RegisterCoalescer.cpp revision 288943
1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic RegisterCoalescer interface which
11// is used as the common interface used by all clients and
12// implementations of register coalescing.
13//
14//===----------------------------------------------------------------------===//
15
16#include "RegisterCoalescer.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/CodeGen/LiveIntervalAnalysis.h"
22#include "llvm/CodeGen/LiveRangeEdit.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/MachineLoopInfo.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/Passes.h"
28#include "llvm/CodeGen/RegisterClassInfo.h"
29#include "llvm/CodeGen/VirtRegMap.h"
30#include "llvm/IR/Value.h"
31#include "llvm/Pass.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/Format.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Target/TargetRegisterInfo.h"
40#include "llvm/Target/TargetSubtargetInfo.h"
41#include <algorithm>
42#include <cmath>
43using namespace llvm;
44
45#define DEBUG_TYPE "regalloc"
46
47STATISTIC(numJoins    , "Number of interval joins performed");
48STATISTIC(numCrossRCs , "Number of cross class joins performed");
49STATISTIC(numCommutes , "Number of instruction commuting performed");
50STATISTIC(numExtends  , "Number of copies extended");
51STATISTIC(NumReMats   , "Number of instructions re-materialized");
52STATISTIC(NumInflated , "Number of register classes inflated");
53STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
54STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
55
56static cl::opt<bool>
57EnableJoining("join-liveintervals",
58              cl::desc("Coalesce copies (default=true)"),
59              cl::init(true));
60
61static cl::opt<bool> UseTerminalRule("terminal-rule",
62                                     cl::desc("Apply the terminal rule"),
63                                     cl::init(false), cl::Hidden);
64
65/// Temporary flag to test critical edge unsplitting.
66static cl::opt<bool>
67EnableJoinSplits("join-splitedges",
68  cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
69
70/// Temporary flag to test global copy optimization.
71static cl::opt<cl::boolOrDefault>
72EnableGlobalCopies("join-globalcopies",
73  cl::desc("Coalesce copies that span blocks (default=subtarget)"),
74  cl::init(cl::BOU_UNSET), cl::Hidden);
75
76static cl::opt<bool>
77VerifyCoalescing("verify-coalescing",
78         cl::desc("Verify machine instrs before and after register coalescing"),
79         cl::Hidden);
80
81namespace {
82  class RegisterCoalescer : public MachineFunctionPass,
83                            private LiveRangeEdit::Delegate {
84    MachineFunction* MF;
85    MachineRegisterInfo* MRI;
86    const TargetMachine* TM;
87    const TargetRegisterInfo* TRI;
88    const TargetInstrInfo* TII;
89    LiveIntervals *LIS;
90    const MachineLoopInfo* Loops;
91    AliasAnalysis *AA;
92    RegisterClassInfo RegClassInfo;
93
94    /// A LaneMask to remember on which subregister live ranges we need to call
95    /// shrinkToUses() later.
96    unsigned ShrinkMask;
97
98    /// True if the main range of the currently coalesced intervals should be
99    /// checked for smaller live intervals.
100    bool ShrinkMainRange;
101
102    /// \brief True if the coalescer should aggressively coalesce global copies
103    /// in favor of keeping local copies.
104    bool JoinGlobalCopies;
105
106    /// \brief True if the coalescer should aggressively coalesce fall-thru
107    /// blocks exclusively containing copies.
108    bool JoinSplitEdges;
109
110    /// Copy instructions yet to be coalesced.
111    SmallVector<MachineInstr*, 8> WorkList;
112    SmallVector<MachineInstr*, 8> LocalWorkList;
113
114    /// Set of instruction pointers that have been erased, and
115    /// that may be present in WorkList.
116    SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
117
118    /// Dead instructions that are about to be deleted.
119    SmallVector<MachineInstr*, 8> DeadDefs;
120
121    /// Virtual registers to be considered for register class inflation.
122    SmallVector<unsigned, 8> InflateRegs;
123
124    /// Recursively eliminate dead defs in DeadDefs.
125    void eliminateDeadDefs();
126
127    /// LiveRangeEdit callback for eliminateDeadDefs().
128    void LRE_WillEraseInstruction(MachineInstr *MI) override;
129
130    /// Coalesce the LocalWorkList.
131    void coalesceLocals();
132
133    /// Join compatible live intervals
134    void joinAllIntervals();
135
136    /// Coalesce copies in the specified MBB, putting
137    /// copies that cannot yet be coalesced into WorkList.
138    void copyCoalesceInMBB(MachineBasicBlock *MBB);
139
140    /// Tries to coalesce all copies in CurrList. Returns true if any progress
141    /// was made.
142    bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
143
144    /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
145    /// src/dst of the copy instruction CopyMI.  This returns true if the copy
146    /// was successfully coalesced away. If it is not currently possible to
147    /// coalesce this interval, but it may be possible if other things get
148    /// coalesced, then it returns true by reference in 'Again'.
149    bool joinCopy(MachineInstr *TheCopy, bool &Again);
150
151    /// Attempt to join these two intervals.  On failure, this
152    /// returns false.  The output "SrcInt" will not have been modified, so we
153    /// can use this information below to update aliases.
154    bool joinIntervals(CoalescerPair &CP);
155
156    /// Attempt joining two virtual registers. Return true on success.
157    bool joinVirtRegs(CoalescerPair &CP);
158
159    /// Attempt joining with a reserved physreg.
160    bool joinReservedPhysReg(CoalescerPair &CP);
161
162    /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
163    /// Subranges in @p LI which only partially interfere with the desired
164    /// LaneMask are split as necessary. @p LaneMask are the lanes that
165    /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
166    /// lanemasks already adjusted to the coalesced register.
167    /// @returns false if live range conflicts couldn't get resolved.
168    bool mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
169                           unsigned LaneMask, CoalescerPair &CP);
170
171    /// Join the liveranges of two subregisters. Joins @p RRange into
172    /// @p LRange, @p RRange may be invalid afterwards.
173    /// @returns false if live range conflicts couldn't get resolved.
174    bool joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
175                          unsigned LaneMask, const CoalescerPair &CP);
176
177    /// We found a non-trivially-coalescable copy. If the source value number is
178    /// defined by a copy from the destination reg see if we can merge these two
179    /// destination reg valno# into a single value number, eliminating a copy.
180    /// This returns true if an interval was modified.
181    bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
182
183    /// Return true if there are definitions of IntB
184    /// other than BValNo val# that can reach uses of AValno val# of IntA.
185    bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
186                              VNInfo *AValNo, VNInfo *BValNo);
187
188    /// We found a non-trivially-coalescable copy.
189    /// If the source value number is defined by a commutable instruction and
190    /// its other operand is coalesced to the copy dest register, see if we
191    /// can transform the copy into a noop by commuting the definition.
192    /// This returns true if an interval was modified.
193    bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
194
195    /// If the source of a copy is defined by a
196    /// trivial computation, replace the copy by rematerialize the definition.
197    bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
198                                 bool &IsDefCopy);
199
200    /// Return true if a copy involving a physreg should be joined.
201    bool canJoinPhys(const CoalescerPair &CP);
202
203    /// Replace all defs and uses of SrcReg to DstReg and update the subregister
204    /// number if it is not zero. If DstReg is a physical register and the
205    /// existing subregister number of the def / use being updated is not zero,
206    /// make sure to set it to the correct physical subregister.
207    void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
208
209    /// Handle copies of undef values.
210    /// Returns true if @p CopyMI was a copy of an undef value and eliminated.
211    bool eliminateUndefCopy(MachineInstr *CopyMI);
212
213    /// Check whether or not we should apply the terminal rule on the
214    /// destination (Dst) of \p Copy.
215    /// When the terminal rule applies, Copy is not profitable to
216    /// coalesce.
217    /// Dst is terminal if it has exactly one affinity (Dst, Src) and
218    /// at least one interference (Dst, Dst2). If Dst is terminal, the
219    /// terminal rule consists in checking that at least one of
220    /// interfering node, say Dst2, has an affinity of equal or greater
221    /// weight with Src.
222    /// In that case, Dst2 and Dst will not be able to be both coalesced
223    /// with Src. Since Dst2 exposes more coalescing opportunities than
224    /// Dst, we can drop \p Copy.
225    bool applyTerminalRule(const MachineInstr &Copy) const;
226
227    /// Check whether or not \p LI is composed by multiple connected
228    /// components and if that is the case, fix that.
229    void splitNewRanges(LiveInterval *LI) {
230      ConnectedVNInfoEqClasses ConEQ(*LIS);
231      unsigned NumComps = ConEQ.Classify(LI);
232      if (NumComps <= 1)
233        return;
234      SmallVector<LiveInterval*, 8> NewComps(1, LI);
235      for (unsigned i = 1; i != NumComps; ++i) {
236        unsigned VReg = MRI->createVirtualRegister(MRI->getRegClass(LI->reg));
237        NewComps.push_back(&LIS->createEmptyInterval(VReg));
238      }
239
240      ConEQ.Distribute(&NewComps[0], *MRI);
241    }
242
243    /// Wrapper method for \see LiveIntervals::shrinkToUses.
244    /// This method does the proper fixing of the live-ranges when the afore
245    /// mentioned method returns true.
246    void shrinkToUses(LiveInterval *LI,
247                      SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
248      if (LIS->shrinkToUses(LI, Dead))
249        // We may have created multiple connected components, split them.
250        splitNewRanges(LI);
251    }
252
253  public:
254    static char ID; ///< Class identification, replacement for typeinfo
255    RegisterCoalescer() : MachineFunctionPass(ID) {
256      initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
257    }
258
259    void getAnalysisUsage(AnalysisUsage &AU) const override;
260
261    void releaseMemory() override;
262
263    /// This is the pass entry point.
264    bool runOnMachineFunction(MachineFunction&) override;
265
266    /// Implement the dump method.
267    void print(raw_ostream &O, const Module* = nullptr) const override;
268  };
269} // end anonymous namespace
270
271char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
272
273INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
274                      "Simple Register Coalescing", false, false)
275INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
276INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
277INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
278INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
279INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
280                    "Simple Register Coalescing", false, false)
281
282char RegisterCoalescer::ID = 0;
283
284static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
285                        unsigned &Src, unsigned &Dst,
286                        unsigned &SrcSub, unsigned &DstSub) {
287  if (MI->isCopy()) {
288    Dst = MI->getOperand(0).getReg();
289    DstSub = MI->getOperand(0).getSubReg();
290    Src = MI->getOperand(1).getReg();
291    SrcSub = MI->getOperand(1).getSubReg();
292  } else if (MI->isSubregToReg()) {
293    Dst = MI->getOperand(0).getReg();
294    DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
295                                      MI->getOperand(3).getImm());
296    Src = MI->getOperand(2).getReg();
297    SrcSub = MI->getOperand(2).getSubReg();
298  } else
299    return false;
300  return true;
301}
302
303/// Return true if this block should be vacated by the coalescer to eliminate
304/// branches. The important cases to handle in the coalescer are critical edges
305/// split during phi elimination which contain only copies. Simple blocks that
306/// contain non-branches should also be vacated, but this can be handled by an
307/// earlier pass similar to early if-conversion.
308static bool isSplitEdge(const MachineBasicBlock *MBB) {
309  if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
310    return false;
311
312  for (const auto &MI : *MBB) {
313    if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
314      return false;
315  }
316  return true;
317}
318
319bool CoalescerPair::setRegisters(const MachineInstr *MI) {
320  SrcReg = DstReg = 0;
321  SrcIdx = DstIdx = 0;
322  NewRC = nullptr;
323  Flipped = CrossClass = false;
324
325  unsigned Src, Dst, SrcSub, DstSub;
326  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
327    return false;
328  Partial = SrcSub || DstSub;
329
330  // If one register is a physreg, it must be Dst.
331  if (TargetRegisterInfo::isPhysicalRegister(Src)) {
332    if (TargetRegisterInfo::isPhysicalRegister(Dst))
333      return false;
334    std::swap(Src, Dst);
335    std::swap(SrcSub, DstSub);
336    Flipped = true;
337  }
338
339  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
340
341  if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
342    // Eliminate DstSub on a physreg.
343    if (DstSub) {
344      Dst = TRI.getSubReg(Dst, DstSub);
345      if (!Dst) return false;
346      DstSub = 0;
347    }
348
349    // Eliminate SrcSub by picking a corresponding Dst superregister.
350    if (SrcSub) {
351      Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
352      if (!Dst) return false;
353    } else if (!MRI.getRegClass(Src)->contains(Dst)) {
354      return false;
355    }
356  } else {
357    // Both registers are virtual.
358    const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
359    const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
360
361    // Both registers have subreg indices.
362    if (SrcSub && DstSub) {
363      // Copies between different sub-registers are never coalescable.
364      if (Src == Dst && SrcSub != DstSub)
365        return false;
366
367      NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
368                                         SrcIdx, DstIdx);
369      if (!NewRC)
370        return false;
371    } else if (DstSub) {
372      // SrcReg will be merged with a sub-register of DstReg.
373      SrcIdx = DstSub;
374      NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
375    } else if (SrcSub) {
376      // DstReg will be merged with a sub-register of SrcReg.
377      DstIdx = SrcSub;
378      NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
379    } else {
380      // This is a straight copy without sub-registers.
381      NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
382    }
383
384    // The combined constraint may be impossible to satisfy.
385    if (!NewRC)
386      return false;
387
388    // Prefer SrcReg to be a sub-register of DstReg.
389    // FIXME: Coalescer should support subregs symmetrically.
390    if (DstIdx && !SrcIdx) {
391      std::swap(Src, Dst);
392      std::swap(SrcIdx, DstIdx);
393      Flipped = !Flipped;
394    }
395
396    CrossClass = NewRC != DstRC || NewRC != SrcRC;
397  }
398  // Check our invariants
399  assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
400  assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
401         "Cannot have a physical SubIdx");
402  SrcReg = Src;
403  DstReg = Dst;
404  return true;
405}
406
407bool CoalescerPair::flip() {
408  if (TargetRegisterInfo::isPhysicalRegister(DstReg))
409    return false;
410  std::swap(SrcReg, DstReg);
411  std::swap(SrcIdx, DstIdx);
412  Flipped = !Flipped;
413  return true;
414}
415
416bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
417  if (!MI)
418    return false;
419  unsigned Src, Dst, SrcSub, DstSub;
420  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
421    return false;
422
423  // Find the virtual register that is SrcReg.
424  if (Dst == SrcReg) {
425    std::swap(Src, Dst);
426    std::swap(SrcSub, DstSub);
427  } else if (Src != SrcReg) {
428    return false;
429  }
430
431  // Now check that Dst matches DstReg.
432  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
433    if (!TargetRegisterInfo::isPhysicalRegister(Dst))
434      return false;
435    assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
436    // DstSub could be set for a physreg from INSERT_SUBREG.
437    if (DstSub)
438      Dst = TRI.getSubReg(Dst, DstSub);
439    // Full copy of Src.
440    if (!SrcSub)
441      return DstReg == Dst;
442    // This is a partial register copy. Check that the parts match.
443    return TRI.getSubReg(DstReg, SrcSub) == Dst;
444  } else {
445    // DstReg is virtual.
446    if (DstReg != Dst)
447      return false;
448    // Registers match, do the subregisters line up?
449    return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
450           TRI.composeSubRegIndices(DstIdx, DstSub);
451  }
452}
453
454void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
455  AU.setPreservesCFG();
456  AU.addRequired<AliasAnalysis>();
457  AU.addRequired<LiveIntervals>();
458  AU.addPreserved<LiveIntervals>();
459  AU.addPreserved<SlotIndexes>();
460  AU.addRequired<MachineLoopInfo>();
461  AU.addPreserved<MachineLoopInfo>();
462  AU.addPreservedID(MachineDominatorsID);
463  MachineFunctionPass::getAnalysisUsage(AU);
464}
465
466void RegisterCoalescer::eliminateDeadDefs() {
467  SmallVector<unsigned, 8> NewRegs;
468  LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
469                nullptr, this).eliminateDeadDefs(DeadDefs);
470}
471
472void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
473  // MI may be in WorkList. Make sure we don't visit it.
474  ErasedInstrs.insert(MI);
475}
476
477bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
478                                             MachineInstr *CopyMI) {
479  assert(!CP.isPartial() && "This doesn't work for partial copies.");
480  assert(!CP.isPhys() && "This doesn't work for physreg copies.");
481
482  LiveInterval &IntA =
483    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
484  LiveInterval &IntB =
485    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
486  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
487
488  // We have a non-trivially-coalescable copy with IntA being the source and
489  // IntB being the dest, thus this defines a value number in IntB.  If the
490  // source value number (in IntA) is defined by a copy from B, see if we can
491  // merge these two pieces of B into a single value number, eliminating a copy.
492  // For example:
493  //
494  //  A3 = B0
495  //    ...
496  //  B1 = A3      <- this copy
497  //
498  // In this case, B0 can be extended to where the B1 copy lives, allowing the
499  // B1 value number to be replaced with B0 (which simplifies the B
500  // liveinterval).
501
502  // BValNo is a value number in B that is defined by a copy from A.  'B1' in
503  // the example above.
504  LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
505  if (BS == IntB.end()) return false;
506  VNInfo *BValNo = BS->valno;
507
508  // Get the location that B is defined at.  Two options: either this value has
509  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
510  // can't process it.
511  if (BValNo->def != CopyIdx) return false;
512
513  // AValNo is the value number in A that defines the copy, A3 in the example.
514  SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
515  LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
516  // The live segment might not exist after fun with physreg coalescing.
517  if (AS == IntA.end()) return false;
518  VNInfo *AValNo = AS->valno;
519
520  // If AValNo is defined as a copy from IntB, we can potentially process this.
521  // Get the instruction that defines this value number.
522  MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
523  // Don't allow any partial copies, even if isCoalescable() allows them.
524  if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
525    return false;
526
527  // Get the Segment in IntB that this value number starts with.
528  LiveInterval::iterator ValS =
529    IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
530  if (ValS == IntB.end())
531    return false;
532
533  // Make sure that the end of the live segment is inside the same block as
534  // CopyMI.
535  MachineInstr *ValSEndInst =
536    LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
537  if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
538    return false;
539
540  // Okay, we now know that ValS ends in the same block that the CopyMI
541  // live-range starts.  If there are no intervening live segments between them
542  // in IntB, we can merge them.
543  if (ValS+1 != BS) return false;
544
545  DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
546
547  SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
548  // We are about to delete CopyMI, so need to remove it as the 'instruction
549  // that defines this value #'. Update the valnum with the new defining
550  // instruction #.
551  BValNo->def = FillerStart;
552
553  // Okay, we can merge them.  We need to insert a new liverange:
554  // [ValS.end, BS.begin) of either value number, then we merge the
555  // two value numbers.
556  IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
557
558  // Okay, merge "B1" into the same value number as "B0".
559  if (BValNo != ValS->valno)
560    IntB.MergeValueNumberInto(BValNo, ValS->valno);
561
562  // Do the same for the subregister segments.
563  for (LiveInterval::SubRange &S : IntB.subranges()) {
564    VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
565    S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
566    VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
567    if (SubBValNo != SubValSNo)
568      S.MergeValueNumberInto(SubBValNo, SubValSNo);
569  }
570
571  DEBUG(dbgs() << "   result = " << IntB << '\n');
572
573  // If the source instruction was killing the source register before the
574  // merge, unset the isKill marker given the live range has been extended.
575  int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
576  if (UIdx != -1) {
577    ValSEndInst->getOperand(UIdx).setIsKill(false);
578  }
579
580  // Rewrite the copy. If the copy instruction was killing the destination
581  // register before the merge, find the last use and trim the live range. That
582  // will also add the isKill marker.
583  CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
584  if (AS->end == CopyIdx)
585    shrinkToUses(&IntA);
586
587  ++numExtends;
588  return true;
589}
590
591bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
592                                             LiveInterval &IntB,
593                                             VNInfo *AValNo,
594                                             VNInfo *BValNo) {
595  // If AValNo has PHI kills, conservatively assume that IntB defs can reach
596  // the PHI values.
597  if (LIS->hasPHIKill(IntA, AValNo))
598    return true;
599
600  for (LiveRange::Segment &ASeg : IntA.segments) {
601    if (ASeg.valno != AValNo) continue;
602    LiveInterval::iterator BI =
603      std::upper_bound(IntB.begin(), IntB.end(), ASeg.start);
604    if (BI != IntB.begin())
605      --BI;
606    for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
607      if (BI->valno == BValNo)
608        continue;
609      if (BI->start <= ASeg.start && BI->end > ASeg.start)
610        return true;
611      if (BI->start > ASeg.start && BI->start < ASeg.end)
612        return true;
613    }
614  }
615  return false;
616}
617
618/// Copy segements with value number @p SrcValNo from liverange @p Src to live
619/// range @Dst and use value number @p DstValNo there.
620static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo,
621                                 const LiveRange &Src, const VNInfo *SrcValNo)
622{
623  for (const LiveRange::Segment &S : Src.segments) {
624    if (S.valno != SrcValNo)
625      continue;
626    Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo));
627  }
628}
629
630bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
631                                                 MachineInstr *CopyMI) {
632  assert(!CP.isPhys());
633
634  LiveInterval &IntA =
635      LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
636  LiveInterval &IntB =
637      LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
638
639  // We found a non-trivially-coalescable copy with IntA being the source and
640  // IntB being the dest, thus this defines a value number in IntB.  If the
641  // source value number (in IntA) is defined by a commutable instruction and
642  // its other operand is coalesced to the copy dest register, see if we can
643  // transform the copy into a noop by commuting the definition. For example,
644  //
645  //  A3 = op A2 B0<kill>
646  //    ...
647  //  B1 = A3      <- this copy
648  //    ...
649  //     = op A3   <- more uses
650  //
651  // ==>
652  //
653  //  B2 = op B0 A2<kill>
654  //    ...
655  //  B1 = B2      <- now an identity copy
656  //    ...
657  //     = op B2   <- more uses
658
659  // BValNo is a value number in B that is defined by a copy from A. 'B1' in
660  // the example above.
661  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
662  VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
663  assert(BValNo != nullptr && BValNo->def == CopyIdx);
664
665  // AValNo is the value number in A that defines the copy, A3 in the example.
666  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
667  assert(AValNo && !AValNo->isUnused() && "COPY source not live");
668  if (AValNo->isPHIDef())
669    return false;
670  MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
671  if (!DefMI)
672    return false;
673  if (!DefMI->isCommutable())
674    return false;
675  // If DefMI is a two-address instruction then commuting it will change the
676  // destination register.
677  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
678  assert(DefIdx != -1);
679  unsigned UseOpIdx;
680  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
681    return false;
682  unsigned Op1, Op2, NewDstIdx;
683  if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
684    return false;
685  if (Op1 == UseOpIdx)
686    NewDstIdx = Op2;
687  else if (Op2 == UseOpIdx)
688    NewDstIdx = Op1;
689  else
690    return false;
691
692  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
693  unsigned NewReg = NewDstMO.getReg();
694  if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
695    return false;
696
697  // Make sure there are no other definitions of IntB that would reach the
698  // uses which the new definition can reach.
699  if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
700    return false;
701
702  // If some of the uses of IntA.reg is already coalesced away, return false.
703  // It's not possible to determine whether it's safe to perform the coalescing.
704  for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
705    MachineInstr *UseMI = MO.getParent();
706    unsigned OpNo = &MO - &UseMI->getOperand(0);
707    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
708    LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
709    if (US == IntA.end() || US->valno != AValNo)
710      continue;
711    // If this use is tied to a def, we can't rewrite the register.
712    if (UseMI->isRegTiedToDefOperand(OpNo))
713      return false;
714  }
715
716  DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
717               << *DefMI);
718
719  // At this point we have decided that it is legal to do this
720  // transformation.  Start by commuting the instruction.
721  MachineBasicBlock *MBB = DefMI->getParent();
722  MachineInstr *NewMI = TII->commuteInstruction(DefMI);
723  if (!NewMI)
724    return false;
725  if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
726      TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
727      !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
728    return false;
729  if (NewMI != DefMI) {
730    LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
731    MachineBasicBlock::iterator Pos = DefMI;
732    MBB->insert(Pos, NewMI);
733    MBB->erase(DefMI);
734  }
735
736  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
737  // A = or A, B
738  // ...
739  // B = A
740  // ...
741  // C = A<kill>
742  // ...
743  //   = B
744
745  // Update uses of IntA of the specific Val# with IntB.
746  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
747                                         UE = MRI->use_end();
748       UI != UE; /* ++UI is below because of possible MI removal */) {
749    MachineOperand &UseMO = *UI;
750    ++UI;
751    if (UseMO.isUndef())
752      continue;
753    MachineInstr *UseMI = UseMO.getParent();
754    if (UseMI->isDebugValue()) {
755      // FIXME These don't have an instruction index.  Not clear we have enough
756      // info to decide whether to do this replacement or not.  For now do it.
757      UseMO.setReg(NewReg);
758      continue;
759    }
760    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
761    LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
762    assert(US != IntA.end() && "Use must be live");
763    if (US->valno != AValNo)
764      continue;
765    // Kill flags are no longer accurate. They are recomputed after RA.
766    UseMO.setIsKill(false);
767    if (TargetRegisterInfo::isPhysicalRegister(NewReg))
768      UseMO.substPhysReg(NewReg, *TRI);
769    else
770      UseMO.setReg(NewReg);
771    if (UseMI == CopyMI)
772      continue;
773    if (!UseMI->isCopy())
774      continue;
775    if (UseMI->getOperand(0).getReg() != IntB.reg ||
776        UseMI->getOperand(0).getSubReg())
777      continue;
778
779    // This copy will become a noop. If it's defining a new val#, merge it into
780    // BValNo.
781    SlotIndex DefIdx = UseIdx.getRegSlot();
782    VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
783    if (!DVNI)
784      continue;
785    DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
786    assert(DVNI->def == DefIdx);
787    BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
788    for (LiveInterval::SubRange &S : IntB.subranges()) {
789      VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
790      if (!SubDVNI)
791        continue;
792      VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
793      assert(SubBValNo->def == CopyIdx);
794      S.MergeValueNumberInto(SubDVNI, SubBValNo);
795    }
796
797    ErasedInstrs.insert(UseMI);
798    LIS->RemoveMachineInstrFromMaps(UseMI);
799    UseMI->eraseFromParent();
800  }
801
802  // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
803  // is updated.
804  BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
805  if (IntB.hasSubRanges()) {
806    if (!IntA.hasSubRanges()) {
807      unsigned Mask = MRI->getMaxLaneMaskForVReg(IntA.reg);
808      IntA.createSubRangeFrom(Allocator, Mask, IntA);
809    }
810    SlotIndex AIdx = CopyIdx.getRegSlot(true);
811    for (LiveInterval::SubRange &SA : IntA.subranges()) {
812      VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
813      assert(ASubValNo != nullptr);
814
815      unsigned AMask = SA.LaneMask;
816      for (LiveInterval::SubRange &SB : IntB.subranges()) {
817        unsigned BMask = SB.LaneMask;
818        unsigned Common = BMask & AMask;
819        if (Common == 0)
820          continue;
821
822        DEBUG(
823            dbgs() << format("\t\tCopy+Merge %04X into %04X\n", BMask, Common));
824        unsigned BRest = BMask & ~AMask;
825        LiveInterval::SubRange *CommonRange;
826        if (BRest != 0) {
827          SB.LaneMask = BRest;
828          DEBUG(dbgs() << format("\t\tReduce Lane to %04X\n", BRest));
829          // Duplicate SubRange for newly merged common stuff.
830          CommonRange = IntB.createSubRangeFrom(Allocator, Common, SB);
831        } else {
832          // We van reuse the L SubRange.
833          SB.LaneMask = Common;
834          CommonRange = &SB;
835        }
836        LiveRange RangeCopy(SB, Allocator);
837
838        VNInfo *BSubValNo = CommonRange->getVNInfoAt(CopyIdx);
839        assert(BSubValNo->def == CopyIdx);
840        BSubValNo->def = ASubValNo->def;
841        addSegmentsWithValNo(*CommonRange, BSubValNo, SA, ASubValNo);
842        AMask &= ~BMask;
843      }
844      if (AMask != 0) {
845        DEBUG(dbgs() << format("\t\tNew Lane %04X\n", AMask));
846        LiveRange *NewRange = IntB.createSubRange(Allocator, AMask);
847        VNInfo *BSubValNo = NewRange->getNextValue(CopyIdx, Allocator);
848        addSegmentsWithValNo(*NewRange, BSubValNo, SA, ASubValNo);
849      }
850    }
851  }
852
853  BValNo->def = AValNo->def;
854  addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
855  DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
856
857  LIS->removeVRegDefAt(IntA, AValNo->def);
858
859  DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
860  ++numCommutes;
861  return true;
862}
863
864/// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
865/// defining a subregister.
866static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
867  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) &&
868         "This code cannot handle physreg aliasing");
869  for (const MachineOperand &Op : MI.operands()) {
870    if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
871      continue;
872    // Return true if we define the full register or don't care about the value
873    // inside other subregisters.
874    if (Op.getSubReg() == 0 || Op.isUndef())
875      return true;
876  }
877  return false;
878}
879
880bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
881                                                MachineInstr *CopyMI,
882                                                bool &IsDefCopy) {
883  IsDefCopy = false;
884  unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
885  unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
886  unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
887  unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
888  if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
889    return false;
890
891  LiveInterval &SrcInt = LIS->getInterval(SrcReg);
892  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI);
893  VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
894  assert(ValNo && "CopyMI input register not live");
895  if (ValNo->isPHIDef() || ValNo->isUnused())
896    return false;
897  MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
898  if (!DefMI)
899    return false;
900  if (DefMI->isCopyLike()) {
901    IsDefCopy = true;
902    return false;
903  }
904  if (!TII->isAsCheapAsAMove(DefMI))
905    return false;
906  if (!TII->isTriviallyReMaterializable(DefMI, AA))
907    return false;
908  if (!definesFullReg(*DefMI, SrcReg))
909    return false;
910  bool SawStore = false;
911  if (!DefMI->isSafeToMove(AA, SawStore))
912    return false;
913  const MCInstrDesc &MCID = DefMI->getDesc();
914  if (MCID.getNumDefs() != 1)
915    return false;
916  // Only support subregister destinations when the def is read-undef.
917  MachineOperand &DstOperand = CopyMI->getOperand(0);
918  unsigned CopyDstReg = DstOperand.getReg();
919  if (DstOperand.getSubReg() && !DstOperand.isUndef())
920    return false;
921
922  // If both SrcIdx and DstIdx are set, correct rematerialization would widen
923  // the register substantially (beyond both source and dest size). This is bad
924  // for performance since it can cascade through a function, introducing many
925  // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
926  // around after a few subreg copies).
927  if (SrcIdx && DstIdx)
928    return false;
929
930  const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
931  if (!DefMI->isImplicitDef()) {
932    if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
933      unsigned NewDstReg = DstReg;
934
935      unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
936                                              DefMI->getOperand(0).getSubReg());
937      if (NewDstIdx)
938        NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
939
940      // Finally, make sure that the physical subregister that will be
941      // constructed later is permitted for the instruction.
942      if (!DefRC->contains(NewDstReg))
943        return false;
944    } else {
945      // Theoretically, some stack frame reference could exist. Just make sure
946      // it hasn't actually happened.
947      assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
948             "Only expect to deal with virtual or physical registers");
949    }
950  }
951
952  MachineBasicBlock *MBB = CopyMI->getParent();
953  MachineBasicBlock::iterator MII =
954    std::next(MachineBasicBlock::iterator(CopyMI));
955  TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, DefMI, *TRI);
956  MachineInstr *NewMI = std::prev(MII);
957
958  // In a situation like the following:
959  //     %vreg0:subreg = instr              ; DefMI, subreg = DstIdx
960  //     %vreg1        = copy %vreg0:subreg ; CopyMI, SrcIdx = 0
961  // instead of widening %vreg1 to the register class of %vreg0 simply do:
962  //     %vreg1 = instr
963  const TargetRegisterClass *NewRC = CP.getNewRC();
964  if (DstIdx != 0) {
965    MachineOperand &DefMO = NewMI->getOperand(0);
966    if (DefMO.getSubReg() == DstIdx) {
967      assert(SrcIdx == 0 && CP.isFlipped()
968             && "Shouldn't have SrcIdx+DstIdx at this point");
969      const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
970      const TargetRegisterClass *CommonRC =
971        TRI->getCommonSubClass(DefRC, DstRC);
972      if (CommonRC != nullptr) {
973        NewRC = CommonRC;
974        DstIdx = 0;
975        DefMO.setSubReg(0);
976      }
977    }
978  }
979
980  LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
981  CopyMI->eraseFromParent();
982  ErasedInstrs.insert(CopyMI);
983
984  // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
985  // We need to remember these so we can add intervals once we insert
986  // NewMI into SlotIndexes.
987  SmallVector<unsigned, 4> NewMIImplDefs;
988  for (unsigned i = NewMI->getDesc().getNumOperands(),
989         e = NewMI->getNumOperands(); i != e; ++i) {
990    MachineOperand &MO = NewMI->getOperand(i);
991    if (MO.isReg() && MO.isDef()) {
992      assert(MO.isImplicit() && MO.isDead() &&
993             TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
994      NewMIImplDefs.push_back(MO.getReg());
995    }
996  }
997
998  if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
999    unsigned NewIdx = NewMI->getOperand(0).getSubReg();
1000
1001    if (DefRC != nullptr) {
1002      if (NewIdx)
1003        NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1004      else
1005        NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1006      assert(NewRC && "subreg chosen for remat incompatible with instruction");
1007    }
1008    MRI->setRegClass(DstReg, NewRC);
1009
1010    updateRegDefsUses(DstReg, DstReg, DstIdx);
1011    NewMI->getOperand(0).setSubReg(NewIdx);
1012  } else if (NewMI->getOperand(0).getReg() != CopyDstReg) {
1013    // The New instruction may be defining a sub-register of what's actually
1014    // been asked for. If so it must implicitly define the whole thing.
1015    assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&
1016           "Only expect virtual or physical registers in remat");
1017    NewMI->getOperand(0).setIsDead(true);
1018    NewMI->addOperand(MachineOperand::CreateReg(CopyDstReg,
1019                                                true  /*IsDef*/,
1020                                                true  /*IsImp*/,
1021                                                false /*IsKill*/));
1022    // Record small dead def live-ranges for all the subregisters
1023    // of the destination register.
1024    // Otherwise, variables that live through may miss some
1025    // interferences, thus creating invalid allocation.
1026    // E.g., i386 code:
1027    // vreg1 = somedef ; vreg1 GR8
1028    // vreg2 = remat ; vreg2 GR32
1029    // CL = COPY vreg2.sub_8bit
1030    // = somedef vreg1 ; vreg1 GR8
1031    // =>
1032    // vreg1 = somedef ; vreg1 GR8
1033    // ECX<def, dead> = remat ; CL<imp-def>
1034    // = somedef vreg1 ; vreg1 GR8
1035    // vreg1 will see the inteferences with CL but not with CH since
1036    // no live-ranges would have been created for ECX.
1037    // Fix that!
1038    SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1039    for (MCRegUnitIterator Units(NewMI->getOperand(0).getReg(), TRI);
1040         Units.isValid(); ++Units)
1041      if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1042        LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1043  }
1044
1045  if (NewMI->getOperand(0).getSubReg())
1046    NewMI->getOperand(0).setIsUndef();
1047
1048  // CopyMI may have implicit operands, transfer them over to the newly
1049  // rematerialized instruction. And update implicit def interval valnos.
1050  for (unsigned i = CopyMI->getDesc().getNumOperands(),
1051         e = CopyMI->getNumOperands(); i != e; ++i) {
1052    MachineOperand &MO = CopyMI->getOperand(i);
1053    if (MO.isReg()) {
1054      assert(MO.isImplicit() && "No explicit operands after implict operands.");
1055      // Discard VReg implicit defs.
1056      if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
1057        NewMI->addOperand(MO);
1058      }
1059    }
1060  }
1061
1062  SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1063  for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1064    unsigned Reg = NewMIImplDefs[i];
1065    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1066      if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1067        LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1068  }
1069
1070  DEBUG(dbgs() << "Remat: " << *NewMI);
1071  ++NumReMats;
1072
1073  // The source interval can become smaller because we removed a use.
1074  shrinkToUses(&SrcInt, &DeadDefs);
1075  if (!DeadDefs.empty()) {
1076    // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1077    // to describe DstReg instead.
1078    for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
1079      MachineInstr *UseMI = UseMO.getParent();
1080      if (UseMI->isDebugValue()) {
1081        UseMO.setReg(DstReg);
1082        DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1083      }
1084    }
1085    eliminateDeadDefs();
1086  }
1087
1088  return true;
1089}
1090
1091bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1092  // ProcessImpicitDefs may leave some copies of <undef> values, it only removes
1093  // local variables. When we have a copy like:
1094  //
1095  //   %vreg1 = COPY %vreg2<undef>
1096  //
1097  // We delete the copy and remove the corresponding value number from %vreg1.
1098  // Any uses of that value number are marked as <undef>.
1099
1100  // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1101  // CoalescerPair may have a new register class with adjusted subreg indices
1102  // at this point.
1103  unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1104  isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
1105
1106  SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
1107  const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1108  // CopyMI is undef iff SrcReg is not live before the instruction.
1109  if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1110    unsigned SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1111    for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1112      if ((SR.LaneMask & SrcMask) == 0)
1113        continue;
1114      if (SR.liveAt(Idx))
1115        return false;
1116    }
1117  } else if (SrcLI.liveAt(Idx))
1118    return false;
1119
1120  DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1121
1122  // Remove any DstReg segments starting at the instruction.
1123  LiveInterval &DstLI = LIS->getInterval(DstReg);
1124  SlotIndex RegIndex = Idx.getRegSlot();
1125  // Remove value or merge with previous one in case of a subregister def.
1126  if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1127    VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1128    DstLI.MergeValueNumberInto(VNI, PrevVNI);
1129
1130    // The affected subregister segments can be removed.
1131    unsigned DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1132    for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1133      if ((SR.LaneMask & DstMask) == 0)
1134        continue;
1135
1136      VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1137      assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1138      SR.removeValNo(SVNI);
1139    }
1140    DstLI.removeEmptySubRanges();
1141  } else
1142    LIS->removeVRegDefAt(DstLI, RegIndex);
1143
1144  // Mark uses as undef.
1145  for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1146    if (MO.isDef() /*|| MO.isUndef()*/)
1147      continue;
1148    const MachineInstr &MI = *MO.getParent();
1149    SlotIndex UseIdx = LIS->getInstructionIndex(&MI);
1150    unsigned UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1151    bool isLive;
1152    if (UseMask != ~0u && DstLI.hasSubRanges()) {
1153      isLive = false;
1154      for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1155        if ((SR.LaneMask & UseMask) == 0)
1156          continue;
1157        if (SR.liveAt(UseIdx)) {
1158          isLive = true;
1159          break;
1160        }
1161      }
1162    } else
1163      isLive = DstLI.liveAt(UseIdx);
1164    if (isLive)
1165      continue;
1166    MO.setIsUndef(true);
1167    DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1168  }
1169  return true;
1170}
1171
1172void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
1173                                          unsigned DstReg,
1174                                          unsigned SubIdx) {
1175  bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1176  LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1177
1178  SmallPtrSet<MachineInstr*, 8> Visited;
1179  for (MachineRegisterInfo::reg_instr_iterator
1180       I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1181       I != E; ) {
1182    MachineInstr *UseMI = &*(I++);
1183
1184    // Each instruction can only be rewritten once because sub-register
1185    // composition is not always idempotent. When SrcReg != DstReg, rewriting
1186    // the UseMI operands removes them from the SrcReg use-def chain, but when
1187    // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1188    // operands mentioning the virtual register.
1189    if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1190      continue;
1191
1192    SmallVector<unsigned,8> Ops;
1193    bool Reads, Writes;
1194    std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1195
1196    // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1197    // because SrcReg is a sub-register.
1198    if (DstInt && !Reads && SubIdx)
1199      Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI));
1200
1201    // Replace SrcReg with DstReg in all UseMI operands.
1202    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1203      MachineOperand &MO = UseMI->getOperand(Ops[i]);
1204
1205      // Adjust <undef> flags in case of sub-register joins. We don't want to
1206      // turn a full def into a read-modify-write sub-register def and vice
1207      // versa.
1208      if (SubIdx && MO.isDef())
1209        MO.setIsUndef(!Reads);
1210
1211      // A subreg use of a partially undef (super) register may be a complete
1212      // undef use now and then has to be marked that way.
1213      if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
1214        if (!DstInt->hasSubRanges()) {
1215          BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1216          unsigned Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg);
1217          DstInt->createSubRangeFrom(Allocator, Mask, *DstInt);
1218        }
1219        unsigned Mask = TRI->getSubRegIndexLaneMask(SubIdx);
1220        bool IsUndef = true;
1221        SlotIndex MIIdx = UseMI->isDebugValue()
1222          ? LIS->getSlotIndexes()->getIndexBefore(UseMI)
1223          : LIS->getInstructionIndex(UseMI);
1224        SlotIndex UseIdx = MIIdx.getRegSlot(true);
1225        for (LiveInterval::SubRange &S : DstInt->subranges()) {
1226          if ((S.LaneMask & Mask) == 0)
1227            continue;
1228          if (S.liveAt(UseIdx)) {
1229            IsUndef = false;
1230            break;
1231          }
1232        }
1233        if (IsUndef) {
1234          MO.setIsUndef(true);
1235          // We found out some subregister use is actually reading an undefined
1236          // value. In some cases the whole vreg has become undefined at this
1237          // point so we have to potentially shrink the main range if the
1238          // use was ending a live segment there.
1239          LiveQueryResult Q = DstInt->Query(MIIdx);
1240          if (Q.valueOut() == nullptr)
1241            ShrinkMainRange = true;
1242        }
1243      }
1244
1245      if (DstIsPhys)
1246        MO.substPhysReg(DstReg, *TRI);
1247      else
1248        MO.substVirtReg(DstReg, SubIdx, *TRI);
1249    }
1250
1251    DEBUG({
1252        dbgs() << "\t\tupdated: ";
1253        if (!UseMI->isDebugValue())
1254          dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
1255        dbgs() << *UseMI;
1256      });
1257  }
1258}
1259
1260bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1261  // Always join simple intervals that are defined by a single copy from a
1262  // reserved register. This doesn't increase register pressure, so it is
1263  // always beneficial.
1264  if (!MRI->isReserved(CP.getDstReg())) {
1265    DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1266    return false;
1267  }
1268
1269  LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1270  if (JoinVInt.containsOneValue())
1271    return true;
1272
1273  DEBUG(dbgs() << "\tCannot join complex intervals into reserved register.\n");
1274  return false;
1275}
1276
1277bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1278
1279  Again = false;
1280  DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
1281
1282  CoalescerPair CP(*TRI);
1283  if (!CP.setRegisters(CopyMI)) {
1284    DEBUG(dbgs() << "\tNot coalescable.\n");
1285    return false;
1286  }
1287
1288  if (CP.getNewRC()) {
1289    auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1290    auto DstRC = MRI->getRegClass(CP.getDstReg());
1291    unsigned SrcIdx = CP.getSrcIdx();
1292    unsigned DstIdx = CP.getDstIdx();
1293    if (CP.isFlipped()) {
1294      std::swap(SrcIdx, DstIdx);
1295      std::swap(SrcRC, DstRC);
1296    }
1297    if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1298                            CP.getNewRC())) {
1299      DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1300      return false;
1301    }
1302  }
1303
1304  // Dead code elimination. This really should be handled by MachineDCE, but
1305  // sometimes dead copies slip through, and we can't generate invalid live
1306  // ranges.
1307  if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1308    DEBUG(dbgs() << "\tCopy is dead.\n");
1309    DeadDefs.push_back(CopyMI);
1310    eliminateDeadDefs();
1311    return true;
1312  }
1313
1314  // Eliminate undefs.
1315  if (!CP.isPhys() && eliminateUndefCopy(CopyMI)) {
1316    LIS->RemoveMachineInstrFromMaps(CopyMI);
1317    CopyMI->eraseFromParent();
1318    return false;  // Not coalescable.
1319  }
1320
1321  // Coalesced copies are normally removed immediately, but transformations
1322  // like removeCopyByCommutingDef() can inadvertently create identity copies.
1323  // When that happens, just join the values and remove the copy.
1324  if (CP.getSrcReg() == CP.getDstReg()) {
1325    LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1326    DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1327    const SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI);
1328    LiveQueryResult LRQ = LI.Query(CopyIdx);
1329    if (VNInfo *DefVNI = LRQ.valueDefined()) {
1330      VNInfo *ReadVNI = LRQ.valueIn();
1331      assert(ReadVNI && "No value before copy and no <undef> flag.");
1332      assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1333      LI.MergeValueNumberInto(DefVNI, ReadVNI);
1334
1335      // Process subregister liveranges.
1336      for (LiveInterval::SubRange &S : LI.subranges()) {
1337        LiveQueryResult SLRQ = S.Query(CopyIdx);
1338        if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1339          VNInfo *SReadVNI = SLRQ.valueIn();
1340          S.MergeValueNumberInto(SDefVNI, SReadVNI);
1341        }
1342      }
1343      DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
1344    }
1345    LIS->RemoveMachineInstrFromMaps(CopyMI);
1346    CopyMI->eraseFromParent();
1347    return true;
1348  }
1349
1350  // Enforce policies.
1351  if (CP.isPhys()) {
1352    DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
1353                 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
1354                 << '\n');
1355    if (!canJoinPhys(CP)) {
1356      // Before giving up coalescing, if definition of source is defined by
1357      // trivial computation, try rematerializing it.
1358      bool IsDefCopy;
1359      if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1360        return true;
1361      if (IsDefCopy)
1362        Again = true;  // May be possible to coalesce later.
1363      return false;
1364    }
1365  } else {
1366    // When possible, let DstReg be the larger interval.
1367    if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1368                           LIS->getInterval(CP.getDstReg()).size())
1369      CP.flip();
1370
1371    DEBUG({
1372      dbgs() << "\tConsidering merging to "
1373             << TRI->getRegClassName(CP.getNewRC()) << " with ";
1374      if (CP.getDstIdx() && CP.getSrcIdx())
1375        dbgs() << PrintReg(CP.getDstReg()) << " in "
1376               << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1377               << PrintReg(CP.getSrcReg()) << " in "
1378               << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1379      else
1380        dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
1381               << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1382    });
1383  }
1384
1385  ShrinkMask = 0;
1386  ShrinkMainRange = false;
1387
1388  // Okay, attempt to join these two intervals.  On failure, this returns false.
1389  // Otherwise, if one of the intervals being joined is a physreg, this method
1390  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1391  // been modified, so we can use this information below to update aliases.
1392  if (!joinIntervals(CP)) {
1393    // Coalescing failed.
1394
1395    // If definition of source is defined by trivial computation, try
1396    // rematerializing it.
1397    bool IsDefCopy;
1398    if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1399      return true;
1400
1401    // If we can eliminate the copy without merging the live segments, do so
1402    // now.
1403    if (!CP.isPartial() && !CP.isPhys()) {
1404      if (adjustCopiesBackFrom(CP, CopyMI) ||
1405          removeCopyByCommutingDef(CP, CopyMI)) {
1406        LIS->RemoveMachineInstrFromMaps(CopyMI);
1407        CopyMI->eraseFromParent();
1408        DEBUG(dbgs() << "\tTrivial!\n");
1409        return true;
1410      }
1411    }
1412
1413    // Otherwise, we are unable to join the intervals.
1414    DEBUG(dbgs() << "\tInterference!\n");
1415    Again = true;  // May be possible to coalesce later.
1416    return false;
1417  }
1418
1419  // Coalescing to a virtual register that is of a sub-register class of the
1420  // other. Make sure the resulting register is set to the right register class.
1421  if (CP.isCrossClass()) {
1422    ++numCrossRCs;
1423    MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1424  }
1425
1426  // Removing sub-register copies can ease the register class constraints.
1427  // Make sure we attempt to inflate the register class of DstReg.
1428  if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1429    InflateRegs.push_back(CP.getDstReg());
1430
1431  // CopyMI has been erased by joinIntervals at this point. Remove it from
1432  // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1433  // to the work list. This keeps ErasedInstrs from growing needlessly.
1434  ErasedInstrs.erase(CopyMI);
1435
1436  // Rewrite all SrcReg operands to DstReg.
1437  // Also update DstReg operands to include DstIdx if it is set.
1438  if (CP.getDstIdx())
1439    updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1440  updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1441
1442  // Shrink subregister ranges if necessary.
1443  if (ShrinkMask != 0) {
1444    LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1445    for (LiveInterval::SubRange &S : LI.subranges()) {
1446      if ((S.LaneMask & ShrinkMask) == 0)
1447        continue;
1448      DEBUG(dbgs() << "Shrink LaneUses (Lane "
1449                   << format("%04X", S.LaneMask) << ")\n");
1450      LIS->shrinkToUses(S, LI.reg);
1451    }
1452    LI.removeEmptySubRanges();
1453  }
1454  if (ShrinkMainRange) {
1455    LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1456    shrinkToUses(&LI);
1457  }
1458
1459  // SrcReg is guaranteed to be the register whose live interval that is
1460  // being merged.
1461  LIS->removeInterval(CP.getSrcReg());
1462
1463  // Update regalloc hint.
1464  TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1465
1466  DEBUG({
1467    dbgs() << "\tSuccess: " << PrintReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
1468           << " -> " << PrintReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
1469    dbgs() << "\tResult = ";
1470    if (CP.isPhys())
1471      dbgs() << PrintReg(CP.getDstReg(), TRI);
1472    else
1473      dbgs() << LIS->getInterval(CP.getDstReg());
1474    dbgs() << '\n';
1475  });
1476
1477  ++numJoins;
1478  return true;
1479}
1480
1481bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1482  unsigned DstReg = CP.getDstReg();
1483  assert(CP.isPhys() && "Must be a physreg copy");
1484  assert(MRI->isReserved(DstReg) && "Not a reserved register");
1485  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1486  DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
1487
1488  assert(RHS.containsOneValue() && "Invalid join with reserved register");
1489
1490  // Optimization for reserved registers like ESP. We can only merge with a
1491  // reserved physreg if RHS has a single value that is a copy of DstReg.
1492  // The live range of the reserved register will look like a set of dead defs
1493  // - we don't properly track the live range of reserved registers.
1494
1495  // Deny any overlapping intervals.  This depends on all the reserved
1496  // register live ranges to look like dead defs.
1497  for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI)
1498    if (RHS.overlaps(LIS->getRegUnit(*UI))) {
1499      DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
1500      return false;
1501    }
1502
1503  // Skip any value computations, we are not adding new values to the
1504  // reserved register.  Also skip merging the live ranges, the reserved
1505  // register live range doesn't need to be accurate as long as all the
1506  // defs are there.
1507
1508  // Delete the identity copy.
1509  MachineInstr *CopyMI;
1510  if (CP.isFlipped()) {
1511    CopyMI = MRI->getVRegDef(RHS.reg);
1512  } else {
1513    if (!MRI->hasOneNonDBGUse(RHS.reg)) {
1514      DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
1515      return false;
1516    }
1517
1518    MachineInstr *DestMI = MRI->getVRegDef(RHS.reg);
1519    CopyMI = &*MRI->use_instr_nodbg_begin(RHS.reg);
1520    const SlotIndex CopyRegIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
1521    const SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
1522
1523    // We checked above that there are no interfering defs of the physical
1524    // register. However, for this case, where we intent to move up the def of
1525    // the physical register, we also need to check for interfering uses.
1526    SlotIndexes *Indexes = LIS->getSlotIndexes();
1527    for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
1528         SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
1529      MachineInstr *MI = LIS->getInstructionFromIndex(SI);
1530      if (MI->readsRegister(DstReg, TRI)) {
1531        DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
1532        return false;
1533      }
1534
1535      // We must also check for clobbers caused by regmasks.
1536      for (const auto &MO : MI->operands()) {
1537        if (MO.isRegMask() && MO.clobbersPhysReg(DstReg)) {
1538          DEBUG(dbgs() << "\t\tInterference (regmask clobber): " << *MI);
1539          return false;
1540        }
1541      }
1542    }
1543
1544    // We're going to remove the copy which defines a physical reserved
1545    // register, so remove its valno, etc.
1546    DEBUG(dbgs() << "\t\tRemoving phys reg def of " << DstReg << " at "
1547          << CopyRegIdx << "\n");
1548
1549    LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
1550    // Create a new dead def at the new def location.
1551    for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
1552      LiveRange &LR = LIS->getRegUnit(*UI);
1553      LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
1554    }
1555  }
1556
1557  LIS->RemoveMachineInstrFromMaps(CopyMI);
1558  CopyMI->eraseFromParent();
1559
1560  // We don't track kills for reserved registers.
1561  MRI->clearKillFlags(CP.getSrcReg());
1562
1563  return true;
1564}
1565
1566//===----------------------------------------------------------------------===//
1567//                 Interference checking and interval joining
1568//===----------------------------------------------------------------------===//
1569//
1570// In the easiest case, the two live ranges being joined are disjoint, and
1571// there is no interference to consider. It is quite common, though, to have
1572// overlapping live ranges, and we need to check if the interference can be
1573// resolved.
1574//
1575// The live range of a single SSA value forms a sub-tree of the dominator tree.
1576// This means that two SSA values overlap if and only if the def of one value
1577// is contained in the live range of the other value. As a special case, the
1578// overlapping values can be defined at the same index.
1579//
1580// The interference from an overlapping def can be resolved in these cases:
1581//
1582// 1. Coalescable copies. The value is defined by a copy that would become an
1583//    identity copy after joining SrcReg and DstReg. The copy instruction will
1584//    be removed, and the value will be merged with the source value.
1585//
1586//    There can be several copies back and forth, causing many values to be
1587//    merged into one. We compute a list of ultimate values in the joined live
1588//    range as well as a mappings from the old value numbers.
1589//
1590// 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
1591//    predecessors have a live out value. It doesn't cause real interference,
1592//    and can be merged into the value it overlaps. Like a coalescable copy, it
1593//    can be erased after joining.
1594//
1595// 3. Copy of external value. The overlapping def may be a copy of a value that
1596//    is already in the other register. This is like a coalescable copy, but
1597//    the live range of the source register must be trimmed after erasing the
1598//    copy instruction:
1599//
1600//      %src = COPY %ext
1601//      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
1602//
1603// 4. Clobbering undefined lanes. Vector registers are sometimes built by
1604//    defining one lane at a time:
1605//
1606//      %dst:ssub0<def,read-undef> = FOO
1607//      %src = BAR
1608//      %dst:ssub1<def> = COPY %src
1609//
1610//    The live range of %src overlaps the %dst value defined by FOO, but
1611//    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
1612//    which was undef anyway.
1613//
1614//    The value mapping is more complicated in this case. The final live range
1615//    will have different value numbers for both FOO and BAR, but there is no
1616//    simple mapping from old to new values. It may even be necessary to add
1617//    new PHI values.
1618//
1619// 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
1620//    is live, but never read. This can happen because we don't compute
1621//    individual live ranges per lane.
1622//
1623//      %dst<def> = FOO
1624//      %src = BAR
1625//      %dst:ssub1<def> = COPY %src
1626//
1627//    This kind of interference is only resolved locally. If the clobbered
1628//    lane value escapes the block, the join is aborted.
1629
1630namespace {
1631/// Track information about values in a single virtual register about to be
1632/// joined. Objects of this class are always created in pairs - one for each
1633/// side of the CoalescerPair (or one for each lane of a side of the coalescer
1634/// pair)
1635class JoinVals {
1636  /// Live range we work on.
1637  LiveRange &LR;
1638  /// (Main) register we work on.
1639  const unsigned Reg;
1640
1641  /// Reg (and therefore the values in this liverange) will end up as
1642  /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
1643  /// CP.SrcIdx.
1644  const unsigned SubIdx;
1645  /// The LaneMask that this liverange will occupy the coalesced register. May
1646  /// be smaller than the lanemask produced by SubIdx when merging subranges.
1647  const unsigned LaneMask;
1648
1649  /// This is true when joining sub register ranges, false when joining main
1650  /// ranges.
1651  const bool SubRangeJoin;
1652  /// Whether the current LiveInterval tracks subregister liveness.
1653  const bool TrackSubRegLiveness;
1654
1655  /// Values that will be present in the final live range.
1656  SmallVectorImpl<VNInfo*> &NewVNInfo;
1657
1658  const CoalescerPair &CP;
1659  LiveIntervals *LIS;
1660  SlotIndexes *Indexes;
1661  const TargetRegisterInfo *TRI;
1662
1663  /// Value number assignments. Maps value numbers in LI to entries in
1664  /// NewVNInfo. This is suitable for passing to LiveInterval::join().
1665  SmallVector<int, 8> Assignments;
1666
1667  /// Conflict resolution for overlapping values.
1668  enum ConflictResolution {
1669    /// No overlap, simply keep this value.
1670    CR_Keep,
1671
1672    /// Merge this value into OtherVNI and erase the defining instruction.
1673    /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
1674    /// values.
1675    CR_Erase,
1676
1677    /// Merge this value into OtherVNI but keep the defining instruction.
1678    /// This is for the special case where OtherVNI is defined by the same
1679    /// instruction.
1680    CR_Merge,
1681
1682    /// Keep this value, and have it replace OtherVNI where possible. This
1683    /// complicates value mapping since OtherVNI maps to two different values
1684    /// before and after this def.
1685    /// Used when clobbering undefined or dead lanes.
1686    CR_Replace,
1687
1688    /// Unresolved conflict. Visit later when all values have been mapped.
1689    CR_Unresolved,
1690
1691    /// Unresolvable conflict. Abort the join.
1692    CR_Impossible
1693  };
1694
1695  /// Per-value info for LI. The lane bit masks are all relative to the final
1696  /// joined register, so they can be compared directly between SrcReg and
1697  /// DstReg.
1698  struct Val {
1699    ConflictResolution Resolution;
1700
1701    /// Lanes written by this def, 0 for unanalyzed values.
1702    unsigned WriteLanes;
1703
1704    /// Lanes with defined values in this register. Other lanes are undef and
1705    /// safe to clobber.
1706    unsigned ValidLanes;
1707
1708    /// Value in LI being redefined by this def.
1709    VNInfo *RedefVNI;
1710
1711    /// Value in the other live range that overlaps this def, if any.
1712    VNInfo *OtherVNI;
1713
1714    /// Is this value an IMPLICIT_DEF that can be erased?
1715    ///
1716    /// IMPLICIT_DEF values should only exist at the end of a basic block that
1717    /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
1718    /// safely erased if they are overlapping a live value in the other live
1719    /// interval.
1720    ///
1721    /// Weird control flow graphs and incomplete PHI handling in
1722    /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
1723    /// longer live ranges. Such IMPLICIT_DEF values should be treated like
1724    /// normal values.
1725    bool ErasableImplicitDef;
1726
1727    /// True when the live range of this value will be pruned because of an
1728    /// overlapping CR_Replace value in the other live range.
1729    bool Pruned;
1730
1731    /// True once Pruned above has been computed.
1732    bool PrunedComputed;
1733
1734    Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0),
1735            RedefVNI(nullptr), OtherVNI(nullptr), ErasableImplicitDef(false),
1736            Pruned(false), PrunedComputed(false) {}
1737
1738    bool isAnalyzed() const { return WriteLanes != 0; }
1739  };
1740
1741  /// One entry per value number in LI.
1742  SmallVector<Val, 8> Vals;
1743
1744  /// Compute the bitmask of lanes actually written by DefMI.
1745  /// Set Redef if there are any partial register definitions that depend on the
1746  /// previous value of the register.
1747  unsigned computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
1748
1749  /// Find the ultimate value that VNI was copied from.
1750  std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
1751
1752  bool valuesIdentical(VNInfo *Val0, VNInfo *Val1, const JoinVals &Other) const;
1753
1754  /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
1755  /// Return a conflict resolution when possible, but leave the hard cases as
1756  /// CR_Unresolved.
1757  /// Recursively calls computeAssignment() on this and Other, guaranteeing that
1758  /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
1759  /// The recursion always goes upwards in the dominator tree, making loops
1760  /// impossible.
1761  ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
1762
1763  /// Compute the value assignment for ValNo in RI.
1764  /// This may be called recursively by analyzeValue(), but never for a ValNo on
1765  /// the stack.
1766  void computeAssignment(unsigned ValNo, JoinVals &Other);
1767
1768  /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
1769  /// the extent of the tainted lanes in the block.
1770  ///
1771  /// Multiple values in Other.LR can be affected since partial redefinitions
1772  /// can preserve previously tainted lanes.
1773  ///
1774  ///   1 %dst = VLOAD           <-- Define all lanes in %dst
1775  ///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
1776  ///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
1777  ///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
1778  ///
1779  /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
1780  /// entry to TaintedVals.
1781  ///
1782  /// Returns false if the tainted lanes extend beyond the basic block.
1783  bool taintExtent(unsigned, unsigned, JoinVals&,
1784                   SmallVectorImpl<std::pair<SlotIndex, unsigned> >&);
1785
1786  /// Return true if MI uses any of the given Lanes from Reg.
1787  /// This does not include partial redefinitions of Reg.
1788  bool usesLanes(const MachineInstr *MI, unsigned, unsigned, unsigned) const;
1789
1790  /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
1791  /// be pruned:
1792  ///
1793  ///   %dst = COPY %src
1794  ///   %src = COPY %dst  <-- This value to be pruned.
1795  ///   %dst = COPY %src  <-- This value is a copy of a pruned value.
1796  bool isPrunedValue(unsigned ValNo, JoinVals &Other);
1797
1798public:
1799  JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, unsigned LaneMask,
1800           SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
1801           LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
1802           bool TrackSubRegLiveness)
1803    : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
1804      SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
1805      NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
1806      TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums())
1807  {}
1808
1809  /// Analyze defs in LR and compute a value mapping in NewVNInfo.
1810  /// Returns false if any conflicts were impossible to resolve.
1811  bool mapValues(JoinVals &Other);
1812
1813  /// Try to resolve conflicts that require all values to be mapped.
1814  /// Returns false if any conflicts were impossible to resolve.
1815  bool resolveConflicts(JoinVals &Other);
1816
1817  /// Prune the live range of values in Other.LR where they would conflict with
1818  /// CR_Replace values in LR. Collect end points for restoring the live range
1819  /// after joining.
1820  void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
1821                   bool changeInstrs);
1822
1823  /// Removes subranges starting at copies that get removed. This sometimes
1824  /// happens when undefined subranges are copied around. These ranges contain
1825  /// no usefull information and can be removed.
1826  void pruneSubRegValues(LiveInterval &LI, unsigned &ShrinkMask);
1827
1828  /// Erase any machine instructions that have been coalesced away.
1829  /// Add erased instructions to ErasedInstrs.
1830  /// Add foreign virtual registers to ShrinkRegs if their live range ended at
1831  /// the erased instrs.
1832  void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
1833                   SmallVectorImpl<unsigned> &ShrinkRegs);
1834
1835  /// Remove liverange defs at places where implicit defs will be removed.
1836  void removeImplicitDefs();
1837
1838  /// Get the value assignments suitable for passing to LiveInterval::join.
1839  const int *getAssignments() const { return Assignments.data(); }
1840};
1841} // end anonymous namespace
1842
1843unsigned JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
1844  const {
1845  unsigned L = 0;
1846  for (const MachineOperand &MO : DefMI->operands()) {
1847    if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
1848      continue;
1849    L |= TRI->getSubRegIndexLaneMask(
1850           TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
1851    if (MO.readsReg())
1852      Redef = true;
1853  }
1854  return L;
1855}
1856
1857std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
1858    const VNInfo *VNI) const {
1859  unsigned Reg = this->Reg;
1860
1861  while (!VNI->isPHIDef()) {
1862    SlotIndex Def = VNI->def;
1863    MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
1864    assert(MI && "No defining instruction");
1865    if (!MI->isFullCopy())
1866      return std::make_pair(VNI, Reg);
1867    unsigned SrcReg = MI->getOperand(1).getReg();
1868    if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1869      return std::make_pair(VNI, Reg);
1870
1871    const LiveInterval &LI = LIS->getInterval(SrcReg);
1872    const VNInfo *ValueIn;
1873    // No subrange involved.
1874    if (!SubRangeJoin || !LI.hasSubRanges()) {
1875      LiveQueryResult LRQ = LI.Query(Def);
1876      ValueIn = LRQ.valueIn();
1877    } else {
1878      // Query subranges. Pick the first matching one.
1879      ValueIn = nullptr;
1880      for (const LiveInterval::SubRange &S : LI.subranges()) {
1881        // Transform lanemask to a mask in the joined live interval.
1882        unsigned SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
1883        if ((SMask & LaneMask) == 0)
1884          continue;
1885        LiveQueryResult LRQ = S.Query(Def);
1886        ValueIn = LRQ.valueIn();
1887        break;
1888      }
1889    }
1890    if (ValueIn == nullptr)
1891      break;
1892    VNI = ValueIn;
1893    Reg = SrcReg;
1894  }
1895  return std::make_pair(VNI, Reg);
1896}
1897
1898bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
1899                               const JoinVals &Other) const {
1900  const VNInfo *Orig0;
1901  unsigned Reg0;
1902  std::tie(Orig0, Reg0) = followCopyChain(Value0);
1903  if (Orig0 == Value1)
1904    return true;
1905
1906  const VNInfo *Orig1;
1907  unsigned Reg1;
1908  std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
1909
1910  // The values are equal if they are defined at the same place and use the
1911  // same register. Note that we cannot compare VNInfos directly as some of
1912  // them might be from a copy created in mergeSubRangeInto()  while the other
1913  // is from the original LiveInterval.
1914  return Orig0->def == Orig1->def && Reg0 == Reg1;
1915}
1916
1917JoinVals::ConflictResolution
1918JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
1919  Val &V = Vals[ValNo];
1920  assert(!V.isAnalyzed() && "Value has already been analyzed!");
1921  VNInfo *VNI = LR.getValNumInfo(ValNo);
1922  if (VNI->isUnused()) {
1923    V.WriteLanes = ~0u;
1924    return CR_Keep;
1925  }
1926
1927  // Get the instruction defining this value, compute the lanes written.
1928  const MachineInstr *DefMI = nullptr;
1929  if (VNI->isPHIDef()) {
1930    // Conservatively assume that all lanes in a PHI are valid.
1931    unsigned Lanes = SubRangeJoin ? 1 : TRI->getSubRegIndexLaneMask(SubIdx);
1932    V.ValidLanes = V.WriteLanes = Lanes;
1933  } else {
1934    DefMI = Indexes->getInstructionFromIndex(VNI->def);
1935    assert(DefMI != nullptr);
1936    if (SubRangeJoin) {
1937      // We don't care about the lanes when joining subregister ranges.
1938      V.WriteLanes = V.ValidLanes = 1;
1939      if (DefMI->isImplicitDef()) {
1940        V.ValidLanes = 0;
1941        V.ErasableImplicitDef = true;
1942      }
1943    } else {
1944      bool Redef = false;
1945      V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
1946
1947      // If this is a read-modify-write instruction, there may be more valid
1948      // lanes than the ones written by this instruction.
1949      // This only covers partial redef operands. DefMI may have normal use
1950      // operands reading the register. They don't contribute valid lanes.
1951      //
1952      // This adds ssub1 to the set of valid lanes in %src:
1953      //
1954      //   %src:ssub1<def> = FOO
1955      //
1956      // This leaves only ssub1 valid, making any other lanes undef:
1957      //
1958      //   %src:ssub1<def,read-undef> = FOO %src:ssub2
1959      //
1960      // The <read-undef> flag on the def operand means that old lane values are
1961      // not important.
1962      if (Redef) {
1963        V.RedefVNI = LR.Query(VNI->def).valueIn();
1964        assert((TrackSubRegLiveness || V.RedefVNI) &&
1965               "Instruction is reading nonexistent value");
1966        if (V.RedefVNI != nullptr) {
1967          computeAssignment(V.RedefVNI->id, Other);
1968          V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
1969        }
1970      }
1971
1972      // An IMPLICIT_DEF writes undef values.
1973      if (DefMI->isImplicitDef()) {
1974        // We normally expect IMPLICIT_DEF values to be live only until the end
1975        // of their block. If the value is really live longer and gets pruned in
1976        // another block, this flag is cleared again.
1977        V.ErasableImplicitDef = true;
1978        V.ValidLanes &= ~V.WriteLanes;
1979      }
1980    }
1981  }
1982
1983  // Find the value in Other that overlaps VNI->def, if any.
1984  LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
1985
1986  // It is possible that both values are defined by the same instruction, or
1987  // the values are PHIs defined in the same block. When that happens, the two
1988  // values should be merged into one, but not into any preceding value.
1989  // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
1990  if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
1991    assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
1992
1993    // One value stays, the other is merged. Keep the earlier one, or the first
1994    // one we see.
1995    if (OtherVNI->def < VNI->def)
1996      Other.computeAssignment(OtherVNI->id, *this);
1997    else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
1998      // This is an early-clobber def overlapping a live-in value in the other
1999      // register. Not mergeable.
2000      V.OtherVNI = OtherLRQ.valueIn();
2001      return CR_Impossible;
2002    }
2003    V.OtherVNI = OtherVNI;
2004    Val &OtherV = Other.Vals[OtherVNI->id];
2005    // Keep this value, check for conflicts when analyzing OtherVNI.
2006    if (!OtherV.isAnalyzed())
2007      return CR_Keep;
2008    // Both sides have been analyzed now.
2009    // Allow overlapping PHI values. Any real interference would show up in a
2010    // predecessor, the PHI itself can't introduce any conflicts.
2011    if (VNI->isPHIDef())
2012      return CR_Merge;
2013    if (V.ValidLanes & OtherV.ValidLanes)
2014      // Overlapping lanes can't be resolved.
2015      return CR_Impossible;
2016    else
2017      return CR_Merge;
2018  }
2019
2020  // No simultaneous def. Is Other live at the def?
2021  V.OtherVNI = OtherLRQ.valueIn();
2022  if (!V.OtherVNI)
2023    // No overlap, no conflict.
2024    return CR_Keep;
2025
2026  assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2027
2028  // We have overlapping values, or possibly a kill of Other.
2029  // Recursively compute assignments up the dominator tree.
2030  Other.computeAssignment(V.OtherVNI->id, *this);
2031  Val &OtherV = Other.Vals[V.OtherVNI->id];
2032
2033  // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2034  // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2035  // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2036  // technically.
2037  //
2038  // WHen it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2039  // to erase the IMPLICIT_DEF instruction.
2040  if (OtherV.ErasableImplicitDef && DefMI &&
2041      DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2042    DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2043                 << " extends into BB#" << DefMI->getParent()->getNumber()
2044                 << ", keeping it.\n");
2045    OtherV.ErasableImplicitDef = false;
2046  }
2047
2048  // Allow overlapping PHI values. Any real interference would show up in a
2049  // predecessor, the PHI itself can't introduce any conflicts.
2050  if (VNI->isPHIDef())
2051    return CR_Replace;
2052
2053  // Check for simple erasable conflicts.
2054  if (DefMI->isImplicitDef()) {
2055    // We need the def for the subregister if there is nothing else live at the
2056    // subrange at this point.
2057    if (TrackSubRegLiveness
2058        && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)) == 0)
2059      return CR_Replace;
2060    return CR_Erase;
2061  }
2062
2063  // Include the non-conflict where DefMI is a coalescable copy that kills
2064  // OtherVNI. We still want the copy erased and value numbers merged.
2065  if (CP.isCoalescable(DefMI)) {
2066    // Some of the lanes copied from OtherVNI may be undef, making them undef
2067    // here too.
2068    V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2069    return CR_Erase;
2070  }
2071
2072  // This may not be a real conflict if DefMI simply kills Other and defines
2073  // VNI.
2074  if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2075    return CR_Keep;
2076
2077  // Handle the case where VNI and OtherVNI can be proven to be identical:
2078  //
2079  //   %other = COPY %ext
2080  //   %this  = COPY %ext <-- Erase this copy
2081  //
2082  if (DefMI->isFullCopy() && !CP.isPartial()
2083      && valuesIdentical(VNI, V.OtherVNI, Other))
2084    return CR_Erase;
2085
2086  // If the lanes written by this instruction were all undef in OtherVNI, it is
2087  // still safe to join the live ranges. This can't be done with a simple value
2088  // mapping, though - OtherVNI will map to multiple values:
2089  //
2090  //   1 %dst:ssub0 = FOO                <-- OtherVNI
2091  //   2 %src = BAR                      <-- VNI
2092  //   3 %dst:ssub1 = COPY %src<kill>    <-- Eliminate this copy.
2093  //   4 BAZ %dst<kill>
2094  //   5 QUUX %src<kill>
2095  //
2096  // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2097  // handles this complex value mapping.
2098  if ((V.WriteLanes & OtherV.ValidLanes) == 0)
2099    return CR_Replace;
2100
2101  // If the other live range is killed by DefMI and the live ranges are still
2102  // overlapping, it must be because we're looking at an early clobber def:
2103  //
2104  //   %dst<def,early-clobber> = ASM %src<kill>
2105  //
2106  // In this case, it is illegal to merge the two live ranges since the early
2107  // clobber def would clobber %src before it was read.
2108  if (OtherLRQ.isKill()) {
2109    // This case where the def doesn't overlap the kill is handled above.
2110    assert(VNI->def.isEarlyClobber() &&
2111           "Only early clobber defs can overlap a kill");
2112    return CR_Impossible;
2113  }
2114
2115  // VNI is clobbering live lanes in OtherVNI, but there is still the
2116  // possibility that no instructions actually read the clobbered lanes.
2117  // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2118  // Otherwise Other.RI wouldn't be live here.
2119  if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0)
2120    return CR_Impossible;
2121
2122  // We need to verify that no instructions are reading the clobbered lanes. To
2123  // save compile time, we'll only check that locally. Don't allow the tainted
2124  // value to escape the basic block.
2125  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2126  if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2127    return CR_Impossible;
2128
2129  // There are still some things that could go wrong besides clobbered lanes
2130  // being read, for example OtherVNI may be only partially redefined in MBB,
2131  // and some clobbered lanes could escape the block. Save this analysis for
2132  // resolveConflicts() when all values have been mapped. We need to know
2133  // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2134  // that now - the recursive analyzeValue() calls must go upwards in the
2135  // dominator tree.
2136  return CR_Unresolved;
2137}
2138
2139void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2140  Val &V = Vals[ValNo];
2141  if (V.isAnalyzed()) {
2142    // Recursion should always move up the dominator tree, so ValNo is not
2143    // supposed to reappear before it has been assigned.
2144    assert(Assignments[ValNo] != -1 && "Bad recursion?");
2145    return;
2146  }
2147  switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2148  case CR_Erase:
2149  case CR_Merge:
2150    // Merge this ValNo into OtherVNI.
2151    assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2152    assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2153    Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2154    DEBUG(dbgs() << "\t\tmerge " << PrintReg(Reg) << ':' << ValNo << '@'
2155                 << LR.getValNumInfo(ValNo)->def << " into "
2156                 << PrintReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2157                 << V.OtherVNI->def << " --> @"
2158                 << NewVNInfo[Assignments[ValNo]]->def << '\n');
2159    break;
2160  case CR_Replace:
2161  case CR_Unresolved: {
2162    // The other value is going to be pruned if this join is successful.
2163    assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2164    Val &OtherV = Other.Vals[V.OtherVNI->id];
2165    // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2166    // its lanes.
2167    if ((OtherV.WriteLanes & ~V.ValidLanes) != 0 && TrackSubRegLiveness)
2168      OtherV.ErasableImplicitDef = false;
2169    OtherV.Pruned = true;
2170  }
2171    // Fall through.
2172  default:
2173    // This value number needs to go in the final joined live range.
2174    Assignments[ValNo] = NewVNInfo.size();
2175    NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2176    break;
2177  }
2178}
2179
2180bool JoinVals::mapValues(JoinVals &Other) {
2181  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2182    computeAssignment(i, Other);
2183    if (Vals[i].Resolution == CR_Impossible) {
2184      DEBUG(dbgs() << "\t\tinterference at " << PrintReg(Reg) << ':' << i
2185                   << '@' << LR.getValNumInfo(i)->def << '\n');
2186      return false;
2187    }
2188  }
2189  return true;
2190}
2191
2192bool JoinVals::
2193taintExtent(unsigned ValNo, unsigned TaintedLanes, JoinVals &Other,
2194            SmallVectorImpl<std::pair<SlotIndex, unsigned> > &TaintExtent) {
2195  VNInfo *VNI = LR.getValNumInfo(ValNo);
2196  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2197  SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2198
2199  // Scan Other.LR from VNI.def to MBBEnd.
2200  LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2201  assert(OtherI != Other.LR.end() && "No conflict?");
2202  do {
2203    // OtherI is pointing to a tainted value. Abort the join if the tainted
2204    // lanes escape the block.
2205    SlotIndex End = OtherI->end;
2206    if (End >= MBBEnd) {
2207      DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.Reg) << ':'
2208                   << OtherI->valno->id << '@' << OtherI->start << '\n');
2209      return false;
2210    }
2211    DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.Reg) << ':'
2212                 << OtherI->valno->id << '@' << OtherI->start
2213                 << " to " << End << '\n');
2214    // A dead def is not a problem.
2215    if (End.isDead())
2216      break;
2217    TaintExtent.push_back(std::make_pair(End, TaintedLanes));
2218
2219    // Check for another def in the MBB.
2220    if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
2221      break;
2222
2223    // Lanes written by the new def are no longer tainted.
2224    const Val &OV = Other.Vals[OtherI->valno->id];
2225    TaintedLanes &= ~OV.WriteLanes;
2226    if (!OV.RedefVNI)
2227      break;
2228  } while (TaintedLanes);
2229  return true;
2230}
2231
2232bool JoinVals::usesLanes(const MachineInstr *MI, unsigned Reg, unsigned SubIdx,
2233                         unsigned Lanes) const {
2234  if (MI->isDebugValue())
2235    return false;
2236  for (const MachineOperand &MO : MI->operands()) {
2237    if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
2238      continue;
2239    if (!MO.readsReg())
2240      continue;
2241    if (Lanes & TRI->getSubRegIndexLaneMask(
2242                  TRI->composeSubRegIndices(SubIdx, MO.getSubReg())))
2243      return true;
2244  }
2245  return false;
2246}
2247
2248bool JoinVals::resolveConflicts(JoinVals &Other) {
2249  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2250    Val &V = Vals[i];
2251    assert (V.Resolution != CR_Impossible && "Unresolvable conflict");
2252    if (V.Resolution != CR_Unresolved)
2253      continue;
2254    DEBUG(dbgs() << "\t\tconflict at " << PrintReg(Reg) << ':' << i
2255                 << '@' << LR.getValNumInfo(i)->def << '\n');
2256    if (SubRangeJoin)
2257      return false;
2258
2259    ++NumLaneConflicts;
2260    assert(V.OtherVNI && "Inconsistent conflict resolution.");
2261    VNInfo *VNI = LR.getValNumInfo(i);
2262    const Val &OtherV = Other.Vals[V.OtherVNI->id];
2263
2264    // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2265    // join, those lanes will be tainted with a wrong value. Get the extent of
2266    // the tainted lanes.
2267    unsigned TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
2268    SmallVector<std::pair<SlotIndex, unsigned>, 8> TaintExtent;
2269    if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
2270      // Tainted lanes would extend beyond the basic block.
2271      return false;
2272
2273    assert(!TaintExtent.empty() && "There should be at least one conflict.");
2274
2275    // Now look at the instructions from VNI->def to TaintExtent (inclusive).
2276    MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2277    MachineBasicBlock::iterator MI = MBB->begin();
2278    if (!VNI->isPHIDef()) {
2279      MI = Indexes->getInstructionFromIndex(VNI->def);
2280      // No need to check the instruction defining VNI for reads.
2281      ++MI;
2282    }
2283    assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
2284           "Interference ends on VNI->def. Should have been handled earlier");
2285    MachineInstr *LastMI =
2286      Indexes->getInstructionFromIndex(TaintExtent.front().first);
2287    assert(LastMI && "Range must end at a proper instruction");
2288    unsigned TaintNum = 0;
2289    for(;;) {
2290      assert(MI != MBB->end() && "Bad LastMI");
2291      if (usesLanes(MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
2292        DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
2293        return false;
2294      }
2295      // LastMI is the last instruction to use the current value.
2296      if (&*MI == LastMI) {
2297        if (++TaintNum == TaintExtent.size())
2298          break;
2299        LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
2300        assert(LastMI && "Range must end at a proper instruction");
2301        TaintedLanes = TaintExtent[TaintNum].second;
2302      }
2303      ++MI;
2304    }
2305
2306    // The tainted lanes are unused.
2307    V.Resolution = CR_Replace;
2308    ++NumLaneResolves;
2309  }
2310  return true;
2311}
2312
2313bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
2314  Val &V = Vals[ValNo];
2315  if (V.Pruned || V.PrunedComputed)
2316    return V.Pruned;
2317
2318  if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
2319    return V.Pruned;
2320
2321  // Follow copies up the dominator tree and check if any intermediate value
2322  // has been pruned.
2323  V.PrunedComputed = true;
2324  V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
2325  return V.Pruned;
2326}
2327
2328void JoinVals::pruneValues(JoinVals &Other,
2329                           SmallVectorImpl<SlotIndex> &EndPoints,
2330                           bool changeInstrs) {
2331  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2332    SlotIndex Def = LR.getValNumInfo(i)->def;
2333    switch (Vals[i].Resolution) {
2334    case CR_Keep:
2335      break;
2336    case CR_Replace: {
2337      // This value takes precedence over the value in Other.LR.
2338      LIS->pruneValue(Other.LR, Def, &EndPoints);
2339      // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
2340      // instructions are only inserted to provide a live-out value for PHI
2341      // predecessors, so the instruction should simply go away once its value
2342      // has been replaced.
2343      Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
2344      bool EraseImpDef = OtherV.ErasableImplicitDef &&
2345                         OtherV.Resolution == CR_Keep;
2346      if (!Def.isBlock()) {
2347        if (changeInstrs) {
2348          // Remove <def,read-undef> flags. This def is now a partial redef.
2349          // Also remove <def,dead> flags since the joined live range will
2350          // continue past this instruction.
2351          for (MachineOperand &MO :
2352               Indexes->getInstructionFromIndex(Def)->operands()) {
2353            if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
2354              MO.setIsUndef(EraseImpDef);
2355              MO.setIsDead(false);
2356            }
2357          }
2358        }
2359        // This value will reach instructions below, but we need to make sure
2360        // the live range also reaches the instruction at Def.
2361        if (!EraseImpDef)
2362          EndPoints.push_back(Def);
2363      }
2364      DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.Reg) << " at " << Def
2365                   << ": " << Other.LR << '\n');
2366      break;
2367    }
2368    case CR_Erase:
2369    case CR_Merge:
2370      if (isPrunedValue(i, Other)) {
2371        // This value is ultimately a copy of a pruned value in LR or Other.LR.
2372        // We can no longer trust the value mapping computed by
2373        // computeAssignment(), the value that was originally copied could have
2374        // been replaced.
2375        LIS->pruneValue(LR, Def, &EndPoints);
2376        DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(Reg) << " at "
2377                     << Def << ": " << LR << '\n');
2378      }
2379      break;
2380    case CR_Unresolved:
2381    case CR_Impossible:
2382      llvm_unreachable("Unresolved conflicts");
2383    }
2384  }
2385}
2386
2387void JoinVals::pruneSubRegValues(LiveInterval &LI, unsigned &ShrinkMask)
2388{
2389  // Look for values being erased.
2390  bool DidPrune = false;
2391  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2392    if (Vals[i].Resolution != CR_Erase)
2393      continue;
2394
2395    // Check subranges at the point where the copy will be removed.
2396    SlotIndex Def = LR.getValNumInfo(i)->def;
2397    for (LiveInterval::SubRange &S : LI.subranges()) {
2398      LiveQueryResult Q = S.Query(Def);
2399
2400      // If a subrange starts at the copy then an undefined value has been
2401      // copied and we must remove that subrange value as well.
2402      VNInfo *ValueOut = Q.valueOutOrDead();
2403      if (ValueOut != nullptr && Q.valueIn() == nullptr) {
2404        DEBUG(dbgs() << "\t\tPrune sublane " << format("%04X", S.LaneMask)
2405                     << " at " << Def << "\n");
2406        LIS->pruneValue(S, Def, nullptr);
2407        DidPrune = true;
2408        // Mark value number as unused.
2409        ValueOut->markUnused();
2410        continue;
2411      }
2412      // If a subrange ends at the copy, then a value was copied but only
2413      // partially used later. Shrink the subregister range apropriately.
2414      if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
2415        DEBUG(dbgs() << "\t\tDead uses at sublane "
2416                     << format("%04X", S.LaneMask) << " at " << Def << "\n");
2417        ShrinkMask |= S.LaneMask;
2418      }
2419    }
2420  }
2421  if (DidPrune)
2422    LI.removeEmptySubRanges();
2423}
2424
2425void JoinVals::removeImplicitDefs() {
2426  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2427    Val &V = Vals[i];
2428    if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
2429      continue;
2430
2431    VNInfo *VNI = LR.getValNumInfo(i);
2432    VNI->markUnused();
2433    LR.removeValNo(VNI);
2434  }
2435}
2436
2437void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2438                           SmallVectorImpl<unsigned> &ShrinkRegs) {
2439  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2440    // Get the def location before markUnused() below invalidates it.
2441    SlotIndex Def = LR.getValNumInfo(i)->def;
2442    switch (Vals[i].Resolution) {
2443    case CR_Keep: {
2444      // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
2445      // longer. The IMPLICIT_DEF instructions are only inserted by
2446      // PHIElimination to guarantee that all PHI predecessors have a value.
2447      if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
2448        break;
2449      // Remove value number i from LR.
2450      VNInfo *VNI = LR.getValNumInfo(i);
2451      LR.removeValNo(VNI);
2452      // Note that this VNInfo is reused and still referenced in NewVNInfo,
2453      // make it appear like an unused value number.
2454      VNI->markUnused();
2455      DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n');
2456      // FALL THROUGH.
2457    }
2458
2459    case CR_Erase: {
2460      MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2461      assert(MI && "No instruction to erase");
2462      if (MI->isCopy()) {
2463        unsigned Reg = MI->getOperand(1).getReg();
2464        if (TargetRegisterInfo::isVirtualRegister(Reg) &&
2465            Reg != CP.getSrcReg() && Reg != CP.getDstReg())
2466          ShrinkRegs.push_back(Reg);
2467      }
2468      ErasedInstrs.insert(MI);
2469      DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
2470      LIS->RemoveMachineInstrFromMaps(MI);
2471      MI->eraseFromParent();
2472      break;
2473    }
2474    default:
2475      break;
2476    }
2477  }
2478}
2479
2480bool RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
2481                                         unsigned LaneMask,
2482                                         const CoalescerPair &CP) {
2483  SmallVector<VNInfo*, 16> NewVNInfo;
2484  JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
2485                   NewVNInfo, CP, LIS, TRI, true, true);
2486  JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
2487                   NewVNInfo, CP, LIS, TRI, true, true);
2488
2489  // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
2490  // We should be able to resolve all conflicts here as we could successfully do
2491  // it on the mainrange already. There is however a problem when multiple
2492  // ranges get mapped to the "overflow" lane mask bit which creates unexpected
2493  // interferences.
2494  if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
2495    DEBUG(dbgs() << "*** Couldn't join subrange!\n");
2496    return false;
2497  }
2498  if (!LHSVals.resolveConflicts(RHSVals) ||
2499      !RHSVals.resolveConflicts(LHSVals)) {
2500    DEBUG(dbgs() << "*** Couldn't join subrange!\n");
2501    return false;
2502  }
2503
2504  // The merging algorithm in LiveInterval::join() can't handle conflicting
2505  // value mappings, so we need to remove any live ranges that overlap a
2506  // CR_Replace resolution. Collect a set of end points that can be used to
2507  // restore the live range after joining.
2508  SmallVector<SlotIndex, 8> EndPoints;
2509  LHSVals.pruneValues(RHSVals, EndPoints, false);
2510  RHSVals.pruneValues(LHSVals, EndPoints, false);
2511
2512  LHSVals.removeImplicitDefs();
2513  RHSVals.removeImplicitDefs();
2514
2515  LRange.verify();
2516  RRange.verify();
2517
2518  // Join RRange into LHS.
2519  LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
2520              NewVNInfo);
2521
2522  DEBUG(dbgs() << "\t\tjoined lanes: " << LRange << "\n");
2523  if (EndPoints.empty())
2524    return true;
2525
2526  // Recompute the parts of the live range we had to remove because of
2527  // CR_Replace conflicts.
2528  DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
2529               << " points: " << LRange << '\n');
2530  LIS->extendToIndices(LRange, EndPoints);
2531  return true;
2532}
2533
2534bool RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
2535                                          const LiveRange &ToMerge,
2536                                          unsigned LaneMask, CoalescerPair &CP) {
2537  BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
2538  for (LiveInterval::SubRange &R : LI.subranges()) {
2539    unsigned RMask = R.LaneMask;
2540    // LaneMask of subregisters common to subrange R and ToMerge.
2541    unsigned Common = RMask & LaneMask;
2542    // There is nothing to do without common subregs.
2543    if (Common == 0)
2544      continue;
2545
2546    DEBUG(dbgs() << format("\t\tCopy+Merge %04X into %04X\n", RMask, Common));
2547    // LaneMask of subregisters contained in the R range but not in ToMerge,
2548    // they have to split into their own subrange.
2549    unsigned LRest = RMask & ~LaneMask;
2550    LiveInterval::SubRange *CommonRange;
2551    if (LRest != 0) {
2552      R.LaneMask = LRest;
2553      DEBUG(dbgs() << format("\t\tReduce Lane to %04X\n", LRest));
2554      // Duplicate SubRange for newly merged common stuff.
2555      CommonRange = LI.createSubRangeFrom(Allocator, Common, R);
2556    } else {
2557      // Reuse the existing range.
2558      R.LaneMask = Common;
2559      CommonRange = &R;
2560    }
2561    LiveRange RangeCopy(ToMerge, Allocator);
2562    if (!joinSubRegRanges(*CommonRange, RangeCopy, Common, CP))
2563      return false;
2564    LaneMask &= ~RMask;
2565  }
2566
2567  if (LaneMask != 0) {
2568    DEBUG(dbgs() << format("\t\tNew Lane %04X\n", LaneMask));
2569    LI.createSubRangeFrom(Allocator, LaneMask, ToMerge);
2570  }
2571  return true;
2572}
2573
2574bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
2575  SmallVector<VNInfo*, 16> NewVNInfo;
2576  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
2577  LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
2578  bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
2579  JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), 0, NewVNInfo, CP, LIS,
2580                   TRI, false, TrackSubRegLiveness);
2581  JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), 0, NewVNInfo, CP, LIS,
2582                   TRI, false, TrackSubRegLiveness);
2583
2584  DEBUG(dbgs() << "\t\tRHS = " << RHS
2585               << "\n\t\tLHS = " << LHS
2586               << '\n');
2587
2588  // First compute NewVNInfo and the simple value mappings.
2589  // Detect impossible conflicts early.
2590  if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
2591    return false;
2592
2593  // Some conflicts can only be resolved after all values have been mapped.
2594  if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
2595    return false;
2596
2597  // All clear, the live ranges can be merged.
2598  if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
2599    BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
2600
2601    // Transform lanemasks from the LHS to masks in the coalesced register and
2602    // create initial subranges if necessary.
2603    unsigned DstIdx = CP.getDstIdx();
2604    if (!LHS.hasSubRanges()) {
2605      unsigned Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
2606                                  : TRI->getSubRegIndexLaneMask(DstIdx);
2607      // LHS must support subregs or we wouldn't be in this codepath.
2608      assert(Mask != 0);
2609      LHS.createSubRangeFrom(Allocator, Mask, LHS);
2610    } else if (DstIdx != 0) {
2611      // Transform LHS lanemasks to new register class if necessary.
2612      for (LiveInterval::SubRange &R : LHS.subranges()) {
2613        unsigned Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
2614        R.LaneMask = Mask;
2615      }
2616    }
2617    DEBUG(dbgs() << "\t\tLHST = " << PrintReg(CP.getDstReg())
2618                 << ' ' << LHS << '\n');
2619
2620    // Determine lanemasks of RHS in the coalesced register and merge subranges.
2621    unsigned SrcIdx = CP.getSrcIdx();
2622    bool Abort = false;
2623    if (!RHS.hasSubRanges()) {
2624      unsigned Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
2625                                  : TRI->getSubRegIndexLaneMask(SrcIdx);
2626      if (!mergeSubRangeInto(LHS, RHS, Mask, CP))
2627        Abort = true;
2628    } else {
2629      // Pair up subranges and merge.
2630      for (LiveInterval::SubRange &R : RHS.subranges()) {
2631        unsigned Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
2632        if (!mergeSubRangeInto(LHS, R, Mask, CP)) {
2633          Abort = true;
2634          break;
2635        }
2636      }
2637    }
2638    if (Abort) {
2639      // This shouldn't have happened :-(
2640      // However we are aware of at least one existing problem where we
2641      // can't merge subranges when multiple ranges end up in the
2642      // "overflow bit" 32. As a workaround we drop all subregister ranges
2643      // which means we loose some precision but are back to a well defined
2644      // state.
2645      assert(TargetRegisterInfo::isImpreciseLaneMask(
2646             CP.getNewRC()->getLaneMask())
2647             && "SubRange merge should only fail when merging into bit 32.");
2648      DEBUG(dbgs() << "\tSubrange join aborted!\n");
2649      LHS.clearSubRanges();
2650      RHS.clearSubRanges();
2651    } else {
2652      DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
2653
2654      LHSVals.pruneSubRegValues(LHS, ShrinkMask);
2655      RHSVals.pruneSubRegValues(LHS, ShrinkMask);
2656    }
2657  }
2658
2659  // The merging algorithm in LiveInterval::join() can't handle conflicting
2660  // value mappings, so we need to remove any live ranges that overlap a
2661  // CR_Replace resolution. Collect a set of end points that can be used to
2662  // restore the live range after joining.
2663  SmallVector<SlotIndex, 8> EndPoints;
2664  LHSVals.pruneValues(RHSVals, EndPoints, true);
2665  RHSVals.pruneValues(LHSVals, EndPoints, true);
2666
2667  // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
2668  // registers to require trimming.
2669  SmallVector<unsigned, 8> ShrinkRegs;
2670  LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
2671  RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
2672  while (!ShrinkRegs.empty())
2673    shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
2674
2675  // Join RHS into LHS.
2676  LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
2677
2678  // Kill flags are going to be wrong if the live ranges were overlapping.
2679  // Eventually, we should simply clear all kill flags when computing live
2680  // ranges. They are reinserted after register allocation.
2681  MRI->clearKillFlags(LHS.reg);
2682  MRI->clearKillFlags(RHS.reg);
2683
2684  if (!EndPoints.empty()) {
2685    // Recompute the parts of the live range we had to remove because of
2686    // CR_Replace conflicts.
2687    DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
2688                 << " points: " << LHS << '\n');
2689    LIS->extendToIndices((LiveRange&)LHS, EndPoints);
2690  }
2691
2692  return true;
2693}
2694
2695bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
2696  return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
2697}
2698
2699namespace {
2700/// Information concerning MBB coalescing priority.
2701struct MBBPriorityInfo {
2702  MachineBasicBlock *MBB;
2703  unsigned Depth;
2704  bool IsSplit;
2705
2706  MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
2707    : MBB(mbb), Depth(depth), IsSplit(issplit) {}
2708};
2709}
2710
2711/// C-style comparator that sorts first based on the loop depth of the basic
2712/// block (the unsigned), and then on the MBB number.
2713///
2714/// EnableGlobalCopies assumes that the primary sort key is loop depth.
2715static int compareMBBPriority(const MBBPriorityInfo *LHS,
2716                              const MBBPriorityInfo *RHS) {
2717  // Deeper loops first
2718  if (LHS->Depth != RHS->Depth)
2719    return LHS->Depth > RHS->Depth ? -1 : 1;
2720
2721  // Try to unsplit critical edges next.
2722  if (LHS->IsSplit != RHS->IsSplit)
2723    return LHS->IsSplit ? -1 : 1;
2724
2725  // Prefer blocks that are more connected in the CFG. This takes care of
2726  // the most difficult copies first while intervals are short.
2727  unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
2728  unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
2729  if (cl != cr)
2730    return cl > cr ? -1 : 1;
2731
2732  // As a last resort, sort by block number.
2733  return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
2734}
2735
2736/// \returns true if the given copy uses or defines a local live range.
2737static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
2738  if (!Copy->isCopy())
2739    return false;
2740
2741  if (Copy->getOperand(1).isUndef())
2742    return false;
2743
2744  unsigned SrcReg = Copy->getOperand(1).getReg();
2745  unsigned DstReg = Copy->getOperand(0).getReg();
2746  if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
2747      || TargetRegisterInfo::isPhysicalRegister(DstReg))
2748    return false;
2749
2750  return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
2751    || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
2752}
2753
2754bool RegisterCoalescer::
2755copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
2756  bool Progress = false;
2757  for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
2758    if (!CurrList[i])
2759      continue;
2760    // Skip instruction pointers that have already been erased, for example by
2761    // dead code elimination.
2762    if (ErasedInstrs.erase(CurrList[i])) {
2763      CurrList[i] = nullptr;
2764      continue;
2765    }
2766    bool Again = false;
2767    bool Success = joinCopy(CurrList[i], Again);
2768    Progress |= Success;
2769    if (Success || !Again)
2770      CurrList[i] = nullptr;
2771  }
2772  return Progress;
2773}
2774
2775/// Check if DstReg is a terminal node.
2776/// I.e., it does not have any affinity other than \p Copy.
2777static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
2778                          const MachineRegisterInfo *MRI) {
2779  assert(Copy.isCopyLike());
2780  // Check if the destination of this copy as any other affinity.
2781  for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
2782    if (&MI != &Copy && MI.isCopyLike())
2783      return false;
2784  return true;
2785}
2786
2787bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
2788  assert(Copy.isCopyLike());
2789  if (!UseTerminalRule)
2790    return false;
2791  unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
2792  isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg);
2793  // Check if the destination of this copy has any other affinity.
2794  if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
2795      // If SrcReg is a physical register, the copy won't be coalesced.
2796      // Ignoring it may have other side effect (like missing
2797      // rematerialization). So keep it.
2798      TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
2799      !isTerminalReg(DstReg, Copy, MRI))
2800    return false;
2801
2802  // DstReg is a terminal node. Check if it inteferes with any other
2803  // copy involving SrcReg.
2804  const MachineBasicBlock *OrigBB = Copy.getParent();
2805  const LiveInterval &DstLI = LIS->getInterval(DstReg);
2806  for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
2807    // Technically we should check if the weight of the new copy is
2808    // interesting compared to the other one and update the weight
2809    // of the copies accordingly. However, this would only work if
2810    // we would gather all the copies first then coalesce, whereas
2811    // right now we interleave both actions.
2812    // For now, just consider the copies that are in the same block.
2813    if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
2814      continue;
2815    unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
2816    isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
2817                OtherSubReg);
2818    if (OtherReg == SrcReg)
2819      OtherReg = OtherSrcReg;
2820    // Check if OtherReg is a non-terminal.
2821    if (TargetRegisterInfo::isPhysicalRegister(OtherReg) ||
2822        isTerminalReg(OtherReg, MI, MRI))
2823      continue;
2824    // Check that OtherReg interfere with DstReg.
2825    if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
2826      DEBUG(dbgs() << "Apply terminal rule for: " << PrintReg(DstReg) << '\n');
2827      return true;
2828    }
2829  }
2830  return false;
2831}
2832
2833void
2834RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
2835  DEBUG(dbgs() << MBB->getName() << ":\n");
2836
2837  // Collect all copy-like instructions in MBB. Don't start coalescing anything
2838  // yet, it might invalidate the iterator.
2839  const unsigned PrevSize = WorkList.size();
2840  if (JoinGlobalCopies) {
2841    SmallVector<MachineInstr*, 2> LocalTerminals;
2842    SmallVector<MachineInstr*, 2> GlobalTerminals;
2843    // Coalesce copies bottom-up to coalesce local defs before local uses. They
2844    // are not inherently easier to resolve, but slightly preferable until we
2845    // have local live range splitting. In particular this is required by
2846    // cmp+jmp macro fusion.
2847    for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2848         MII != E; ++MII) {
2849      if (!MII->isCopyLike())
2850        continue;
2851      bool ApplyTerminalRule = applyTerminalRule(*MII);
2852      if (isLocalCopy(&(*MII), LIS)) {
2853        if (ApplyTerminalRule)
2854          LocalTerminals.push_back(&(*MII));
2855        else
2856          LocalWorkList.push_back(&(*MII));
2857      } else {
2858        if (ApplyTerminalRule)
2859          GlobalTerminals.push_back(&(*MII));
2860        else
2861          WorkList.push_back(&(*MII));
2862      }
2863    }
2864    // Append the copies evicted by the terminal rule at the end of the list.
2865    LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
2866    WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
2867  }
2868  else {
2869    SmallVector<MachineInstr*, 2> Terminals;
2870     for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2871          MII != E; ++MII)
2872       if (MII->isCopyLike()) {
2873        if (applyTerminalRule(*MII))
2874          Terminals.push_back(&(*MII));
2875        else
2876          WorkList.push_back(MII);
2877       }
2878     // Append the copies evicted by the terminal rule at the end of the list.
2879     WorkList.append(Terminals.begin(), Terminals.end());
2880  }
2881  // Try coalescing the collected copies immediately, and remove the nulls.
2882  // This prevents the WorkList from getting too large since most copies are
2883  // joinable on the first attempt.
2884  MutableArrayRef<MachineInstr*>
2885    CurrList(WorkList.begin() + PrevSize, WorkList.end());
2886  if (copyCoalesceWorkList(CurrList))
2887    WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
2888                               (MachineInstr*)nullptr), WorkList.end());
2889}
2890
2891void RegisterCoalescer::coalesceLocals() {
2892  copyCoalesceWorkList(LocalWorkList);
2893  for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
2894    if (LocalWorkList[j])
2895      WorkList.push_back(LocalWorkList[j]);
2896  }
2897  LocalWorkList.clear();
2898}
2899
2900void RegisterCoalescer::joinAllIntervals() {
2901  DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
2902  assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
2903
2904  std::vector<MBBPriorityInfo> MBBs;
2905  MBBs.reserve(MF->size());
2906  for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
2907    MachineBasicBlock *MBB = I;
2908    MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
2909                                   JoinSplitEdges && isSplitEdge(MBB)));
2910  }
2911  array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
2912
2913  // Coalesce intervals in MBB priority order.
2914  unsigned CurrDepth = UINT_MAX;
2915  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
2916    // Try coalescing the collected local copies for deeper loops.
2917    if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
2918      coalesceLocals();
2919      CurrDepth = MBBs[i].Depth;
2920    }
2921    copyCoalesceInMBB(MBBs[i].MBB);
2922  }
2923  coalesceLocals();
2924
2925  // Joining intervals can allow other intervals to be joined.  Iteratively join
2926  // until we make no progress.
2927  while (copyCoalesceWorkList(WorkList))
2928    /* empty */ ;
2929}
2930
2931void RegisterCoalescer::releaseMemory() {
2932  ErasedInstrs.clear();
2933  WorkList.clear();
2934  DeadDefs.clear();
2935  InflateRegs.clear();
2936}
2937
2938bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
2939  MF = &fn;
2940  MRI = &fn.getRegInfo();
2941  TM = &fn.getTarget();
2942  const TargetSubtargetInfo &STI = fn.getSubtarget();
2943  TRI = STI.getRegisterInfo();
2944  TII = STI.getInstrInfo();
2945  LIS = &getAnalysis<LiveIntervals>();
2946  AA = &getAnalysis<AliasAnalysis>();
2947  Loops = &getAnalysis<MachineLoopInfo>();
2948  if (EnableGlobalCopies == cl::BOU_UNSET)
2949    JoinGlobalCopies = STI.enableJoinGlobalCopies();
2950  else
2951    JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
2952
2953  // The MachineScheduler does not currently require JoinSplitEdges. This will
2954  // either be enabled unconditionally or replaced by a more general live range
2955  // splitting optimization.
2956  JoinSplitEdges = EnableJoinSplits;
2957
2958  DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
2959               << "********** Function: " << MF->getName() << '\n');
2960
2961  if (VerifyCoalescing)
2962    MF->verify(this, "Before register coalescing");
2963
2964  RegClassInfo.runOnMachineFunction(fn);
2965
2966  // Join (coalesce) intervals if requested.
2967  if (EnableJoining)
2968    joinAllIntervals();
2969
2970  // After deleting a lot of copies, register classes may be less constrained.
2971  // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
2972  // DPR inflation.
2973  array_pod_sort(InflateRegs.begin(), InflateRegs.end());
2974  InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
2975                    InflateRegs.end());
2976  DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
2977  for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
2978    unsigned Reg = InflateRegs[i];
2979    if (MRI->reg_nodbg_empty(Reg))
2980      continue;
2981    if (MRI->recomputeRegClass(Reg)) {
2982      DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
2983                   << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
2984      LiveInterval &LI = LIS->getInterval(Reg);
2985      unsigned MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2986      if (MaxMask == 0) {
2987        // If the inflated register class does not support subregisters anymore
2988        // remove the subranges.
2989        LI.clearSubRanges();
2990      } else {
2991#ifndef NDEBUG
2992        // If subranges are still supported, then the same subregs should still
2993        // be supported.
2994        for (LiveInterval::SubRange &S : LI.subranges()) {
2995          assert ((S.LaneMask & ~MaxMask) == 0);
2996        }
2997#endif
2998      }
2999      ++NumInflated;
3000    }
3001  }
3002
3003  DEBUG(dump());
3004  if (VerifyCoalescing)
3005    MF->verify(this, "After register coalescing");
3006  return true;
3007}
3008
3009void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
3010   LIS->print(O, m);
3011}
3012