RegisterCoalescer.cpp revision 234353
1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic RegisterCoalescer interface which
11// is used as the common interface used by all clients and
12// implementations of register coalescing.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "regalloc"
17#include "RegisterCoalescer.h"
18#include "LiveDebugVariables.h"
19#include "RegisterClassInfo.h"
20#include "VirtRegMap.h"
21
22#include "llvm/Pass.h"
23#include "llvm/Value.h"
24#include "llvm/CodeGen/LiveIntervalAnalysis.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/CodeGen/LiveIntervalAnalysis.h"
30#include "llvm/Analysis/AliasAnalysis.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstr.h"
33#include "llvm/CodeGen/MachineLoopInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/Passes.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetMachine.h"
38#include "llvm/Target/TargetOptions.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/ADT/OwningPtr.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/STLExtras.h"
47#include <algorithm>
48#include <cmath>
49using namespace llvm;
50
51STATISTIC(numJoins    , "Number of interval joins performed");
52STATISTIC(numCrossRCs , "Number of cross class joins performed");
53STATISTIC(numCommutes , "Number of instruction commuting performed");
54STATISTIC(numExtends  , "Number of copies extended");
55STATISTIC(NumReMats   , "Number of instructions re-materialized");
56STATISTIC(numPeep     , "Number of identity moves eliminated after coalescing");
57STATISTIC(numAborts   , "Number of times interval joining aborted");
58STATISTIC(NumInflated , "Number of register classes inflated");
59
60static cl::opt<bool>
61EnableJoining("join-liveintervals",
62              cl::desc("Coalesce copies (default=true)"),
63              cl::init(true));
64
65static cl::opt<bool>
66DisableCrossClassJoin("disable-cross-class-join",
67               cl::desc("Avoid coalescing cross register class copies"),
68               cl::init(false), cl::Hidden);
69
70static cl::opt<bool>
71EnablePhysicalJoin("join-physregs",
72                   cl::desc("Join physical register copies"),
73                   cl::init(false), cl::Hidden);
74
75static cl::opt<bool>
76VerifyCoalescing("verify-coalescing",
77         cl::desc("Verify machine instrs before and after register coalescing"),
78         cl::Hidden);
79
80namespace {
81  class RegisterCoalescer : public MachineFunctionPass {
82    MachineFunction* MF;
83    MachineRegisterInfo* MRI;
84    const TargetMachine* TM;
85    const TargetRegisterInfo* TRI;
86    const TargetInstrInfo* TII;
87    LiveIntervals *LIS;
88    LiveDebugVariables *LDV;
89    const MachineLoopInfo* Loops;
90    AliasAnalysis *AA;
91    RegisterClassInfo RegClassInfo;
92
93    /// JoinedCopies - Keep track of copies eliminated due to coalescing.
94    ///
95    SmallPtrSet<MachineInstr*, 32> JoinedCopies;
96
97    /// ReMatCopies - Keep track of copies eliminated due to remat.
98    ///
99    SmallPtrSet<MachineInstr*, 32> ReMatCopies;
100
101    /// ReMatDefs - Keep track of definition instructions which have
102    /// been remat'ed.
103    SmallPtrSet<MachineInstr*, 8> ReMatDefs;
104
105    /// joinIntervals - join compatible live intervals
106    void joinIntervals();
107
108    /// CopyCoalesceInMBB - Coalesce copies in the specified MBB, putting
109    /// copies that cannot yet be coalesced into the "TryAgain" list.
110    void CopyCoalesceInMBB(MachineBasicBlock *MBB,
111                           std::vector<MachineInstr*> &TryAgain);
112
113    /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
114    /// which are the src/dst of the copy instruction CopyMI.  This returns
115    /// true if the copy was successfully coalesced away. If it is not
116    /// currently possible to coalesce this interval, but it may be possible if
117    /// other things get coalesced, then it returns true by reference in
118    /// 'Again'.
119    bool JoinCopy(MachineInstr *TheCopy, bool &Again);
120
121    /// JoinIntervals - Attempt to join these two intervals.  On failure, this
122    /// returns false.  The output "SrcInt" will not have been modified, so we
123    /// can use this information below to update aliases.
124    bool JoinIntervals(CoalescerPair &CP);
125
126    /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
127    /// the source value number is defined by a copy from the destination reg
128    /// see if we can merge these two destination reg valno# into a single
129    /// value number, eliminating a copy.
130    bool AdjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
131
132    /// HasOtherReachingDefs - Return true if there are definitions of IntB
133    /// other than BValNo val# that can reach uses of AValno val# of IntA.
134    bool HasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
135                              VNInfo *AValNo, VNInfo *BValNo);
136
137    /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy.
138    /// If the source value number is defined by a commutable instruction and
139    /// its other operand is coalesced to the copy dest register, see if we
140    /// can transform the copy into a noop by commuting the definition.
141    bool RemoveCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
142
143    /// ReMaterializeTrivialDef - If the source of a copy is defined by a
144    /// trivial computation, replace the copy by rematerialize the definition.
145    /// If PreserveSrcInt is true, make sure SrcInt is valid after the call.
146    bool ReMaterializeTrivialDef(LiveInterval &SrcInt, bool PreserveSrcInt,
147                                 unsigned DstReg, MachineInstr *CopyMI);
148
149    /// shouldJoinPhys - Return true if a physreg copy should be joined.
150    bool shouldJoinPhys(CoalescerPair &CP);
151
152    /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
153    /// two virtual registers from different register classes.
154    bool isWinToJoinCrossClass(unsigned SrcReg,
155                               unsigned DstReg,
156                               const TargetRegisterClass *SrcRC,
157                               const TargetRegisterClass *DstRC,
158                               const TargetRegisterClass *NewRC);
159
160    /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
161    /// update the subregister number if it is not zero. If DstReg is a
162    /// physical register and the existing subregister number of the def / use
163    /// being updated is not zero, make sure to set it to the correct physical
164    /// subregister.
165    void UpdateRegDefsUses(const CoalescerPair &CP);
166
167    /// RemoveDeadDef - If a def of a live interval is now determined dead,
168    /// remove the val# it defines. If the live interval becomes empty, remove
169    /// it as well.
170    bool RemoveDeadDef(LiveInterval &li, MachineInstr *DefMI);
171
172    /// markAsJoined - Remember that CopyMI has already been joined.
173    void markAsJoined(MachineInstr *CopyMI);
174
175    /// eliminateUndefCopy - Handle copies of undef values.
176    bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
177
178  public:
179    static char ID; // Class identification, replacement for typeinfo
180    RegisterCoalescer() : MachineFunctionPass(ID) {
181      initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
182    }
183
184    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
185
186    virtual void releaseMemory();
187
188    /// runOnMachineFunction - pass entry point
189    virtual bool runOnMachineFunction(MachineFunction&);
190
191    /// print - Implement the dump method.
192    virtual void print(raw_ostream &O, const Module* = 0) const;
193  };
194} /// end anonymous namespace
195
196char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
197
198INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
199                      "Simple Register Coalescing", false, false)
200INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
201INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
202INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
203INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
204INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
205INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
206                    "Simple Register Coalescing", false, false)
207
208char RegisterCoalescer::ID = 0;
209
210static unsigned compose(const TargetRegisterInfo &tri, unsigned a, unsigned b) {
211  if (!a) return b;
212  if (!b) return a;
213  return tri.composeSubRegIndices(a, b);
214}
215
216static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
217                        unsigned &Src, unsigned &Dst,
218                        unsigned &SrcSub, unsigned &DstSub) {
219  if (MI->isCopy()) {
220    Dst = MI->getOperand(0).getReg();
221    DstSub = MI->getOperand(0).getSubReg();
222    Src = MI->getOperand(1).getReg();
223    SrcSub = MI->getOperand(1).getSubReg();
224  } else if (MI->isSubregToReg()) {
225    Dst = MI->getOperand(0).getReg();
226    DstSub = compose(tri, MI->getOperand(0).getSubReg(),
227                     MI->getOperand(3).getImm());
228    Src = MI->getOperand(2).getReg();
229    SrcSub = MI->getOperand(2).getSubReg();
230  } else
231    return false;
232  return true;
233}
234
235bool CoalescerPair::setRegisters(const MachineInstr *MI) {
236  SrcReg = DstReg = SubIdx = 0;
237  NewRC = 0;
238  Flipped = CrossClass = false;
239
240  unsigned Src, Dst, SrcSub, DstSub;
241  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
242    return false;
243  Partial = SrcSub || DstSub;
244
245  // If one register is a physreg, it must be Dst.
246  if (TargetRegisterInfo::isPhysicalRegister(Src)) {
247    if (TargetRegisterInfo::isPhysicalRegister(Dst))
248      return false;
249    std::swap(Src, Dst);
250    std::swap(SrcSub, DstSub);
251    Flipped = true;
252  }
253
254  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
255
256  if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
257    // Eliminate DstSub on a physreg.
258    if (DstSub) {
259      Dst = TRI.getSubReg(Dst, DstSub);
260      if (!Dst) return false;
261      DstSub = 0;
262    }
263
264    // Eliminate SrcSub by picking a corresponding Dst superregister.
265    if (SrcSub) {
266      Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
267      if (!Dst) return false;
268      SrcSub = 0;
269    } else if (!MRI.getRegClass(Src)->contains(Dst)) {
270      return false;
271    }
272  } else {
273    // Both registers are virtual.
274
275    // Both registers have subreg indices.
276    if (SrcSub && DstSub) {
277      // For now we only handle the case of identical indices in commensurate
278      // registers: Dreg:ssub_1 + Dreg:ssub_1 -> Dreg
279      // FIXME: Handle Qreg:ssub_3 + Dreg:ssub_1 as QReg:dsub_1 + Dreg.
280      if (SrcSub != DstSub)
281        return false;
282      const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
283      const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
284      if (!TRI.getCommonSubClass(DstRC, SrcRC))
285        return false;
286      SrcSub = DstSub = 0;
287    }
288
289    // There can be no SrcSub.
290    if (SrcSub) {
291      std::swap(Src, Dst);
292      DstSub = SrcSub;
293      SrcSub = 0;
294      assert(!Flipped && "Unexpected flip");
295      Flipped = true;
296    }
297
298    // Find the new register class.
299    const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
300    const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
301    if (DstSub)
302      NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
303    else
304      NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
305    if (!NewRC)
306      return false;
307    CrossClass = NewRC != DstRC || NewRC != SrcRC;
308  }
309  // Check our invariants
310  assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
311  assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
312         "Cannot have a physical SubIdx");
313  SrcReg = Src;
314  DstReg = Dst;
315  SubIdx = DstSub;
316  return true;
317}
318
319bool CoalescerPair::flip() {
320  if (SubIdx || TargetRegisterInfo::isPhysicalRegister(DstReg))
321    return false;
322  std::swap(SrcReg, DstReg);
323  Flipped = !Flipped;
324  return true;
325}
326
327bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
328  if (!MI)
329    return false;
330  unsigned Src, Dst, SrcSub, DstSub;
331  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
332    return false;
333
334  // Find the virtual register that is SrcReg.
335  if (Dst == SrcReg) {
336    std::swap(Src, Dst);
337    std::swap(SrcSub, DstSub);
338  } else if (Src != SrcReg) {
339    return false;
340  }
341
342  // Now check that Dst matches DstReg.
343  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
344    if (!TargetRegisterInfo::isPhysicalRegister(Dst))
345      return false;
346    assert(!SubIdx && "Inconsistent CoalescerPair state.");
347    // DstSub could be set for a physreg from INSERT_SUBREG.
348    if (DstSub)
349      Dst = TRI.getSubReg(Dst, DstSub);
350    // Full copy of Src.
351    if (!SrcSub)
352      return DstReg == Dst;
353    // This is a partial register copy. Check that the parts match.
354    return TRI.getSubReg(DstReg, SrcSub) == Dst;
355  } else {
356    // DstReg is virtual.
357    if (DstReg != Dst)
358      return false;
359    // Registers match, do the subregisters line up?
360    return compose(TRI, SubIdx, SrcSub) == DstSub;
361  }
362}
363
364void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
365  AU.setPreservesCFG();
366  AU.addRequired<AliasAnalysis>();
367  AU.addRequired<LiveIntervals>();
368  AU.addPreserved<LiveIntervals>();
369  AU.addRequired<LiveDebugVariables>();
370  AU.addPreserved<LiveDebugVariables>();
371  AU.addPreserved<SlotIndexes>();
372  AU.addRequired<MachineLoopInfo>();
373  AU.addPreserved<MachineLoopInfo>();
374  AU.addPreservedID(MachineDominatorsID);
375  MachineFunctionPass::getAnalysisUsage(AU);
376}
377
378void RegisterCoalescer::markAsJoined(MachineInstr *CopyMI) {
379  /// Joined copies are not deleted immediately, but kept in JoinedCopies.
380  JoinedCopies.insert(CopyMI);
381
382  /// Mark all register operands of CopyMI as <undef> so they won't affect dead
383  /// code elimination.
384  for (MachineInstr::mop_iterator I = CopyMI->operands_begin(),
385       E = CopyMI->operands_end(); I != E; ++I)
386    if (I->isReg())
387      I->setIsUndef(true);
388}
389
390/// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
391/// being the source and IntB being the dest, thus this defines a value number
392/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
393/// see if we can merge these two pieces of B into a single value number,
394/// eliminating a copy.  For example:
395///
396///  A3 = B0
397///    ...
398///  B1 = A3      <- this copy
399///
400/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
401/// value number to be replaced with B0 (which simplifies the B liveinterval).
402///
403/// This returns true if an interval was modified.
404///
405bool RegisterCoalescer::AdjustCopiesBackFrom(const CoalescerPair &CP,
406                                                    MachineInstr *CopyMI) {
407  // Bail if there is no dst interval - can happen when merging physical subreg
408  // operations.
409  if (!LIS->hasInterval(CP.getDstReg()))
410    return false;
411
412  LiveInterval &IntA =
413    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
414  LiveInterval &IntB =
415    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
416  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
417
418  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
419  // the example above.
420  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
421  if (BLR == IntB.end()) return false;
422  VNInfo *BValNo = BLR->valno;
423
424  // Get the location that B is defined at.  Two options: either this value has
425  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
426  // can't process it.
427  if (BValNo->def != CopyIdx) return false;
428
429  // AValNo is the value number in A that defines the copy, A3 in the example.
430  SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
431  LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
432  // The live range might not exist after fun with physreg coalescing.
433  if (ALR == IntA.end()) return false;
434  VNInfo *AValNo = ALR->valno;
435
436  // If AValNo is defined as a copy from IntB, we can potentially process this.
437  // Get the instruction that defines this value number.
438  MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
439  if (!CP.isCoalescable(ACopyMI))
440    return false;
441
442  // Get the LiveRange in IntB that this value number starts with.
443  LiveInterval::iterator ValLR =
444    IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
445  if (ValLR == IntB.end())
446    return false;
447
448  // Make sure that the end of the live range is inside the same block as
449  // CopyMI.
450  MachineInstr *ValLREndInst =
451    LIS->getInstructionFromIndex(ValLR->end.getPrevSlot());
452  if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
453    return false;
454
455  // Okay, we now know that ValLR ends in the same block that the CopyMI
456  // live-range starts.  If there are no intervening live ranges between them in
457  // IntB, we can merge them.
458  if (ValLR+1 != BLR) return false;
459
460  // If a live interval is a physical register, conservatively check if any
461  // of its aliases is overlapping the live interval of the virtual register.
462  // If so, do not coalesce.
463  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
464    for (const uint16_t *AS = TRI->getAliasSet(IntB.reg); *AS; ++AS)
465      if (LIS->hasInterval(*AS) && IntA.overlaps(LIS->getInterval(*AS))) {
466        DEBUG({
467            dbgs() << "\t\tInterfere with alias ";
468            LIS->getInterval(*AS).print(dbgs(), TRI);
469          });
470        return false;
471      }
472  }
473
474  DEBUG({
475      dbgs() << "Extending: ";
476      IntB.print(dbgs(), TRI);
477    });
478
479  SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
480  // We are about to delete CopyMI, so need to remove it as the 'instruction
481  // that defines this value #'. Update the valnum with the new defining
482  // instruction #.
483  BValNo->def = FillerStart;
484
485  // Okay, we can merge them.  We need to insert a new liverange:
486  // [ValLR.end, BLR.begin) of either value number, then we merge the
487  // two value numbers.
488  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
489
490  // If the IntB live range is assigned to a physical register, and if that
491  // physreg has sub-registers, update their live intervals as well.
492  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
493    for (const uint16_t *SR = TRI->getSubRegisters(IntB.reg); *SR; ++SR) {
494      if (!LIS->hasInterval(*SR))
495        continue;
496      LiveInterval &SRLI = LIS->getInterval(*SR);
497      SRLI.addRange(LiveRange(FillerStart, FillerEnd,
498                              SRLI.getNextValue(FillerStart,
499                                                LIS->getVNInfoAllocator())));
500    }
501  }
502
503  // Okay, merge "B1" into the same value number as "B0".
504  if (BValNo != ValLR->valno) {
505    // If B1 is killed by a PHI, then the merged live range must also be killed
506    // by the same PHI, as B0 and B1 can not overlap.
507    bool HasPHIKill = BValNo->hasPHIKill();
508    IntB.MergeValueNumberInto(BValNo, ValLR->valno);
509    if (HasPHIKill)
510      ValLR->valno->setHasPHIKill(true);
511  }
512  DEBUG({
513      dbgs() << "   result = ";
514      IntB.print(dbgs(), TRI);
515      dbgs() << "\n";
516    });
517
518  // If the source instruction was killing the source register before the
519  // merge, unset the isKill marker given the live range has been extended.
520  int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
521  if (UIdx != -1) {
522    ValLREndInst->getOperand(UIdx).setIsKill(false);
523  }
524
525  // Rewrite the copy. If the copy instruction was killing the destination
526  // register before the merge, find the last use and trim the live range. That
527  // will also add the isKill marker.
528  CopyMI->substituteRegister(IntA.reg, IntB.reg, CP.getSubIdx(),
529                             *TRI);
530  if (ALR->end == CopyIdx)
531    LIS->shrinkToUses(&IntA);
532
533  ++numExtends;
534  return true;
535}
536
537/// HasOtherReachingDefs - Return true if there are definitions of IntB
538/// other than BValNo val# that can reach uses of AValno val# of IntA.
539bool RegisterCoalescer::HasOtherReachingDefs(LiveInterval &IntA,
540                                                    LiveInterval &IntB,
541                                                    VNInfo *AValNo,
542                                                    VNInfo *BValNo) {
543  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
544       AI != AE; ++AI) {
545    if (AI->valno != AValNo) continue;
546    LiveInterval::Ranges::iterator BI =
547      std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
548    if (BI != IntB.ranges.begin())
549      --BI;
550    for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
551      if (BI->valno == BValNo)
552        continue;
553      if (BI->start <= AI->start && BI->end > AI->start)
554        return true;
555      if (BI->start > AI->start && BI->start < AI->end)
556        return true;
557    }
558  }
559  return false;
560}
561
562/// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with
563/// IntA being the source and IntB being the dest, thus this defines a value
564/// number in IntB.  If the source value number (in IntA) is defined by a
565/// commutable instruction and its other operand is coalesced to the copy dest
566/// register, see if we can transform the copy into a noop by commuting the
567/// definition. For example,
568///
569///  A3 = op A2 B0<kill>
570///    ...
571///  B1 = A3      <- this copy
572///    ...
573///     = op A3   <- more uses
574///
575/// ==>
576///
577///  B2 = op B0 A2<kill>
578///    ...
579///  B1 = B2      <- now an identify copy
580///    ...
581///     = op B2   <- more uses
582///
583/// This returns true if an interval was modified.
584///
585bool RegisterCoalescer::RemoveCopyByCommutingDef(const CoalescerPair &CP,
586                                                        MachineInstr *CopyMI) {
587  // FIXME: For now, only eliminate the copy by commuting its def when the
588  // source register is a virtual register. We want to guard against cases
589  // where the copy is a back edge copy and commuting the def lengthen the
590  // live interval of the source register to the entire loop.
591  if (CP.isPhys() && CP.isFlipped())
592    return false;
593
594  // Bail if there is no dst interval.
595  if (!LIS->hasInterval(CP.getDstReg()))
596    return false;
597
598  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
599
600  LiveInterval &IntA =
601    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
602  LiveInterval &IntB =
603    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
604
605  // BValNo is a value number in B that is defined by a copy from A. 'B3' in
606  // the example above.
607  VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
608  if (!BValNo || BValNo->def != CopyIdx)
609    return false;
610
611  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
612
613  // AValNo is the value number in A that defines the copy, A3 in the example.
614  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
615  assert(AValNo && "COPY source not live");
616
617  // If other defs can reach uses of this def, then it's not safe to perform
618  // the optimization.
619  if (AValNo->isPHIDef() || AValNo->isUnused() || AValNo->hasPHIKill())
620    return false;
621  MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
622  if (!DefMI)
623    return false;
624  if (!DefMI->isCommutable())
625    return false;
626  // If DefMI is a two-address instruction then commuting it will change the
627  // destination register.
628  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
629  assert(DefIdx != -1);
630  unsigned UseOpIdx;
631  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
632    return false;
633  unsigned Op1, Op2, NewDstIdx;
634  if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
635    return false;
636  if (Op1 == UseOpIdx)
637    NewDstIdx = Op2;
638  else if (Op2 == UseOpIdx)
639    NewDstIdx = Op1;
640  else
641    return false;
642
643  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
644  unsigned NewReg = NewDstMO.getReg();
645  if (NewReg != IntB.reg || !NewDstMO.isKill())
646    return false;
647
648  // Make sure there are no other definitions of IntB that would reach the
649  // uses which the new definition can reach.
650  if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
651    return false;
652
653  // Abort if the aliases of IntB.reg have values that are not simply the
654  // clobbers from the superreg.
655  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
656    for (const uint16_t *AS = TRI->getAliasSet(IntB.reg); *AS; ++AS)
657      if (LIS->hasInterval(*AS) &&
658          HasOtherReachingDefs(IntA, LIS->getInterval(*AS), AValNo, 0))
659        return false;
660
661  // If some of the uses of IntA.reg is already coalesced away, return false.
662  // It's not possible to determine whether it's safe to perform the coalescing.
663  for (MachineRegisterInfo::use_nodbg_iterator UI =
664         MRI->use_nodbg_begin(IntA.reg),
665       UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
666    MachineInstr *UseMI = &*UI;
667    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
668    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
669    if (ULR == IntA.end())
670      continue;
671    if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
672      return false;
673  }
674
675  DEBUG(dbgs() << "\tRemoveCopyByCommutingDef: " << AValNo->def << '\t'
676               << *DefMI);
677
678  // At this point we have decided that it is legal to do this
679  // transformation.  Start by commuting the instruction.
680  MachineBasicBlock *MBB = DefMI->getParent();
681  MachineInstr *NewMI = TII->commuteInstruction(DefMI);
682  if (!NewMI)
683    return false;
684  if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
685      TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
686      !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
687    return false;
688  if (NewMI != DefMI) {
689    LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
690    MachineBasicBlock::iterator Pos = DefMI;
691    MBB->insert(Pos, NewMI);
692    MBB->erase(DefMI);
693  }
694  unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
695  NewMI->getOperand(OpIdx).setIsKill();
696
697  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
698  // A = or A, B
699  // ...
700  // B = A
701  // ...
702  // C = A<kill>
703  // ...
704  //   = B
705
706  // Update uses of IntA of the specific Val# with IntB.
707  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
708         UE = MRI->use_end(); UI != UE;) {
709    MachineOperand &UseMO = UI.getOperand();
710    MachineInstr *UseMI = &*UI;
711    ++UI;
712    if (JoinedCopies.count(UseMI))
713      continue;
714    if (UseMI->isDebugValue()) {
715      // FIXME These don't have an instruction index.  Not clear we have enough
716      // info to decide whether to do this replacement or not.  For now do it.
717      UseMO.setReg(NewReg);
718      continue;
719    }
720    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
721    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
722    if (ULR == IntA.end() || ULR->valno != AValNo)
723      continue;
724    if (TargetRegisterInfo::isPhysicalRegister(NewReg))
725      UseMO.substPhysReg(NewReg, *TRI);
726    else
727      UseMO.setReg(NewReg);
728    if (UseMI == CopyMI)
729      continue;
730    if (!UseMI->isCopy())
731      continue;
732    if (UseMI->getOperand(0).getReg() != IntB.reg ||
733        UseMI->getOperand(0).getSubReg())
734      continue;
735
736    // This copy will become a noop. If it's defining a new val#, merge it into
737    // BValNo.
738    SlotIndex DefIdx = UseIdx.getRegSlot();
739    VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
740    if (!DVNI)
741      continue;
742    DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
743    assert(DVNI->def == DefIdx);
744    BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
745    markAsJoined(UseMI);
746  }
747
748  // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
749  // is updated.
750  VNInfo *ValNo = BValNo;
751  ValNo->def = AValNo->def;
752  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
753       AI != AE; ++AI) {
754    if (AI->valno != AValNo) continue;
755    IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
756  }
757  DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
758
759  IntA.removeValNo(AValNo);
760  DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
761  ++numCommutes;
762  return true;
763}
764
765/// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
766/// computation, replace the copy by rematerialize the definition.
767bool RegisterCoalescer::ReMaterializeTrivialDef(LiveInterval &SrcInt,
768                                                       bool preserveSrcInt,
769                                                       unsigned DstReg,
770                                                       MachineInstr *CopyMI) {
771  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
772  LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
773  assert(SrcLR != SrcInt.end() && "Live range not found!");
774  VNInfo *ValNo = SrcLR->valno;
775  if (ValNo->isPHIDef() || ValNo->isUnused())
776    return false;
777  MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
778  if (!DefMI)
779    return false;
780  assert(DefMI && "Defining instruction disappeared");
781  if (!DefMI->isAsCheapAsAMove())
782    return false;
783  if (!TII->isTriviallyReMaterializable(DefMI, AA))
784    return false;
785  bool SawStore = false;
786  if (!DefMI->isSafeToMove(TII, AA, SawStore))
787    return false;
788  const MCInstrDesc &MCID = DefMI->getDesc();
789  if (MCID.getNumDefs() != 1)
790    return false;
791  if (!DefMI->isImplicitDef()) {
792    // Make sure the copy destination register class fits the instruction
793    // definition register class. The mismatch can happen as a result of earlier
794    // extract_subreg, insert_subreg, subreg_to_reg coalescing.
795    const TargetRegisterClass *RC = TII->getRegClass(MCID, 0, TRI);
796    if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
797      if (MRI->getRegClass(DstReg) != RC)
798        return false;
799    } else if (!RC->contains(DstReg))
800      return false;
801  }
802
803  MachineBasicBlock *MBB = CopyMI->getParent();
804  MachineBasicBlock::iterator MII =
805    llvm::next(MachineBasicBlock::iterator(CopyMI));
806  TII->reMaterialize(*MBB, MII, DstReg, 0, DefMI, *TRI);
807  MachineInstr *NewMI = prior(MII);
808
809  // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
810  // We need to remember these so we can add intervals once we insert
811  // NewMI into SlotIndexes.
812  SmallVector<unsigned, 4> NewMIImplDefs;
813  for (unsigned i = NewMI->getDesc().getNumOperands(),
814         e = NewMI->getNumOperands(); i != e; ++i) {
815    MachineOperand &MO = NewMI->getOperand(i);
816    if (MO.isReg()) {
817      assert(MO.isDef() && MO.isImplicit() && MO.isDead() &&
818             TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
819      NewMIImplDefs.push_back(MO.getReg());
820    }
821  }
822
823  // CopyMI may have implicit operands, transfer them over to the newly
824  // rematerialized instruction. And update implicit def interval valnos.
825  for (unsigned i = CopyMI->getDesc().getNumOperands(),
826         e = CopyMI->getNumOperands(); i != e; ++i) {
827    MachineOperand &MO = CopyMI->getOperand(i);
828    if (MO.isReg()) {
829      assert(MO.isImplicit() && "No explicit operands after implict operands.");
830      // Discard VReg implicit defs.
831      if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
832        NewMI->addOperand(MO);
833      }
834    }
835  }
836
837  LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
838
839  SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
840  for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
841    unsigned reg = NewMIImplDefs[i];
842    LiveInterval &li = LIS->getInterval(reg);
843    VNInfo *DeadDefVN = li.getNextValue(NewMIIdx.getRegSlot(),
844                                        LIS->getVNInfoAllocator());
845    LiveRange lr(NewMIIdx.getRegSlot(), NewMIIdx.getDeadSlot(), DeadDefVN);
846    li.addRange(lr);
847  }
848
849  CopyMI->eraseFromParent();
850  ReMatCopies.insert(CopyMI);
851  ReMatDefs.insert(DefMI);
852  DEBUG(dbgs() << "Remat: " << *NewMI);
853  ++NumReMats;
854
855  // The source interval can become smaller because we removed a use.
856  if (preserveSrcInt)
857    LIS->shrinkToUses(&SrcInt);
858
859  return true;
860}
861
862/// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
863/// values, it only removes local variables. When we have a copy like:
864///
865///   %vreg1 = COPY %vreg2<undef>
866///
867/// We delete the copy and remove the corresponding value number from %vreg1.
868/// Any uses of that value number are marked as <undef>.
869bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
870                                           const CoalescerPair &CP) {
871  SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
872  LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
873  if (SrcInt->liveAt(Idx))
874    return false;
875  LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
876  if (DstInt->liveAt(Idx))
877    return false;
878
879  // No intervals are live-in to CopyMI - it is undef.
880  if (CP.isFlipped())
881    DstInt = SrcInt;
882  SrcInt = 0;
883
884  VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
885  assert(DeadVNI && "No value defined in DstInt");
886  DstInt->removeValNo(DeadVNI);
887
888  // Find new undef uses.
889  for (MachineRegisterInfo::reg_nodbg_iterator
890         I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end();
891       I != E; ++I) {
892    MachineOperand &MO = I.getOperand();
893    if (MO.isDef() || MO.isUndef())
894      continue;
895    MachineInstr *MI = MO.getParent();
896    SlotIndex Idx = LIS->getInstructionIndex(MI);
897    if (DstInt->liveAt(Idx))
898      continue;
899    MO.setIsUndef(true);
900    DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
901  }
902  return true;
903}
904
905/// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
906/// update the subregister number if it is not zero. If DstReg is a
907/// physical register and the existing subregister number of the def / use
908/// being updated is not zero, make sure to set it to the correct physical
909/// subregister.
910void
911RegisterCoalescer::UpdateRegDefsUses(const CoalescerPair &CP) {
912  bool DstIsPhys = CP.isPhys();
913  unsigned SrcReg = CP.getSrcReg();
914  unsigned DstReg = CP.getDstReg();
915  unsigned SubIdx = CP.getSubIdx();
916
917  // Update LiveDebugVariables.
918  LDV->renameRegister(SrcReg, DstReg, SubIdx);
919
920  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg);
921       MachineInstr *UseMI = I.skipInstruction();) {
922    // A PhysReg copy that won't be coalesced can perhaps be rematerialized
923    // instead.
924    if (DstIsPhys) {
925      if (UseMI->isFullCopy() &&
926          UseMI->getOperand(1).getReg() == SrcReg &&
927          UseMI->getOperand(0).getReg() != SrcReg &&
928          UseMI->getOperand(0).getReg() != DstReg &&
929          !JoinedCopies.count(UseMI) &&
930          ReMaterializeTrivialDef(LIS->getInterval(SrcReg), false,
931                                  UseMI->getOperand(0).getReg(), UseMI))
932        continue;
933    }
934
935    SmallVector<unsigned,8> Ops;
936    bool Reads, Writes;
937    tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
938
939    // Replace SrcReg with DstReg in all UseMI operands.
940    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
941      MachineOperand &MO = UseMI->getOperand(Ops[i]);
942
943      // Make sure we don't create read-modify-write defs accidentally.  We
944      // assume here that a SrcReg def cannot be joined into a live DstReg.  If
945      // RegisterCoalescer starts tracking partially live registers, we will
946      // need to check the actual LiveInterval to determine if DstReg is live
947      // here.
948      if (SubIdx && !Reads)
949        MO.setIsUndef();
950
951      if (DstIsPhys)
952        MO.substPhysReg(DstReg, *TRI);
953      else
954        MO.substVirtReg(DstReg, SubIdx, *TRI);
955    }
956
957    // This instruction is a copy that will be removed.
958    if (JoinedCopies.count(UseMI))
959      continue;
960
961    DEBUG({
962        dbgs() << "\t\tupdated: ";
963        if (!UseMI->isDebugValue())
964          dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
965        dbgs() << *UseMI;
966      });
967  }
968}
969
970/// removeIntervalIfEmpty - Check if the live interval of a physical register
971/// is empty, if so remove it and also remove the empty intervals of its
972/// sub-registers. Return true if live interval is removed.
973static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *LIS,
974                                  const TargetRegisterInfo *TRI) {
975  if (li.empty()) {
976    if (TargetRegisterInfo::isPhysicalRegister(li.reg))
977      for (const uint16_t* SR = TRI->getSubRegisters(li.reg); *SR; ++SR) {
978        if (!LIS->hasInterval(*SR))
979          continue;
980        LiveInterval &sli = LIS->getInterval(*SR);
981        if (sli.empty())
982          LIS->removeInterval(*SR);
983      }
984    LIS->removeInterval(li.reg);
985    return true;
986  }
987  return false;
988}
989
990/// RemoveDeadDef - If a def of a live interval is now determined dead, remove
991/// the val# it defines. If the live interval becomes empty, remove it as well.
992bool RegisterCoalescer::RemoveDeadDef(LiveInterval &li,
993                                             MachineInstr *DefMI) {
994  SlotIndex DefIdx = LIS->getInstructionIndex(DefMI).getRegSlot();
995  LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
996  if (DefIdx != MLR->valno->def)
997    return false;
998  li.removeValNo(MLR->valno);
999  return removeIntervalIfEmpty(li, LIS, TRI);
1000}
1001
1002/// shouldJoinPhys - Return true if a copy involving a physreg should be joined.
1003/// We need to be careful about coalescing a source physical register with a
1004/// virtual register. Once the coalescing is done, it cannot be broken and these
1005/// are not spillable! If the destination interval uses are far away, think
1006/// twice about coalescing them!
1007bool RegisterCoalescer::shouldJoinPhys(CoalescerPair &CP) {
1008  bool Allocatable = LIS->isAllocatable(CP.getDstReg());
1009  LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1010
1011  /// Always join simple intervals that are defined by a single copy from a
1012  /// reserved register. This doesn't increase register pressure, so it is
1013  /// always beneficial.
1014  if (!Allocatable && CP.isFlipped() && JoinVInt.containsOneValue())
1015    return true;
1016
1017  if (!EnablePhysicalJoin) {
1018    DEBUG(dbgs() << "\tPhysreg joins disabled.\n");
1019    return false;
1020  }
1021
1022  // Only coalesce to allocatable physreg, we don't want to risk modifying
1023  // reserved registers.
1024  if (!Allocatable) {
1025    DEBUG(dbgs() << "\tRegister is an unallocatable physreg.\n");
1026    return false;  // Not coalescable.
1027  }
1028
1029  // Don't join with physregs that have a ridiculous number of live
1030  // ranges. The data structure performance is really bad when that
1031  // happens.
1032  if (LIS->hasInterval(CP.getDstReg()) &&
1033      LIS->getInterval(CP.getDstReg()).ranges.size() > 1000) {
1034    ++numAborts;
1035    DEBUG(dbgs()
1036          << "\tPhysical register live interval too complicated, abort!\n");
1037    return false;
1038  }
1039
1040  // FIXME: Why are we skipping this test for partial copies?
1041  //        CodeGen/X86/phys_subreg_coalesce-3.ll needs it.
1042  if (!CP.isPartial()) {
1043    const TargetRegisterClass *RC = MRI->getRegClass(CP.getSrcReg());
1044    unsigned Threshold = RegClassInfo.getNumAllocatableRegs(RC) * 2;
1045    unsigned Length = LIS->getApproximateInstructionCount(JoinVInt);
1046    if (Length > Threshold) {
1047      ++numAborts;
1048      DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
1049      return false;
1050    }
1051  }
1052  return true;
1053}
1054
1055/// isWinToJoinCrossClass - Return true if it's profitable to coalesce
1056/// two virtual registers from different register classes.
1057bool
1058RegisterCoalescer::isWinToJoinCrossClass(unsigned SrcReg,
1059                                             unsigned DstReg,
1060                                             const TargetRegisterClass *SrcRC,
1061                                             const TargetRegisterClass *DstRC,
1062                                             const TargetRegisterClass *NewRC) {
1063  unsigned NewRCCount = RegClassInfo.getNumAllocatableRegs(NewRC);
1064  // This heuristics is good enough in practice, but it's obviously not *right*.
1065  // 4 is a magic number that works well enough for x86, ARM, etc. It filter
1066  // out all but the most restrictive register classes.
1067  if (NewRCCount > 4 ||
1068      // Early exit if the function is fairly small, coalesce aggressively if
1069      // that's the case. For really special register classes with 3 or
1070      // fewer registers, be a bit more careful.
1071      (LIS->getFuncInstructionCount() / NewRCCount) < 8)
1072    return true;
1073  LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1074  LiveInterval &DstInt = LIS->getInterval(DstReg);
1075  unsigned SrcSize = LIS->getApproximateInstructionCount(SrcInt);
1076  unsigned DstSize = LIS->getApproximateInstructionCount(DstInt);
1077
1078  // Coalesce aggressively if the intervals are small compared to the number of
1079  // registers in the new class. The number 4 is fairly arbitrary, chosen to be
1080  // less aggressive than the 8 used for the whole function size.
1081  const unsigned ThresSize = 4 * NewRCCount;
1082  if (SrcSize <= ThresSize && DstSize <= ThresSize)
1083    return true;
1084
1085  // Estimate *register use density*. If it doubles or more, abort.
1086  unsigned SrcUses = std::distance(MRI->use_nodbg_begin(SrcReg),
1087                                   MRI->use_nodbg_end());
1088  unsigned DstUses = std::distance(MRI->use_nodbg_begin(DstReg),
1089                                   MRI->use_nodbg_end());
1090  unsigned NewUses = SrcUses + DstUses;
1091  unsigned NewSize = SrcSize + DstSize;
1092  if (SrcRC != NewRC && SrcSize > ThresSize) {
1093    unsigned SrcRCCount = RegClassInfo.getNumAllocatableRegs(SrcRC);
1094    if (NewUses*SrcSize*SrcRCCount > 2*SrcUses*NewSize*NewRCCount)
1095      return false;
1096  }
1097  if (DstRC != NewRC && DstSize > ThresSize) {
1098    unsigned DstRCCount = RegClassInfo.getNumAllocatableRegs(DstRC);
1099    if (NewUses*DstSize*DstRCCount > 2*DstUses*NewSize*NewRCCount)
1100      return false;
1101  }
1102  return true;
1103}
1104
1105
1106/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1107/// which are the src/dst of the copy instruction CopyMI.  This returns true
1108/// if the copy was successfully coalesced away. If it is not currently
1109/// possible to coalesce this interval, but it may be possible if other
1110/// things get coalesced, then it returns true by reference in 'Again'.
1111bool RegisterCoalescer::JoinCopy(MachineInstr *CopyMI, bool &Again) {
1112
1113  Again = false;
1114  if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
1115    return false; // Already done.
1116
1117  DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
1118
1119  CoalescerPair CP(*TII, *TRI);
1120  if (!CP.setRegisters(CopyMI)) {
1121    DEBUG(dbgs() << "\tNot coalescable.\n");
1122    return false;
1123  }
1124
1125  // If they are already joined we continue.
1126  if (CP.getSrcReg() == CP.getDstReg()) {
1127    markAsJoined(CopyMI);
1128    DEBUG(dbgs() << "\tCopy already coalesced.\n");
1129    return false;  // Not coalescable.
1130  }
1131
1132  // Eliminate undefs.
1133  if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
1134    markAsJoined(CopyMI);
1135    DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
1136    return false;  // Not coalescable.
1137  }
1138
1139  DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
1140               << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSubIdx())
1141               << "\n");
1142
1143  // Enforce policies.
1144  if (CP.isPhys()) {
1145    if (!shouldJoinPhys(CP)) {
1146      // Before giving up coalescing, if definition of source is defined by
1147      // trivial computation, try rematerializing it.
1148      if (!CP.isFlipped() &&
1149          ReMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()), true,
1150                                  CP.getDstReg(), CopyMI))
1151        return true;
1152      return false;
1153    }
1154  } else {
1155    // Avoid constraining virtual register regclass too much.
1156    if (CP.isCrossClass()) {
1157      DEBUG(dbgs() << "\tCross-class to " << CP.getNewRC()->getName() << ".\n");
1158      if (DisableCrossClassJoin) {
1159        DEBUG(dbgs() << "\tCross-class joins disabled.\n");
1160        return false;
1161      }
1162      if (!isWinToJoinCrossClass(CP.getSrcReg(), CP.getDstReg(),
1163                                 MRI->getRegClass(CP.getSrcReg()),
1164                                 MRI->getRegClass(CP.getDstReg()),
1165                                 CP.getNewRC())) {
1166        DEBUG(dbgs() << "\tAvoid coalescing to constrained register class.\n");
1167        Again = true;  // May be possible to coalesce later.
1168        return false;
1169      }
1170    }
1171
1172    // When possible, let DstReg be the larger interval.
1173    if (!CP.getSubIdx() && LIS->getInterval(CP.getSrcReg()).ranges.size() >
1174                           LIS->getInterval(CP.getDstReg()).ranges.size())
1175      CP.flip();
1176  }
1177
1178  // Okay, attempt to join these two intervals.  On failure, this returns false.
1179  // Otherwise, if one of the intervals being joined is a physreg, this method
1180  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1181  // been modified, so we can use this information below to update aliases.
1182  if (!JoinIntervals(CP)) {
1183    // Coalescing failed.
1184
1185    // If definition of source is defined by trivial computation, try
1186    // rematerializing it.
1187    if (!CP.isFlipped() &&
1188        ReMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()), true,
1189                                CP.getDstReg(), CopyMI))
1190      return true;
1191
1192    // If we can eliminate the copy without merging the live ranges, do so now.
1193    if (!CP.isPartial()) {
1194      if (AdjustCopiesBackFrom(CP, CopyMI) ||
1195          RemoveCopyByCommutingDef(CP, CopyMI)) {
1196        markAsJoined(CopyMI);
1197        DEBUG(dbgs() << "\tTrivial!\n");
1198        return true;
1199      }
1200    }
1201
1202    // Otherwise, we are unable to join the intervals.
1203    DEBUG(dbgs() << "\tInterference!\n");
1204    Again = true;  // May be possible to coalesce later.
1205    return false;
1206  }
1207
1208  // Coalescing to a virtual register that is of a sub-register class of the
1209  // other. Make sure the resulting register is set to the right register class.
1210  if (CP.isCrossClass()) {
1211    ++numCrossRCs;
1212    MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1213  }
1214
1215  // Remember to delete the copy instruction.
1216  markAsJoined(CopyMI);
1217
1218  UpdateRegDefsUses(CP);
1219
1220  // If we have extended the live range of a physical register, make sure we
1221  // update live-in lists as well.
1222  if (CP.isPhys()) {
1223    SmallVector<MachineBasicBlock*, 16> BlockSeq;
1224    // JoinIntervals invalidates the VNInfos in SrcInt, but we only need the
1225    // ranges for this, and they are preserved.
1226    LiveInterval &SrcInt = LIS->getInterval(CP.getSrcReg());
1227    for (LiveInterval::const_iterator I = SrcInt.begin(), E = SrcInt.end();
1228         I != E; ++I ) {
1229      LIS->findLiveInMBBs(I->start, I->end, BlockSeq);
1230      for (unsigned idx = 0, size = BlockSeq.size(); idx != size; ++idx) {
1231        MachineBasicBlock &block = *BlockSeq[idx];
1232        if (!block.isLiveIn(CP.getDstReg()))
1233          block.addLiveIn(CP.getDstReg());
1234      }
1235      BlockSeq.clear();
1236    }
1237  }
1238
1239  // SrcReg is guaranteed to be the register whose live interval that is
1240  // being merged.
1241  LIS->removeInterval(CP.getSrcReg());
1242
1243  // Update regalloc hint.
1244  TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1245
1246  DEBUG({
1247    LiveInterval &DstInt = LIS->getInterval(CP.getDstReg());
1248    dbgs() << "\tJoined. Result = ";
1249    DstInt.print(dbgs(), TRI);
1250    dbgs() << "\n";
1251  });
1252
1253  ++numJoins;
1254  return true;
1255}
1256
1257/// ComputeUltimateVN - Assuming we are going to join two live intervals,
1258/// compute what the resultant value numbers for each value in the input two
1259/// ranges will be.  This is complicated by copies between the two which can
1260/// and will commonly cause multiple value numbers to be merged into one.
1261///
1262/// VN is the value number that we're trying to resolve.  InstDefiningValue
1263/// keeps track of the new InstDefiningValue assignment for the result
1264/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
1265/// whether a value in this or other is a copy from the opposite set.
1266/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1267/// already been assigned.
1268///
1269/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1270/// contains the value number the copy is from.
1271///
1272static unsigned ComputeUltimateVN(VNInfo *VNI,
1273                                  SmallVector<VNInfo*, 16> &NewVNInfo,
1274                                  DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
1275                                  DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
1276                                  SmallVector<int, 16> &ThisValNoAssignments,
1277                                  SmallVector<int, 16> &OtherValNoAssignments) {
1278  unsigned VN = VNI->id;
1279
1280  // If the VN has already been computed, just return it.
1281  if (ThisValNoAssignments[VN] >= 0)
1282    return ThisValNoAssignments[VN];
1283  assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
1284
1285  // If this val is not a copy from the other val, then it must be a new value
1286  // number in the destination.
1287  DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
1288  if (I == ThisFromOther.end()) {
1289    NewVNInfo.push_back(VNI);
1290    return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
1291  }
1292  VNInfo *OtherValNo = I->second;
1293
1294  // Otherwise, this *is* a copy from the RHS.  If the other side has already
1295  // been computed, return it.
1296  if (OtherValNoAssignments[OtherValNo->id] >= 0)
1297    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
1298
1299  // Mark this value number as currently being computed, then ask what the
1300  // ultimate value # of the other value is.
1301  ThisValNoAssignments[VN] = -2;
1302  unsigned UltimateVN =
1303    ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
1304                      OtherValNoAssignments, ThisValNoAssignments);
1305  return ThisValNoAssignments[VN] = UltimateVN;
1306}
1307
1308
1309// Find out if we have something like
1310// A = X
1311// B = X
1312// if so, we can pretend this is actually
1313// A = X
1314// B = A
1315// which allows us to coalesce A and B.
1316// VNI is the definition of B. LR is the life range of A that includes
1317// the slot just before B. If we return true, we add "B = X" to DupCopies.
1318// This implies that A dominates B.
1319static bool RegistersDefinedFromSameValue(LiveIntervals &li,
1320                                          const TargetRegisterInfo &tri,
1321                                          CoalescerPair &CP,
1322                                          VNInfo *VNI,
1323                                          LiveRange *LR,
1324                                     SmallVector<MachineInstr*, 8> &DupCopies) {
1325  // FIXME: This is very conservative. For example, we don't handle
1326  // physical registers.
1327
1328  MachineInstr *MI = li.getInstructionFromIndex(VNI->def);
1329
1330  if (!MI || !MI->isFullCopy() || CP.isPartial() || CP.isPhys())
1331    return false;
1332
1333  unsigned Dst = MI->getOperand(0).getReg();
1334  unsigned Src = MI->getOperand(1).getReg();
1335
1336  if (!TargetRegisterInfo::isVirtualRegister(Src) ||
1337      !TargetRegisterInfo::isVirtualRegister(Dst))
1338    return false;
1339
1340  unsigned A = CP.getDstReg();
1341  unsigned B = CP.getSrcReg();
1342
1343  if (B == Dst)
1344    std::swap(A, B);
1345  assert(Dst == A);
1346
1347  VNInfo *Other = LR->valno;
1348  const MachineInstr *OtherMI = li.getInstructionFromIndex(Other->def);
1349
1350  if (!OtherMI || !OtherMI->isFullCopy())
1351    return false;
1352
1353  unsigned OtherDst = OtherMI->getOperand(0).getReg();
1354  unsigned OtherSrc = OtherMI->getOperand(1).getReg();
1355
1356  if (!TargetRegisterInfo::isVirtualRegister(OtherSrc) ||
1357      !TargetRegisterInfo::isVirtualRegister(OtherDst))
1358    return false;
1359
1360  assert(OtherDst == B);
1361
1362  if (Src != OtherSrc)
1363    return false;
1364
1365  // If the copies use two different value numbers of X, we cannot merge
1366  // A and B.
1367  LiveInterval &SrcInt = li.getInterval(Src);
1368  // getVNInfoBefore returns NULL for undef copies. In this case, the
1369  // optimization is still safe.
1370  if (SrcInt.getVNInfoBefore(Other->def) != SrcInt.getVNInfoBefore(VNI->def))
1371    return false;
1372
1373  DupCopies.push_back(MI);
1374
1375  return true;
1376}
1377
1378/// JoinIntervals - Attempt to join these two intervals.  On failure, this
1379/// returns false.
1380bool RegisterCoalescer::JoinIntervals(CoalescerPair &CP) {
1381  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1382  DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), TRI); dbgs() << "\n"; });
1383
1384  // If a live interval is a physical register, check for interference with any
1385  // aliases. The interference check implemented here is a bit more conservative
1386  // than the full interfeence check below. We allow overlapping live ranges
1387  // only when one is a copy of the other.
1388  if (CP.isPhys()) {
1389    // Optimization for reserved registers like ESP.
1390    // We can only merge with a reserved physreg if RHS has a single value that
1391    // is a copy of CP.DstReg().  The live range of the reserved register will
1392    // look like a set of dead defs - we don't properly track the live range of
1393    // reserved registers.
1394    if (RegClassInfo.isReserved(CP.getDstReg())) {
1395      assert(CP.isFlipped() && RHS.containsOneValue() &&
1396             "Invalid join with reserved register");
1397      // Deny any overlapping intervals.  This depends on all the reserved
1398      // register live ranges to look like dead defs.
1399      for (const uint16_t *AS = TRI->getOverlaps(CP.getDstReg()); *AS; ++AS) {
1400        if (!LIS->hasInterval(*AS)) {
1401          // Make sure at least DstReg itself exists before attempting a join.
1402          if (*AS == CP.getDstReg())
1403            LIS->getOrCreateInterval(CP.getDstReg());
1404          continue;
1405        }
1406        if (RHS.overlaps(LIS->getInterval(*AS))) {
1407          DEBUG(dbgs() << "\t\tInterference: " << PrintReg(*AS, TRI) << '\n');
1408          return false;
1409        }
1410      }
1411      // Skip any value computations, we are not adding new values to the
1412      // reserved register.  Also skip merging the live ranges, the reserved
1413      // register live range doesn't need to be accurate as long as all the
1414      // defs are there.
1415      return true;
1416    }
1417
1418    // Check if a register mask clobbers DstReg.
1419    BitVector UsableRegs;
1420    if (LIS->checkRegMaskInterference(RHS, UsableRegs) &&
1421        !UsableRegs.test(CP.getDstReg())) {
1422      DEBUG(dbgs() << "\t\tRegister mask interference.\n");
1423      return false;
1424    }
1425
1426    for (const uint16_t *AS = TRI->getAliasSet(CP.getDstReg()); *AS; ++AS){
1427      if (!LIS->hasInterval(*AS))
1428        continue;
1429      const LiveInterval &LHS = LIS->getInterval(*AS);
1430      LiveInterval::const_iterator LI = LHS.begin();
1431      for (LiveInterval::const_iterator RI = RHS.begin(), RE = RHS.end();
1432           RI != RE; ++RI) {
1433        LI = std::lower_bound(LI, LHS.end(), RI->start);
1434        // Does LHS have an overlapping live range starting before RI?
1435        if ((LI != LHS.begin() && LI[-1].end > RI->start) &&
1436            (RI->start != RI->valno->def ||
1437             !CP.isCoalescable(LIS->getInstructionFromIndex(RI->start)))) {
1438          DEBUG({
1439            dbgs() << "\t\tInterference from alias: ";
1440            LHS.print(dbgs(), TRI);
1441            dbgs() << "\n\t\tOverlap at " << RI->start << " and no copy.\n";
1442          });
1443          return false;
1444        }
1445
1446        // Check that LHS ranges beginning in this range are copies.
1447        for (; LI != LHS.end() && LI->start < RI->end; ++LI) {
1448          if (LI->start != LI->valno->def ||
1449              !CP.isCoalescable(LIS->getInstructionFromIndex(LI->start))) {
1450            DEBUG({
1451              dbgs() << "\t\tInterference from alias: ";
1452              LHS.print(dbgs(), TRI);
1453              dbgs() << "\n\t\tDef at " << LI->start << " is not a copy.\n";
1454            });
1455            return false;
1456          }
1457        }
1458      }
1459    }
1460  }
1461
1462  // Compute the final value assignment, assuming that the live ranges can be
1463  // coalesced.
1464  SmallVector<int, 16> LHSValNoAssignments;
1465  SmallVector<int, 16> RHSValNoAssignments;
1466  DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
1467  DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
1468  SmallVector<VNInfo*, 16> NewVNInfo;
1469
1470  SmallVector<MachineInstr*, 8> DupCopies;
1471
1472  LiveInterval &LHS = LIS->getOrCreateInterval(CP.getDstReg());
1473  DEBUG({ dbgs() << "\t\tLHS = "; LHS.print(dbgs(), TRI); dbgs() << "\n"; });
1474
1475  // Loop over the value numbers of the LHS, seeing if any are defined from
1476  // the RHS.
1477  for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
1478       i != e; ++i) {
1479    VNInfo *VNI = *i;
1480    if (VNI->isUnused() || VNI->isPHIDef())
1481      continue;
1482    MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def);
1483    assert(MI && "Missing def");
1484    if (!MI->isCopyLike())  // Src not defined by a copy?
1485      continue;
1486
1487    // Figure out the value # from the RHS.
1488    LiveRange *lr = RHS.getLiveRangeContaining(VNI->def.getPrevSlot());
1489    // The copy could be to an aliased physreg.
1490    if (!lr) continue;
1491
1492    // DstReg is known to be a register in the LHS interval.  If the src is
1493    // from the RHS interval, we can use its value #.
1494    if (!CP.isCoalescable(MI) &&
1495        !RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, lr, DupCopies))
1496      continue;
1497
1498    LHSValsDefinedFromRHS[VNI] = lr->valno;
1499  }
1500
1501  // Loop over the value numbers of the RHS, seeing if any are defined from
1502  // the LHS.
1503  for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
1504       i != e; ++i) {
1505    VNInfo *VNI = *i;
1506    if (VNI->isUnused() || VNI->isPHIDef())
1507      continue;
1508    MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def);
1509    assert(MI && "Missing def");
1510    if (!MI->isCopyLike())  // Src not defined by a copy?
1511      continue;
1512
1513    // Figure out the value # from the LHS.
1514    LiveRange *lr = LHS.getLiveRangeContaining(VNI->def.getPrevSlot());
1515    // The copy could be to an aliased physreg.
1516    if (!lr) continue;
1517
1518    // DstReg is known to be a register in the RHS interval.  If the src is
1519    // from the LHS interval, we can use its value #.
1520    if (!CP.isCoalescable(MI) &&
1521        !RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, lr, DupCopies))
1522        continue;
1523
1524    RHSValsDefinedFromLHS[VNI] = lr->valno;
1525  }
1526
1527  LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1528  RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1529  NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
1530
1531  for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
1532       i != e; ++i) {
1533    VNInfo *VNI = *i;
1534    unsigned VN = VNI->id;
1535    if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
1536      continue;
1537    ComputeUltimateVN(VNI, NewVNInfo,
1538                      LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
1539                      LHSValNoAssignments, RHSValNoAssignments);
1540  }
1541  for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
1542       i != e; ++i) {
1543    VNInfo *VNI = *i;
1544    unsigned VN = VNI->id;
1545    if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
1546      continue;
1547    // If this value number isn't a copy from the LHS, it's a new number.
1548    if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
1549      NewVNInfo.push_back(VNI);
1550      RHSValNoAssignments[VN] = NewVNInfo.size()-1;
1551      continue;
1552    }
1553
1554    ComputeUltimateVN(VNI, NewVNInfo,
1555                      RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
1556                      RHSValNoAssignments, LHSValNoAssignments);
1557  }
1558
1559  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
1560  // interval lists to see if these intervals are coalescable.
1561  LiveInterval::const_iterator I = LHS.begin();
1562  LiveInterval::const_iterator IE = LHS.end();
1563  LiveInterval::const_iterator J = RHS.begin();
1564  LiveInterval::const_iterator JE = RHS.end();
1565
1566  // Skip ahead until the first place of potential sharing.
1567  if (I != IE && J != JE) {
1568    if (I->start < J->start) {
1569      I = std::upper_bound(I, IE, J->start);
1570      if (I != LHS.begin()) --I;
1571    } else if (J->start < I->start) {
1572      J = std::upper_bound(J, JE, I->start);
1573      if (J != RHS.begin()) --J;
1574    }
1575  }
1576
1577  while (I != IE && J != JE) {
1578    // Determine if these two live ranges overlap.
1579    bool Overlaps;
1580    if (I->start < J->start) {
1581      Overlaps = I->end > J->start;
1582    } else {
1583      Overlaps = J->end > I->start;
1584    }
1585
1586    // If so, check value # info to determine if they are really different.
1587    if (Overlaps) {
1588      // If the live range overlap will map to the same value number in the
1589      // result liverange, we can still coalesce them.  If not, we can't.
1590      if (LHSValNoAssignments[I->valno->id] !=
1591          RHSValNoAssignments[J->valno->id])
1592        return false;
1593    }
1594
1595    if (I->end < J->end)
1596      ++I;
1597    else
1598      ++J;
1599  }
1600
1601  // Update kill info. Some live ranges are extended due to copy coalescing.
1602  for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
1603         E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
1604    VNInfo *VNI = I->first;
1605    unsigned LHSValID = LHSValNoAssignments[VNI->id];
1606    if (VNI->hasPHIKill())
1607      NewVNInfo[LHSValID]->setHasPHIKill(true);
1608  }
1609
1610  // Update kill info. Some live ranges are extended due to copy coalescing.
1611  for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
1612         E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
1613    VNInfo *VNI = I->first;
1614    unsigned RHSValID = RHSValNoAssignments[VNI->id];
1615    if (VNI->hasPHIKill())
1616      NewVNInfo[RHSValID]->setHasPHIKill(true);
1617  }
1618
1619  if (LHSValNoAssignments.empty())
1620    LHSValNoAssignments.push_back(-1);
1621  if (RHSValNoAssignments.empty())
1622    RHSValNoAssignments.push_back(-1);
1623
1624  SmallVector<unsigned, 8> SourceRegisters;
1625  for (SmallVector<MachineInstr*, 8>::iterator I = DupCopies.begin(),
1626         E = DupCopies.end(); I != E; ++I) {
1627    MachineInstr *MI = *I;
1628
1629    // We have pretended that the assignment to B in
1630    // A = X
1631    // B = X
1632    // was actually a copy from A. Now that we decided to coalesce A and B,
1633    // transform the code into
1634    // A = X
1635    // X = X
1636    // and mark the X as coalesced to keep the illusion.
1637    unsigned Src = MI->getOperand(1).getReg();
1638    SourceRegisters.push_back(Src);
1639    MI->getOperand(0).substVirtReg(Src, 0, *TRI);
1640
1641    markAsJoined(MI);
1642  }
1643
1644  // If B = X was the last use of X in a liverange, we have to shrink it now
1645  // that B = X is gone.
1646  for (SmallVector<unsigned, 8>::iterator I = SourceRegisters.begin(),
1647         E = SourceRegisters.end(); I != E; ++I) {
1648    LIS->shrinkToUses(&LIS->getInterval(*I));
1649  }
1650
1651  // If we get here, we know that we can coalesce the live ranges.  Ask the
1652  // intervals to coalesce themselves now.
1653  LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
1654           MRI);
1655  return true;
1656}
1657
1658namespace {
1659  // DepthMBBCompare - Comparison predicate that sort first based on the loop
1660  // depth of the basic block (the unsigned), and then on the MBB number.
1661  struct DepthMBBCompare {
1662    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
1663    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
1664      // Deeper loops first
1665      if (LHS.first != RHS.first)
1666        return LHS.first > RHS.first;
1667
1668      // Prefer blocks that are more connected in the CFG. This takes care of
1669      // the most difficult copies first while intervals are short.
1670      unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
1671      unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
1672      if (cl != cr)
1673        return cl > cr;
1674
1675      // As a last resort, sort by block number.
1676      return LHS.second->getNumber() < RHS.second->getNumber();
1677    }
1678  };
1679}
1680
1681void RegisterCoalescer::CopyCoalesceInMBB(MachineBasicBlock *MBB,
1682                                            std::vector<MachineInstr*> &TryAgain) {
1683  DEBUG(dbgs() << MBB->getName() << ":\n");
1684
1685  SmallVector<MachineInstr*, 8> VirtCopies;
1686  SmallVector<MachineInstr*, 8> PhysCopies;
1687  SmallVector<MachineInstr*, 8> ImpDefCopies;
1688  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
1689       MII != E;) {
1690    MachineInstr *Inst = MII++;
1691
1692    // If this isn't a copy nor a extract_subreg, we can't join intervals.
1693    unsigned SrcReg, DstReg;
1694    if (Inst->isCopy()) {
1695      DstReg = Inst->getOperand(0).getReg();
1696      SrcReg = Inst->getOperand(1).getReg();
1697    } else if (Inst->isSubregToReg()) {
1698      DstReg = Inst->getOperand(0).getReg();
1699      SrcReg = Inst->getOperand(2).getReg();
1700    } else
1701      continue;
1702
1703    bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
1704    bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1705    if (LIS->hasInterval(SrcReg) && LIS->getInterval(SrcReg).empty())
1706      ImpDefCopies.push_back(Inst);
1707    else if (SrcIsPhys || DstIsPhys)
1708      PhysCopies.push_back(Inst);
1709    else
1710      VirtCopies.push_back(Inst);
1711  }
1712
1713  // Try coalescing implicit copies and insert_subreg <undef> first,
1714  // followed by copies to / from physical registers, then finally copies
1715  // from virtual registers to virtual registers.
1716  for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
1717    MachineInstr *TheCopy = ImpDefCopies[i];
1718    bool Again = false;
1719    if (!JoinCopy(TheCopy, Again))
1720      if (Again)
1721        TryAgain.push_back(TheCopy);
1722  }
1723  for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
1724    MachineInstr *TheCopy = PhysCopies[i];
1725    bool Again = false;
1726    if (!JoinCopy(TheCopy, Again))
1727      if (Again)
1728        TryAgain.push_back(TheCopy);
1729  }
1730  for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
1731    MachineInstr *TheCopy = VirtCopies[i];
1732    bool Again = false;
1733    if (!JoinCopy(TheCopy, Again))
1734      if (Again)
1735        TryAgain.push_back(TheCopy);
1736  }
1737}
1738
1739void RegisterCoalescer::joinIntervals() {
1740  DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
1741
1742  std::vector<MachineInstr*> TryAgainList;
1743  if (Loops->empty()) {
1744    // If there are no loops in the function, join intervals in function order.
1745    for (MachineFunction::iterator I = MF->begin(), E = MF->end();
1746         I != E; ++I)
1747      CopyCoalesceInMBB(I, TryAgainList);
1748  } else {
1749    // Otherwise, join intervals in inner loops before other intervals.
1750    // Unfortunately we can't just iterate over loop hierarchy here because
1751    // there may be more MBB's than BB's.  Collect MBB's for sorting.
1752
1753    // Join intervals in the function prolog first. We want to join physical
1754    // registers with virtual registers before the intervals got too long.
1755    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
1756    for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
1757      MachineBasicBlock *MBB = I;
1758      MBBs.push_back(std::make_pair(Loops->getLoopDepth(MBB), I));
1759    }
1760
1761    // Sort by loop depth.
1762    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
1763
1764    // Finally, join intervals in loop nest order.
1765    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
1766      CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
1767  }
1768
1769  // Joining intervals can allow other intervals to be joined.  Iteratively join
1770  // until we make no progress.
1771  bool ProgressMade = true;
1772  while (ProgressMade) {
1773    ProgressMade = false;
1774
1775    for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
1776      MachineInstr *&TheCopy = TryAgainList[i];
1777      if (!TheCopy)
1778        continue;
1779
1780      bool Again = false;
1781      bool Success = JoinCopy(TheCopy, Again);
1782      if (Success || !Again) {
1783        TheCopy= 0;   // Mark this one as done.
1784        ProgressMade = true;
1785      }
1786    }
1787  }
1788}
1789
1790void RegisterCoalescer::releaseMemory() {
1791  JoinedCopies.clear();
1792  ReMatCopies.clear();
1793  ReMatDefs.clear();
1794}
1795
1796bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
1797  MF = &fn;
1798  MRI = &fn.getRegInfo();
1799  TM = &fn.getTarget();
1800  TRI = TM->getRegisterInfo();
1801  TII = TM->getInstrInfo();
1802  LIS = &getAnalysis<LiveIntervals>();
1803  LDV = &getAnalysis<LiveDebugVariables>();
1804  AA = &getAnalysis<AliasAnalysis>();
1805  Loops = &getAnalysis<MachineLoopInfo>();
1806
1807  DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
1808               << "********** Function: "
1809               << ((Value*)MF->getFunction())->getName() << '\n');
1810
1811  if (VerifyCoalescing)
1812    MF->verify(this, "Before register coalescing");
1813
1814  RegClassInfo.runOnMachineFunction(fn);
1815
1816  // Join (coalesce) intervals if requested.
1817  if (EnableJoining) {
1818    joinIntervals();
1819    DEBUG({
1820        dbgs() << "********** INTERVALS POST JOINING **********\n";
1821        for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end();
1822             I != E; ++I){
1823          I->second->print(dbgs(), TRI);
1824          dbgs() << "\n";
1825        }
1826      });
1827  }
1828
1829  // Perform a final pass over the instructions and compute spill weights
1830  // and remove identity moves.
1831  SmallVector<unsigned, 4> DeadDefs, InflateRegs;
1832  for (MachineFunction::iterator mbbi = MF->begin(), mbbe = MF->end();
1833       mbbi != mbbe; ++mbbi) {
1834    MachineBasicBlock* mbb = mbbi;
1835    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
1836         mii != mie; ) {
1837      MachineInstr *MI = mii;
1838      if (JoinedCopies.count(MI)) {
1839        // Delete all coalesced copies.
1840        bool DoDelete = true;
1841        assert(MI->isCopyLike() && "Unrecognized copy instruction");
1842        unsigned SrcReg = MI->getOperand(MI->isSubregToReg() ? 2 : 1).getReg();
1843        unsigned DstReg = MI->getOperand(0).getReg();
1844
1845        // Collect candidates for register class inflation.
1846        if (TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1847            RegClassInfo.isProperSubClass(MRI->getRegClass(SrcReg)))
1848          InflateRegs.push_back(SrcReg);
1849        if (TargetRegisterInfo::isVirtualRegister(DstReg) &&
1850            RegClassInfo.isProperSubClass(MRI->getRegClass(DstReg)))
1851          InflateRegs.push_back(DstReg);
1852
1853        if (TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
1854            MI->getNumOperands() > 2)
1855          // Do not delete extract_subreg, insert_subreg of physical
1856          // registers unless the definition is dead. e.g.
1857          // %DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
1858          // or else the scavenger may complain. LowerSubregs will
1859          // delete them later.
1860          DoDelete = false;
1861
1862        if (MI->allDefsAreDead()) {
1863          if (TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1864              LIS->hasInterval(SrcReg))
1865            LIS->shrinkToUses(&LIS->getInterval(SrcReg));
1866          DoDelete = true;
1867        }
1868        if (!DoDelete) {
1869          // We need the instruction to adjust liveness, so make it a KILL.
1870          if (MI->isSubregToReg()) {
1871            MI->RemoveOperand(3);
1872            MI->RemoveOperand(1);
1873          }
1874          MI->setDesc(TII->get(TargetOpcode::KILL));
1875          mii = llvm::next(mii);
1876        } else {
1877          LIS->RemoveMachineInstrFromMaps(MI);
1878          mii = mbbi->erase(mii);
1879          ++numPeep;
1880        }
1881        continue;
1882      }
1883
1884      // Now check if this is a remat'ed def instruction which is now dead.
1885      if (ReMatDefs.count(MI)) {
1886        bool isDead = true;
1887        for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1888          const MachineOperand &MO = MI->getOperand(i);
1889          if (!MO.isReg())
1890            continue;
1891          unsigned Reg = MO.getReg();
1892          if (!Reg)
1893            continue;
1894          DeadDefs.push_back(Reg);
1895          if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1896            // Remat may also enable register class inflation.
1897            if (RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)))
1898              InflateRegs.push_back(Reg);
1899          }
1900          if (MO.isDead())
1901            continue;
1902          if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
1903              !MRI->use_nodbg_empty(Reg)) {
1904            isDead = false;
1905            break;
1906          }
1907        }
1908        if (isDead) {
1909          while (!DeadDefs.empty()) {
1910            unsigned DeadDef = DeadDefs.back();
1911            DeadDefs.pop_back();
1912            RemoveDeadDef(LIS->getInterval(DeadDef), MI);
1913          }
1914          LIS->RemoveMachineInstrFromMaps(mii);
1915          mii = mbbi->erase(mii);
1916          continue;
1917        } else
1918          DeadDefs.clear();
1919      }
1920
1921      ++mii;
1922
1923      // Check for now unnecessary kill flags.
1924      if (LIS->isNotInMIMap(MI)) continue;
1925      SlotIndex DefIdx = LIS->getInstructionIndex(MI).getRegSlot();
1926      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1927        MachineOperand &MO = MI->getOperand(i);
1928        if (!MO.isReg() || !MO.isKill()) continue;
1929        unsigned reg = MO.getReg();
1930        if (!reg || !LIS->hasInterval(reg)) continue;
1931        if (!LIS->getInterval(reg).killedAt(DefIdx)) {
1932          MO.setIsKill(false);
1933          continue;
1934        }
1935        // When leaving a kill flag on a physreg, check if any subregs should
1936        // remain alive.
1937        if (!TargetRegisterInfo::isPhysicalRegister(reg))
1938          continue;
1939        for (const uint16_t *SR = TRI->getSubRegisters(reg);
1940             unsigned S = *SR; ++SR)
1941          if (LIS->hasInterval(S) && LIS->getInterval(S).liveAt(DefIdx))
1942            MI->addRegisterDefined(S, TRI);
1943      }
1944    }
1945  }
1946
1947  // After deleting a lot of copies, register classes may be less constrained.
1948  // Removing sub-register opreands may alow GR32_ABCD -> GR32 and DPR_VFP2 ->
1949  // DPR inflation.
1950  array_pod_sort(InflateRegs.begin(), InflateRegs.end());
1951  InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
1952                    InflateRegs.end());
1953  DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
1954  for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
1955    unsigned Reg = InflateRegs[i];
1956    if (MRI->reg_nodbg_empty(Reg))
1957      continue;
1958    if (MRI->recomputeRegClass(Reg, *TM)) {
1959      DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
1960                   << MRI->getRegClass(Reg)->getName() << '\n');
1961      ++NumInflated;
1962    }
1963  }
1964
1965  DEBUG(dump());
1966  DEBUG(LDV->dump());
1967  if (VerifyCoalescing)
1968    MF->verify(this, "After register coalescing");
1969  return true;
1970}
1971
1972/// print - Implement the dump method.
1973void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
1974   LIS->print(O, m);
1975}
1976