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
191
192    /// If the source of a copy is defined by a
193    /// trivial computation, replace the copy by rematerialize the definition.
194    bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
195                                 bool &IsDefCopy);
196
197    /// Return true if a copy involving a physreg should be joined.
198    bool canJoinPhys(const CoalescerPair &CP);
199
200    /// Replace all defs and uses of SrcReg to DstReg and update the subregister
201    /// number if it is not zero. If DstReg is a physical register and the
202    /// existing subregister number of the def / use being updated is not zero,
203    /// make sure to set it to the correct physical subregister.
204    void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
205
206    /// Handle copies of undef values.
207    /// Returns true if @p CopyMI was a copy of an undef value and eliminated.
208    bool eliminateUndefCopy(MachineInstr *CopyMI);
209
210    /// Check whether or not we should apply the terminal rule on the
211    /// destination (Dst) of \p Copy.
212    /// When the terminal rule applies, Copy is not profitable to
213    /// coalesce.
214    /// Dst is terminal if it has exactly one affinity (Dst, Src) and
215    /// at least one interference (Dst, Dst2). If Dst is terminal, the
216    /// terminal rule consists in checking that at least one of
217    /// interfering node, say Dst2, has an affinity of equal or greater
218    /// weight with Src.
219    /// In that case, Dst2 and Dst will not be able to be both coalesced
220    /// with Src. Since Dst2 exposes more coalescing opportunities than
221    /// Dst, we can drop \p Copy.
222    bool applyTerminalRule(const MachineInstr &Copy) const;
223
224    /// Wrapper method for \see LiveIntervals::shrinkToUses.
225    /// This method does the proper fixing of the live-ranges when the afore
226    /// mentioned method returns true.
227    void shrinkToUses(LiveInterval *LI,
228                      SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
229      if (LIS->shrinkToUses(LI, Dead)) {
230        /// Check whether or not \p LI is composed by multiple connected
231        /// components and if that is the case, fix that.
232        SmallVector<LiveInterval*, 8> SplitLIs;
233        LIS->splitSeparateComponents(*LI, SplitLIs);
234      }
235    }
236
237  public:
238    static char ID; ///< Class identification, replacement for typeinfo
239    RegisterCoalescer() : MachineFunctionPass(ID) {
240      initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
241    }
242
243    void getAnalysisUsage(AnalysisUsage &AU) const override;
244
245    void releaseMemory() override;
246
247    /// This is the pass entry point.
248    bool runOnMachineFunction(MachineFunction&) override;
249
250    /// Implement the dump method.
251    void print(raw_ostream &O, const Module* = nullptr) const override;
252  };
253} // end anonymous namespace
254
255char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
256
257INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
258                      "Simple Register Coalescing", false, false)
259INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
260INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
261INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
262INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
263INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
264                    "Simple Register Coalescing", false, false)
265
266char RegisterCoalescer::ID = 0;
267
268static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
269                        unsigned &Src, unsigned &Dst,
270                        unsigned &SrcSub, unsigned &DstSub) {
271  if (MI->isCopy()) {
272    Dst = MI->getOperand(0).getReg();
273    DstSub = MI->getOperand(0).getSubReg();
274    Src = MI->getOperand(1).getReg();
275    SrcSub = MI->getOperand(1).getSubReg();
276  } else if (MI->isSubregToReg()) {
277    Dst = MI->getOperand(0).getReg();
278    DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
279                                      MI->getOperand(3).getImm());
280    Src = MI->getOperand(2).getReg();
281    SrcSub = MI->getOperand(2).getSubReg();
282  } else
283    return false;
284  return true;
285}
286
287/// Return true if this block should be vacated by the coalescer to eliminate
288/// branches. The important cases to handle in the coalescer are critical edges
289/// split during phi elimination which contain only copies. Simple blocks that
290/// contain non-branches should also be vacated, but this can be handled by an
291/// earlier pass similar to early if-conversion.
292static bool isSplitEdge(const MachineBasicBlock *MBB) {
293  if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
294    return false;
295
296  for (const auto &MI : *MBB) {
297    if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
298      return false;
299  }
300  return true;
301}
302
303bool CoalescerPair::setRegisters(const MachineInstr *MI) {
304  SrcReg = DstReg = 0;
305  SrcIdx = DstIdx = 0;
306  NewRC = nullptr;
307  Flipped = CrossClass = false;
308
309  unsigned Src, Dst, SrcSub, DstSub;
310  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
311    return false;
312  Partial = SrcSub || DstSub;
313
314  // If one register is a physreg, it must be Dst.
315  if (TargetRegisterInfo::isPhysicalRegister(Src)) {
316    if (TargetRegisterInfo::isPhysicalRegister(Dst))
317      return false;
318    std::swap(Src, Dst);
319    std::swap(SrcSub, DstSub);
320    Flipped = true;
321  }
322
323  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
324
325  if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
326    // Eliminate DstSub on a physreg.
327    if (DstSub) {
328      Dst = TRI.getSubReg(Dst, DstSub);
329      if (!Dst) return false;
330      DstSub = 0;
331    }
332
333    // Eliminate SrcSub by picking a corresponding Dst superregister.
334    if (SrcSub) {
335      Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
336      if (!Dst) return false;
337    } else if (!MRI.getRegClass(Src)->contains(Dst)) {
338      return false;
339    }
340  } else {
341    // Both registers are virtual.
342    const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
343    const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
344
345    // Both registers have subreg indices.
346    if (SrcSub && DstSub) {
347      // Copies between different sub-registers are never coalescable.
348      if (Src == Dst && SrcSub != DstSub)
349        return false;
350
351      NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
352                                         SrcIdx, DstIdx);
353      if (!NewRC)
354        return false;
355    } else if (DstSub) {
356      // SrcReg will be merged with a sub-register of DstReg.
357      SrcIdx = DstSub;
358      NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
359    } else if (SrcSub) {
360      // DstReg will be merged with a sub-register of SrcReg.
361      DstIdx = SrcSub;
362      NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
363    } else {
364      // This is a straight copy without sub-registers.
365      NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
366    }
367
368    // The combined constraint may be impossible to satisfy.
369    if (!NewRC)
370      return false;
371
372    // Prefer SrcReg to be a sub-register of DstReg.
373    // FIXME: Coalescer should support subregs symmetrically.
374    if (DstIdx && !SrcIdx) {
375      std::swap(Src, Dst);
376      std::swap(SrcIdx, DstIdx);
377      Flipped = !Flipped;
378    }
379
380    CrossClass = NewRC != DstRC || NewRC != SrcRC;
381  }
382  // Check our invariants
383  assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
384  assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
385         "Cannot have a physical SubIdx");
386  SrcReg = Src;
387  DstReg = Dst;
388  return true;
389}
390
391bool CoalescerPair::flip() {
392  if (TargetRegisterInfo::isPhysicalRegister(DstReg))
393    return false;
394  std::swap(SrcReg, DstReg);
395  std::swap(SrcIdx, DstIdx);
396  Flipped = !Flipped;
397  return true;
398}
399
400bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
401  if (!MI)
402    return false;
403  unsigned Src, Dst, SrcSub, DstSub;
404  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
405    return false;
406
407  // Find the virtual register that is SrcReg.
408  if (Dst == SrcReg) {
409    std::swap(Src, Dst);
410    std::swap(SrcSub, DstSub);
411  } else if (Src != SrcReg) {
412    return false;
413  }
414
415  // Now check that Dst matches DstReg.
416  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
417    if (!TargetRegisterInfo::isPhysicalRegister(Dst))
418      return false;
419    assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
420    // DstSub could be set for a physreg from INSERT_SUBREG.
421    if (DstSub)
422      Dst = TRI.getSubReg(Dst, DstSub);
423    // Full copy of Src.
424    if (!SrcSub)
425      return DstReg == Dst;
426    // This is a partial register copy. Check that the parts match.
427    return TRI.getSubReg(DstReg, SrcSub) == Dst;
428  } else {
429    // DstReg is virtual.
430    if (DstReg != Dst)
431      return false;
432    // Registers match, do the subregisters line up?
433    return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
434           TRI.composeSubRegIndices(DstIdx, DstSub);
435  }
436}
437
438void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
439  AU.setPreservesCFG();
440  AU.addRequired<AAResultsWrapperPass>();
441  AU.addRequired<LiveIntervals>();
442  AU.addPreserved<LiveIntervals>();
443  AU.addPreserved<SlotIndexes>();
444  AU.addRequired<MachineLoopInfo>();
445  AU.addPreserved<MachineLoopInfo>();
446  AU.addPreservedID(MachineDominatorsID);
447  MachineFunctionPass::getAnalysisUsage(AU);
448}
449
450void RegisterCoalescer::eliminateDeadDefs() {
451  SmallVector<unsigned, 8> NewRegs;
452  LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
453                nullptr, this).eliminateDeadDefs(DeadDefs);
454}
455
456void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
457  // MI may be in WorkList. Make sure we don't visit it.
458  ErasedInstrs.insert(MI);
459}
460
461bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
462                                             MachineInstr *CopyMI) {
463  assert(!CP.isPartial() && "This doesn't work for partial copies.");
464  assert(!CP.isPhys() && "This doesn't work for physreg copies.");
465
466  LiveInterval &IntA =
467    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
468  LiveInterval &IntB =
469    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
470  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
471
472  // We have a non-trivially-coalescable copy with IntA being the source and
473  // IntB being the dest, thus this defines a value number in IntB.  If the
474  // source value number (in IntA) is defined by a copy from B, see if we can
475  // merge these two pieces of B into a single value number, eliminating a copy.
476  // For example:
477  //
478  //  A3 = B0
479  //    ...
480  //  B1 = A3      <- this copy
481  //
482  // In this case, B0 can be extended to where the B1 copy lives, allowing the
483  // B1 value number to be replaced with B0 (which simplifies the B
484  // liveinterval).
485
486  // BValNo is a value number in B that is defined by a copy from A.  'B1' in
487  // the example above.
488  LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
489  if (BS == IntB.end()) return false;
490  VNInfo *BValNo = BS->valno;
491
492  // Get the location that B is defined at.  Two options: either this value has
493  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
494  // can't process it.
495  if (BValNo->def != CopyIdx) return false;
496
497  // AValNo is the value number in A that defines the copy, A3 in the example.
498  SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
499  LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
500  // The live segment might not exist after fun with physreg coalescing.
501  if (AS == IntA.end()) return false;
502  VNInfo *AValNo = AS->valno;
503
504  // If AValNo is defined as a copy from IntB, we can potentially process this.
505  // Get the instruction that defines this value number.
506  MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
507  // Don't allow any partial copies, even if isCoalescable() allows them.
508  if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
509    return false;
510
511  // Get the Segment in IntB that this value number starts with.
512  LiveInterval::iterator ValS =
513    IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
514  if (ValS == IntB.end())
515    return false;
516
517  // Make sure that the end of the live segment is inside the same block as
518  // CopyMI.
519  MachineInstr *ValSEndInst =
520    LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
521  if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
522    return false;
523
524  // Okay, we now know that ValS ends in the same block that the CopyMI
525  // live-range starts.  If there are no intervening live segments between them
526  // in IntB, we can merge them.
527  if (ValS+1 != BS) return false;
528
529  DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
530
531  SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
532  // We are about to delete CopyMI, so need to remove it as the 'instruction
533  // that defines this value #'. Update the valnum with the new defining
534  // instruction #.
535  BValNo->def = FillerStart;
536
537  // Okay, we can merge them.  We need to insert a new liverange:
538  // [ValS.end, BS.begin) of either value number, then we merge the
539  // two value numbers.
540  IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
541
542  // Okay, merge "B1" into the same value number as "B0".
543  if (BValNo != ValS->valno)
544    IntB.MergeValueNumberInto(BValNo, ValS->valno);
545
546  // Do the same for the subregister segments.
547  for (LiveInterval::SubRange &S : IntB.subranges()) {
548    VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
549    S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
550    VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
551    if (SubBValNo != SubValSNo)
552      S.MergeValueNumberInto(SubBValNo, SubValSNo);
553  }
554
555  DEBUG(dbgs() << "   result = " << IntB << '\n');
556
557  // If the source instruction was killing the source register before the
558  // merge, unset the isKill marker given the live range has been extended.
559  int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
560  if (UIdx != -1) {
561    ValSEndInst->getOperand(UIdx).setIsKill(false);
562  }
563
564  // Rewrite the copy. If the copy instruction was killing the destination
565  // register before the merge, find the last use and trim the live range. That
566  // will also add the isKill marker.
567  CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
568  if (AS->end == CopyIdx)
569    shrinkToUses(&IntA);
570
571  ++numExtends;
572  return true;
573}
574
575bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
576                                             LiveInterval &IntB,
577                                             VNInfo *AValNo,
578                                             VNInfo *BValNo) {
579  // If AValNo has PHI kills, conservatively assume that IntB defs can reach
580  // the PHI values.
581  if (LIS->hasPHIKill(IntA, AValNo))
582    return true;
583
584  for (LiveRange::Segment &ASeg : IntA.segments) {
585    if (ASeg.valno != AValNo) continue;
586    LiveInterval::iterator BI =
587      std::upper_bound(IntB.begin(), IntB.end(), ASeg.start);
588    if (BI != IntB.begin())
589      --BI;
590    for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
591      if (BI->valno == BValNo)
592        continue;
593      if (BI->start <= ASeg.start && BI->end > ASeg.start)
594        return true;
595      if (BI->start > ASeg.start && BI->start < ASeg.end)
596        return true;
597    }
598  }
599  return false;
600}
601
602/// Copy segements with value number @p SrcValNo from liverange @p Src to live
603/// range @Dst and use value number @p DstValNo there.
604static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo,
605                                 const LiveRange &Src, const VNInfo *SrcValNo)
606{
607  for (const LiveRange::Segment &S : Src.segments) {
608    if (S.valno != SrcValNo)
609      continue;
610    Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo));
611  }
612}
613
614bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
615                                                 MachineInstr *CopyMI) {
616  assert(!CP.isPhys());
617
618  LiveInterval &IntA =
619      LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
620  LiveInterval &IntB =
621      LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
622
623  // We found a non-trivially-coalescable copy with IntA being the source and
624  // IntB being the dest, thus this defines a value number in IntB.  If the
625  // source value number (in IntA) is defined by a commutable instruction and
626  // its other operand is coalesced to the copy dest register, see if we can
627  // transform the copy into a noop by commuting the definition. For example,
628  //
629  //  A3 = op A2 B0<kill>
630  //    ...
631  //  B1 = A3      <- this copy
632  //    ...
633  //     = op A3   <- more uses
634  //
635  // ==>
636  //
637  //  B2 = op B0 A2<kill>
638  //    ...
639  //  B1 = B2      <- now an identity copy
640  //    ...
641  //     = op B2   <- more uses
642
643  // BValNo is a value number in B that is defined by a copy from A. 'B1' in
644  // the example above.
645  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
646  VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
647  assert(BValNo != nullptr && BValNo->def == CopyIdx);
648
649  // AValNo is the value number in A that defines the copy, A3 in the example.
650  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
651  assert(AValNo && !AValNo->isUnused() && "COPY source not live");
652  if (AValNo->isPHIDef())
653    return false;
654  MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
655  if (!DefMI)
656    return false;
657  if (!DefMI->isCommutable())
658    return false;
659  // If DefMI is a two-address instruction then commuting it will change the
660  // destination register.
661  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
662  assert(DefIdx != -1);
663  unsigned UseOpIdx;
664  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
665    return false;
666
667  // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
668  // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
669  // passed to the method. That _other_ operand is chosen by
670  // the findCommutedOpIndices() method.
671  //
672  // That is obviously an area for improvement in case of instructions having
673  // more than 2 operands. For example, if some instruction has 3 commutable
674  // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
675  // op#2<->op#3) of commute transformation should be considered/tried here.
676  unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
677  if (!TII->findCommutedOpIndices(DefMI, UseOpIdx, NewDstIdx))
678    return false;
679
680  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
681  unsigned NewReg = NewDstMO.getReg();
682  if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
683    return false;
684
685  // Make sure there are no other definitions of IntB that would reach the
686  // uses which the new definition can reach.
687  if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
688    return false;
689
690  // If some of the uses of IntA.reg is already coalesced away, return false.
691  // It's not possible to determine whether it's safe to perform the coalescing.
692  for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
693    MachineInstr *UseMI = MO.getParent();
694    unsigned OpNo = &MO - &UseMI->getOperand(0);
695    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
696    LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
697    if (US == IntA.end() || US->valno != AValNo)
698      continue;
699    // If this use is tied to a def, we can't rewrite the register.
700    if (UseMI->isRegTiedToDefOperand(OpNo))
701      return false;
702  }
703
704  DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
705               << *DefMI);
706
707  // At this point we have decided that it is legal to do this
708  // transformation.  Start by commuting the instruction.
709  MachineBasicBlock *MBB = DefMI->getParent();
710  MachineInstr *NewMI =
711      TII->commuteInstruction(DefMI, false, UseOpIdx, NewDstIdx);
712  if (!NewMI)
713    return false;
714  if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
715      TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
716      !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
717    return false;
718  if (NewMI != DefMI) {
719    LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
720    MachineBasicBlock::iterator Pos = DefMI;
721    MBB->insert(Pos, NewMI);
722    MBB->erase(DefMI);
723  }
724
725  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
726  // A = or A, B
727  // ...
728  // B = A
729  // ...
730  // C = A<kill>
731  // ...
732  //   = B
733
734  // Update uses of IntA of the specific Val# with IntB.
735  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
736                                         UE = MRI->use_end();
737       UI != UE; /* ++UI is below because of possible MI removal */) {
738    MachineOperand &UseMO = *UI;
739    ++UI;
740    if (UseMO.isUndef())
741      continue;
742    MachineInstr *UseMI = UseMO.getParent();
743    if (UseMI->isDebugValue()) {
744      // FIXME These don't have an instruction index.  Not clear we have enough
745      // info to decide whether to do this replacement or not.  For now do it.
746      UseMO.setReg(NewReg);
747      continue;
748    }
749    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
750    LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
751    assert(US != IntA.end() && "Use must be live");
752    if (US->valno != AValNo)
753      continue;
754    // Kill flags are no longer accurate. They are recomputed after RA.
755    UseMO.setIsKill(false);
756    if (TargetRegisterInfo::isPhysicalRegister(NewReg))
757      UseMO.substPhysReg(NewReg, *TRI);
758    else
759      UseMO.setReg(NewReg);
760    if (UseMI == CopyMI)
761      continue;
762    if (!UseMI->isCopy())
763      continue;
764    if (UseMI->getOperand(0).getReg() != IntB.reg ||
765        UseMI->getOperand(0).getSubReg())
766      continue;
767
768    // This copy will become a noop. If it's defining a new val#, merge it into
769    // BValNo.
770    SlotIndex DefIdx = UseIdx.getRegSlot();
771    VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
772    if (!DVNI)
773      continue;
774    DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
775    assert(DVNI->def == DefIdx);
776    BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
777    for (LiveInterval::SubRange &S : IntB.subranges()) {
778      VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
779      if (!SubDVNI)
780        continue;
781      VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
782      assert(SubBValNo->def == CopyIdx);
783      S.MergeValueNumberInto(SubDVNI, SubBValNo);
784    }
785
786    ErasedInstrs.insert(UseMI);
787    LIS->RemoveMachineInstrFromMaps(UseMI);
788    UseMI->eraseFromParent();
789  }
790
791  // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
792  // is updated.
793  BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
794  if (IntB.hasSubRanges()) {
795    if (!IntA.hasSubRanges()) {
796      LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg);
797      IntA.createSubRangeFrom(Allocator, Mask, IntA);
798    }
799    SlotIndex AIdx = CopyIdx.getRegSlot(true);
800    for (LiveInterval::SubRange &SA : IntA.subranges()) {
801      VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
802      assert(ASubValNo != nullptr);
803
804      LaneBitmask AMask = SA.LaneMask;
805      for (LiveInterval::SubRange &SB : IntB.subranges()) {
806        LaneBitmask BMask = SB.LaneMask;
807        LaneBitmask Common = BMask & AMask;
808        if (Common == 0)
809          continue;
810
811        DEBUG( dbgs() << "\t\tCopy_Merge " << PrintLaneMask(BMask)
812                      << " into " << PrintLaneMask(Common) << '\n');
813        LaneBitmask BRest = BMask & ~AMask;
814        LiveInterval::SubRange *CommonRange;
815        if (BRest != 0) {
816          SB.LaneMask = BRest;
817          DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(BRest)
818                       << '\n');
819          // Duplicate SubRange for newly merged common stuff.
820          CommonRange = IntB.createSubRangeFrom(Allocator, Common, SB);
821        } else {
822          // We van reuse the L SubRange.
823          SB.LaneMask = Common;
824          CommonRange = &SB;
825        }
826        LiveRange RangeCopy(SB, Allocator);
827
828        VNInfo *BSubValNo = CommonRange->getVNInfoAt(CopyIdx);
829        assert(BSubValNo->def == CopyIdx);
830        BSubValNo->def = ASubValNo->def;
831        addSegmentsWithValNo(*CommonRange, BSubValNo, SA, ASubValNo);
832        AMask &= ~BMask;
833      }
834      if (AMask != 0) {
835        DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(AMask) << '\n');
836        LiveRange *NewRange = IntB.createSubRange(Allocator, AMask);
837        VNInfo *BSubValNo = NewRange->getNextValue(CopyIdx, Allocator);
838        addSegmentsWithValNo(*NewRange, BSubValNo, SA, ASubValNo);
839      }
840    }
841  }
842
843  BValNo->def = AValNo->def;
844  addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
845  DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
846
847  LIS->removeVRegDefAt(IntA, AValNo->def);
848
849  DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
850  ++numCommutes;
851  return true;
852}
853
854/// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
855/// defining a subregister.
856static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
857  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) &&
858         "This code cannot handle physreg aliasing");
859  for (const MachineOperand &Op : MI.operands()) {
860    if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
861      continue;
862    // Return true if we define the full register or don't care about the value
863    // inside other subregisters.
864    if (Op.getSubReg() == 0 || Op.isUndef())
865      return true;
866  }
867  return false;
868}
869
870bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
871                                                MachineInstr *CopyMI,
872                                                bool &IsDefCopy) {
873  IsDefCopy = false;
874  unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
875  unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
876  unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
877  unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
878  if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
879    return false;
880
881  LiveInterval &SrcInt = LIS->getInterval(SrcReg);
882  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI);
883  VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
884  assert(ValNo && "CopyMI input register not live");
885  if (ValNo->isPHIDef() || ValNo->isUnused())
886    return false;
887  MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
888  if (!DefMI)
889    return false;
890  if (DefMI->isCopyLike()) {
891    IsDefCopy = true;
892    return false;
893  }
894  if (!TII->isAsCheapAsAMove(DefMI))
895    return false;
896  if (!TII->isTriviallyReMaterializable(DefMI, AA))
897    return false;
898  if (!definesFullReg(*DefMI, SrcReg))
899    return false;
900  bool SawStore = false;
901  if (!DefMI->isSafeToMove(AA, SawStore))
902    return false;
903  const MCInstrDesc &MCID = DefMI->getDesc();
904  if (MCID.getNumDefs() != 1)
905    return false;
906  // Only support subregister destinations when the def is read-undef.
907  MachineOperand &DstOperand = CopyMI->getOperand(0);
908  unsigned CopyDstReg = DstOperand.getReg();
909  if (DstOperand.getSubReg() && !DstOperand.isUndef())
910    return false;
911
912  // If both SrcIdx and DstIdx are set, correct rematerialization would widen
913  // the register substantially (beyond both source and dest size). This is bad
914  // for performance since it can cascade through a function, introducing many
915  // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
916  // around after a few subreg copies).
917  if (SrcIdx && DstIdx)
918    return false;
919
920  const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
921  if (!DefMI->isImplicitDef()) {
922    if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
923      unsigned NewDstReg = DstReg;
924
925      unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
926                                              DefMI->getOperand(0).getSubReg());
927      if (NewDstIdx)
928        NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
929
930      // Finally, make sure that the physical subregister that will be
931      // constructed later is permitted for the instruction.
932      if (!DefRC->contains(NewDstReg))
933        return false;
934    } else {
935      // Theoretically, some stack frame reference could exist. Just make sure
936      // it hasn't actually happened.
937      assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
938             "Only expect to deal with virtual or physical registers");
939    }
940  }
941
942  MachineBasicBlock *MBB = CopyMI->getParent();
943  MachineBasicBlock::iterator MII =
944    std::next(MachineBasicBlock::iterator(CopyMI));
945  TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, DefMI, *TRI);
946  MachineInstr *NewMI = std::prev(MII);
947
948  // In a situation like the following:
949  //     %vreg0:subreg = instr              ; DefMI, subreg = DstIdx
950  //     %vreg1        = copy %vreg0:subreg ; CopyMI, SrcIdx = 0
951  // instead of widening %vreg1 to the register class of %vreg0 simply do:
952  //     %vreg1 = instr
953  const TargetRegisterClass *NewRC = CP.getNewRC();
954  if (DstIdx != 0) {
955    MachineOperand &DefMO = NewMI->getOperand(0);
956    if (DefMO.getSubReg() == DstIdx) {
957      assert(SrcIdx == 0 && CP.isFlipped()
958             && "Shouldn't have SrcIdx+DstIdx at this point");
959      const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
960      const TargetRegisterClass *CommonRC =
961        TRI->getCommonSubClass(DefRC, DstRC);
962      if (CommonRC != nullptr) {
963        NewRC = CommonRC;
964        DstIdx = 0;
965        DefMO.setSubReg(0);
966      }
967    }
968  }
969
970  LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
971  CopyMI->eraseFromParent();
972  ErasedInstrs.insert(CopyMI);
973
974  // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
975  // We need to remember these so we can add intervals once we insert
976  // NewMI into SlotIndexes.
977  SmallVector<unsigned, 4> NewMIImplDefs;
978  for (unsigned i = NewMI->getDesc().getNumOperands(),
979         e = NewMI->getNumOperands(); i != e; ++i) {
980    MachineOperand &MO = NewMI->getOperand(i);
981    if (MO.isReg() && MO.isDef()) {
982      assert(MO.isImplicit() && MO.isDead() &&
983             TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
984      NewMIImplDefs.push_back(MO.getReg());
985    }
986  }
987
988  if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
989    unsigned NewIdx = NewMI->getOperand(0).getSubReg();
990
991    if (DefRC != nullptr) {
992      if (NewIdx)
993        NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
994      else
995        NewRC = TRI->getCommonSubClass(NewRC, DefRC);
996      assert(NewRC && "subreg chosen for remat incompatible with instruction");
997    }
998    MRI->setRegClass(DstReg, NewRC);
999
1000    updateRegDefsUses(DstReg, DstReg, DstIdx);
1001    NewMI->getOperand(0).setSubReg(NewIdx);
1002  } else if (NewMI->getOperand(0).getReg() != CopyDstReg) {
1003    // The New instruction may be defining a sub-register of what's actually
1004    // been asked for. If so it must implicitly define the whole thing.
1005    assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&
1006           "Only expect virtual or physical registers in remat");
1007    NewMI->getOperand(0).setIsDead(true);
1008    NewMI->addOperand(MachineOperand::CreateReg(CopyDstReg,
1009                                                true  /*IsDef*/,
1010                                                true  /*IsImp*/,
1011                                                false /*IsKill*/));
1012    // Record small dead def live-ranges for all the subregisters
1013    // of the destination register.
1014    // Otherwise, variables that live through may miss some
1015    // interferences, thus creating invalid allocation.
1016    // E.g., i386 code:
1017    // vreg1 = somedef ; vreg1 GR8
1018    // vreg2 = remat ; vreg2 GR32
1019    // CL = COPY vreg2.sub_8bit
1020    // = somedef vreg1 ; vreg1 GR8
1021    // =>
1022    // vreg1 = somedef ; vreg1 GR8
1023    // ECX<def, dead> = remat ; CL<imp-def>
1024    // = somedef vreg1 ; vreg1 GR8
1025    // vreg1 will see the inteferences with CL but not with CH since
1026    // no live-ranges would have been created for ECX.
1027    // Fix that!
1028    SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1029    for (MCRegUnitIterator Units(NewMI->getOperand(0).getReg(), TRI);
1030         Units.isValid(); ++Units)
1031      if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1032        LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1033  }
1034
1035  if (NewMI->getOperand(0).getSubReg())
1036    NewMI->getOperand(0).setIsUndef();
1037
1038  // CopyMI may have implicit operands, transfer them over to the newly
1039  // rematerialized instruction. And update implicit def interval valnos.
1040  for (unsigned i = CopyMI->getDesc().getNumOperands(),
1041         e = CopyMI->getNumOperands(); i != e; ++i) {
1042    MachineOperand &MO = CopyMI->getOperand(i);
1043    if (MO.isReg()) {
1044      assert(MO.isImplicit() && "No explicit operands after implict operands.");
1045      // Discard VReg implicit defs.
1046      if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
1047        NewMI->addOperand(MO);
1048      }
1049    }
1050  }
1051
1052  SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1053  for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1054    unsigned Reg = NewMIImplDefs[i];
1055    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1056      if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1057        LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1058  }
1059
1060  DEBUG(dbgs() << "Remat: " << *NewMI);
1061  ++NumReMats;
1062
1063  // The source interval can become smaller because we removed a use.
1064  shrinkToUses(&SrcInt, &DeadDefs);
1065  if (!DeadDefs.empty()) {
1066    // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1067    // to describe DstReg instead.
1068    for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
1069      MachineInstr *UseMI = UseMO.getParent();
1070      if (UseMI->isDebugValue()) {
1071        UseMO.setReg(DstReg);
1072        DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1073      }
1074    }
1075    eliminateDeadDefs();
1076  }
1077
1078  return true;
1079}
1080
1081bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1082  // ProcessImpicitDefs may leave some copies of <undef> values, it only removes
1083  // local variables. When we have a copy like:
1084  //
1085  //   %vreg1 = COPY %vreg2<undef>
1086  //
1087  // We delete the copy and remove the corresponding value number from %vreg1.
1088  // Any uses of that value number are marked as <undef>.
1089
1090  // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1091  // CoalescerPair may have a new register class with adjusted subreg indices
1092  // at this point.
1093  unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1094  isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
1095
1096  SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
1097  const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1098  // CopyMI is undef iff SrcReg is not live before the instruction.
1099  if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1100    LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1101    for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1102      if ((SR.LaneMask & SrcMask) == 0)
1103        continue;
1104      if (SR.liveAt(Idx))
1105        return false;
1106    }
1107  } else if (SrcLI.liveAt(Idx))
1108    return false;
1109
1110  DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1111
1112  // Remove any DstReg segments starting at the instruction.
1113  LiveInterval &DstLI = LIS->getInterval(DstReg);
1114  SlotIndex RegIndex = Idx.getRegSlot();
1115  // Remove value or merge with previous one in case of a subregister def.
1116  if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1117    VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1118    DstLI.MergeValueNumberInto(VNI, PrevVNI);
1119
1120    // The affected subregister segments can be removed.
1121    LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1122    for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1123      if ((SR.LaneMask & DstMask) == 0)
1124        continue;
1125
1126      VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1127      assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1128      SR.removeValNo(SVNI);
1129    }
1130    DstLI.removeEmptySubRanges();
1131  } else
1132    LIS->removeVRegDefAt(DstLI, RegIndex);
1133
1134  // Mark uses as undef.
1135  for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1136    if (MO.isDef() /*|| MO.isUndef()*/)
1137      continue;
1138    const MachineInstr &MI = *MO.getParent();
1139    SlotIndex UseIdx = LIS->getInstructionIndex(&MI);
1140    LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1141    bool isLive;
1142    if (UseMask != ~0u && DstLI.hasSubRanges()) {
1143      isLive = false;
1144      for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1145        if ((SR.LaneMask & UseMask) == 0)
1146          continue;
1147        if (SR.liveAt(UseIdx)) {
1148          isLive = true;
1149          break;
1150        }
1151      }
1152    } else
1153      isLive = DstLI.liveAt(UseIdx);
1154    if (isLive)
1155      continue;
1156    MO.setIsUndef(true);
1157    DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1158  }
1159  return true;
1160}
1161
1162void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
1163                                          unsigned DstReg,
1164                                          unsigned SubIdx) {
1165  bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1166  LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1167
1168  SmallPtrSet<MachineInstr*, 8> Visited;
1169  for (MachineRegisterInfo::reg_instr_iterator
1170       I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1171       I != E; ) {
1172    MachineInstr *UseMI = &*(I++);
1173
1174    // Each instruction can only be rewritten once because sub-register
1175    // composition is not always idempotent. When SrcReg != DstReg, rewriting
1176    // the UseMI operands removes them from the SrcReg use-def chain, but when
1177    // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1178    // operands mentioning the virtual register.
1179    if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1180      continue;
1181
1182    SmallVector<unsigned,8> Ops;
1183    bool Reads, Writes;
1184    std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1185
1186    // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1187    // because SrcReg is a sub-register.
1188    if (DstInt && !Reads && SubIdx)
1189      Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI));
1190
1191    // Replace SrcReg with DstReg in all UseMI operands.
1192    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1193      MachineOperand &MO = UseMI->getOperand(Ops[i]);
1194
1195      // Adjust <undef> flags in case of sub-register joins. We don't want to
1196      // turn a full def into a read-modify-write sub-register def and vice
1197      // versa.
1198      if (SubIdx && MO.isDef())
1199        MO.setIsUndef(!Reads);
1200
1201      // A subreg use of a partially undef (super) register may be a complete
1202      // undef use now and then has to be marked that way.
1203      if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
1204        if (!DstInt->hasSubRanges()) {
1205          BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1206          LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg);
1207          DstInt->createSubRangeFrom(Allocator, Mask, *DstInt);
1208        }
1209        LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubIdx);
1210        bool IsUndef = true;
1211        SlotIndex MIIdx = UseMI->isDebugValue()
1212          ? LIS->getSlotIndexes()->getIndexBefore(UseMI)
1213          : LIS->getInstructionIndex(UseMI);
1214        SlotIndex UseIdx = MIIdx.getRegSlot(true);
1215        for (LiveInterval::SubRange &S : DstInt->subranges()) {
1216          if ((S.LaneMask & Mask) == 0)
1217            continue;
1218          if (S.liveAt(UseIdx)) {
1219            IsUndef = false;
1220            break;
1221          }
1222        }
1223        if (IsUndef) {
1224          MO.setIsUndef(true);
1225          // We found out some subregister use is actually reading an undefined
1226          // value. In some cases the whole vreg has become undefined at this
1227          // point so we have to potentially shrink the main range if the
1228          // use was ending a live segment there.
1229          LiveQueryResult Q = DstInt->Query(MIIdx);
1230          if (Q.valueOut() == nullptr)
1231            ShrinkMainRange = true;
1232        }
1233      }
1234
1235      if (DstIsPhys)
1236        MO.substPhysReg(DstReg, *TRI);
1237      else
1238        MO.substVirtReg(DstReg, SubIdx, *TRI);
1239    }
1240
1241    DEBUG({
1242        dbgs() << "\t\tupdated: ";
1243        if (!UseMI->isDebugValue())
1244          dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
1245        dbgs() << *UseMI;
1246      });
1247  }
1248}
1249
1250bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1251  // Always join simple intervals that are defined by a single copy from a
1252  // reserved register. This doesn't increase register pressure, so it is
1253  // always beneficial.
1254  if (!MRI->isReserved(CP.getDstReg())) {
1255    DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1256    return false;
1257  }
1258
1259  LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1260  if (JoinVInt.containsOneValue())
1261    return true;
1262
1263  DEBUG(dbgs() << "\tCannot join complex intervals into reserved register.\n");
1264  return false;
1265}
1266
1267bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1268
1269  Again = false;
1270  DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
1271
1272  CoalescerPair CP(*TRI);
1273  if (!CP.setRegisters(CopyMI)) {
1274    DEBUG(dbgs() << "\tNot coalescable.\n");
1275    return false;
1276  }
1277
1278  if (CP.getNewRC()) {
1279    auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1280    auto DstRC = MRI->getRegClass(CP.getDstReg());
1281    unsigned SrcIdx = CP.getSrcIdx();
1282    unsigned DstIdx = CP.getDstIdx();
1283    if (CP.isFlipped()) {
1284      std::swap(SrcIdx, DstIdx);
1285      std::swap(SrcRC, DstRC);
1286    }
1287    if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1288                            CP.getNewRC())) {
1289      DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1290      return false;
1291    }
1292  }
1293
1294  // Dead code elimination. This really should be handled by MachineDCE, but
1295  // sometimes dead copies slip through, and we can't generate invalid live
1296  // ranges.
1297  if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1298    DEBUG(dbgs() << "\tCopy is dead.\n");
1299    DeadDefs.push_back(CopyMI);
1300    eliminateDeadDefs();
1301    return true;
1302  }
1303
1304  // Eliminate undefs.
1305  if (!CP.isPhys() && eliminateUndefCopy(CopyMI)) {
1306    LIS->RemoveMachineInstrFromMaps(CopyMI);
1307    CopyMI->eraseFromParent();
1308    return false;  // Not coalescable.
1309  }
1310
1311  // Coalesced copies are normally removed immediately, but transformations
1312  // like removeCopyByCommutingDef() can inadvertently create identity copies.
1313  // When that happens, just join the values and remove the copy.
1314  if (CP.getSrcReg() == CP.getDstReg()) {
1315    LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1316    DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1317    const SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI);
1318    LiveQueryResult LRQ = LI.Query(CopyIdx);
1319    if (VNInfo *DefVNI = LRQ.valueDefined()) {
1320      VNInfo *ReadVNI = LRQ.valueIn();
1321      assert(ReadVNI && "No value before copy and no <undef> flag.");
1322      assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1323      LI.MergeValueNumberInto(DefVNI, ReadVNI);
1324
1325      // Process subregister liveranges.
1326      for (LiveInterval::SubRange &S : LI.subranges()) {
1327        LiveQueryResult SLRQ = S.Query(CopyIdx);
1328        if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1329          VNInfo *SReadVNI = SLRQ.valueIn();
1330          S.MergeValueNumberInto(SDefVNI, SReadVNI);
1331        }
1332      }
1333      DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
1334    }
1335    LIS->RemoveMachineInstrFromMaps(CopyMI);
1336    CopyMI->eraseFromParent();
1337    return true;
1338  }
1339
1340  // Enforce policies.
1341  if (CP.isPhys()) {
1342    DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
1343                 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
1344                 << '\n');
1345    if (!canJoinPhys(CP)) {
1346      // Before giving up coalescing, if definition of source is defined by
1347      // trivial computation, try rematerializing it.
1348      bool IsDefCopy;
1349      if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1350        return true;
1351      if (IsDefCopy)
1352        Again = true;  // May be possible to coalesce later.
1353      return false;
1354    }
1355  } else {
1356    // When possible, let DstReg be the larger interval.
1357    if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1358                           LIS->getInterval(CP.getDstReg()).size())
1359      CP.flip();
1360
1361    DEBUG({
1362      dbgs() << "\tConsidering merging to "
1363             << TRI->getRegClassName(CP.getNewRC()) << " with ";
1364      if (CP.getDstIdx() && CP.getSrcIdx())
1365        dbgs() << PrintReg(CP.getDstReg()) << " in "
1366               << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1367               << PrintReg(CP.getSrcReg()) << " in "
1368               << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1369      else
1370        dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
1371               << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1372    });
1373  }
1374
1375  ShrinkMask = 0;
1376  ShrinkMainRange = false;
1377
1378  // Okay, attempt to join these two intervals.  On failure, this returns false.
1379  // Otherwise, if one of the intervals being joined is a physreg, this method
1380  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1381  // been modified, so we can use this information below to update aliases.
1382  if (!joinIntervals(CP)) {
1383    // Coalescing failed.
1384
1385    // If definition of source is defined by trivial computation, try
1386    // rematerializing it.
1387    bool IsDefCopy;
1388    if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1389      return true;
1390
1391    // If we can eliminate the copy without merging the live segments, do so
1392    // now.
1393    if (!CP.isPartial() && !CP.isPhys()) {
1394      if (adjustCopiesBackFrom(CP, CopyMI) ||
1395          removeCopyByCommutingDef(CP, CopyMI)) {
1396        LIS->RemoveMachineInstrFromMaps(CopyMI);
1397        CopyMI->eraseFromParent();
1398        DEBUG(dbgs() << "\tTrivial!\n");
1399        return true;
1400      }
1401    }
1402
1403    // Otherwise, we are unable to join the intervals.
1404    DEBUG(dbgs() << "\tInterference!\n");
1405    Again = true;  // May be possible to coalesce later.
1406    return false;
1407  }
1408
1409  // Coalescing to a virtual register that is of a sub-register class of the
1410  // other. Make sure the resulting register is set to the right register class.
1411  if (CP.isCrossClass()) {
1412    ++numCrossRCs;
1413    MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1414  }
1415
1416  // Removing sub-register copies can ease the register class constraints.
1417  // Make sure we attempt to inflate the register class of DstReg.
1418  if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1419    InflateRegs.push_back(CP.getDstReg());
1420
1421  // CopyMI has been erased by joinIntervals at this point. Remove it from
1422  // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1423  // to the work list. This keeps ErasedInstrs from growing needlessly.
1424  ErasedInstrs.erase(CopyMI);
1425
1426  // Rewrite all SrcReg operands to DstReg.
1427  // Also update DstReg operands to include DstIdx if it is set.
1428  if (CP.getDstIdx())
1429    updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1430  updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1431
1432  // Shrink subregister ranges if necessary.
1433  if (ShrinkMask != 0) {
1434    LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1435    for (LiveInterval::SubRange &S : LI.subranges()) {
1436      if ((S.LaneMask & ShrinkMask) == 0)
1437        continue;
1438      DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
1439                   << ")\n");
1440      LIS->shrinkToUses(S, LI.reg);
1441    }
1442    LI.removeEmptySubRanges();
1443  }
1444  if (ShrinkMainRange) {
1445    LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1446    shrinkToUses(&LI);
1447  }
1448
1449  // SrcReg is guaranteed to be the register whose live interval that is
1450  // being merged.
1451  LIS->removeInterval(CP.getSrcReg());
1452
1453  // Update regalloc hint.
1454  TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1455
1456  DEBUG({
1457    dbgs() << "\tSuccess: " << PrintReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
1458           << " -> " << PrintReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
1459    dbgs() << "\tResult = ";
1460    if (CP.isPhys())
1461      dbgs() << PrintReg(CP.getDstReg(), TRI);
1462    else
1463      dbgs() << LIS->getInterval(CP.getDstReg());
1464    dbgs() << '\n';
1465  });
1466
1467  ++numJoins;
1468  return true;
1469}
1470
1471bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1472  unsigned DstReg = CP.getDstReg();
1473  assert(CP.isPhys() && "Must be a physreg copy");
1474  assert(MRI->isReserved(DstReg) && "Not a reserved register");
1475  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1476  DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
1477
1478  assert(RHS.containsOneValue() && "Invalid join with reserved register");
1479
1480  // Optimization for reserved registers like ESP. We can only merge with a
1481  // reserved physreg if RHS has a single value that is a copy of DstReg.
1482  // The live range of the reserved register will look like a set of dead defs
1483  // - we don't properly track the live range of reserved registers.
1484
1485  // Deny any overlapping intervals.  This depends on all the reserved
1486  // register live ranges to look like dead defs.
1487  for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI)
1488    if (RHS.overlaps(LIS->getRegUnit(*UI))) {
1489      DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
1490      return false;
1491    }
1492
1493  // Skip any value computations, we are not adding new values to the
1494  // reserved register.  Also skip merging the live ranges, the reserved
1495  // register live range doesn't need to be accurate as long as all the
1496  // defs are there.
1497
1498  // Delete the identity copy.
1499  MachineInstr *CopyMI;
1500  if (CP.isFlipped()) {
1501    CopyMI = MRI->getVRegDef(RHS.reg);
1502  } else {
1503    if (!MRI->hasOneNonDBGUse(RHS.reg)) {
1504      DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
1505      return false;
1506    }
1507
1508    MachineInstr *DestMI = MRI->getVRegDef(RHS.reg);
1509    CopyMI = &*MRI->use_instr_nodbg_begin(RHS.reg);
1510    const SlotIndex CopyRegIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
1511    const SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
1512
1513    // We checked above that there are no interfering defs of the physical
1514    // register. However, for this case, where we intent to move up the def of
1515    // the physical register, we also need to check for interfering uses.
1516    SlotIndexes *Indexes = LIS->getSlotIndexes();
1517    for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
1518         SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
1519      MachineInstr *MI = LIS->getInstructionFromIndex(SI);
1520      if (MI->readsRegister(DstReg, TRI)) {
1521        DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
1522        return false;
1523      }
1524
1525      // We must also check for clobbers caused by regmasks.
1526      for (const auto &MO : MI->operands()) {
1527        if (MO.isRegMask() && MO.clobbersPhysReg(DstReg)) {
1528          DEBUG(dbgs() << "\t\tInterference (regmask clobber): " << *MI);
1529          return false;
1530        }
1531      }
1532    }
1533
1534    // We're going to remove the copy which defines a physical reserved
1535    // register, so remove its valno, etc.
1536    DEBUG(dbgs() << "\t\tRemoving phys reg def of " << DstReg << " at "
1537          << CopyRegIdx << "\n");
1538
1539    LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
1540    // Create a new dead def at the new def location.
1541    for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
1542      LiveRange &LR = LIS->getRegUnit(*UI);
1543      LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
1544    }
1545  }
1546
1547  LIS->RemoveMachineInstrFromMaps(CopyMI);
1548  CopyMI->eraseFromParent();
1549
1550  // We don't track kills for reserved registers.
1551  MRI->clearKillFlags(CP.getSrcReg());
1552
1553  return true;
1554}
1555
1556//===----------------------------------------------------------------------===//
1557//                 Interference checking and interval joining
1558//===----------------------------------------------------------------------===//
1559//
1560// In the easiest case, the two live ranges being joined are disjoint, and
1561// there is no interference to consider. It is quite common, though, to have
1562// overlapping live ranges, and we need to check if the interference can be
1563// resolved.
1564//
1565// The live range of a single SSA value forms a sub-tree of the dominator tree.
1566// This means that two SSA values overlap if and only if the def of one value
1567// is contained in the live range of the other value. As a special case, the
1568// overlapping values can be defined at the same index.
1569//
1570// The interference from an overlapping def can be resolved in these cases:
1571//
1572// 1. Coalescable copies. The value is defined by a copy that would become an
1573//    identity copy after joining SrcReg and DstReg. The copy instruction will
1574//    be removed, and the value will be merged with the source value.
1575//
1576//    There can be several copies back and forth, causing many values to be
1577//    merged into one. We compute a list of ultimate values in the joined live
1578//    range as well as a mappings from the old value numbers.
1579//
1580// 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
1581//    predecessors have a live out value. It doesn't cause real interference,
1582//    and can be merged into the value it overlaps. Like a coalescable copy, it
1583//    can be erased after joining.
1584//
1585// 3. Copy of external value. The overlapping def may be a copy of a value that
1586//    is already in the other register. This is like a coalescable copy, but
1587//    the live range of the source register must be trimmed after erasing the
1588//    copy instruction:
1589//
1590//      %src = COPY %ext
1591//      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
1592//
1593// 4. Clobbering undefined lanes. Vector registers are sometimes built by
1594//    defining one lane at a time:
1595//
1596//      %dst:ssub0<def,read-undef> = FOO
1597//      %src = BAR
1598//      %dst:ssub1<def> = COPY %src
1599//
1600//    The live range of %src overlaps the %dst value defined by FOO, but
1601//    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
1602//    which was undef anyway.
1603//
1604//    The value mapping is more complicated in this case. The final live range
1605//    will have different value numbers for both FOO and BAR, but there is no
1606//    simple mapping from old to new values. It may even be necessary to add
1607//    new PHI values.
1608//
1609// 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
1610//    is live, but never read. This can happen because we don't compute
1611//    individual live ranges per lane.
1612//
1613//      %dst<def> = FOO
1614//      %src = BAR
1615//      %dst:ssub1<def> = COPY %src
1616//
1617//    This kind of interference is only resolved locally. If the clobbered
1618//    lane value escapes the block, the join is aborted.
1619
1620namespace {
1621/// Track information about values in a single virtual register about to be
1622/// joined. Objects of this class are always created in pairs - one for each
1623/// side of the CoalescerPair (or one for each lane of a side of the coalescer
1624/// pair)
1625class JoinVals {
1626  /// Live range we work on.
1627  LiveRange &LR;
1628  /// (Main) register we work on.
1629  const unsigned Reg;
1630
1631  /// Reg (and therefore the values in this liverange) will end up as
1632  /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
1633  /// CP.SrcIdx.
1634  const unsigned SubIdx;
1635  /// The LaneMask that this liverange will occupy the coalesced register. May
1636  /// be smaller than the lanemask produced by SubIdx when merging subranges.
1637  const LaneBitmask LaneMask;
1638
1639  /// This is true when joining sub register ranges, false when joining main
1640  /// ranges.
1641  const bool SubRangeJoin;
1642  /// Whether the current LiveInterval tracks subregister liveness.
1643  const bool TrackSubRegLiveness;
1644
1645  /// Values that will be present in the final live range.
1646  SmallVectorImpl<VNInfo*> &NewVNInfo;
1647
1648  const CoalescerPair &CP;
1649  LiveIntervals *LIS;
1650  SlotIndexes *Indexes;
1651  const TargetRegisterInfo *TRI;
1652
1653  /// Value number assignments. Maps value numbers in LI to entries in
1654  /// NewVNInfo. This is suitable for passing to LiveInterval::join().
1655  SmallVector<int, 8> Assignments;
1656
1657  /// Conflict resolution for overlapping values.
1658  enum ConflictResolution {
1659    /// No overlap, simply keep this value.
1660    CR_Keep,
1661
1662    /// Merge this value into OtherVNI and erase the defining instruction.
1663    /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
1664    /// values.
1665    CR_Erase,
1666
1667    /// Merge this value into OtherVNI but keep the defining instruction.
1668    /// This is for the special case where OtherVNI is defined by the same
1669    /// instruction.
1670    CR_Merge,
1671
1672    /// Keep this value, and have it replace OtherVNI where possible. This
1673    /// complicates value mapping since OtherVNI maps to two different values
1674    /// before and after this def.
1675    /// Used when clobbering undefined or dead lanes.
1676    CR_Replace,
1677
1678    /// Unresolved conflict. Visit later when all values have been mapped.
1679    CR_Unresolved,
1680
1681    /// Unresolvable conflict. Abort the join.
1682    CR_Impossible
1683  };
1684
1685  /// Per-value info for LI. The lane bit masks are all relative to the final
1686  /// joined register, so they can be compared directly between SrcReg and
1687  /// DstReg.
1688  struct Val {
1689    ConflictResolution Resolution;
1690
1691    /// Lanes written by this def, 0 for unanalyzed values.
1692    LaneBitmask WriteLanes;
1693
1694    /// Lanes with defined values in this register. Other lanes are undef and
1695    /// safe to clobber.
1696    LaneBitmask ValidLanes;
1697
1698    /// Value in LI being redefined by this def.
1699    VNInfo *RedefVNI;
1700
1701    /// Value in the other live range that overlaps this def, if any.
1702    VNInfo *OtherVNI;
1703
1704    /// Is this value an IMPLICIT_DEF that can be erased?
1705    ///
1706    /// IMPLICIT_DEF values should only exist at the end of a basic block that
1707    /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
1708    /// safely erased if they are overlapping a live value in the other live
1709    /// interval.
1710    ///
1711    /// Weird control flow graphs and incomplete PHI handling in
1712    /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
1713    /// longer live ranges. Such IMPLICIT_DEF values should be treated like
1714    /// normal values.
1715    bool ErasableImplicitDef;
1716
1717    /// True when the live range of this value will be pruned because of an
1718    /// overlapping CR_Replace value in the other live range.
1719    bool Pruned;
1720
1721    /// True once Pruned above has been computed.
1722    bool PrunedComputed;
1723
1724    Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0),
1725            RedefVNI(nullptr), OtherVNI(nullptr), ErasableImplicitDef(false),
1726            Pruned(false), PrunedComputed(false) {}
1727
1728    bool isAnalyzed() const { return WriteLanes != 0; }
1729  };
1730
1731  /// One entry per value number in LI.
1732  SmallVector<Val, 8> Vals;
1733
1734  /// Compute the bitmask of lanes actually written by DefMI.
1735  /// Set Redef if there are any partial register definitions that depend on the
1736  /// previous value of the register.
1737  LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
1738
1739  /// Find the ultimate value that VNI was copied from.
1740  std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
1741
1742  bool valuesIdentical(VNInfo *Val0, VNInfo *Val1, const JoinVals &Other) const;
1743
1744  /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
1745  /// Return a conflict resolution when possible, but leave the hard cases as
1746  /// CR_Unresolved.
1747  /// Recursively calls computeAssignment() on this and Other, guaranteeing that
1748  /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
1749  /// The recursion always goes upwards in the dominator tree, making loops
1750  /// impossible.
1751  ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
1752
1753  /// Compute the value assignment for ValNo in RI.
1754  /// This may be called recursively by analyzeValue(), but never for a ValNo on
1755  /// the stack.
1756  void computeAssignment(unsigned ValNo, JoinVals &Other);
1757
1758  /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
1759  /// the extent of the tainted lanes in the block.
1760  ///
1761  /// Multiple values in Other.LR can be affected since partial redefinitions
1762  /// can preserve previously tainted lanes.
1763  ///
1764  ///   1 %dst = VLOAD           <-- Define all lanes in %dst
1765  ///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
1766  ///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
1767  ///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
1768  ///
1769  /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
1770  /// entry to TaintedVals.
1771  ///
1772  /// Returns false if the tainted lanes extend beyond the basic block.
1773  bool taintExtent(unsigned, LaneBitmask, JoinVals&,
1774                   SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> >&);
1775
1776  /// Return true if MI uses any of the given Lanes from Reg.
1777  /// This does not include partial redefinitions of Reg.
1778  bool usesLanes(const MachineInstr *MI, unsigned, unsigned, LaneBitmask) const;
1779
1780  /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
1781  /// be pruned:
1782  ///
1783  ///   %dst = COPY %src
1784  ///   %src = COPY %dst  <-- This value to be pruned.
1785  ///   %dst = COPY %src  <-- This value is a copy of a pruned value.
1786  bool isPrunedValue(unsigned ValNo, JoinVals &Other);
1787
1788public:
1789  JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask,
1790           SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
1791           LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
1792           bool TrackSubRegLiveness)
1793    : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
1794      SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
1795      NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
1796      TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums())
1797  {}
1798
1799  /// Analyze defs in LR and compute a value mapping in NewVNInfo.
1800  /// Returns false if any conflicts were impossible to resolve.
1801  bool mapValues(JoinVals &Other);
1802
1803  /// Try to resolve conflicts that require all values to be mapped.
1804  /// Returns false if any conflicts were impossible to resolve.
1805  bool resolveConflicts(JoinVals &Other);
1806
1807  /// Prune the live range of values in Other.LR where they would conflict with
1808  /// CR_Replace values in LR. Collect end points for restoring the live range
1809  /// after joining.
1810  void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
1811                   bool changeInstrs);
1812
1813  /// Removes subranges starting at copies that get removed. This sometimes
1814  /// happens when undefined subranges are copied around. These ranges contain
1815  /// no useful information and can be removed.
1816  void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
1817
1818  /// Erase any machine instructions that have been coalesced away.
1819  /// Add erased instructions to ErasedInstrs.
1820  /// Add foreign virtual registers to ShrinkRegs if their live range ended at
1821  /// the erased instrs.
1822  void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
1823                   SmallVectorImpl<unsigned> &ShrinkRegs);
1824
1825  /// Remove liverange defs at places where implicit defs will be removed.
1826  void removeImplicitDefs();
1827
1828  /// Get the value assignments suitable for passing to LiveInterval::join.
1829  const int *getAssignments() const { return Assignments.data(); }
1830};
1831} // end anonymous namespace
1832
1833LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
1834  const {
1835  LaneBitmask L = 0;
1836  for (const MachineOperand &MO : DefMI->operands()) {
1837    if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
1838      continue;
1839    L |= TRI->getSubRegIndexLaneMask(
1840           TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
1841    if (MO.readsReg())
1842      Redef = true;
1843  }
1844  return L;
1845}
1846
1847std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
1848    const VNInfo *VNI) const {
1849  unsigned Reg = this->Reg;
1850
1851  while (!VNI->isPHIDef()) {
1852    SlotIndex Def = VNI->def;
1853    MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
1854    assert(MI && "No defining instruction");
1855    if (!MI->isFullCopy())
1856      return std::make_pair(VNI, Reg);
1857    unsigned SrcReg = MI->getOperand(1).getReg();
1858    if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1859      return std::make_pair(VNI, Reg);
1860
1861    const LiveInterval &LI = LIS->getInterval(SrcReg);
1862    const VNInfo *ValueIn;
1863    // No subrange involved.
1864    if (!SubRangeJoin || !LI.hasSubRanges()) {
1865      LiveQueryResult LRQ = LI.Query(Def);
1866      ValueIn = LRQ.valueIn();
1867    } else {
1868      // Query subranges. Pick the first matching one.
1869      ValueIn = nullptr;
1870      for (const LiveInterval::SubRange &S : LI.subranges()) {
1871        // Transform lanemask to a mask in the joined live interval.
1872        LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
1873        if ((SMask & LaneMask) == 0)
1874          continue;
1875        LiveQueryResult LRQ = S.Query(Def);
1876        ValueIn = LRQ.valueIn();
1877        break;
1878      }
1879    }
1880    if (ValueIn == nullptr)
1881      break;
1882    VNI = ValueIn;
1883    Reg = SrcReg;
1884  }
1885  return std::make_pair(VNI, Reg);
1886}
1887
1888bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
1889                               const JoinVals &Other) const {
1890  const VNInfo *Orig0;
1891  unsigned Reg0;
1892  std::tie(Orig0, Reg0) = followCopyChain(Value0);
1893  if (Orig0 == Value1)
1894    return true;
1895
1896  const VNInfo *Orig1;
1897  unsigned Reg1;
1898  std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
1899
1900  // The values are equal if they are defined at the same place and use the
1901  // same register. Note that we cannot compare VNInfos directly as some of
1902  // them might be from a copy created in mergeSubRangeInto()  while the other
1903  // is from the original LiveInterval.
1904  return Orig0->def == Orig1->def && Reg0 == Reg1;
1905}
1906
1907JoinVals::ConflictResolution
1908JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
1909  Val &V = Vals[ValNo];
1910  assert(!V.isAnalyzed() && "Value has already been analyzed!");
1911  VNInfo *VNI = LR.getValNumInfo(ValNo);
1912  if (VNI->isUnused()) {
1913    V.WriteLanes = ~0u;
1914    return CR_Keep;
1915  }
1916
1917  // Get the instruction defining this value, compute the lanes written.
1918  const MachineInstr *DefMI = nullptr;
1919  if (VNI->isPHIDef()) {
1920    // Conservatively assume that all lanes in a PHI are valid.
1921    LaneBitmask Lanes = SubRangeJoin ? 1 : TRI->getSubRegIndexLaneMask(SubIdx);
1922    V.ValidLanes = V.WriteLanes = Lanes;
1923  } else {
1924    DefMI = Indexes->getInstructionFromIndex(VNI->def);
1925    assert(DefMI != nullptr);
1926    if (SubRangeJoin) {
1927      // We don't care about the lanes when joining subregister ranges.
1928      V.WriteLanes = V.ValidLanes = 1;
1929      if (DefMI->isImplicitDef()) {
1930        V.ValidLanes = 0;
1931        V.ErasableImplicitDef = true;
1932      }
1933    } else {
1934      bool Redef = false;
1935      V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
1936
1937      // If this is a read-modify-write instruction, there may be more valid
1938      // lanes than the ones written by this instruction.
1939      // This only covers partial redef operands. DefMI may have normal use
1940      // operands reading the register. They don't contribute valid lanes.
1941      //
1942      // This adds ssub1 to the set of valid lanes in %src:
1943      //
1944      //   %src:ssub1<def> = FOO
1945      //
1946      // This leaves only ssub1 valid, making any other lanes undef:
1947      //
1948      //   %src:ssub1<def,read-undef> = FOO %src:ssub2
1949      //
1950      // The <read-undef> flag on the def operand means that old lane values are
1951      // not important.
1952      if (Redef) {
1953        V.RedefVNI = LR.Query(VNI->def).valueIn();
1954        assert((TrackSubRegLiveness || V.RedefVNI) &&
1955               "Instruction is reading nonexistent value");
1956        if (V.RedefVNI != nullptr) {
1957          computeAssignment(V.RedefVNI->id, Other);
1958          V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
1959        }
1960      }
1961
1962      // An IMPLICIT_DEF writes undef values.
1963      if (DefMI->isImplicitDef()) {
1964        // We normally expect IMPLICIT_DEF values to be live only until the end
1965        // of their block. If the value is really live longer and gets pruned in
1966        // another block, this flag is cleared again.
1967        V.ErasableImplicitDef = true;
1968        V.ValidLanes &= ~V.WriteLanes;
1969      }
1970    }
1971  }
1972
1973  // Find the value in Other that overlaps VNI->def, if any.
1974  LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
1975
1976  // It is possible that both values are defined by the same instruction, or
1977  // the values are PHIs defined in the same block. When that happens, the two
1978  // values should be merged into one, but not into any preceding value.
1979  // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
1980  if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
1981    assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
1982
1983    // One value stays, the other is merged. Keep the earlier one, or the first
1984    // one we see.
1985    if (OtherVNI->def < VNI->def)
1986      Other.computeAssignment(OtherVNI->id, *this);
1987    else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
1988      // This is an early-clobber def overlapping a live-in value in the other
1989      // register. Not mergeable.
1990      V.OtherVNI = OtherLRQ.valueIn();
1991      return CR_Impossible;
1992    }
1993    V.OtherVNI = OtherVNI;
1994    Val &OtherV = Other.Vals[OtherVNI->id];
1995    // Keep this value, check for conflicts when analyzing OtherVNI.
1996    if (!OtherV.isAnalyzed())
1997      return CR_Keep;
1998    // Both sides have been analyzed now.
1999    // Allow overlapping PHI values. Any real interference would show up in a
2000    // predecessor, the PHI itself can't introduce any conflicts.
2001    if (VNI->isPHIDef())
2002      return CR_Merge;
2003    if (V.ValidLanes & OtherV.ValidLanes)
2004      // Overlapping lanes can't be resolved.
2005      return CR_Impossible;
2006    else
2007      return CR_Merge;
2008  }
2009
2010  // No simultaneous def. Is Other live at the def?
2011  V.OtherVNI = OtherLRQ.valueIn();
2012  if (!V.OtherVNI)
2013    // No overlap, no conflict.
2014    return CR_Keep;
2015
2016  assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2017
2018  // We have overlapping values, or possibly a kill of Other.
2019  // Recursively compute assignments up the dominator tree.
2020  Other.computeAssignment(V.OtherVNI->id, *this);
2021  Val &OtherV = Other.Vals[V.OtherVNI->id];
2022
2023  // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2024  // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2025  // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2026  // technically.
2027  //
2028  // WHen it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2029  // to erase the IMPLICIT_DEF instruction.
2030  if (OtherV.ErasableImplicitDef && DefMI &&
2031      DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2032    DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2033                 << " extends into BB#" << DefMI->getParent()->getNumber()
2034                 << ", keeping it.\n");
2035    OtherV.ErasableImplicitDef = false;
2036  }
2037
2038  // Allow overlapping PHI values. Any real interference would show up in a
2039  // predecessor, the PHI itself can't introduce any conflicts.
2040  if (VNI->isPHIDef())
2041    return CR_Replace;
2042
2043  // Check for simple erasable conflicts.
2044  if (DefMI->isImplicitDef()) {
2045    // We need the def for the subregister if there is nothing else live at the
2046    // subrange at this point.
2047    if (TrackSubRegLiveness
2048        && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)) == 0)
2049      return CR_Replace;
2050    return CR_Erase;
2051  }
2052
2053  // Include the non-conflict where DefMI is a coalescable copy that kills
2054  // OtherVNI. We still want the copy erased and value numbers merged.
2055  if (CP.isCoalescable(DefMI)) {
2056    // Some of the lanes copied from OtherVNI may be undef, making them undef
2057    // here too.
2058    V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2059    return CR_Erase;
2060  }
2061
2062  // This may not be a real conflict if DefMI simply kills Other and defines
2063  // VNI.
2064  if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2065    return CR_Keep;
2066
2067  // Handle the case where VNI and OtherVNI can be proven to be identical:
2068  //
2069  //   %other = COPY %ext
2070  //   %this  = COPY %ext <-- Erase this copy
2071  //
2072  if (DefMI->isFullCopy() && !CP.isPartial()
2073      && valuesIdentical(VNI, V.OtherVNI, Other))
2074    return CR_Erase;
2075
2076  // If the lanes written by this instruction were all undef in OtherVNI, it is
2077  // still safe to join the live ranges. This can't be done with a simple value
2078  // mapping, though - OtherVNI will map to multiple values:
2079  //
2080  //   1 %dst:ssub0 = FOO                <-- OtherVNI
2081  //   2 %src = BAR                      <-- VNI
2082  //   3 %dst:ssub1 = COPY %src<kill>    <-- Eliminate this copy.
2083  //   4 BAZ %dst<kill>
2084  //   5 QUUX %src<kill>
2085  //
2086  // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2087  // handles this complex value mapping.
2088  if ((V.WriteLanes & OtherV.ValidLanes) == 0)
2089    return CR_Replace;
2090
2091  // If the other live range is killed by DefMI and the live ranges are still
2092  // overlapping, it must be because we're looking at an early clobber def:
2093  //
2094  //   %dst<def,early-clobber> = ASM %src<kill>
2095  //
2096  // In this case, it is illegal to merge the two live ranges since the early
2097  // clobber def would clobber %src before it was read.
2098  if (OtherLRQ.isKill()) {
2099    // This case where the def doesn't overlap the kill is handled above.
2100    assert(VNI->def.isEarlyClobber() &&
2101           "Only early clobber defs can overlap a kill");
2102    return CR_Impossible;
2103  }
2104
2105  // VNI is clobbering live lanes in OtherVNI, but there is still the
2106  // possibility that no instructions actually read the clobbered lanes.
2107  // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2108  // Otherwise Other.RI wouldn't be live here.
2109  if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0)
2110    return CR_Impossible;
2111
2112  // We need to verify that no instructions are reading the clobbered lanes. To
2113  // save compile time, we'll only check that locally. Don't allow the tainted
2114  // value to escape the basic block.
2115  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2116  if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2117    return CR_Impossible;
2118
2119  // There are still some things that could go wrong besides clobbered lanes
2120  // being read, for example OtherVNI may be only partially redefined in MBB,
2121  // and some clobbered lanes could escape the block. Save this analysis for
2122  // resolveConflicts() when all values have been mapped. We need to know
2123  // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2124  // that now - the recursive analyzeValue() calls must go upwards in the
2125  // dominator tree.
2126  return CR_Unresolved;
2127}
2128
2129void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2130  Val &V = Vals[ValNo];
2131  if (V.isAnalyzed()) {
2132    // Recursion should always move up the dominator tree, so ValNo is not
2133    // supposed to reappear before it has been assigned.
2134    assert(Assignments[ValNo] != -1 && "Bad recursion?");
2135    return;
2136  }
2137  switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2138  case CR_Erase:
2139  case CR_Merge:
2140    // Merge this ValNo into OtherVNI.
2141    assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2142    assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2143    Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2144    DEBUG(dbgs() << "\t\tmerge " << PrintReg(Reg) << ':' << ValNo << '@'
2145                 << LR.getValNumInfo(ValNo)->def << " into "
2146                 << PrintReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2147                 << V.OtherVNI->def << " --> @"
2148                 << NewVNInfo[Assignments[ValNo]]->def << '\n');
2149    break;
2150  case CR_Replace:
2151  case CR_Unresolved: {
2152    // The other value is going to be pruned if this join is successful.
2153    assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2154    Val &OtherV = Other.Vals[V.OtherVNI->id];
2155    // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2156    // its lanes.
2157    if ((OtherV.WriteLanes & ~V.ValidLanes) != 0 && TrackSubRegLiveness)
2158      OtherV.ErasableImplicitDef = false;
2159    OtherV.Pruned = true;
2160  }
2161    // Fall through.
2162  default:
2163    // This value number needs to go in the final joined live range.
2164    Assignments[ValNo] = NewVNInfo.size();
2165    NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2166    break;
2167  }
2168}
2169
2170bool JoinVals::mapValues(JoinVals &Other) {
2171  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2172    computeAssignment(i, Other);
2173    if (Vals[i].Resolution == CR_Impossible) {
2174      DEBUG(dbgs() << "\t\tinterference at " << PrintReg(Reg) << ':' << i
2175                   << '@' << LR.getValNumInfo(i)->def << '\n');
2176      return false;
2177    }
2178  }
2179  return true;
2180}
2181
2182bool JoinVals::
2183taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2184            SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> > &TaintExtent) {
2185  VNInfo *VNI = LR.getValNumInfo(ValNo);
2186  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2187  SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2188
2189  // Scan Other.LR from VNI.def to MBBEnd.
2190  LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2191  assert(OtherI != Other.LR.end() && "No conflict?");
2192  do {
2193    // OtherI is pointing to a tainted value. Abort the join if the tainted
2194    // lanes escape the block.
2195    SlotIndex End = OtherI->end;
2196    if (End >= MBBEnd) {
2197      DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.Reg) << ':'
2198                   << OtherI->valno->id << '@' << OtherI->start << '\n');
2199      return false;
2200    }
2201    DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.Reg) << ':'
2202                 << OtherI->valno->id << '@' << OtherI->start
2203                 << " to " << End << '\n');
2204    // A dead def is not a problem.
2205    if (End.isDead())
2206      break;
2207    TaintExtent.push_back(std::make_pair(End, TaintedLanes));
2208
2209    // Check for another def in the MBB.
2210    if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
2211      break;
2212
2213    // Lanes written by the new def are no longer tainted.
2214    const Val &OV = Other.Vals[OtherI->valno->id];
2215    TaintedLanes &= ~OV.WriteLanes;
2216    if (!OV.RedefVNI)
2217      break;
2218  } while (TaintedLanes);
2219  return true;
2220}
2221
2222bool JoinVals::usesLanes(const MachineInstr *MI, unsigned Reg, unsigned SubIdx,
2223                         LaneBitmask Lanes) const {
2224  if (MI->isDebugValue())
2225    return false;
2226  for (const MachineOperand &MO : MI->operands()) {
2227    if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
2228      continue;
2229    if (!MO.readsReg())
2230      continue;
2231    if (Lanes & TRI->getSubRegIndexLaneMask(
2232                  TRI->composeSubRegIndices(SubIdx, MO.getSubReg())))
2233      return true;
2234  }
2235  return false;
2236}
2237
2238bool JoinVals::resolveConflicts(JoinVals &Other) {
2239  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2240    Val &V = Vals[i];
2241    assert (V.Resolution != CR_Impossible && "Unresolvable conflict");
2242    if (V.Resolution != CR_Unresolved)
2243      continue;
2244    DEBUG(dbgs() << "\t\tconflict at " << PrintReg(Reg) << ':' << i
2245                 << '@' << LR.getValNumInfo(i)->def << '\n');
2246    if (SubRangeJoin)
2247      return false;
2248
2249    ++NumLaneConflicts;
2250    assert(V.OtherVNI && "Inconsistent conflict resolution.");
2251    VNInfo *VNI = LR.getValNumInfo(i);
2252    const Val &OtherV = Other.Vals[V.OtherVNI->id];
2253
2254    // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2255    // join, those lanes will be tainted with a wrong value. Get the extent of
2256    // the tainted lanes.
2257    LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
2258    SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
2259    if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
2260      // Tainted lanes would extend beyond the basic block.
2261      return false;
2262
2263    assert(!TaintExtent.empty() && "There should be at least one conflict.");
2264
2265    // Now look at the instructions from VNI->def to TaintExtent (inclusive).
2266    MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2267    MachineBasicBlock::iterator MI = MBB->begin();
2268    if (!VNI->isPHIDef()) {
2269      MI = Indexes->getInstructionFromIndex(VNI->def);
2270      // No need to check the instruction defining VNI for reads.
2271      ++MI;
2272    }
2273    assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
2274           "Interference ends on VNI->def. Should have been handled earlier");
2275    MachineInstr *LastMI =
2276      Indexes->getInstructionFromIndex(TaintExtent.front().first);
2277    assert(LastMI && "Range must end at a proper instruction");
2278    unsigned TaintNum = 0;
2279    for(;;) {
2280      assert(MI != MBB->end() && "Bad LastMI");
2281      if (usesLanes(MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
2282        DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
2283        return false;
2284      }
2285      // LastMI is the last instruction to use the current value.
2286      if (&*MI == LastMI) {
2287        if (++TaintNum == TaintExtent.size())
2288          break;
2289        LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
2290        assert(LastMI && "Range must end at a proper instruction");
2291        TaintedLanes = TaintExtent[TaintNum].second;
2292      }
2293      ++MI;
2294    }
2295
2296    // The tainted lanes are unused.
2297    V.Resolution = CR_Replace;
2298    ++NumLaneResolves;
2299  }
2300  return true;
2301}
2302
2303bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
2304  Val &V = Vals[ValNo];
2305  if (V.Pruned || V.PrunedComputed)
2306    return V.Pruned;
2307
2308  if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
2309    return V.Pruned;
2310
2311  // Follow copies up the dominator tree and check if any intermediate value
2312  // has been pruned.
2313  V.PrunedComputed = true;
2314  V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
2315  return V.Pruned;
2316}
2317
2318void JoinVals::pruneValues(JoinVals &Other,
2319                           SmallVectorImpl<SlotIndex> &EndPoints,
2320                           bool changeInstrs) {
2321  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2322    SlotIndex Def = LR.getValNumInfo(i)->def;
2323    switch (Vals[i].Resolution) {
2324    case CR_Keep:
2325      break;
2326    case CR_Replace: {
2327      // This value takes precedence over the value in Other.LR.
2328      LIS->pruneValue(Other.LR, Def, &EndPoints);
2329      // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
2330      // instructions are only inserted to provide a live-out value for PHI
2331      // predecessors, so the instruction should simply go away once its value
2332      // has been replaced.
2333      Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
2334      bool EraseImpDef = OtherV.ErasableImplicitDef &&
2335                         OtherV.Resolution == CR_Keep;
2336      if (!Def.isBlock()) {
2337        if (changeInstrs) {
2338          // Remove <def,read-undef> flags. This def is now a partial redef.
2339          // Also remove <def,dead> flags since the joined live range will
2340          // continue past this instruction.
2341          for (MachineOperand &MO :
2342               Indexes->getInstructionFromIndex(Def)->operands()) {
2343            if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
2344              MO.setIsUndef(EraseImpDef);
2345              MO.setIsDead(false);
2346            }
2347          }
2348        }
2349        // This value will reach instructions below, but we need to make sure
2350        // the live range also reaches the instruction at Def.
2351        if (!EraseImpDef)
2352          EndPoints.push_back(Def);
2353      }
2354      DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.Reg) << " at " << Def
2355                   << ": " << Other.LR << '\n');
2356      break;
2357    }
2358    case CR_Erase:
2359    case CR_Merge:
2360      if (isPrunedValue(i, Other)) {
2361        // This value is ultimately a copy of a pruned value in LR or Other.LR.
2362        // We can no longer trust the value mapping computed by
2363        // computeAssignment(), the value that was originally copied could have
2364        // been replaced.
2365        LIS->pruneValue(LR, Def, &EndPoints);
2366        DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(Reg) << " at "
2367                     << Def << ": " << LR << '\n');
2368      }
2369      break;
2370    case CR_Unresolved:
2371    case CR_Impossible:
2372      llvm_unreachable("Unresolved conflicts");
2373    }
2374  }
2375}
2376
2377void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask)
2378{
2379  // Look for values being erased.
2380  bool DidPrune = false;
2381  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2382    if (Vals[i].Resolution != CR_Erase)
2383      continue;
2384
2385    // Check subranges at the point where the copy will be removed.
2386    SlotIndex Def = LR.getValNumInfo(i)->def;
2387    for (LiveInterval::SubRange &S : LI.subranges()) {
2388      LiveQueryResult Q = S.Query(Def);
2389
2390      // If a subrange starts at the copy then an undefined value has been
2391      // copied and we must remove that subrange value as well.
2392      VNInfo *ValueOut = Q.valueOutOrDead();
2393      if (ValueOut != nullptr && Q.valueIn() == nullptr) {
2394        DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
2395                     << " at " << Def << "\n");
2396        LIS->pruneValue(S, Def, nullptr);
2397        DidPrune = true;
2398        // Mark value number as unused.
2399        ValueOut->markUnused();
2400        continue;
2401      }
2402      // If a subrange ends at the copy, then a value was copied but only
2403      // partially used later. Shrink the subregister range appropriately.
2404      if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
2405        DEBUG(dbgs() << "\t\tDead uses at sublane " << PrintLaneMask(S.LaneMask)
2406                     << " at " << Def << "\n");
2407        ShrinkMask |= S.LaneMask;
2408      }
2409    }
2410  }
2411  if (DidPrune)
2412    LI.removeEmptySubRanges();
2413}
2414
2415void JoinVals::removeImplicitDefs() {
2416  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2417    Val &V = Vals[i];
2418    if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
2419      continue;
2420
2421    VNInfo *VNI = LR.getValNumInfo(i);
2422    VNI->markUnused();
2423    LR.removeValNo(VNI);
2424  }
2425}
2426
2427void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2428                           SmallVectorImpl<unsigned> &ShrinkRegs) {
2429  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2430    // Get the def location before markUnused() below invalidates it.
2431    SlotIndex Def = LR.getValNumInfo(i)->def;
2432    switch (Vals[i].Resolution) {
2433    case CR_Keep: {
2434      // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
2435      // longer. The IMPLICIT_DEF instructions are only inserted by
2436      // PHIElimination to guarantee that all PHI predecessors have a value.
2437      if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
2438        break;
2439      // Remove value number i from LR.
2440      VNInfo *VNI = LR.getValNumInfo(i);
2441      LR.removeValNo(VNI);
2442      // Note that this VNInfo is reused and still referenced in NewVNInfo,
2443      // make it appear like an unused value number.
2444      VNI->markUnused();
2445      DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n');
2446      // FALL THROUGH.
2447    }
2448
2449    case CR_Erase: {
2450      MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2451      assert(MI && "No instruction to erase");
2452      if (MI->isCopy()) {
2453        unsigned Reg = MI->getOperand(1).getReg();
2454        if (TargetRegisterInfo::isVirtualRegister(Reg) &&
2455            Reg != CP.getSrcReg() && Reg != CP.getDstReg())
2456          ShrinkRegs.push_back(Reg);
2457      }
2458      ErasedInstrs.insert(MI);
2459      DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
2460      LIS->RemoveMachineInstrFromMaps(MI);
2461      MI->eraseFromParent();
2462      break;
2463    }
2464    default:
2465      break;
2466    }
2467  }
2468}
2469
2470void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
2471                                         LaneBitmask LaneMask,
2472                                         const CoalescerPair &CP) {
2473  SmallVector<VNInfo*, 16> NewVNInfo;
2474  JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
2475                   NewVNInfo, CP, LIS, TRI, true, true);
2476  JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
2477                   NewVNInfo, CP, LIS, TRI, true, true);
2478
2479  // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
2480  // We should be able to resolve all conflicts here as we could successfully do
2481  // it on the mainrange already. There is however a problem when multiple
2482  // ranges get mapped to the "overflow" lane mask bit which creates unexpected
2483  // interferences.
2484  if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
2485    // We already determined that it is legal to merge the intervals, so this
2486    // should never fail.
2487    llvm_unreachable("*** Couldn't join subrange!\n");
2488  }
2489  if (!LHSVals.resolveConflicts(RHSVals) ||
2490      !RHSVals.resolveConflicts(LHSVals)) {
2491    // We already determined that it is legal to merge the intervals, so this
2492    // should never fail.
2493    llvm_unreachable("*** Couldn't join subrange!\n");
2494  }
2495
2496  // The merging algorithm in LiveInterval::join() can't handle conflicting
2497  // value mappings, so we need to remove any live ranges that overlap a
2498  // CR_Replace resolution. Collect a set of end points that can be used to
2499  // restore the live range after joining.
2500  SmallVector<SlotIndex, 8> EndPoints;
2501  LHSVals.pruneValues(RHSVals, EndPoints, false);
2502  RHSVals.pruneValues(LHSVals, EndPoints, false);
2503
2504  LHSVals.removeImplicitDefs();
2505  RHSVals.removeImplicitDefs();
2506
2507  LRange.verify();
2508  RRange.verify();
2509
2510  // Join RRange into LHS.
2511  LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
2512              NewVNInfo);
2513
2514  DEBUG(dbgs() << "\t\tjoined lanes: " << LRange << "\n");
2515  if (EndPoints.empty())
2516    return;
2517
2518  // Recompute the parts of the live range we had to remove because of
2519  // CR_Replace conflicts.
2520  DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
2521               << " points: " << LRange << '\n');
2522  LIS->extendToIndices(LRange, EndPoints);
2523}
2524
2525void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
2526                                          const LiveRange &ToMerge,
2527                                          LaneBitmask LaneMask,
2528                                          CoalescerPair &CP) {
2529  BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
2530  for (LiveInterval::SubRange &R : LI.subranges()) {
2531    LaneBitmask RMask = R.LaneMask;
2532    // LaneMask of subregisters common to subrange R and ToMerge.
2533    LaneBitmask Common = RMask & LaneMask;
2534    // There is nothing to do without common subregs.
2535    if (Common == 0)
2536      continue;
2537
2538    DEBUG(dbgs() << "\t\tCopy+Merge " << PrintLaneMask(RMask) << " into "
2539                 << PrintLaneMask(Common) << '\n');
2540    // LaneMask of subregisters contained in the R range but not in ToMerge,
2541    // they have to split into their own subrange.
2542    LaneBitmask LRest = RMask & ~LaneMask;
2543    LiveInterval::SubRange *CommonRange;
2544    if (LRest != 0) {
2545      R.LaneMask = LRest;
2546      DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(LRest) << '\n');
2547      // Duplicate SubRange for newly merged common stuff.
2548      CommonRange = LI.createSubRangeFrom(Allocator, Common, R);
2549    } else {
2550      // Reuse the existing range.
2551      R.LaneMask = Common;
2552      CommonRange = &R;
2553    }
2554    LiveRange RangeCopy(ToMerge, Allocator);
2555    joinSubRegRanges(*CommonRange, RangeCopy, Common, CP);
2556    LaneMask &= ~RMask;
2557  }
2558
2559  if (LaneMask != 0) {
2560    DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(LaneMask) << '\n');
2561    LI.createSubRangeFrom(Allocator, LaneMask, ToMerge);
2562  }
2563}
2564
2565bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
2566  SmallVector<VNInfo*, 16> NewVNInfo;
2567  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
2568  LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
2569  bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
2570  JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), 0, NewVNInfo, CP, LIS,
2571                   TRI, false, TrackSubRegLiveness);
2572  JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), 0, NewVNInfo, CP, LIS,
2573                   TRI, false, TrackSubRegLiveness);
2574
2575  DEBUG(dbgs() << "\t\tRHS = " << RHS
2576               << "\n\t\tLHS = " << LHS
2577               << '\n');
2578
2579  // First compute NewVNInfo and the simple value mappings.
2580  // Detect impossible conflicts early.
2581  if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
2582    return false;
2583
2584  // Some conflicts can only be resolved after all values have been mapped.
2585  if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
2586    return false;
2587
2588  // All clear, the live ranges can be merged.
2589  if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
2590    BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
2591
2592    // Transform lanemasks from the LHS to masks in the coalesced register and
2593    // create initial subranges if necessary.
2594    unsigned DstIdx = CP.getDstIdx();
2595    if (!LHS.hasSubRanges()) {
2596      LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
2597                                     : TRI->getSubRegIndexLaneMask(DstIdx);
2598      // LHS must support subregs or we wouldn't be in this codepath.
2599      assert(Mask != 0);
2600      LHS.createSubRangeFrom(Allocator, Mask, LHS);
2601    } else if (DstIdx != 0) {
2602      // Transform LHS lanemasks to new register class if necessary.
2603      for (LiveInterval::SubRange &R : LHS.subranges()) {
2604        LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
2605        R.LaneMask = Mask;
2606      }
2607    }
2608    DEBUG(dbgs() << "\t\tLHST = " << PrintReg(CP.getDstReg())
2609                 << ' ' << LHS << '\n');
2610
2611    // Determine lanemasks of RHS in the coalesced register and merge subranges.
2612    unsigned SrcIdx = CP.getSrcIdx();
2613    if (!RHS.hasSubRanges()) {
2614      LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
2615                                     : TRI->getSubRegIndexLaneMask(SrcIdx);
2616      mergeSubRangeInto(LHS, RHS, Mask, CP);
2617    } else {
2618      // Pair up subranges and merge.
2619      for (LiveInterval::SubRange &R : RHS.subranges()) {
2620        LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
2621        mergeSubRangeInto(LHS, R, Mask, CP);
2622      }
2623    }
2624    DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
2625
2626    LHSVals.pruneSubRegValues(LHS, ShrinkMask);
2627    RHSVals.pruneSubRegValues(LHS, ShrinkMask);
2628  }
2629
2630  // The merging algorithm in LiveInterval::join() can't handle conflicting
2631  // value mappings, so we need to remove any live ranges that overlap a
2632  // CR_Replace resolution. Collect a set of end points that can be used to
2633  // restore the live range after joining.
2634  SmallVector<SlotIndex, 8> EndPoints;
2635  LHSVals.pruneValues(RHSVals, EndPoints, true);
2636  RHSVals.pruneValues(LHSVals, EndPoints, true);
2637
2638  // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
2639  // registers to require trimming.
2640  SmallVector<unsigned, 8> ShrinkRegs;
2641  LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
2642  RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
2643  while (!ShrinkRegs.empty())
2644    shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
2645
2646  // Join RHS into LHS.
2647  LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
2648
2649  // Kill flags are going to be wrong if the live ranges were overlapping.
2650  // Eventually, we should simply clear all kill flags when computing live
2651  // ranges. They are reinserted after register allocation.
2652  MRI->clearKillFlags(LHS.reg);
2653  MRI->clearKillFlags(RHS.reg);
2654
2655  if (!EndPoints.empty()) {
2656    // Recompute the parts of the live range we had to remove because of
2657    // CR_Replace conflicts.
2658    DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
2659                 << " points: " << LHS << '\n');
2660    LIS->extendToIndices((LiveRange&)LHS, EndPoints);
2661  }
2662
2663  return true;
2664}
2665
2666bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
2667  return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
2668}
2669
2670namespace {
2671/// Information concerning MBB coalescing priority.
2672struct MBBPriorityInfo {
2673  MachineBasicBlock *MBB;
2674  unsigned Depth;
2675  bool IsSplit;
2676
2677  MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
2678    : MBB(mbb), Depth(depth), IsSplit(issplit) {}
2679};
2680}
2681
2682/// C-style comparator that sorts first based on the loop depth of the basic
2683/// block (the unsigned), and then on the MBB number.
2684///
2685/// EnableGlobalCopies assumes that the primary sort key is loop depth.
2686static int compareMBBPriority(const MBBPriorityInfo *LHS,
2687                              const MBBPriorityInfo *RHS) {
2688  // Deeper loops first
2689  if (LHS->Depth != RHS->Depth)
2690    return LHS->Depth > RHS->Depth ? -1 : 1;
2691
2692  // Try to unsplit critical edges next.
2693  if (LHS->IsSplit != RHS->IsSplit)
2694    return LHS->IsSplit ? -1 : 1;
2695
2696  // Prefer blocks that are more connected in the CFG. This takes care of
2697  // the most difficult copies first while intervals are short.
2698  unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
2699  unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
2700  if (cl != cr)
2701    return cl > cr ? -1 : 1;
2702
2703  // As a last resort, sort by block number.
2704  return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
2705}
2706
2707/// \returns true if the given copy uses or defines a local live range.
2708static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
2709  if (!Copy->isCopy())
2710    return false;
2711
2712  if (Copy->getOperand(1).isUndef())
2713    return false;
2714
2715  unsigned SrcReg = Copy->getOperand(1).getReg();
2716  unsigned DstReg = Copy->getOperand(0).getReg();
2717  if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
2718      || TargetRegisterInfo::isPhysicalRegister(DstReg))
2719    return false;
2720
2721  return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
2722    || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
2723}
2724
2725bool RegisterCoalescer::
2726copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
2727  bool Progress = false;
2728  for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
2729    if (!CurrList[i])
2730      continue;
2731    // Skip instruction pointers that have already been erased, for example by
2732    // dead code elimination.
2733    if (ErasedInstrs.erase(CurrList[i])) {
2734      CurrList[i] = nullptr;
2735      continue;
2736    }
2737    bool Again = false;
2738    bool Success = joinCopy(CurrList[i], Again);
2739    Progress |= Success;
2740    if (Success || !Again)
2741      CurrList[i] = nullptr;
2742  }
2743  return Progress;
2744}
2745
2746/// Check if DstReg is a terminal node.
2747/// I.e., it does not have any affinity other than \p Copy.
2748static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
2749                          const MachineRegisterInfo *MRI) {
2750  assert(Copy.isCopyLike());
2751  // Check if the destination of this copy as any other affinity.
2752  for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
2753    if (&MI != &Copy && MI.isCopyLike())
2754      return false;
2755  return true;
2756}
2757
2758bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
2759  assert(Copy.isCopyLike());
2760  if (!UseTerminalRule)
2761    return false;
2762  unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
2763  isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg);
2764  // Check if the destination of this copy has any other affinity.
2765  if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
2766      // If SrcReg is a physical register, the copy won't be coalesced.
2767      // Ignoring it may have other side effect (like missing
2768      // rematerialization). So keep it.
2769      TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
2770      !isTerminalReg(DstReg, Copy, MRI))
2771    return false;
2772
2773  // DstReg is a terminal node. Check if it interferes with any other
2774  // copy involving SrcReg.
2775  const MachineBasicBlock *OrigBB = Copy.getParent();
2776  const LiveInterval &DstLI = LIS->getInterval(DstReg);
2777  for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
2778    // Technically we should check if the weight of the new copy is
2779    // interesting compared to the other one and update the weight
2780    // of the copies accordingly. However, this would only work if
2781    // we would gather all the copies first then coalesce, whereas
2782    // right now we interleave both actions.
2783    // For now, just consider the copies that are in the same block.
2784    if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
2785      continue;
2786    unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
2787    isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
2788                OtherSubReg);
2789    if (OtherReg == SrcReg)
2790      OtherReg = OtherSrcReg;
2791    // Check if OtherReg is a non-terminal.
2792    if (TargetRegisterInfo::isPhysicalRegister(OtherReg) ||
2793        isTerminalReg(OtherReg, MI, MRI))
2794      continue;
2795    // Check that OtherReg interfere with DstReg.
2796    if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
2797      DEBUG(dbgs() << "Apply terminal rule for: " << PrintReg(DstReg) << '\n');
2798      return true;
2799    }
2800  }
2801  return false;
2802}
2803
2804void
2805RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
2806  DEBUG(dbgs() << MBB->getName() << ":\n");
2807
2808  // Collect all copy-like instructions in MBB. Don't start coalescing anything
2809  // yet, it might invalidate the iterator.
2810  const unsigned PrevSize = WorkList.size();
2811  if (JoinGlobalCopies) {
2812    SmallVector<MachineInstr*, 2> LocalTerminals;
2813    SmallVector<MachineInstr*, 2> GlobalTerminals;
2814    // Coalesce copies bottom-up to coalesce local defs before local uses. They
2815    // are not inherently easier to resolve, but slightly preferable until we
2816    // have local live range splitting. In particular this is required by
2817    // cmp+jmp macro fusion.
2818    for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2819         MII != E; ++MII) {
2820      if (!MII->isCopyLike())
2821        continue;
2822      bool ApplyTerminalRule = applyTerminalRule(*MII);
2823      if (isLocalCopy(&(*MII), LIS)) {
2824        if (ApplyTerminalRule)
2825          LocalTerminals.push_back(&(*MII));
2826        else
2827          LocalWorkList.push_back(&(*MII));
2828      } else {
2829        if (ApplyTerminalRule)
2830          GlobalTerminals.push_back(&(*MII));
2831        else
2832          WorkList.push_back(&(*MII));
2833      }
2834    }
2835    // Append the copies evicted by the terminal rule at the end of the list.
2836    LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
2837    WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
2838  }
2839  else {
2840    SmallVector<MachineInstr*, 2> Terminals;
2841     for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2842          MII != E; ++MII)
2843       if (MII->isCopyLike()) {
2844        if (applyTerminalRule(*MII))
2845          Terminals.push_back(&(*MII));
2846        else
2847          WorkList.push_back(MII);
2848       }
2849     // Append the copies evicted by the terminal rule at the end of the list.
2850     WorkList.append(Terminals.begin(), Terminals.end());
2851  }
2852  // Try coalescing the collected copies immediately, and remove the nulls.
2853  // This prevents the WorkList from getting too large since most copies are
2854  // joinable on the first attempt.
2855  MutableArrayRef<MachineInstr*>
2856    CurrList(WorkList.begin() + PrevSize, WorkList.end());
2857  if (copyCoalesceWorkList(CurrList))
2858    WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
2859                               (MachineInstr*)nullptr), WorkList.end());
2860}
2861
2862void RegisterCoalescer::coalesceLocals() {
2863  copyCoalesceWorkList(LocalWorkList);
2864  for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
2865    if (LocalWorkList[j])
2866      WorkList.push_back(LocalWorkList[j]);
2867  }
2868  LocalWorkList.clear();
2869}
2870
2871void RegisterCoalescer::joinAllIntervals() {
2872  DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
2873  assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
2874
2875  std::vector<MBBPriorityInfo> MBBs;
2876  MBBs.reserve(MF->size());
2877  for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
2878    MachineBasicBlock *MBB = &*I;
2879    MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
2880                                   JoinSplitEdges && isSplitEdge(MBB)));
2881  }
2882  array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
2883
2884  // Coalesce intervals in MBB priority order.
2885  unsigned CurrDepth = UINT_MAX;
2886  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
2887    // Try coalescing the collected local copies for deeper loops.
2888    if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
2889      coalesceLocals();
2890      CurrDepth = MBBs[i].Depth;
2891    }
2892    copyCoalesceInMBB(MBBs[i].MBB);
2893  }
2894  coalesceLocals();
2895
2896  // Joining intervals can allow other intervals to be joined.  Iteratively join
2897  // until we make no progress.
2898  while (copyCoalesceWorkList(WorkList))
2899    /* empty */ ;
2900}
2901
2902void RegisterCoalescer::releaseMemory() {
2903  ErasedInstrs.clear();
2904  WorkList.clear();
2905  DeadDefs.clear();
2906  InflateRegs.clear();
2907}
2908
2909bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
2910  MF = &fn;
2911  MRI = &fn.getRegInfo();
2912  TM = &fn.getTarget();
2913  const TargetSubtargetInfo &STI = fn.getSubtarget();
2914  TRI = STI.getRegisterInfo();
2915  TII = STI.getInstrInfo();
2916  LIS = &getAnalysis<LiveIntervals>();
2917  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2918  Loops = &getAnalysis<MachineLoopInfo>();
2919  if (EnableGlobalCopies == cl::BOU_UNSET)
2920    JoinGlobalCopies = STI.enableJoinGlobalCopies();
2921  else
2922    JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
2923
2924  // The MachineScheduler does not currently require JoinSplitEdges. This will
2925  // either be enabled unconditionally or replaced by a more general live range
2926  // splitting optimization.
2927  JoinSplitEdges = EnableJoinSplits;
2928
2929  DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
2930               << "********** Function: " << MF->getName() << '\n');
2931
2932  if (VerifyCoalescing)
2933    MF->verify(this, "Before register coalescing");
2934
2935  RegClassInfo.runOnMachineFunction(fn);
2936
2937  // Join (coalesce) intervals if requested.
2938  if (EnableJoining)
2939    joinAllIntervals();
2940
2941  // After deleting a lot of copies, register classes may be less constrained.
2942  // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
2943  // DPR inflation.
2944  array_pod_sort(InflateRegs.begin(), InflateRegs.end());
2945  InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
2946                    InflateRegs.end());
2947  DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
2948  for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
2949    unsigned Reg = InflateRegs[i];
2950    if (MRI->reg_nodbg_empty(Reg))
2951      continue;
2952    if (MRI->recomputeRegClass(Reg)) {
2953      DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
2954                   << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
2955      ++NumInflated;
2956
2957      LiveInterval &LI = LIS->getInterval(Reg);
2958      if (LI.hasSubRanges()) {
2959        // If the inflated register class does not support subregisters anymore
2960        // remove the subranges.
2961        if (!MRI->shouldTrackSubRegLiveness(Reg)) {
2962          LI.clearSubRanges();
2963        } else {
2964#ifndef NDEBUG
2965          LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2966          // If subranges are still supported, then the same subregs
2967          // should still be supported.
2968          for (LiveInterval::SubRange &S : LI.subranges()) {
2969            assert((S.LaneMask & ~MaxMask) == 0);
2970          }
2971#endif
2972        }
2973      }
2974    }
2975  }
2976
2977  DEBUG(dump());
2978  if (VerifyCoalescing)
2979    MF->verify(this, "After register coalescing");
2980  return true;
2981}
2982
2983void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
2984   LIS->print(O, m);
2985}
2986