RegisterCoalescer.cpp revision 249423
1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic RegisterCoalescer interface which
11// is used as the common interface used by all clients and
12// implementations of register coalescing.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "regalloc"
17#include "RegisterCoalescer.h"
18#include "llvm/ADT/OwningPtr.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/CodeGen/LiveIntervalAnalysis.h"
24#include "llvm/CodeGen/LiveRangeEdit.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineInstr.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/Passes.h"
30#include "llvm/CodeGen/RegisterClassInfo.h"
31#include "llvm/CodeGen/VirtRegMap.h"
32#include "llvm/IR/Value.h"
33#include "llvm/Pass.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetSubtargetInfo.h"
42#include <algorithm>
43#include <cmath>
44using namespace llvm;
45
46STATISTIC(numJoins    , "Number of interval joins performed");
47STATISTIC(numCrossRCs , "Number of cross class joins performed");
48STATISTIC(numCommutes , "Number of instruction commuting performed");
49STATISTIC(numExtends  , "Number of copies extended");
50STATISTIC(NumReMats   , "Number of instructions re-materialized");
51STATISTIC(NumInflated , "Number of register classes inflated");
52STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
53STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
54
55static cl::opt<bool>
56EnableJoining("join-liveintervals",
57              cl::desc("Coalesce copies (default=true)"),
58              cl::init(true));
59
60// Temporary flag to test critical edge unsplitting.
61static cl::opt<bool>
62EnableJoinSplits("join-splitedges",
63  cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
64
65// Temporary flag to test global copy optimization.
66static cl::opt<cl::boolOrDefault>
67EnableGlobalCopies("join-globalcopies",
68  cl::desc("Coalesce copies that span blocks (default=subtarget)"),
69  cl::init(cl::BOU_UNSET), cl::Hidden);
70
71static cl::opt<bool>
72VerifyCoalescing("verify-coalescing",
73         cl::desc("Verify machine instrs before and after register coalescing"),
74         cl::Hidden);
75
76namespace {
77  class RegisterCoalescer : public MachineFunctionPass,
78                            private LiveRangeEdit::Delegate {
79    MachineFunction* MF;
80    MachineRegisterInfo* MRI;
81    const TargetMachine* TM;
82    const TargetRegisterInfo* TRI;
83    const TargetInstrInfo* TII;
84    LiveIntervals *LIS;
85    const MachineLoopInfo* Loops;
86    AliasAnalysis *AA;
87    RegisterClassInfo RegClassInfo;
88
89    /// \brief True if the coalescer should aggressively coalesce global copies
90    /// in favor of keeping local copies.
91    bool JoinGlobalCopies;
92
93    /// \brief True if the coalescer should aggressively coalesce fall-thru
94    /// blocks exclusively containing copies.
95    bool JoinSplitEdges;
96
97    /// WorkList - Copy instructions yet to be coalesced.
98    SmallVector<MachineInstr*, 8> WorkList;
99    SmallVector<MachineInstr*, 8> LocalWorkList;
100
101    /// ErasedInstrs - Set of instruction pointers that have been erased, and
102    /// that may be present in WorkList.
103    SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
104
105    /// Dead instructions that are about to be deleted.
106    SmallVector<MachineInstr*, 8> DeadDefs;
107
108    /// Virtual registers to be considered for register class inflation.
109    SmallVector<unsigned, 8> InflateRegs;
110
111    /// Recursively eliminate dead defs in DeadDefs.
112    void eliminateDeadDefs();
113
114    /// LiveRangeEdit callback.
115    void LRE_WillEraseInstruction(MachineInstr *MI);
116
117    /// coalesceLocals - coalesce the LocalWorkList.
118    void coalesceLocals();
119
120    /// joinAllIntervals - join compatible live intervals
121    void joinAllIntervals();
122
123    /// copyCoalesceInMBB - Coalesce copies in the specified MBB, putting
124    /// copies that cannot yet be coalesced into WorkList.
125    void copyCoalesceInMBB(MachineBasicBlock *MBB);
126
127    /// copyCoalesceWorkList - Try to coalesce all copies in CurrList. Return
128    /// true if any progress was made.
129    bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
130
131    /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
132    /// which are the src/dst of the copy instruction CopyMI.  This returns
133    /// true if the copy was successfully coalesced away. If it is not
134    /// currently possible to coalesce this interval, but it may be possible if
135    /// other things get coalesced, then it returns true by reference in
136    /// 'Again'.
137    bool joinCopy(MachineInstr *TheCopy, bool &Again);
138
139    /// joinIntervals - Attempt to join these two intervals.  On failure, this
140    /// returns false.  The output "SrcInt" will not have been modified, so we
141    /// can use this information below to update aliases.
142    bool joinIntervals(CoalescerPair &CP);
143
144    /// Attempt joining two virtual registers. Return true on success.
145    bool joinVirtRegs(CoalescerPair &CP);
146
147    /// Attempt joining with a reserved physreg.
148    bool joinReservedPhysReg(CoalescerPair &CP);
149
150    /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
151    /// the source value number is defined by a copy from the destination reg
152    /// see if we can merge these two destination reg valno# into a single
153    /// value number, eliminating a copy.
154    bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
155
156    /// hasOtherReachingDefs - Return true if there are definitions of IntB
157    /// other than BValNo val# that can reach uses of AValno val# of IntA.
158    bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
159                              VNInfo *AValNo, VNInfo *BValNo);
160
161    /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy.
162    /// If the source value number is defined by a commutable instruction and
163    /// its other operand is coalesced to the copy dest register, see if we
164    /// can transform the copy into a noop by commuting the definition.
165    bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
166
167    /// reMaterializeTrivialDef - If the source of a copy is defined by a
168    /// trivial computation, replace the copy by rematerialize the definition.
169    bool reMaterializeTrivialDef(CoalescerPair &CP, MachineInstr *CopyMI);
170
171    /// canJoinPhys - Return true if a physreg copy should be joined.
172    bool canJoinPhys(const CoalescerPair &CP);
173
174    /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
175    /// update the subregister number if it is not zero. If DstReg is a
176    /// physical register and the existing subregister number of the def / use
177    /// being updated is not zero, make sure to set it to the correct physical
178    /// subregister.
179    void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
180
181    /// eliminateUndefCopy - Handle copies of undef values.
182    bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
183
184  public:
185    static char ID; // Class identification, replacement for typeinfo
186    RegisterCoalescer() : MachineFunctionPass(ID) {
187      initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
188    }
189
190    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
191
192    virtual void releaseMemory();
193
194    /// runOnMachineFunction - pass entry point
195    virtual bool runOnMachineFunction(MachineFunction&);
196
197    /// print - Implement the dump method.
198    virtual void print(raw_ostream &O, const Module* = 0) const;
199  };
200} /// end anonymous namespace
201
202char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
203
204INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
205                      "Simple Register Coalescing", false, false)
206INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
207INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
208INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
209INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
210INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
211                    "Simple Register Coalescing", false, false)
212
213char RegisterCoalescer::ID = 0;
214
215static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
216                        unsigned &Src, unsigned &Dst,
217                        unsigned &SrcSub, unsigned &DstSub) {
218  if (MI->isCopy()) {
219    Dst = MI->getOperand(0).getReg();
220    DstSub = MI->getOperand(0).getSubReg();
221    Src = MI->getOperand(1).getReg();
222    SrcSub = MI->getOperand(1).getSubReg();
223  } else if (MI->isSubregToReg()) {
224    Dst = MI->getOperand(0).getReg();
225    DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
226                                      MI->getOperand(3).getImm());
227    Src = MI->getOperand(2).getReg();
228    SrcSub = MI->getOperand(2).getSubReg();
229  } else
230    return false;
231  return true;
232}
233
234// Return true if this block should be vacated by the coalescer to eliminate
235// branches. The important cases to handle in the coalescer are critical edges
236// split during phi elimination which contain only copies. Simple blocks that
237// contain non-branches should also be vacated, but this can be handled by an
238// earlier pass similar to early if-conversion.
239static bool isSplitEdge(const MachineBasicBlock *MBB) {
240  if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
241    return false;
242
243  for (MachineBasicBlock::const_iterator MII = MBB->begin(), E = MBB->end();
244       MII != E; ++MII) {
245    if (!MII->isCopyLike() && !MII->isUnconditionalBranch())
246      return false;
247  }
248  return true;
249}
250
251bool CoalescerPair::setRegisters(const MachineInstr *MI) {
252  SrcReg = DstReg = 0;
253  SrcIdx = DstIdx = 0;
254  NewRC = 0;
255  Flipped = CrossClass = false;
256
257  unsigned Src, Dst, SrcSub, DstSub;
258  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
259    return false;
260  Partial = SrcSub || DstSub;
261
262  // If one register is a physreg, it must be Dst.
263  if (TargetRegisterInfo::isPhysicalRegister(Src)) {
264    if (TargetRegisterInfo::isPhysicalRegister(Dst))
265      return false;
266    std::swap(Src, Dst);
267    std::swap(SrcSub, DstSub);
268    Flipped = true;
269  }
270
271  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
272
273  if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
274    // Eliminate DstSub on a physreg.
275    if (DstSub) {
276      Dst = TRI.getSubReg(Dst, DstSub);
277      if (!Dst) return false;
278      DstSub = 0;
279    }
280
281    // Eliminate SrcSub by picking a corresponding Dst superregister.
282    if (SrcSub) {
283      Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
284      if (!Dst) return false;
285      SrcSub = 0;
286    } else if (!MRI.getRegClass(Src)->contains(Dst)) {
287      return false;
288    }
289  } else {
290    // Both registers are virtual.
291    const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
292    const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
293
294    // Both registers have subreg indices.
295    if (SrcSub && DstSub) {
296      // Copies between different sub-registers are never coalescable.
297      if (Src == Dst && SrcSub != DstSub)
298        return false;
299
300      NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
301                                         SrcIdx, DstIdx);
302      if (!NewRC)
303        return false;
304    } else if (DstSub) {
305      // SrcReg will be merged with a sub-register of DstReg.
306      SrcIdx = DstSub;
307      NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
308    } else if (SrcSub) {
309      // DstReg will be merged with a sub-register of SrcReg.
310      DstIdx = SrcSub;
311      NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
312    } else {
313      // This is a straight copy without sub-registers.
314      NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
315    }
316
317    // The combined constraint may be impossible to satisfy.
318    if (!NewRC)
319      return false;
320
321    // Prefer SrcReg to be a sub-register of DstReg.
322    // FIXME: Coalescer should support subregs symmetrically.
323    if (DstIdx && !SrcIdx) {
324      std::swap(Src, Dst);
325      std::swap(SrcIdx, DstIdx);
326      Flipped = !Flipped;
327    }
328
329    CrossClass = NewRC != DstRC || NewRC != SrcRC;
330  }
331  // Check our invariants
332  assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
333  assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
334         "Cannot have a physical SubIdx");
335  SrcReg = Src;
336  DstReg = Dst;
337  return true;
338}
339
340bool CoalescerPair::flip() {
341  if (TargetRegisterInfo::isPhysicalRegister(DstReg))
342    return false;
343  std::swap(SrcReg, DstReg);
344  std::swap(SrcIdx, DstIdx);
345  Flipped = !Flipped;
346  return true;
347}
348
349bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
350  if (!MI)
351    return false;
352  unsigned Src, Dst, SrcSub, DstSub;
353  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
354    return false;
355
356  // Find the virtual register that is SrcReg.
357  if (Dst == SrcReg) {
358    std::swap(Src, Dst);
359    std::swap(SrcSub, DstSub);
360  } else if (Src != SrcReg) {
361    return false;
362  }
363
364  // Now check that Dst matches DstReg.
365  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
366    if (!TargetRegisterInfo::isPhysicalRegister(Dst))
367      return false;
368    assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
369    // DstSub could be set for a physreg from INSERT_SUBREG.
370    if (DstSub)
371      Dst = TRI.getSubReg(Dst, DstSub);
372    // Full copy of Src.
373    if (!SrcSub)
374      return DstReg == Dst;
375    // This is a partial register copy. Check that the parts match.
376    return TRI.getSubReg(DstReg, SrcSub) == Dst;
377  } else {
378    // DstReg is virtual.
379    if (DstReg != Dst)
380      return false;
381    // Registers match, do the subregisters line up?
382    return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
383           TRI.composeSubRegIndices(DstIdx, DstSub);
384  }
385}
386
387void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
388  AU.setPreservesCFG();
389  AU.addRequired<AliasAnalysis>();
390  AU.addRequired<LiveIntervals>();
391  AU.addPreserved<LiveIntervals>();
392  AU.addPreserved<SlotIndexes>();
393  AU.addRequired<MachineLoopInfo>();
394  AU.addPreserved<MachineLoopInfo>();
395  AU.addPreservedID(MachineDominatorsID);
396  MachineFunctionPass::getAnalysisUsage(AU);
397}
398
399void RegisterCoalescer::eliminateDeadDefs() {
400  SmallVector<LiveInterval*, 8> NewRegs;
401  LiveRangeEdit(0, NewRegs, *MF, *LIS, 0, this).eliminateDeadDefs(DeadDefs);
402}
403
404// Callback from eliminateDeadDefs().
405void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
406  // MI may be in WorkList. Make sure we don't visit it.
407  ErasedInstrs.insert(MI);
408}
409
410/// adjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
411/// being the source and IntB being the dest, thus this defines a value number
412/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
413/// see if we can merge these two pieces of B into a single value number,
414/// eliminating a copy.  For example:
415///
416///  A3 = B0
417///    ...
418///  B1 = A3      <- this copy
419///
420/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
421/// value number to be replaced with B0 (which simplifies the B liveinterval).
422///
423/// This returns true if an interval was modified.
424///
425bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
426                                             MachineInstr *CopyMI) {
427  assert(!CP.isPartial() && "This doesn't work for partial copies.");
428  assert(!CP.isPhys() && "This doesn't work for physreg copies.");
429
430  LiveInterval &IntA =
431    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
432  LiveInterval &IntB =
433    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
434  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
435
436  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
437  // the example above.
438  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
439  if (BLR == IntB.end()) return false;
440  VNInfo *BValNo = BLR->valno;
441
442  // Get the location that B is defined at.  Two options: either this value has
443  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
444  // can't process it.
445  if (BValNo->def != CopyIdx) return false;
446
447  // AValNo is the value number in A that defines the copy, A3 in the example.
448  SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
449  LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
450  // The live range might not exist after fun with physreg coalescing.
451  if (ALR == IntA.end()) return false;
452  VNInfo *AValNo = ALR->valno;
453
454  // If AValNo is defined as a copy from IntB, we can potentially process this.
455  // Get the instruction that defines this value number.
456  MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
457  // Don't allow any partial copies, even if isCoalescable() allows them.
458  if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
459    return false;
460
461  // Get the LiveRange in IntB that this value number starts with.
462  LiveInterval::iterator ValLR =
463    IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
464  if (ValLR == IntB.end())
465    return false;
466
467  // Make sure that the end of the live range is inside the same block as
468  // CopyMI.
469  MachineInstr *ValLREndInst =
470    LIS->getInstructionFromIndex(ValLR->end.getPrevSlot());
471  if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
472    return false;
473
474  // Okay, we now know that ValLR ends in the same block that the CopyMI
475  // live-range starts.  If there are no intervening live ranges between them in
476  // IntB, we can merge them.
477  if (ValLR+1 != BLR) return false;
478
479  DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
480
481  SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
482  // We are about to delete CopyMI, so need to remove it as the 'instruction
483  // that defines this value #'. Update the valnum with the new defining
484  // instruction #.
485  BValNo->def = FillerStart;
486
487  // Okay, we can merge them.  We need to insert a new liverange:
488  // [ValLR.end, BLR.begin) of either value number, then we merge the
489  // two value numbers.
490  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
491
492  // Okay, merge "B1" into the same value number as "B0".
493  if (BValNo != ValLR->valno)
494    IntB.MergeValueNumberInto(BValNo, ValLR->valno);
495  DEBUG(dbgs() << "   result = " << IntB << '\n');
496
497  // If the source instruction was killing the source register before the
498  // merge, unset the isKill marker given the live range has been extended.
499  int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
500  if (UIdx != -1) {
501    ValLREndInst->getOperand(UIdx).setIsKill(false);
502  }
503
504  // Rewrite the copy. If the copy instruction was killing the destination
505  // register before the merge, find the last use and trim the live range. That
506  // will also add the isKill marker.
507  CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
508  if (ALR->end == CopyIdx)
509    LIS->shrinkToUses(&IntA);
510
511  ++numExtends;
512  return true;
513}
514
515/// hasOtherReachingDefs - Return true if there are definitions of IntB
516/// other than BValNo val# that can reach uses of AValno val# of IntA.
517bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
518                                             LiveInterval &IntB,
519                                             VNInfo *AValNo,
520                                             VNInfo *BValNo) {
521  // If AValNo has PHI kills, conservatively assume that IntB defs can reach
522  // the PHI values.
523  if (LIS->hasPHIKill(IntA, AValNo))
524    return true;
525
526  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
527       AI != AE; ++AI) {
528    if (AI->valno != AValNo) continue;
529    LiveInterval::Ranges::iterator BI =
530      std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
531    if (BI != IntB.ranges.begin())
532      --BI;
533    for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
534      if (BI->valno == BValNo)
535        continue;
536      if (BI->start <= AI->start && BI->end > AI->start)
537        return true;
538      if (BI->start > AI->start && BI->start < AI->end)
539        return true;
540    }
541  }
542  return false;
543}
544
545/// removeCopyByCommutingDef - We found a non-trivially-coalescable copy with
546/// IntA being the source and IntB being the dest, thus this defines a value
547/// number in IntB.  If the source value number (in IntA) is defined by a
548/// commutable instruction and its other operand is coalesced to the copy dest
549/// register, see if we can transform the copy into a noop by commuting the
550/// definition. For example,
551///
552///  A3 = op A2 B0<kill>
553///    ...
554///  B1 = A3      <- this copy
555///    ...
556///     = op A3   <- more uses
557///
558/// ==>
559///
560///  B2 = op B0 A2<kill>
561///    ...
562///  B1 = B2      <- now an identify copy
563///    ...
564///     = op B2   <- more uses
565///
566/// This returns true if an interval was modified.
567///
568bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
569                                                 MachineInstr *CopyMI) {
570  assert (!CP.isPhys());
571
572  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
573
574  LiveInterval &IntA =
575    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
576  LiveInterval &IntB =
577    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
578
579  // BValNo is a value number in B that is defined by a copy from A. 'B3' in
580  // the example above.
581  VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
582  if (!BValNo || BValNo->def != CopyIdx)
583    return false;
584
585  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
586
587  // AValNo is the value number in A that defines the copy, A3 in the example.
588  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
589  assert(AValNo && "COPY source not live");
590  if (AValNo->isPHIDef() || AValNo->isUnused())
591    return false;
592  MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
593  if (!DefMI)
594    return false;
595  if (!DefMI->isCommutable())
596    return false;
597  // If DefMI is a two-address instruction then commuting it will change the
598  // destination register.
599  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
600  assert(DefIdx != -1);
601  unsigned UseOpIdx;
602  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
603    return false;
604  unsigned Op1, Op2, NewDstIdx;
605  if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
606    return false;
607  if (Op1 == UseOpIdx)
608    NewDstIdx = Op2;
609  else if (Op2 == UseOpIdx)
610    NewDstIdx = Op1;
611  else
612    return false;
613
614  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
615  unsigned NewReg = NewDstMO.getReg();
616  if (NewReg != IntB.reg || !LiveRangeQuery(IntB, AValNo->def).isKill())
617    return false;
618
619  // Make sure there are no other definitions of IntB that would reach the
620  // uses which the new definition can reach.
621  if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
622    return false;
623
624  // If some of the uses of IntA.reg is already coalesced away, return false.
625  // It's not possible to determine whether it's safe to perform the coalescing.
626  for (MachineRegisterInfo::use_nodbg_iterator UI =
627         MRI->use_nodbg_begin(IntA.reg),
628       UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
629    MachineInstr *UseMI = &*UI;
630    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
631    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
632    if (ULR == IntA.end() || ULR->valno != AValNo)
633      continue;
634    // If this use is tied to a def, we can't rewrite the register.
635    if (UseMI->isRegTiedToDefOperand(UI.getOperandNo()))
636      return false;
637  }
638
639  DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
640               << *DefMI);
641
642  // At this point we have decided that it is legal to do this
643  // transformation.  Start by commuting the instruction.
644  MachineBasicBlock *MBB = DefMI->getParent();
645  MachineInstr *NewMI = TII->commuteInstruction(DefMI);
646  if (!NewMI)
647    return false;
648  if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
649      TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
650      !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
651    return false;
652  if (NewMI != DefMI) {
653    LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
654    MachineBasicBlock::iterator Pos = DefMI;
655    MBB->insert(Pos, NewMI);
656    MBB->erase(DefMI);
657  }
658  unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
659  NewMI->getOperand(OpIdx).setIsKill();
660
661  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
662  // A = or A, B
663  // ...
664  // B = A
665  // ...
666  // C = A<kill>
667  // ...
668  //   = B
669
670  // Update uses of IntA of the specific Val# with IntB.
671  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
672         UE = MRI->use_end(); UI != UE;) {
673    MachineOperand &UseMO = UI.getOperand();
674    MachineInstr *UseMI = &*UI;
675    ++UI;
676    if (UseMI->isDebugValue()) {
677      // FIXME These don't have an instruction index.  Not clear we have enough
678      // info to decide whether to do this replacement or not.  For now do it.
679      UseMO.setReg(NewReg);
680      continue;
681    }
682    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
683    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
684    if (ULR == IntA.end() || ULR->valno != AValNo)
685      continue;
686    // Kill flags are no longer accurate. They are recomputed after RA.
687    UseMO.setIsKill(false);
688    if (TargetRegisterInfo::isPhysicalRegister(NewReg))
689      UseMO.substPhysReg(NewReg, *TRI);
690    else
691      UseMO.setReg(NewReg);
692    if (UseMI == CopyMI)
693      continue;
694    if (!UseMI->isCopy())
695      continue;
696    if (UseMI->getOperand(0).getReg() != IntB.reg ||
697        UseMI->getOperand(0).getSubReg())
698      continue;
699
700    // This copy will become a noop. If it's defining a new val#, merge it into
701    // BValNo.
702    SlotIndex DefIdx = UseIdx.getRegSlot();
703    VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
704    if (!DVNI)
705      continue;
706    DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
707    assert(DVNI->def == DefIdx);
708    BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
709    ErasedInstrs.insert(UseMI);
710    LIS->RemoveMachineInstrFromMaps(UseMI);
711    UseMI->eraseFromParent();
712  }
713
714  // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
715  // is updated.
716  VNInfo *ValNo = BValNo;
717  ValNo->def = AValNo->def;
718  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
719       AI != AE; ++AI) {
720    if (AI->valno != AValNo) continue;
721    IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
722  }
723  DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
724
725  IntA.removeValNo(AValNo);
726  DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
727  ++numCommutes;
728  return true;
729}
730
731/// reMaterializeTrivialDef - If the source of a copy is defined by a trivial
732/// computation, replace the copy by rematerialize the definition.
733bool RegisterCoalescer::reMaterializeTrivialDef(CoalescerPair &CP,
734                                                MachineInstr *CopyMI) {
735  unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
736  unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
737  if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
738    return false;
739
740  LiveInterval &SrcInt = LIS->getInterval(SrcReg);
741  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
742  LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
743  assert(SrcLR != SrcInt.end() && "Live range not found!");
744  VNInfo *ValNo = SrcLR->valno;
745  if (ValNo->isPHIDef() || ValNo->isUnused())
746    return false;
747  MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
748  if (!DefMI)
749    return false;
750  assert(DefMI && "Defining instruction disappeared");
751  if (!DefMI->isAsCheapAsAMove())
752    return false;
753  if (!TII->isTriviallyReMaterializable(DefMI, AA))
754    return false;
755  bool SawStore = false;
756  if (!DefMI->isSafeToMove(TII, AA, SawStore))
757    return false;
758  const MCInstrDesc &MCID = DefMI->getDesc();
759  if (MCID.getNumDefs() != 1)
760    return false;
761  // Only support subregister destinations when the def is read-undef.
762  MachineOperand &DstOperand = CopyMI->getOperand(0);
763  if (DstOperand.getSubReg() && !DstOperand.isUndef())
764    return false;
765  if (!DefMI->isImplicitDef()) {
766    // Make sure the copy destination register class fits the instruction
767    // definition register class. The mismatch can happen as a result of earlier
768    // extract_subreg, insert_subreg, subreg_to_reg coalescing.
769    const TargetRegisterClass *RC = TII->getRegClass(MCID, 0, TRI, *MF);
770    if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
771      if (!MRI->constrainRegClass(DstReg, RC))
772        return false;
773    } else if (!RC->contains(DstReg))
774      return false;
775  }
776
777  MachineBasicBlock *MBB = CopyMI->getParent();
778  MachineBasicBlock::iterator MII =
779    llvm::next(MachineBasicBlock::iterator(CopyMI));
780  TII->reMaterialize(*MBB, MII, DstReg, 0, DefMI, *TRI);
781  MachineInstr *NewMI = prior(MII);
782
783  // The original DefMI may have been a subregister def, but the full register
784  // class of its destination matches the destination of CopyMI, and CopyMI is
785  // either a full register def or is read-undef. Therefore we can clear the
786  // subregister index on the rematerialized instruction.
787  NewMI->getOperand(0).setSubReg(0);
788
789  // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
790  // We need to remember these so we can add intervals once we insert
791  // NewMI into SlotIndexes.
792  SmallVector<unsigned, 4> NewMIImplDefs;
793  for (unsigned i = NewMI->getDesc().getNumOperands(),
794         e = NewMI->getNumOperands(); i != e; ++i) {
795    MachineOperand &MO = NewMI->getOperand(i);
796    if (MO.isReg()) {
797      assert(MO.isDef() && MO.isImplicit() && MO.isDead() &&
798             TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
799      NewMIImplDefs.push_back(MO.getReg());
800    }
801  }
802
803  // CopyMI may have implicit operands, transfer them over to the newly
804  // rematerialized instruction. And update implicit def interval valnos.
805  for (unsigned i = CopyMI->getDesc().getNumOperands(),
806         e = CopyMI->getNumOperands(); i != e; ++i) {
807    MachineOperand &MO = CopyMI->getOperand(i);
808    if (MO.isReg()) {
809      assert(MO.isImplicit() && "No explicit operands after implict operands.");
810      // Discard VReg implicit defs.
811      if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
812        NewMI->addOperand(MO);
813      }
814    }
815  }
816
817  LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
818
819  SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
820  for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
821    unsigned Reg = NewMIImplDefs[i];
822    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
823      if (LiveInterval *LI = LIS->getCachedRegUnit(*Units))
824        LI->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
825  }
826
827  CopyMI->eraseFromParent();
828  ErasedInstrs.insert(CopyMI);
829  DEBUG(dbgs() << "Remat: " << *NewMI);
830  ++NumReMats;
831
832  // The source interval can become smaller because we removed a use.
833  LIS->shrinkToUses(&SrcInt, &DeadDefs);
834  if (!DeadDefs.empty())
835    eliminateDeadDefs();
836
837  return true;
838}
839
840/// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
841/// values, it only removes local variables. When we have a copy like:
842///
843///   %vreg1 = COPY %vreg2<undef>
844///
845/// We delete the copy and remove the corresponding value number from %vreg1.
846/// Any uses of that value number are marked as <undef>.
847bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
848                                           const CoalescerPair &CP) {
849  SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
850  LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
851  if (SrcInt->liveAt(Idx))
852    return false;
853  LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
854  if (DstInt->liveAt(Idx))
855    return false;
856
857  // No intervals are live-in to CopyMI - it is undef.
858  if (CP.isFlipped())
859    DstInt = SrcInt;
860  SrcInt = 0;
861
862  VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
863  assert(DeadVNI && "No value defined in DstInt");
864  DstInt->removeValNo(DeadVNI);
865
866  // Find new undef uses.
867  for (MachineRegisterInfo::reg_nodbg_iterator
868         I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end();
869       I != E; ++I) {
870    MachineOperand &MO = I.getOperand();
871    if (MO.isDef() || MO.isUndef())
872      continue;
873    MachineInstr *MI = MO.getParent();
874    SlotIndex Idx = LIS->getInstructionIndex(MI);
875    if (DstInt->liveAt(Idx))
876      continue;
877    MO.setIsUndef(true);
878    DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
879  }
880  return true;
881}
882
883/// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
884/// update the subregister number if it is not zero. If DstReg is a
885/// physical register and the existing subregister number of the def / use
886/// being updated is not zero, make sure to set it to the correct physical
887/// subregister.
888void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
889                                          unsigned DstReg,
890                                          unsigned SubIdx) {
891  bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
892  LiveInterval *DstInt = DstIsPhys ? 0 : &LIS->getInterval(DstReg);
893
894  SmallPtrSet<MachineInstr*, 8> Visited;
895  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg);
896       MachineInstr *UseMI = I.skipInstruction();) {
897    // Each instruction can only be rewritten once because sub-register
898    // composition is not always idempotent. When SrcReg != DstReg, rewriting
899    // the UseMI operands removes them from the SrcReg use-def chain, but when
900    // SrcReg is DstReg we could encounter UseMI twice if it has multiple
901    // operands mentioning the virtual register.
902    if (SrcReg == DstReg && !Visited.insert(UseMI))
903      continue;
904
905    SmallVector<unsigned,8> Ops;
906    bool Reads, Writes;
907    tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
908
909    // If SrcReg wasn't read, it may still be the case that DstReg is live-in
910    // because SrcReg is a sub-register.
911    if (DstInt && !Reads && SubIdx)
912      Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI));
913
914    // Replace SrcReg with DstReg in all UseMI operands.
915    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
916      MachineOperand &MO = UseMI->getOperand(Ops[i]);
917
918      // Adjust <undef> flags in case of sub-register joins. We don't want to
919      // turn a full def into a read-modify-write sub-register def and vice
920      // versa.
921      if (SubIdx && MO.isDef())
922        MO.setIsUndef(!Reads);
923
924      if (DstIsPhys)
925        MO.substPhysReg(DstReg, *TRI);
926      else
927        MO.substVirtReg(DstReg, SubIdx, *TRI);
928    }
929
930    DEBUG({
931        dbgs() << "\t\tupdated: ";
932        if (!UseMI->isDebugValue())
933          dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
934        dbgs() << *UseMI;
935      });
936  }
937}
938
939/// canJoinPhys - Return true if a copy involving a physreg should be joined.
940bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
941  /// Always join simple intervals that are defined by a single copy from a
942  /// reserved register. This doesn't increase register pressure, so it is
943  /// always beneficial.
944  if (!MRI->isReserved(CP.getDstReg())) {
945    DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
946    return false;
947  }
948
949  LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
950  if (CP.isFlipped() && JoinVInt.containsOneValue())
951    return true;
952
953  DEBUG(dbgs() << "\tCannot join defs into reserved register.\n");
954  return false;
955}
956
957/// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
958/// which are the src/dst of the copy instruction CopyMI.  This returns true
959/// if the copy was successfully coalesced away. If it is not currently
960/// possible to coalesce this interval, but it may be possible if other
961/// things get coalesced, then it returns true by reference in 'Again'.
962bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
963
964  Again = false;
965  DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
966
967  CoalescerPair CP(*TRI);
968  if (!CP.setRegisters(CopyMI)) {
969    DEBUG(dbgs() << "\tNot coalescable.\n");
970    return false;
971  }
972
973  // Dead code elimination. This really should be handled by MachineDCE, but
974  // sometimes dead copies slip through, and we can't generate invalid live
975  // ranges.
976  if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
977    DEBUG(dbgs() << "\tCopy is dead.\n");
978    DeadDefs.push_back(CopyMI);
979    eliminateDeadDefs();
980    return true;
981  }
982
983  // Eliminate undefs.
984  if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
985    DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
986    LIS->RemoveMachineInstrFromMaps(CopyMI);
987    CopyMI->eraseFromParent();
988    return false;  // Not coalescable.
989  }
990
991  // Coalesced copies are normally removed immediately, but transformations
992  // like removeCopyByCommutingDef() can inadvertently create identity copies.
993  // When that happens, just join the values and remove the copy.
994  if (CP.getSrcReg() == CP.getDstReg()) {
995    LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
996    DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
997    LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(CopyMI));
998    if (VNInfo *DefVNI = LRQ.valueDefined()) {
999      VNInfo *ReadVNI = LRQ.valueIn();
1000      assert(ReadVNI && "No value before copy and no <undef> flag.");
1001      assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1002      LI.MergeValueNumberInto(DefVNI, ReadVNI);
1003      DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
1004    }
1005    LIS->RemoveMachineInstrFromMaps(CopyMI);
1006    CopyMI->eraseFromParent();
1007    return true;
1008  }
1009
1010  // Enforce policies.
1011  if (CP.isPhys()) {
1012    DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
1013                 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
1014                 << '\n');
1015    if (!canJoinPhys(CP)) {
1016      // Before giving up coalescing, if definition of source is defined by
1017      // trivial computation, try rematerializing it.
1018      if (reMaterializeTrivialDef(CP, CopyMI))
1019        return true;
1020      return false;
1021    }
1022  } else {
1023    DEBUG({
1024      dbgs() << "\tConsidering merging to " << CP.getNewRC()->getName()
1025             << " with ";
1026      if (CP.getDstIdx() && CP.getSrcIdx())
1027        dbgs() << PrintReg(CP.getDstReg()) << " in "
1028               << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1029               << PrintReg(CP.getSrcReg()) << " in "
1030               << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1031      else
1032        dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
1033               << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1034    });
1035
1036    // When possible, let DstReg be the larger interval.
1037    if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).ranges.size() >
1038                           LIS->getInterval(CP.getDstReg()).ranges.size())
1039      CP.flip();
1040  }
1041
1042  // Okay, attempt to join these two intervals.  On failure, this returns false.
1043  // Otherwise, if one of the intervals being joined is a physreg, this method
1044  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1045  // been modified, so we can use this information below to update aliases.
1046  if (!joinIntervals(CP)) {
1047    // Coalescing failed.
1048
1049    // If definition of source is defined by trivial computation, try
1050    // rematerializing it.
1051    if (reMaterializeTrivialDef(CP, CopyMI))
1052      return true;
1053
1054    // If we can eliminate the copy without merging the live ranges, do so now.
1055    if (!CP.isPartial() && !CP.isPhys()) {
1056      if (adjustCopiesBackFrom(CP, CopyMI) ||
1057          removeCopyByCommutingDef(CP, CopyMI)) {
1058        LIS->RemoveMachineInstrFromMaps(CopyMI);
1059        CopyMI->eraseFromParent();
1060        DEBUG(dbgs() << "\tTrivial!\n");
1061        return true;
1062      }
1063    }
1064
1065    // Otherwise, we are unable to join the intervals.
1066    DEBUG(dbgs() << "\tInterference!\n");
1067    Again = true;  // May be possible to coalesce later.
1068    return false;
1069  }
1070
1071  // Coalescing to a virtual register that is of a sub-register class of the
1072  // other. Make sure the resulting register is set to the right register class.
1073  if (CP.isCrossClass()) {
1074    ++numCrossRCs;
1075    MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1076  }
1077
1078  // Removing sub-register copies can ease the register class constraints.
1079  // Make sure we attempt to inflate the register class of DstReg.
1080  if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1081    InflateRegs.push_back(CP.getDstReg());
1082
1083  // CopyMI has been erased by joinIntervals at this point. Remove it from
1084  // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1085  // to the work list. This keeps ErasedInstrs from growing needlessly.
1086  ErasedInstrs.erase(CopyMI);
1087
1088  // Rewrite all SrcReg operands to DstReg.
1089  // Also update DstReg operands to include DstIdx if it is set.
1090  if (CP.getDstIdx())
1091    updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1092  updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1093
1094  // SrcReg is guaranteed to be the register whose live interval that is
1095  // being merged.
1096  LIS->removeInterval(CP.getSrcReg());
1097
1098  // Update regalloc hint.
1099  TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1100
1101  DEBUG({
1102    dbgs() << "\tJoined. Result = " << PrintReg(CP.getDstReg(), TRI);
1103    if (!CP.isPhys())
1104      dbgs() << LIS->getInterval(CP.getDstReg());
1105     dbgs() << '\n';
1106  });
1107
1108  ++numJoins;
1109  return true;
1110}
1111
1112/// Attempt joining with a reserved physreg.
1113bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1114  assert(CP.isPhys() && "Must be a physreg copy");
1115  assert(MRI->isReserved(CP.getDstReg()) && "Not a reserved register");
1116  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1117  DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
1118               << '\n');
1119
1120  assert(CP.isFlipped() && RHS.containsOneValue() &&
1121         "Invalid join with reserved register");
1122
1123  // Optimization for reserved registers like ESP. We can only merge with a
1124  // reserved physreg if RHS has a single value that is a copy of CP.DstReg().
1125  // The live range of the reserved register will look like a set of dead defs
1126  // - we don't properly track the live range of reserved registers.
1127
1128  // Deny any overlapping intervals.  This depends on all the reserved
1129  // register live ranges to look like dead defs.
1130  for (MCRegUnitIterator UI(CP.getDstReg(), TRI); UI.isValid(); ++UI)
1131    if (RHS.overlaps(LIS->getRegUnit(*UI))) {
1132      DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
1133      return false;
1134    }
1135
1136  // Skip any value computations, we are not adding new values to the
1137  // reserved register.  Also skip merging the live ranges, the reserved
1138  // register live range doesn't need to be accurate as long as all the
1139  // defs are there.
1140
1141  // Delete the identity copy.
1142  MachineInstr *CopyMI = MRI->getVRegDef(RHS.reg);
1143  LIS->RemoveMachineInstrFromMaps(CopyMI);
1144  CopyMI->eraseFromParent();
1145
1146  // We don't track kills for reserved registers.
1147  MRI->clearKillFlags(CP.getSrcReg());
1148
1149  return true;
1150}
1151
1152//===----------------------------------------------------------------------===//
1153//                 Interference checking and interval joining
1154//===----------------------------------------------------------------------===//
1155//
1156// In the easiest case, the two live ranges being joined are disjoint, and
1157// there is no interference to consider. It is quite common, though, to have
1158// overlapping live ranges, and we need to check if the interference can be
1159// resolved.
1160//
1161// The live range of a single SSA value forms a sub-tree of the dominator tree.
1162// This means that two SSA values overlap if and only if the def of one value
1163// is contained in the live range of the other value. As a special case, the
1164// overlapping values can be defined at the same index.
1165//
1166// The interference from an overlapping def can be resolved in these cases:
1167//
1168// 1. Coalescable copies. The value is defined by a copy that would become an
1169//    identity copy after joining SrcReg and DstReg. The copy instruction will
1170//    be removed, and the value will be merged with the source value.
1171//
1172//    There can be several copies back and forth, causing many values to be
1173//    merged into one. We compute a list of ultimate values in the joined live
1174//    range as well as a mappings from the old value numbers.
1175//
1176// 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
1177//    predecessors have a live out value. It doesn't cause real interference,
1178//    and can be merged into the value it overlaps. Like a coalescable copy, it
1179//    can be erased after joining.
1180//
1181// 3. Copy of external value. The overlapping def may be a copy of a value that
1182//    is already in the other register. This is like a coalescable copy, but
1183//    the live range of the source register must be trimmed after erasing the
1184//    copy instruction:
1185//
1186//      %src = COPY %ext
1187//      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
1188//
1189// 4. Clobbering undefined lanes. Vector registers are sometimes built by
1190//    defining one lane at a time:
1191//
1192//      %dst:ssub0<def,read-undef> = FOO
1193//      %src = BAR
1194//      %dst:ssub1<def> = COPY %src
1195//
1196//    The live range of %src overlaps the %dst value defined by FOO, but
1197//    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
1198//    which was undef anyway.
1199//
1200//    The value mapping is more complicated in this case. The final live range
1201//    will have different value numbers for both FOO and BAR, but there is no
1202//    simple mapping from old to new values. It may even be necessary to add
1203//    new PHI values.
1204//
1205// 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
1206//    is live, but never read. This can happen because we don't compute
1207//    individual live ranges per lane.
1208//
1209//      %dst<def> = FOO
1210//      %src = BAR
1211//      %dst:ssub1<def> = COPY %src
1212//
1213//    This kind of interference is only resolved locally. If the clobbered
1214//    lane value escapes the block, the join is aborted.
1215
1216namespace {
1217/// Track information about values in a single virtual register about to be
1218/// joined. Objects of this class are always created in pairs - one for each
1219/// side of the CoalescerPair.
1220class JoinVals {
1221  LiveInterval &LI;
1222
1223  // Location of this register in the final joined register.
1224  // Either CP.DstIdx or CP.SrcIdx.
1225  unsigned SubIdx;
1226
1227  // Values that will be present in the final live range.
1228  SmallVectorImpl<VNInfo*> &NewVNInfo;
1229
1230  const CoalescerPair &CP;
1231  LiveIntervals *LIS;
1232  SlotIndexes *Indexes;
1233  const TargetRegisterInfo *TRI;
1234
1235  // Value number assignments. Maps value numbers in LI to entries in NewVNInfo.
1236  // This is suitable for passing to LiveInterval::join().
1237  SmallVector<int, 8> Assignments;
1238
1239  // Conflict resolution for overlapping values.
1240  enum ConflictResolution {
1241    // No overlap, simply keep this value.
1242    CR_Keep,
1243
1244    // Merge this value into OtherVNI and erase the defining instruction.
1245    // Used for IMPLICIT_DEF, coalescable copies, and copies from external
1246    // values.
1247    CR_Erase,
1248
1249    // Merge this value into OtherVNI but keep the defining instruction.
1250    // This is for the special case where OtherVNI is defined by the same
1251    // instruction.
1252    CR_Merge,
1253
1254    // Keep this value, and have it replace OtherVNI where possible. This
1255    // complicates value mapping since OtherVNI maps to two different values
1256    // before and after this def.
1257    // Used when clobbering undefined or dead lanes.
1258    CR_Replace,
1259
1260    // Unresolved conflict. Visit later when all values have been mapped.
1261    CR_Unresolved,
1262
1263    // Unresolvable conflict. Abort the join.
1264    CR_Impossible
1265  };
1266
1267  // Per-value info for LI. The lane bit masks are all relative to the final
1268  // joined register, so they can be compared directly between SrcReg and
1269  // DstReg.
1270  struct Val {
1271    ConflictResolution Resolution;
1272
1273    // Lanes written by this def, 0 for unanalyzed values.
1274    unsigned WriteLanes;
1275
1276    // Lanes with defined values in this register. Other lanes are undef and
1277    // safe to clobber.
1278    unsigned ValidLanes;
1279
1280    // Value in LI being redefined by this def.
1281    VNInfo *RedefVNI;
1282
1283    // Value in the other live range that overlaps this def, if any.
1284    VNInfo *OtherVNI;
1285
1286    // Is this value an IMPLICIT_DEF that can be erased?
1287    //
1288    // IMPLICIT_DEF values should only exist at the end of a basic block that
1289    // is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
1290    // safely erased if they are overlapping a live value in the other live
1291    // interval.
1292    //
1293    // Weird control flow graphs and incomplete PHI handling in
1294    // ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
1295    // longer live ranges. Such IMPLICIT_DEF values should be treated like
1296    // normal values.
1297    bool ErasableImplicitDef;
1298
1299    // True when the live range of this value will be pruned because of an
1300    // overlapping CR_Replace value in the other live range.
1301    bool Pruned;
1302
1303    // True once Pruned above has been computed.
1304    bool PrunedComputed;
1305
1306    Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0),
1307            RedefVNI(0), OtherVNI(0), ErasableImplicitDef(false),
1308            Pruned(false), PrunedComputed(false) {}
1309
1310    bool isAnalyzed() const { return WriteLanes != 0; }
1311  };
1312
1313  // One entry per value number in LI.
1314  SmallVector<Val, 8> Vals;
1315
1316  unsigned computeWriteLanes(const MachineInstr *DefMI, bool &Redef);
1317  VNInfo *stripCopies(VNInfo *VNI);
1318  ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
1319  void computeAssignment(unsigned ValNo, JoinVals &Other);
1320  bool taintExtent(unsigned, unsigned, JoinVals&,
1321                   SmallVectorImpl<std::pair<SlotIndex, unsigned> >&);
1322  bool usesLanes(MachineInstr *MI, unsigned, unsigned, unsigned);
1323  bool isPrunedValue(unsigned ValNo, JoinVals &Other);
1324
1325public:
1326  JoinVals(LiveInterval &li, unsigned subIdx,
1327           SmallVectorImpl<VNInfo*> &newVNInfo,
1328           const CoalescerPair &cp,
1329           LiveIntervals *lis,
1330           const TargetRegisterInfo *tri)
1331    : LI(li), SubIdx(subIdx), NewVNInfo(newVNInfo), CP(cp), LIS(lis),
1332      Indexes(LIS->getSlotIndexes()), TRI(tri),
1333      Assignments(LI.getNumValNums(), -1), Vals(LI.getNumValNums())
1334  {}
1335
1336  /// Analyze defs in LI and compute a value mapping in NewVNInfo.
1337  /// Returns false if any conflicts were impossible to resolve.
1338  bool mapValues(JoinVals &Other);
1339
1340  /// Try to resolve conflicts that require all values to be mapped.
1341  /// Returns false if any conflicts were impossible to resolve.
1342  bool resolveConflicts(JoinVals &Other);
1343
1344  /// Prune the live range of values in Other.LI where they would conflict with
1345  /// CR_Replace values in LI. Collect end points for restoring the live range
1346  /// after joining.
1347  void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints);
1348
1349  /// Erase any machine instructions that have been coalesced away.
1350  /// Add erased instructions to ErasedInstrs.
1351  /// Add foreign virtual registers to ShrinkRegs if their live range ended at
1352  /// the erased instrs.
1353  void eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
1354                   SmallVectorImpl<unsigned> &ShrinkRegs);
1355
1356  /// Get the value assignments suitable for passing to LiveInterval::join.
1357  const int *getAssignments() const { return Assignments.data(); }
1358};
1359} // end anonymous namespace
1360
1361/// Compute the bitmask of lanes actually written by DefMI.
1362/// Set Redef if there are any partial register definitions that depend on the
1363/// previous value of the register.
1364unsigned JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) {
1365  unsigned L = 0;
1366  for (ConstMIOperands MO(DefMI); MO.isValid(); ++MO) {
1367    if (!MO->isReg() || MO->getReg() != LI.reg || !MO->isDef())
1368      continue;
1369    L |= TRI->getSubRegIndexLaneMask(
1370           TRI->composeSubRegIndices(SubIdx, MO->getSubReg()));
1371    if (MO->readsReg())
1372      Redef = true;
1373  }
1374  return L;
1375}
1376
1377/// Find the ultimate value that VNI was copied from.
1378VNInfo *JoinVals::stripCopies(VNInfo *VNI) {
1379  while (!VNI->isPHIDef()) {
1380    MachineInstr *MI = Indexes->getInstructionFromIndex(VNI->def);
1381    assert(MI && "No defining instruction");
1382    if (!MI->isFullCopy())
1383      break;
1384    unsigned Reg = MI->getOperand(1).getReg();
1385    if (!TargetRegisterInfo::isVirtualRegister(Reg))
1386      break;
1387    LiveRangeQuery LRQ(LIS->getInterval(Reg), VNI->def);
1388    if (!LRQ.valueIn())
1389      break;
1390    VNI = LRQ.valueIn();
1391  }
1392  return VNI;
1393}
1394
1395/// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
1396/// Return a conflict resolution when possible, but leave the hard cases as
1397/// CR_Unresolved.
1398/// Recursively calls computeAssignment() on this and Other, guaranteeing that
1399/// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
1400/// The recursion always goes upwards in the dominator tree, making loops
1401/// impossible.
1402JoinVals::ConflictResolution
1403JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
1404  Val &V = Vals[ValNo];
1405  assert(!V.isAnalyzed() && "Value has already been analyzed!");
1406  VNInfo *VNI = LI.getValNumInfo(ValNo);
1407  if (VNI->isUnused()) {
1408    V.WriteLanes = ~0u;
1409    return CR_Keep;
1410  }
1411
1412  // Get the instruction defining this value, compute the lanes written.
1413  const MachineInstr *DefMI = 0;
1414  if (VNI->isPHIDef()) {
1415    // Conservatively assume that all lanes in a PHI are valid.
1416    V.ValidLanes = V.WriteLanes = TRI->getSubRegIndexLaneMask(SubIdx);
1417  } else {
1418    DefMI = Indexes->getInstructionFromIndex(VNI->def);
1419    bool Redef = false;
1420    V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
1421
1422    // If this is a read-modify-write instruction, there may be more valid
1423    // lanes than the ones written by this instruction.
1424    // This only covers partial redef operands. DefMI may have normal use
1425    // operands reading the register. They don't contribute valid lanes.
1426    //
1427    // This adds ssub1 to the set of valid lanes in %src:
1428    //
1429    //   %src:ssub1<def> = FOO
1430    //
1431    // This leaves only ssub1 valid, making any other lanes undef:
1432    //
1433    //   %src:ssub1<def,read-undef> = FOO %src:ssub2
1434    //
1435    // The <read-undef> flag on the def operand means that old lane values are
1436    // not important.
1437    if (Redef) {
1438      V.RedefVNI = LiveRangeQuery(LI, VNI->def).valueIn();
1439      assert(V.RedefVNI && "Instruction is reading nonexistent value");
1440      computeAssignment(V.RedefVNI->id, Other);
1441      V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
1442    }
1443
1444    // An IMPLICIT_DEF writes undef values.
1445    if (DefMI->isImplicitDef()) {
1446      // We normally expect IMPLICIT_DEF values to be live only until the end
1447      // of their block. If the value is really live longer and gets pruned in
1448      // another block, this flag is cleared again.
1449      V.ErasableImplicitDef = true;
1450      V.ValidLanes &= ~V.WriteLanes;
1451    }
1452  }
1453
1454  // Find the value in Other that overlaps VNI->def, if any.
1455  LiveRangeQuery OtherLRQ(Other.LI, VNI->def);
1456
1457  // It is possible that both values are defined by the same instruction, or
1458  // the values are PHIs defined in the same block. When that happens, the two
1459  // values should be merged into one, but not into any preceding value.
1460  // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
1461  if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
1462    assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
1463
1464    // One value stays, the other is merged. Keep the earlier one, or the first
1465    // one we see.
1466    if (OtherVNI->def < VNI->def)
1467      Other.computeAssignment(OtherVNI->id, *this);
1468    else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
1469      // This is an early-clobber def overlapping a live-in value in the other
1470      // register. Not mergeable.
1471      V.OtherVNI = OtherLRQ.valueIn();
1472      return CR_Impossible;
1473    }
1474    V.OtherVNI = OtherVNI;
1475    Val &OtherV = Other.Vals[OtherVNI->id];
1476    // Keep this value, check for conflicts when analyzing OtherVNI.
1477    if (!OtherV.isAnalyzed())
1478      return CR_Keep;
1479    // Both sides have been analyzed now.
1480    // Allow overlapping PHI values. Any real interference would show up in a
1481    // predecessor, the PHI itself can't introduce any conflicts.
1482    if (VNI->isPHIDef())
1483      return CR_Merge;
1484    if (V.ValidLanes & OtherV.ValidLanes)
1485      // Overlapping lanes can't be resolved.
1486      return CR_Impossible;
1487    else
1488      return CR_Merge;
1489  }
1490
1491  // No simultaneous def. Is Other live at the def?
1492  V.OtherVNI = OtherLRQ.valueIn();
1493  if (!V.OtherVNI)
1494    // No overlap, no conflict.
1495    return CR_Keep;
1496
1497  assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
1498
1499  // We have overlapping values, or possibly a kill of Other.
1500  // Recursively compute assignments up the dominator tree.
1501  Other.computeAssignment(V.OtherVNI->id, *this);
1502  Val &OtherV = Other.Vals[V.OtherVNI->id];
1503
1504  // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
1505  // This shouldn't normally happen, but ProcessImplicitDefs can leave such
1506  // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
1507  // technically.
1508  //
1509  // WHen it happens, treat that IMPLICIT_DEF as a normal value, and don't try
1510  // to erase the IMPLICIT_DEF instruction.
1511  if (OtherV.ErasableImplicitDef && DefMI &&
1512      DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
1513    DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
1514                 << " extends into BB#" << DefMI->getParent()->getNumber()
1515                 << ", keeping it.\n");
1516    OtherV.ErasableImplicitDef = false;
1517  }
1518
1519  // Allow overlapping PHI values. Any real interference would show up in a
1520  // predecessor, the PHI itself can't introduce any conflicts.
1521  if (VNI->isPHIDef())
1522    return CR_Replace;
1523
1524  // Check for simple erasable conflicts.
1525  if (DefMI->isImplicitDef())
1526    return CR_Erase;
1527
1528  // Include the non-conflict where DefMI is a coalescable copy that kills
1529  // OtherVNI. We still want the copy erased and value numbers merged.
1530  if (CP.isCoalescable(DefMI)) {
1531    // Some of the lanes copied from OtherVNI may be undef, making them undef
1532    // here too.
1533    V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
1534    return CR_Erase;
1535  }
1536
1537  // This may not be a real conflict if DefMI simply kills Other and defines
1538  // VNI.
1539  if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
1540    return CR_Keep;
1541
1542  // Handle the case where VNI and OtherVNI can be proven to be identical:
1543  //
1544  //   %other = COPY %ext
1545  //   %this  = COPY %ext <-- Erase this copy
1546  //
1547  if (DefMI->isFullCopy() && !CP.isPartial() &&
1548      stripCopies(VNI) == stripCopies(V.OtherVNI))
1549    return CR_Erase;
1550
1551  // If the lanes written by this instruction were all undef in OtherVNI, it is
1552  // still safe to join the live ranges. This can't be done with a simple value
1553  // mapping, though - OtherVNI will map to multiple values:
1554  //
1555  //   1 %dst:ssub0 = FOO                <-- OtherVNI
1556  //   2 %src = BAR                      <-- VNI
1557  //   3 %dst:ssub1 = COPY %src<kill>    <-- Eliminate this copy.
1558  //   4 BAZ %dst<kill>
1559  //   5 QUUX %src<kill>
1560  //
1561  // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
1562  // handles this complex value mapping.
1563  if ((V.WriteLanes & OtherV.ValidLanes) == 0)
1564    return CR_Replace;
1565
1566  // If the other live range is killed by DefMI and the live ranges are still
1567  // overlapping, it must be because we're looking at an early clobber def:
1568  //
1569  //   %dst<def,early-clobber> = ASM %src<kill>
1570  //
1571  // In this case, it is illegal to merge the two live ranges since the early
1572  // clobber def would clobber %src before it was read.
1573  if (OtherLRQ.isKill()) {
1574    // This case where the def doesn't overlap the kill is handled above.
1575    assert(VNI->def.isEarlyClobber() &&
1576           "Only early clobber defs can overlap a kill");
1577    return CR_Impossible;
1578  }
1579
1580  // VNI is clobbering live lanes in OtherVNI, but there is still the
1581  // possibility that no instructions actually read the clobbered lanes.
1582  // If we're clobbering all the lanes in OtherVNI, at least one must be read.
1583  // Otherwise Other.LI wouldn't be live here.
1584  if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0)
1585    return CR_Impossible;
1586
1587  // We need to verify that no instructions are reading the clobbered lanes. To
1588  // save compile time, we'll only check that locally. Don't allow the tainted
1589  // value to escape the basic block.
1590  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
1591  if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
1592    return CR_Impossible;
1593
1594  // There are still some things that could go wrong besides clobbered lanes
1595  // being read, for example OtherVNI may be only partially redefined in MBB,
1596  // and some clobbered lanes could escape the block. Save this analysis for
1597  // resolveConflicts() when all values have been mapped. We need to know
1598  // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
1599  // that now - the recursive analyzeValue() calls must go upwards in the
1600  // dominator tree.
1601  return CR_Unresolved;
1602}
1603
1604/// Compute the value assignment for ValNo in LI.
1605/// This may be called recursively by analyzeValue(), but never for a ValNo on
1606/// the stack.
1607void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
1608  Val &V = Vals[ValNo];
1609  if (V.isAnalyzed()) {
1610    // Recursion should always move up the dominator tree, so ValNo is not
1611    // supposed to reappear before it has been assigned.
1612    assert(Assignments[ValNo] != -1 && "Bad recursion?");
1613    return;
1614  }
1615  switch ((V.Resolution = analyzeValue(ValNo, Other))) {
1616  case CR_Erase:
1617  case CR_Merge:
1618    // Merge this ValNo into OtherVNI.
1619    assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
1620    assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
1621    Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
1622    DEBUG(dbgs() << "\t\tmerge " << PrintReg(LI.reg) << ':' << ValNo << '@'
1623                 << LI.getValNumInfo(ValNo)->def << " into "
1624                 << PrintReg(Other.LI.reg) << ':' << V.OtherVNI->id << '@'
1625                 << V.OtherVNI->def << " --> @"
1626                 << NewVNInfo[Assignments[ValNo]]->def << '\n');
1627    break;
1628  case CR_Replace:
1629  case CR_Unresolved:
1630    // The other value is going to be pruned if this join is successful.
1631    assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
1632    Other.Vals[V.OtherVNI->id].Pruned = true;
1633    // Fall through.
1634  default:
1635    // This value number needs to go in the final joined live range.
1636    Assignments[ValNo] = NewVNInfo.size();
1637    NewVNInfo.push_back(LI.getValNumInfo(ValNo));
1638    break;
1639  }
1640}
1641
1642bool JoinVals::mapValues(JoinVals &Other) {
1643  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1644    computeAssignment(i, Other);
1645    if (Vals[i].Resolution == CR_Impossible) {
1646      DEBUG(dbgs() << "\t\tinterference at " << PrintReg(LI.reg) << ':' << i
1647                   << '@' << LI.getValNumInfo(i)->def << '\n');
1648      return false;
1649    }
1650  }
1651  return true;
1652}
1653
1654/// Assuming ValNo is going to clobber some valid lanes in Other.LI, compute
1655/// the extent of the tainted lanes in the block.
1656///
1657/// Multiple values in Other.LI can be affected since partial redefinitions can
1658/// preserve previously tainted lanes.
1659///
1660///   1 %dst = VLOAD           <-- Define all lanes in %dst
1661///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
1662///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
1663///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
1664///
1665/// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
1666/// entry to TaintedVals.
1667///
1668/// Returns false if the tainted lanes extend beyond the basic block.
1669bool JoinVals::
1670taintExtent(unsigned ValNo, unsigned TaintedLanes, JoinVals &Other,
1671            SmallVectorImpl<std::pair<SlotIndex, unsigned> > &TaintExtent) {
1672  VNInfo *VNI = LI.getValNumInfo(ValNo);
1673  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
1674  SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
1675
1676  // Scan Other.LI from VNI.def to MBBEnd.
1677  LiveInterval::iterator OtherI = Other.LI.find(VNI->def);
1678  assert(OtherI != Other.LI.end() && "No conflict?");
1679  do {
1680    // OtherI is pointing to a tainted value. Abort the join if the tainted
1681    // lanes escape the block.
1682    SlotIndex End = OtherI->end;
1683    if (End >= MBBEnd) {
1684      DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.LI.reg) << ':'
1685                   << OtherI->valno->id << '@' << OtherI->start << '\n');
1686      return false;
1687    }
1688    DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.LI.reg) << ':'
1689                 << OtherI->valno->id << '@' << OtherI->start
1690                 << " to " << End << '\n');
1691    // A dead def is not a problem.
1692    if (End.isDead())
1693      break;
1694    TaintExtent.push_back(std::make_pair(End, TaintedLanes));
1695
1696    // Check for another def in the MBB.
1697    if (++OtherI == Other.LI.end() || OtherI->start >= MBBEnd)
1698      break;
1699
1700    // Lanes written by the new def are no longer tainted.
1701    const Val &OV = Other.Vals[OtherI->valno->id];
1702    TaintedLanes &= ~OV.WriteLanes;
1703    if (!OV.RedefVNI)
1704      break;
1705  } while (TaintedLanes);
1706  return true;
1707}
1708
1709/// Return true if MI uses any of the given Lanes from Reg.
1710/// This does not include partial redefinitions of Reg.
1711bool JoinVals::usesLanes(MachineInstr *MI, unsigned Reg, unsigned SubIdx,
1712                         unsigned Lanes) {
1713  if (MI->isDebugValue())
1714    return false;
1715  for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
1716    if (!MO->isReg() || MO->isDef() || MO->getReg() != Reg)
1717      continue;
1718    if (!MO->readsReg())
1719      continue;
1720    if (Lanes & TRI->getSubRegIndexLaneMask(
1721                  TRI->composeSubRegIndices(SubIdx, MO->getSubReg())))
1722      return true;
1723  }
1724  return false;
1725}
1726
1727bool JoinVals::resolveConflicts(JoinVals &Other) {
1728  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1729    Val &V = Vals[i];
1730    assert (V.Resolution != CR_Impossible && "Unresolvable conflict");
1731    if (V.Resolution != CR_Unresolved)
1732      continue;
1733    DEBUG(dbgs() << "\t\tconflict at " << PrintReg(LI.reg) << ':' << i
1734                 << '@' << LI.getValNumInfo(i)->def << '\n');
1735    ++NumLaneConflicts;
1736    assert(V.OtherVNI && "Inconsistent conflict resolution.");
1737    VNInfo *VNI = LI.getValNumInfo(i);
1738    const Val &OtherV = Other.Vals[V.OtherVNI->id];
1739
1740    // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
1741    // join, those lanes will be tainted with a wrong value. Get the extent of
1742    // the tainted lanes.
1743    unsigned TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
1744    SmallVector<std::pair<SlotIndex, unsigned>, 8> TaintExtent;
1745    if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
1746      // Tainted lanes would extend beyond the basic block.
1747      return false;
1748
1749    assert(!TaintExtent.empty() && "There should be at least one conflict.");
1750
1751    // Now look at the instructions from VNI->def to TaintExtent (inclusive).
1752    MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
1753    MachineBasicBlock::iterator MI = MBB->begin();
1754    if (!VNI->isPHIDef()) {
1755      MI = Indexes->getInstructionFromIndex(VNI->def);
1756      // No need to check the instruction defining VNI for reads.
1757      ++MI;
1758    }
1759    assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
1760           "Interference ends on VNI->def. Should have been handled earlier");
1761    MachineInstr *LastMI =
1762      Indexes->getInstructionFromIndex(TaintExtent.front().first);
1763    assert(LastMI && "Range must end at a proper instruction");
1764    unsigned TaintNum = 0;
1765    for(;;) {
1766      assert(MI != MBB->end() && "Bad LastMI");
1767      if (usesLanes(MI, Other.LI.reg, Other.SubIdx, TaintedLanes)) {
1768        DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
1769        return false;
1770      }
1771      // LastMI is the last instruction to use the current value.
1772      if (&*MI == LastMI) {
1773        if (++TaintNum == TaintExtent.size())
1774          break;
1775        LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
1776        assert(LastMI && "Range must end at a proper instruction");
1777        TaintedLanes = TaintExtent[TaintNum].second;
1778      }
1779      ++MI;
1780    }
1781
1782    // The tainted lanes are unused.
1783    V.Resolution = CR_Replace;
1784    ++NumLaneResolves;
1785  }
1786  return true;
1787}
1788
1789// Determine if ValNo is a copy of a value number in LI or Other.LI that will
1790// be pruned:
1791//
1792//   %dst = COPY %src
1793//   %src = COPY %dst  <-- This value to be pruned.
1794//   %dst = COPY %src  <-- This value is a copy of a pruned value.
1795//
1796bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
1797  Val &V = Vals[ValNo];
1798  if (V.Pruned || V.PrunedComputed)
1799    return V.Pruned;
1800
1801  if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
1802    return V.Pruned;
1803
1804  // Follow copies up the dominator tree and check if any intermediate value
1805  // has been pruned.
1806  V.PrunedComputed = true;
1807  V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
1808  return V.Pruned;
1809}
1810
1811void JoinVals::pruneValues(JoinVals &Other,
1812                           SmallVectorImpl<SlotIndex> &EndPoints) {
1813  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1814    SlotIndex Def = LI.getValNumInfo(i)->def;
1815    switch (Vals[i].Resolution) {
1816    case CR_Keep:
1817      break;
1818    case CR_Replace: {
1819      // This value takes precedence over the value in Other.LI.
1820      LIS->pruneValue(&Other.LI, Def, &EndPoints);
1821      // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
1822      // instructions are only inserted to provide a live-out value for PHI
1823      // predecessors, so the instruction should simply go away once its value
1824      // has been replaced.
1825      Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
1826      bool EraseImpDef = OtherV.ErasableImplicitDef &&
1827                         OtherV.Resolution == CR_Keep;
1828      if (!Def.isBlock()) {
1829        // Remove <def,read-undef> flags. This def is now a partial redef.
1830        // Also remove <def,dead> flags since the joined live range will
1831        // continue past this instruction.
1832        for (MIOperands MO(Indexes->getInstructionFromIndex(Def));
1833             MO.isValid(); ++MO)
1834          if (MO->isReg() && MO->isDef() && MO->getReg() == LI.reg) {
1835            MO->setIsUndef(EraseImpDef);
1836            MO->setIsDead(false);
1837          }
1838        // This value will reach instructions below, but we need to make sure
1839        // the live range also reaches the instruction at Def.
1840        if (!EraseImpDef)
1841          EndPoints.push_back(Def);
1842      }
1843      DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.LI.reg) << " at " << Def
1844                   << ": " << Other.LI << '\n');
1845      break;
1846    }
1847    case CR_Erase:
1848    case CR_Merge:
1849      if (isPrunedValue(i, Other)) {
1850        // This value is ultimately a copy of a pruned value in LI or Other.LI.
1851        // We can no longer trust the value mapping computed by
1852        // computeAssignment(), the value that was originally copied could have
1853        // been replaced.
1854        LIS->pruneValue(&LI, Def, &EndPoints);
1855        DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(LI.reg) << " at "
1856                     << Def << ": " << LI << '\n');
1857      }
1858      break;
1859    case CR_Unresolved:
1860    case CR_Impossible:
1861      llvm_unreachable("Unresolved conflicts");
1862    }
1863  }
1864}
1865
1866void JoinVals::eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
1867                           SmallVectorImpl<unsigned> &ShrinkRegs) {
1868  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1869    // Get the def location before markUnused() below invalidates it.
1870    SlotIndex Def = LI.getValNumInfo(i)->def;
1871    switch (Vals[i].Resolution) {
1872    case CR_Keep:
1873      // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
1874      // longer. The IMPLICIT_DEF instructions are only inserted by
1875      // PHIElimination to guarantee that all PHI predecessors have a value.
1876      if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
1877        break;
1878      // Remove value number i from LI. Note that this VNInfo is still present
1879      // in NewVNInfo, so it will appear as an unused value number in the final
1880      // joined interval.
1881      LI.getValNumInfo(i)->markUnused();
1882      LI.removeValNo(LI.getValNumInfo(i));
1883      DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LI << '\n');
1884      // FALL THROUGH.
1885
1886    case CR_Erase: {
1887      MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
1888      assert(MI && "No instruction to erase");
1889      if (MI->isCopy()) {
1890        unsigned Reg = MI->getOperand(1).getReg();
1891        if (TargetRegisterInfo::isVirtualRegister(Reg) &&
1892            Reg != CP.getSrcReg() && Reg != CP.getDstReg())
1893          ShrinkRegs.push_back(Reg);
1894      }
1895      ErasedInstrs.insert(MI);
1896      DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
1897      LIS->RemoveMachineInstrFromMaps(MI);
1898      MI->eraseFromParent();
1899      break;
1900    }
1901    default:
1902      break;
1903    }
1904  }
1905}
1906
1907bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
1908  SmallVector<VNInfo*, 16> NewVNInfo;
1909  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1910  LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
1911  JoinVals RHSVals(RHS, CP.getSrcIdx(), NewVNInfo, CP, LIS, TRI);
1912  JoinVals LHSVals(LHS, CP.getDstIdx(), NewVNInfo, CP, LIS, TRI);
1913
1914  DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
1915               << "\n\t\tLHS = " << PrintReg(CP.getDstReg()) << ' ' << LHS
1916               << '\n');
1917
1918  // First compute NewVNInfo and the simple value mappings.
1919  // Detect impossible conflicts early.
1920  if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
1921    return false;
1922
1923  // Some conflicts can only be resolved after all values have been mapped.
1924  if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
1925    return false;
1926
1927  // All clear, the live ranges can be merged.
1928
1929  // The merging algorithm in LiveInterval::join() can't handle conflicting
1930  // value mappings, so we need to remove any live ranges that overlap a
1931  // CR_Replace resolution. Collect a set of end points that can be used to
1932  // restore the live range after joining.
1933  SmallVector<SlotIndex, 8> EndPoints;
1934  LHSVals.pruneValues(RHSVals, EndPoints);
1935  RHSVals.pruneValues(LHSVals, EndPoints);
1936
1937  // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
1938  // registers to require trimming.
1939  SmallVector<unsigned, 8> ShrinkRegs;
1940  LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
1941  RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
1942  while (!ShrinkRegs.empty())
1943    LIS->shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
1944
1945  // Join RHS into LHS.
1946  LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo,
1947           MRI);
1948
1949  // Kill flags are going to be wrong if the live ranges were overlapping.
1950  // Eventually, we should simply clear all kill flags when computing live
1951  // ranges. They are reinserted after register allocation.
1952  MRI->clearKillFlags(LHS.reg);
1953  MRI->clearKillFlags(RHS.reg);
1954
1955  if (EndPoints.empty())
1956    return true;
1957
1958  // Recompute the parts of the live range we had to remove because of
1959  // CR_Replace conflicts.
1960  DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
1961               << " points: " << LHS << '\n');
1962  LIS->extendToIndices(&LHS, EndPoints);
1963  return true;
1964}
1965
1966/// joinIntervals - Attempt to join these two intervals.  On failure, this
1967/// returns false.
1968bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
1969  return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
1970}
1971
1972namespace {
1973// Information concerning MBB coalescing priority.
1974struct MBBPriorityInfo {
1975  MachineBasicBlock *MBB;
1976  unsigned Depth;
1977  bool IsSplit;
1978
1979  MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
1980    : MBB(mbb), Depth(depth), IsSplit(issplit) {}
1981};
1982}
1983
1984// C-style comparator that sorts first based on the loop depth of the basic
1985// block (the unsigned), and then on the MBB number.
1986//
1987// EnableGlobalCopies assumes that the primary sort key is loop depth.
1988static int compareMBBPriority(const void *L, const void *R) {
1989  const MBBPriorityInfo *LHS = static_cast<const MBBPriorityInfo*>(L);
1990  const MBBPriorityInfo *RHS = static_cast<const MBBPriorityInfo*>(R);
1991  // Deeper loops first
1992  if (LHS->Depth != RHS->Depth)
1993    return LHS->Depth > RHS->Depth ? -1 : 1;
1994
1995  // Try to unsplit critical edges next.
1996  if (LHS->IsSplit != RHS->IsSplit)
1997    return LHS->IsSplit ? -1 : 1;
1998
1999  // Prefer blocks that are more connected in the CFG. This takes care of
2000  // the most difficult copies first while intervals are short.
2001  unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
2002  unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
2003  if (cl != cr)
2004    return cl > cr ? -1 : 1;
2005
2006  // As a last resort, sort by block number.
2007  return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
2008}
2009
2010/// \returns true if the given copy uses or defines a local live range.
2011static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
2012  if (!Copy->isCopy())
2013    return false;
2014
2015  unsigned SrcReg = Copy->getOperand(1).getReg();
2016  unsigned DstReg = Copy->getOperand(0).getReg();
2017  if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
2018      || TargetRegisterInfo::isPhysicalRegister(DstReg))
2019    return false;
2020
2021  return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
2022    || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
2023}
2024
2025// Try joining WorkList copies starting from index From.
2026// Null out any successful joins.
2027bool RegisterCoalescer::
2028copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
2029  bool Progress = false;
2030  for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
2031    if (!CurrList[i])
2032      continue;
2033    // Skip instruction pointers that have already been erased, for example by
2034    // dead code elimination.
2035    if (ErasedInstrs.erase(CurrList[i])) {
2036      CurrList[i] = 0;
2037      continue;
2038    }
2039    bool Again = false;
2040    bool Success = joinCopy(CurrList[i], Again);
2041    Progress |= Success;
2042    if (Success || !Again)
2043      CurrList[i] = 0;
2044  }
2045  return Progress;
2046}
2047
2048void
2049RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
2050  DEBUG(dbgs() << MBB->getName() << ":\n");
2051
2052  // Collect all copy-like instructions in MBB. Don't start coalescing anything
2053  // yet, it might invalidate the iterator.
2054  const unsigned PrevSize = WorkList.size();
2055  if (JoinGlobalCopies) {
2056    // Coalesce copies bottom-up to coalesce local defs before local uses. They
2057    // are not inherently easier to resolve, but slightly preferable until we
2058    // have local live range splitting. In particular this is required by
2059    // cmp+jmp macro fusion.
2060    for (MachineBasicBlock::reverse_iterator
2061           MII = MBB->rbegin(), E = MBB->rend(); MII != E; ++MII) {
2062      if (!MII->isCopyLike())
2063        continue;
2064      if (isLocalCopy(&(*MII), LIS))
2065        LocalWorkList.push_back(&(*MII));
2066      else
2067        WorkList.push_back(&(*MII));
2068    }
2069  }
2070  else {
2071     for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2072          MII != E; ++MII)
2073       if (MII->isCopyLike())
2074         WorkList.push_back(MII);
2075  }
2076  // Try coalescing the collected copies immediately, and remove the nulls.
2077  // This prevents the WorkList from getting too large since most copies are
2078  // joinable on the first attempt.
2079  MutableArrayRef<MachineInstr*>
2080    CurrList(WorkList.begin() + PrevSize, WorkList.end());
2081  if (copyCoalesceWorkList(CurrList))
2082    WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
2083                               (MachineInstr*)0), WorkList.end());
2084}
2085
2086void RegisterCoalescer::coalesceLocals() {
2087  copyCoalesceWorkList(LocalWorkList);
2088  for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
2089    if (LocalWorkList[j])
2090      WorkList.push_back(LocalWorkList[j]);
2091  }
2092  LocalWorkList.clear();
2093}
2094
2095void RegisterCoalescer::joinAllIntervals() {
2096  DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
2097  assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
2098
2099  std::vector<MBBPriorityInfo> MBBs;
2100  MBBs.reserve(MF->size());
2101  for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
2102    MachineBasicBlock *MBB = I;
2103    MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
2104                                   JoinSplitEdges && isSplitEdge(MBB)));
2105  }
2106  array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
2107
2108  // Coalesce intervals in MBB priority order.
2109  unsigned CurrDepth = UINT_MAX;
2110  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
2111    // Try coalescing the collected local copies for deeper loops.
2112    if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
2113      coalesceLocals();
2114      CurrDepth = MBBs[i].Depth;
2115    }
2116    copyCoalesceInMBB(MBBs[i].MBB);
2117  }
2118  coalesceLocals();
2119
2120  // Joining intervals can allow other intervals to be joined.  Iteratively join
2121  // until we make no progress.
2122  while (copyCoalesceWorkList(WorkList))
2123    /* empty */ ;
2124}
2125
2126void RegisterCoalescer::releaseMemory() {
2127  ErasedInstrs.clear();
2128  WorkList.clear();
2129  DeadDefs.clear();
2130  InflateRegs.clear();
2131}
2132
2133bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
2134  MF = &fn;
2135  MRI = &fn.getRegInfo();
2136  TM = &fn.getTarget();
2137  TRI = TM->getRegisterInfo();
2138  TII = TM->getInstrInfo();
2139  LIS = &getAnalysis<LiveIntervals>();
2140  AA = &getAnalysis<AliasAnalysis>();
2141  Loops = &getAnalysis<MachineLoopInfo>();
2142
2143  const TargetSubtargetInfo &ST = TM->getSubtarget<TargetSubtargetInfo>();
2144  if (EnableGlobalCopies == cl::BOU_UNSET)
2145    JoinGlobalCopies = ST.enableMachineScheduler();
2146  else
2147    JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
2148
2149  // The MachineScheduler does not currently require JoinSplitEdges. This will
2150  // either be enabled unconditionally or replaced by a more general live range
2151  // splitting optimization.
2152  JoinSplitEdges = EnableJoinSplits;
2153
2154  DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
2155               << "********** Function: " << MF->getName() << '\n');
2156
2157  if (VerifyCoalescing)
2158    MF->verify(this, "Before register coalescing");
2159
2160  RegClassInfo.runOnMachineFunction(fn);
2161
2162  // Join (coalesce) intervals if requested.
2163  if (EnableJoining)
2164    joinAllIntervals();
2165
2166  // After deleting a lot of copies, register classes may be less constrained.
2167  // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
2168  // DPR inflation.
2169  array_pod_sort(InflateRegs.begin(), InflateRegs.end());
2170  InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
2171                    InflateRegs.end());
2172  DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
2173  for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
2174    unsigned Reg = InflateRegs[i];
2175    if (MRI->reg_nodbg_empty(Reg))
2176      continue;
2177    if (MRI->recomputeRegClass(Reg, *TM)) {
2178      DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
2179                   << MRI->getRegClass(Reg)->getName() << '\n');
2180      ++NumInflated;
2181    }
2182  }
2183
2184  DEBUG(dump());
2185  if (VerifyCoalescing)
2186    MF->verify(this, "After register coalescing");
2187  return true;
2188}
2189
2190/// print - Implement the dump method.
2191void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
2192   LIS->print(O, m);
2193}
2194