RDFLiveness.cpp revision 363496
1//===- RDFLiveness.cpp ----------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Computation of the liveness information from the data-flow graph.
10//
11// The main functionality of this code is to compute block live-in
12// information. With the live-in information in place, the placement
13// of kill flags can also be recalculated.
14//
15// The block live-in calculation is based on the ideas from the following
16// publication:
17//
18// Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin.
19// "Efficient Liveness Computation Using Merge Sets and DJ-Graphs."
20// ACM Transactions on Architecture and Code Optimization, Association for
21// Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance
22// and Embedded Architectures and Compilers", 8 (4),
23// <10.1145/2086696.2086706>. <hal-00647369>
24//
25#include "llvm/ADT/BitVector.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SetVector.h"
28#include "llvm/CodeGen/MachineBasicBlock.h"
29#include "llvm/CodeGen/MachineDominanceFrontier.h"
30#include "llvm/CodeGen/MachineDominators.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstr.h"
33#include "llvm/CodeGen/RDFLiveness.h"
34#include "llvm/CodeGen/RDFGraph.h"
35#include "llvm/CodeGen/RDFRegisters.h"
36#include "llvm/CodeGen/TargetRegisterInfo.h"
37#include "llvm/MC/LaneBitmask.h"
38#include "llvm/MC/MCRegisterInfo.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/raw_ostream.h"
43#include <algorithm>
44#include <cassert>
45#include <cstdint>
46#include <iterator>
47#include <map>
48#include <utility>
49#include <vector>
50
51using namespace llvm;
52using namespace rdf;
53
54static cl::opt<unsigned> MaxRecNest("rdf-liveness-max-rec", cl::init(25),
55  cl::Hidden, cl::desc("Maximum recursion level"));
56
57namespace llvm {
58namespace rdf {
59
60  raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) {
61    OS << '{';
62    for (auto &I : P.Obj) {
63      OS << ' ' << printReg(I.first, &P.G.getTRI()) << '{';
64      for (auto J = I.second.begin(), E = I.second.end(); J != E; ) {
65        OS << Print<NodeId>(J->first, P.G) << PrintLaneMaskOpt(J->second);
66        if (++J != E)
67          OS << ',';
68      }
69      OS << '}';
70    }
71    OS << " }";
72    return OS;
73  }
74
75} // end namespace rdf
76} // end namespace llvm
77
78// The order in the returned sequence is the order of reaching defs in the
79// upward traversal: the first def is the closest to the given reference RefA,
80// the next one is further up, and so on.
81// The list ends at a reaching phi def, or when the reference from RefA is
82// covered by the defs in the list (see FullChain).
83// This function provides two modes of operation:
84// (1) Returning the sequence of reaching defs for a particular reference
85// node. This sequence will terminate at the first phi node [1].
86// (2) Returning a partial sequence of reaching defs, where the final goal
87// is to traverse past phi nodes to the actual defs arising from the code
88// itself.
89// In mode (2), the register reference for which the search was started
90// may be different from the reference node RefA, for which this call was
91// made, hence the argument RefRR, which holds the original register.
92// Also, some definitions may have already been encountered in a previous
93// call that will influence register covering. The register references
94// already defined are passed in through DefRRs.
95// In mode (1), the "continuation" considerations do not apply, and the
96// RefRR is the same as the register in RefA, and the set DefRRs is empty.
97//
98// [1] It is possible for multiple phi nodes to be included in the returned
99// sequence:
100//   SubA = phi ...
101//   SubB = phi ...
102//   ...  = SuperAB(rdef:SubA), SuperAB"(rdef:SubB)
103// However, these phi nodes are independent from one another in terms of
104// the data-flow.
105
106NodeList Liveness::getAllReachingDefs(RegisterRef RefRR,
107      NodeAddr<RefNode*> RefA, bool TopShadows, bool FullChain,
108      const RegisterAggr &DefRRs) {
109  NodeList RDefs; // Return value.
110  SetVector<NodeId> DefQ;
111  SetVector<NodeId> Owners;
112
113  // Dead defs will be treated as if they were live, since they are actually
114  // on the data-flow path. They cannot be ignored because even though they
115  // do not generate meaningful values, they still modify registers.
116
117  // If the reference is undefined, there is nothing to do.
118  if (RefA.Addr->getFlags() & NodeAttrs::Undef)
119    return RDefs;
120
121  // The initial queue should not have reaching defs for shadows. The
122  // whole point of a shadow is that it will have a reaching def that
123  // is not aliased to the reaching defs of the related shadows.
124  NodeId Start = RefA.Id;
125  auto SNA = DFG.addr<RefNode*>(Start);
126  if (NodeId RD = SNA.Addr->getReachingDef())
127    DefQ.insert(RD);
128  if (TopShadows) {
129    for (auto S : DFG.getRelatedRefs(RefA.Addr->getOwner(DFG), RefA))
130      if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
131        DefQ.insert(RD);
132  }
133
134  // Collect all the reaching defs, going up until a phi node is encountered,
135  // or there are no more reaching defs. From this set, the actual set of
136  // reaching defs will be selected.
137  // The traversal upwards must go on until a covering def is encountered.
138  // It is possible that a collection of non-covering (individually) defs
139  // will be sufficient, but keep going until a covering one is found.
140  for (unsigned i = 0; i < DefQ.size(); ++i) {
141    auto TA = DFG.addr<DefNode*>(DefQ[i]);
142    if (TA.Addr->getFlags() & NodeAttrs::PhiRef)
143      continue;
144    // Stop at the covering/overwriting def of the initial register reference.
145    RegisterRef RR = TA.Addr->getRegRef(DFG);
146    if (!DFG.IsPreservingDef(TA))
147      if (RegisterAggr::isCoverOf(RR, RefRR, PRI))
148        continue;
149    // Get the next level of reaching defs. This will include multiple
150    // reaching defs for shadows.
151    for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA))
152      if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
153        DefQ.insert(RD);
154  }
155
156  // Remove all non-phi defs that are not aliased to RefRR, and collect
157  // the owners of the remaining defs.
158  SetVector<NodeId> Defs;
159  for (NodeId N : DefQ) {
160    auto TA = DFG.addr<DefNode*>(N);
161    bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef;
162    if (!IsPhi && !PRI.alias(RefRR, TA.Addr->getRegRef(DFG)))
163      continue;
164    Defs.insert(TA.Id);
165    Owners.insert(TA.Addr->getOwner(DFG).Id);
166  }
167
168  // Return the MachineBasicBlock containing a given instruction.
169  auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* {
170    if (IA.Addr->getKind() == NodeAttrs::Stmt)
171      return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent();
172    assert(IA.Addr->getKind() == NodeAttrs::Phi);
173    NodeAddr<PhiNode*> PA = IA;
174    NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG);
175    return BA.Addr->getCode();
176  };
177  // Less(A,B) iff instruction A is further down in the dominator tree than B.
178  auto Less = [&Block,this] (NodeId A, NodeId B) -> bool {
179    if (A == B)
180      return false;
181    auto OA = DFG.addr<InstrNode*>(A), OB = DFG.addr<InstrNode*>(B);
182    MachineBasicBlock *BA = Block(OA), *BB = Block(OB);
183    if (BA != BB)
184      return MDT.dominates(BB, BA);
185    // They are in the same block.
186    bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt;
187    bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt;
188    if (StmtA) {
189      if (!StmtB)   // OB is a phi and phis dominate statements.
190        return true;
191      MachineInstr *CA = NodeAddr<StmtNode*>(OA).Addr->getCode();
192      MachineInstr *CB = NodeAddr<StmtNode*>(OB).Addr->getCode();
193      // The order must be linear, so tie-break such equalities.
194      if (CA == CB)
195        return A < B;
196      return MDT.dominates(CB, CA);
197    } else {
198      // OA is a phi.
199      if (StmtB)
200        return false;
201      // Both are phis. There is no ordering between phis (in terms of
202      // the data-flow), so tie-break this via node id comparison.
203      return A < B;
204    }
205  };
206
207  std::vector<NodeId> Tmp(Owners.begin(), Owners.end());
208  llvm::sort(Tmp, Less);
209
210  // The vector is a list of instructions, so that defs coming from
211  // the same instruction don't need to be artificially ordered.
212  // Then, when computing the initial segment, and iterating over an
213  // instruction, pick the defs that contribute to the covering (i.e. is
214  // not covered by previously added defs). Check the defs individually,
215  // i.e. first check each def if is covered or not (without adding them
216  // to the tracking set), and then add all the selected ones.
217
218  // The reason for this is this example:
219  // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes).
220  // *d3<C>              If A \incl BuC, and B \incl AuC, then *d2 would be
221  //                     covered if we added A first, and A would be covered
222  //                     if we added B first.
223
224  RegisterAggr RRs(DefRRs);
225
226  auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool {
227    return TA.Addr->getKind() == NodeAttrs::Def &&
228           Defs.count(TA.Id);
229  };
230  for (NodeId T : Tmp) {
231    if (!FullChain && RRs.hasCoverOf(RefRR))
232      break;
233    auto TA = DFG.addr<InstrNode*>(T);
234    bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA);
235    NodeList Ds;
236    for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) {
237      RegisterRef QR = DA.Addr->getRegRef(DFG);
238      // Add phi defs even if they are covered by subsequent defs. This is
239      // for cases where the reached use is not covered by any of the defs
240      // encountered so far: the phi def is needed to expose the liveness
241      // of that use to the entry of the block.
242      // Example:
243      //   phi d1<R3>(,d2,), ...  Phi def d1 is covered by d2.
244      //   d2<R3>(d1,,u3), ...
245      //   ..., u3<D1>(d2)        This use needs to be live on entry.
246      if (FullChain || IsPhi || !RRs.hasCoverOf(QR))
247        Ds.push_back(DA);
248    }
249    RDefs.insert(RDefs.end(), Ds.begin(), Ds.end());
250    for (NodeAddr<DefNode*> DA : Ds) {
251      // When collecting a full chain of definitions, do not consider phi
252      // defs to actually define a register.
253      uint16_t Flags = DA.Addr->getFlags();
254      if (!FullChain || !(Flags & NodeAttrs::PhiRef))
255        if (!(Flags & NodeAttrs::Preserving)) // Don't care about Undef here.
256          RRs.insert(DA.Addr->getRegRef(DFG));
257    }
258  }
259
260  auto DeadP = [](const NodeAddr<DefNode*> DA) -> bool {
261    return DA.Addr->getFlags() & NodeAttrs::Dead;
262  };
263  RDefs.resize(std::distance(RDefs.begin(), llvm::remove_if(RDefs, DeadP)));
264
265  return RDefs;
266}
267
268std::pair<NodeSet,bool>
269Liveness::getAllReachingDefsRec(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
270      NodeSet &Visited, const NodeSet &Defs) {
271  return getAllReachingDefsRecImpl(RefRR, RefA, Visited, Defs, 0, MaxRecNest);
272}
273
274std::pair<NodeSet,bool>
275Liveness::getAllReachingDefsRecImpl(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
276      NodeSet &Visited, const NodeSet &Defs, unsigned Nest, unsigned MaxNest) {
277  if (Nest > MaxNest)
278    return { NodeSet(), false };
279  // Collect all defined registers. Do not consider phis to be defining
280  // anything, only collect "real" definitions.
281  RegisterAggr DefRRs(PRI);
282  for (NodeId D : Defs) {
283    const auto DA = DFG.addr<const DefNode*>(D);
284    if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
285      DefRRs.insert(DA.Addr->getRegRef(DFG));
286  }
287
288  NodeList RDs = getAllReachingDefs(RefRR, RefA, false, true, DefRRs);
289  if (RDs.empty())
290    return { Defs, true };
291
292  // Make a copy of the preexisting definitions and add the newly found ones.
293  NodeSet TmpDefs = Defs;
294  for (NodeAddr<NodeBase*> R : RDs)
295    TmpDefs.insert(R.Id);
296
297  NodeSet Result = Defs;
298
299  for (NodeAddr<DefNode*> DA : RDs) {
300    Result.insert(DA.Id);
301    if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
302      continue;
303    NodeAddr<PhiNode*> PA = DA.Addr->getOwner(DFG);
304    if (Visited.count(PA.Id))
305      continue;
306    Visited.insert(PA.Id);
307    // Go over all phi uses and get the reaching defs for each use.
308    for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
309      const auto &T = getAllReachingDefsRecImpl(RefRR, U, Visited, TmpDefs,
310                                                Nest+1, MaxNest);
311      if (!T.second)
312        return { T.first, false };
313      Result.insert(T.first.begin(), T.first.end());
314    }
315  }
316
317  return { Result, true };
318}
319
320/// Find the nearest ref node aliased to RefRR, going upwards in the data
321/// flow, starting from the instruction immediately preceding Inst.
322NodeAddr<RefNode*> Liveness::getNearestAliasedRef(RegisterRef RefRR,
323      NodeAddr<InstrNode*> IA) {
324  NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
325  NodeList Ins = BA.Addr->members(DFG);
326  NodeId FindId = IA.Id;
327  auto E = Ins.rend();
328  auto B = std::find_if(Ins.rbegin(), E,
329                        [FindId] (const NodeAddr<InstrNode*> T) {
330                          return T.Id == FindId;
331                        });
332  // Do not scan IA (which is what B would point to).
333  if (B != E)
334    ++B;
335
336  do {
337    // Process the range of instructions from B to E.
338    for (NodeAddr<InstrNode*> I : make_range(B, E)) {
339      NodeList Refs = I.Addr->members(DFG);
340      NodeAddr<RefNode*> Clob, Use;
341      // Scan all the refs in I aliased to RefRR, and return the one that
342      // is the closest to the output of I, i.e. def > clobber > use.
343      for (NodeAddr<RefNode*> R : Refs) {
344        if (!PRI.alias(R.Addr->getRegRef(DFG), RefRR))
345          continue;
346        if (DFG.IsDef(R)) {
347          // If it's a non-clobbering def, just return it.
348          if (!(R.Addr->getFlags() & NodeAttrs::Clobbering))
349            return R;
350          Clob = R;
351        } else {
352          Use = R;
353        }
354      }
355      if (Clob.Id != 0)
356        return Clob;
357      if (Use.Id != 0)
358        return Use;
359    }
360
361    // Go up to the immediate dominator, if any.
362    MachineBasicBlock *BB = BA.Addr->getCode();
363    BA = NodeAddr<BlockNode*>();
364    if (MachineDomTreeNode *N = MDT.getNode(BB)) {
365      if ((N = N->getIDom()))
366        BA = DFG.findBlock(N->getBlock());
367    }
368    if (!BA.Id)
369      break;
370
371    Ins = BA.Addr->members(DFG);
372    B = Ins.rbegin();
373    E = Ins.rend();
374  } while (true);
375
376  return NodeAddr<RefNode*>();
377}
378
379NodeSet Liveness::getAllReachedUses(RegisterRef RefRR,
380      NodeAddr<DefNode*> DefA, const RegisterAggr &DefRRs) {
381  NodeSet Uses;
382
383  // If the original register is already covered by all the intervening
384  // defs, no more uses can be reached.
385  if (DefRRs.hasCoverOf(RefRR))
386    return Uses;
387
388  // Add all directly reached uses.
389  // If the def is dead, it does not provide a value for any use.
390  bool IsDead = DefA.Addr->getFlags() & NodeAttrs::Dead;
391  NodeId U = !IsDead ? DefA.Addr->getReachedUse() : 0;
392  while (U != 0) {
393    auto UA = DFG.addr<UseNode*>(U);
394    if (!(UA.Addr->getFlags() & NodeAttrs::Undef)) {
395      RegisterRef UR = UA.Addr->getRegRef(DFG);
396      if (PRI.alias(RefRR, UR) && !DefRRs.hasCoverOf(UR))
397        Uses.insert(U);
398    }
399    U = UA.Addr->getSibling();
400  }
401
402  // Traverse all reached defs. This time dead defs cannot be ignored.
403  for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) {
404    auto DA = DFG.addr<DefNode*>(D);
405    NextD = DA.Addr->getSibling();
406    RegisterRef DR = DA.Addr->getRegRef(DFG);
407    // If this def is already covered, it cannot reach anything new.
408    // Similarly, skip it if it is not aliased to the interesting register.
409    if (DefRRs.hasCoverOf(DR) || !PRI.alias(RefRR, DR))
410      continue;
411    NodeSet T;
412    if (DFG.IsPreservingDef(DA)) {
413      // If it is a preserving def, do not update the set of intervening defs.
414      T = getAllReachedUses(RefRR, DA, DefRRs);
415    } else {
416      RegisterAggr NewDefRRs = DefRRs;
417      NewDefRRs.insert(DR);
418      T = getAllReachedUses(RefRR, DA, NewDefRRs);
419    }
420    Uses.insert(T.begin(), T.end());
421  }
422  return Uses;
423}
424
425void Liveness::computePhiInfo() {
426  RealUseMap.clear();
427
428  NodeList Phis;
429  NodeAddr<FuncNode*> FA = DFG.getFunc();
430  NodeList Blocks = FA.Addr->members(DFG);
431  for (NodeAddr<BlockNode*> BA : Blocks) {
432    auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
433    Phis.insert(Phis.end(), Ps.begin(), Ps.end());
434  }
435
436  // phi use -> (map: reaching phi -> set of registers defined in between)
437  std::map<NodeId,std::map<NodeId,RegisterAggr>> PhiUp;
438  std::vector<NodeId> PhiUQ;  // Work list of phis for upward propagation.
439  std::map<NodeId,RegisterAggr> PhiDRs;  // Phi -> registers defined by it.
440
441  // Go over all phis.
442  for (NodeAddr<PhiNode*> PhiA : Phis) {
443    // Go over all defs and collect the reached uses that are non-phi uses
444    // (i.e. the "real uses").
445    RefMap &RealUses = RealUseMap[PhiA.Id];
446    NodeList PhiRefs = PhiA.Addr->members(DFG);
447
448    // Have a work queue of defs whose reached uses need to be found.
449    // For each def, add to the queue all reached (non-phi) defs.
450    SetVector<NodeId> DefQ;
451    NodeSet PhiDefs;
452    RegisterAggr DRs(PRI);
453    for (NodeAddr<RefNode*> R : PhiRefs) {
454      if (!DFG.IsRef<NodeAttrs::Def>(R))
455        continue;
456      DRs.insert(R.Addr->getRegRef(DFG));
457      DefQ.insert(R.Id);
458      PhiDefs.insert(R.Id);
459    }
460    PhiDRs.insert(std::make_pair(PhiA.Id, DRs));
461
462    // Collect the super-set of all possible reached uses. This set will
463    // contain all uses reached from this phi, either directly from the
464    // phi defs, or (recursively) via non-phi defs reached by the phi defs.
465    // This set of uses will later be trimmed to only contain these uses that
466    // are actually reached by the phi defs.
467    for (unsigned i = 0; i < DefQ.size(); ++i) {
468      NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]);
469      // Visit all reached uses. Phi defs should not really have the "dead"
470      // flag set, but check it anyway for consistency.
471      bool IsDead = DA.Addr->getFlags() & NodeAttrs::Dead;
472      NodeId UN = !IsDead ? DA.Addr->getReachedUse() : 0;
473      while (UN != 0) {
474        NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN);
475        uint16_t F = A.Addr->getFlags();
476        if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) {
477          RegisterRef R = PRI.normalize(A.Addr->getRegRef(DFG));
478          RealUses[R.Reg].insert({A.Id,R.Mask});
479        }
480        UN = A.Addr->getSibling();
481      }
482      // Visit all reached defs, and add them to the queue. These defs may
483      // override some of the uses collected here, but that will be handled
484      // later.
485      NodeId DN = DA.Addr->getReachedDef();
486      while (DN != 0) {
487        NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN);
488        for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) {
489          uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags();
490          // Must traverse the reached-def chain. Consider:
491          //   def(D0) -> def(R0) -> def(R0) -> use(D0)
492          // The reachable use of D0 passes through a def of R0.
493          if (!(Flags & NodeAttrs::PhiRef))
494            DefQ.insert(T.Id);
495        }
496        DN = A.Addr->getSibling();
497      }
498    }
499    // Filter out these uses that appear to be reachable, but really
500    // are not. For example:
501    //
502    // R1:0 =          d1
503    //      = R1:0     u2     Reached by d1.
504    //   R0 =          d3
505    //      = R1:0     u4     Still reached by d1: indirectly through
506    //                        the def d3.
507    //   R1 =          d5
508    //      = R1:0     u6     Not reached by d1 (covered collectively
509    //                        by d3 and d5), but following reached
510    //                        defs and uses from d1 will lead here.
511    for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) {
512      // For each reached register UI->first, there is a set UI->second, of
513      // uses of it. For each such use, check if it is reached by this phi,
514      // i.e. check if the set of its reaching uses intersects the set of
515      // this phi's defs.
516      NodeRefSet Uses = UI->second;
517      UI->second.clear();
518      for (std::pair<NodeId,LaneBitmask> I : Uses) {
519        auto UA = DFG.addr<UseNode*>(I.first);
520        // Undef flag is checked above.
521        assert((UA.Addr->getFlags() & NodeAttrs::Undef) == 0);
522        RegisterRef R(UI->first, I.second);
523        // Calculate the exposed part of the reached use.
524        RegisterAggr Covered(PRI);
525        for (NodeAddr<DefNode*> DA : getAllReachingDefs(R, UA)) {
526          if (PhiDefs.count(DA.Id))
527            break;
528          Covered.insert(DA.Addr->getRegRef(DFG));
529        }
530        if (RegisterRef RC = Covered.clearIn(R)) {
531          // We are updating the map for register UI->first, so we need
532          // to map RC to be expressed in terms of that register.
533          RegisterRef S = PRI.mapTo(RC, UI->first);
534          UI->second.insert({I.first, S.Mask});
535        }
536      }
537      UI = UI->second.empty() ? RealUses.erase(UI) : std::next(UI);
538    }
539
540    // If this phi reaches some "real" uses, add it to the queue for upward
541    // propagation.
542    if (!RealUses.empty())
543      PhiUQ.push_back(PhiA.Id);
544
545    // Go over all phi uses and check if the reaching def is another phi.
546    // Collect the phis that are among the reaching defs of these uses.
547    // While traversing the list of reaching defs for each phi use, accumulate
548    // the set of registers defined between this phi (PhiA) and the owner phi
549    // of the reaching def.
550    NodeSet SeenUses;
551
552    for (auto I : PhiRefs) {
553      if (!DFG.IsRef<NodeAttrs::Use>(I) || SeenUses.count(I.Id))
554        continue;
555      NodeAddr<PhiUseNode*> PUA = I;
556      if (PUA.Addr->getReachingDef() == 0)
557        continue;
558
559      RegisterRef UR = PUA.Addr->getRegRef(DFG);
560      NodeList Ds = getAllReachingDefs(UR, PUA, true, false, NoRegs);
561      RegisterAggr DefRRs(PRI);
562
563      for (NodeAddr<DefNode*> D : Ds) {
564        if (D.Addr->getFlags() & NodeAttrs::PhiRef) {
565          NodeId RP = D.Addr->getOwner(DFG).Id;
566          std::map<NodeId,RegisterAggr> &M = PhiUp[PUA.Id];
567          auto F = M.find(RP);
568          if (F == M.end())
569            M.insert(std::make_pair(RP, DefRRs));
570          else
571            F->second.insert(DefRRs);
572        }
573        DefRRs.insert(D.Addr->getRegRef(DFG));
574      }
575
576      for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PhiA, PUA))
577        SeenUses.insert(T.Id);
578    }
579  }
580
581  if (Trace) {
582    dbgs() << "Phi-up-to-phi map with intervening defs:\n";
583    for (auto I : PhiUp) {
584      dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {";
585      for (auto R : I.second)
586        dbgs() << ' ' << Print<NodeId>(R.first, DFG)
587               << Print<RegisterAggr>(R.second, DFG);
588      dbgs() << " }\n";
589    }
590  }
591
592  // Propagate the reached registers up in the phi chain.
593  //
594  // The following type of situation needs careful handling:
595  //
596  //   phi d1<R1:0>  (1)
597  //        |
598  //   ... d2<R1>
599  //        |
600  //   phi u3<R1:0>  (2)
601  //        |
602  //   ... u4<R1>
603  //
604  // The phi node (2) defines a register pair R1:0, and reaches a "real"
605  // use u4 of just R1. The same phi node is also known to reach (upwards)
606  // the phi node (1). However, the use u4 is not reached by phi (1),
607  // because of the intervening definition d2 of R1. The data flow between
608  // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0.
609  //
610  // When propagating uses up the phi chains, get the all reaching defs
611  // for a given phi use, and traverse the list until the propagated ref
612  // is covered, or until reaching the final phi. Only assume that the
613  // reference reaches the phi in the latter case.
614
615  for (unsigned i = 0; i < PhiUQ.size(); ++i) {
616    auto PA = DFG.addr<PhiNode*>(PhiUQ[i]);
617    NodeList PUs = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG);
618    RefMap &RUM = RealUseMap[PA.Id];
619
620    for (NodeAddr<UseNode*> UA : PUs) {
621      std::map<NodeId,RegisterAggr> &PUM = PhiUp[UA.Id];
622      RegisterRef UR = PRI.normalize(UA.Addr->getRegRef(DFG));
623      for (const std::pair<const NodeId, RegisterAggr> &P : PUM) {
624        bool Changed = false;
625        const RegisterAggr &MidDefs = P.second;
626
627        // Collect the set PropUp of uses that are reached by the current
628        // phi PA, and are not covered by any intervening def between the
629        // currently visited use UA and the upward phi P.
630
631        if (MidDefs.hasCoverOf(UR))
632          continue;
633
634        // General algorithm:
635        //   for each (R,U) : U is use node of R, U is reached by PA
636        //     if MidDefs does not cover (R,U)
637        //       then add (R-MidDefs,U) to RealUseMap[P]
638        //
639        for (const std::pair<const RegisterId, NodeRefSet> &T : RUM) {
640          RegisterRef R(T.first);
641          // The current phi (PA) could be a phi for a regmask. It could
642          // reach a whole variety of uses that are not related to the
643          // specific upward phi (P.first).
644          const RegisterAggr &DRs = PhiDRs.at(P.first);
645          if (!DRs.hasAliasOf(R))
646            continue;
647          R = PRI.mapTo(DRs.intersectWith(R), T.first);
648          for (std::pair<NodeId,LaneBitmask> V : T.second) {
649            LaneBitmask M = R.Mask & V.second;
650            if (M.none())
651              continue;
652            if (RegisterRef SS = MidDefs.clearIn(RegisterRef(R.Reg, M))) {
653              NodeRefSet &RS = RealUseMap[P.first][SS.Reg];
654              Changed |= RS.insert({V.first,SS.Mask}).second;
655            }
656          }
657        }
658
659        if (Changed)
660          PhiUQ.push_back(P.first);
661      }
662    }
663  }
664
665  if (Trace) {
666    dbgs() << "Real use map:\n";
667    for (auto I : RealUseMap) {
668      dbgs() << "phi " << Print<NodeId>(I.first, DFG);
669      NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first);
670      NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG);
671      if (!Ds.empty()) {
672        RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef(DFG);
673        dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>';
674      } else {
675        dbgs() << "<noreg>";
676      }
677      dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n';
678    }
679  }
680}
681
682void Liveness::computeLiveIns() {
683  // Populate the node-to-block map. This speeds up the calculations
684  // significantly.
685  NBMap.clear();
686  for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
687    MachineBasicBlock *BB = BA.Addr->getCode();
688    for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
689      for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
690        NBMap.insert(std::make_pair(RA.Id, BB));
691      NBMap.insert(std::make_pair(IA.Id, BB));
692    }
693  }
694
695  MachineFunction &MF = DFG.getMF();
696
697  // Compute IDF first, then the inverse.
698  decltype(IIDF) IDF;
699  for (MachineBasicBlock &B : MF) {
700    auto F1 = MDF.find(&B);
701    if (F1 == MDF.end())
702      continue;
703    SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end());
704    for (unsigned i = 0; i < IDFB.size(); ++i) {
705      auto F2 = MDF.find(IDFB[i]);
706      if (F2 != MDF.end())
707        IDFB.insert(F2->second.begin(), F2->second.end());
708    }
709    // Add B to the IDF(B). This will put B in the IIDF(B).
710    IDFB.insert(&B);
711    IDF[&B].insert(IDFB.begin(), IDFB.end());
712  }
713
714  for (auto I : IDF)
715    for (auto S : I.second)
716      IIDF[S].insert(I.first);
717
718  computePhiInfo();
719
720  NodeAddr<FuncNode*> FA = DFG.getFunc();
721  NodeList Blocks = FA.Addr->members(DFG);
722
723  // Build the phi live-on-entry map.
724  for (NodeAddr<BlockNode*> BA : Blocks) {
725    MachineBasicBlock *MB = BA.Addr->getCode();
726    RefMap &LON = PhiLON[MB];
727    for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG))
728      for (const RefMap::value_type &S : RealUseMap[P.Id])
729        LON[S.first].insert(S.second.begin(), S.second.end());
730  }
731
732  if (Trace) {
733    dbgs() << "Phi live-on-entry map:\n";
734    for (auto &I : PhiLON)
735      dbgs() << "block #" << I.first->getNumber() << " -> "
736             << Print<RefMap>(I.second, DFG) << '\n';
737  }
738
739  // Build the phi live-on-exit map. Each phi node has some set of reached
740  // "real" uses. Propagate this set backwards into the block predecessors
741  // through the reaching defs of the corresponding phi uses.
742  for (NodeAddr<BlockNode*> BA : Blocks) {
743    NodeList Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
744    for (NodeAddr<PhiNode*> PA : Phis) {
745      RefMap &RUs = RealUseMap[PA.Id];
746      if (RUs.empty())
747        continue;
748
749      NodeSet SeenUses;
750      for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
751        if (!SeenUses.insert(U.Id).second)
752          continue;
753        NodeAddr<PhiUseNode*> PUA = U;
754        if (PUA.Addr->getReachingDef() == 0)
755          continue;
756
757        // Each phi has some set (possibly empty) of reached "real" uses,
758        // that is, uses that are part of the compiled program. Such a use
759        // may be located in some farther block, but following a chain of
760        // reaching defs will eventually lead to this phi.
761        // Any chain of reaching defs may fork at a phi node, but there
762        // will be a path upwards that will lead to this phi. Now, this
763        // chain will need to fork at this phi, since some of the reached
764        // uses may have definitions joining in from multiple predecessors.
765        // For each reached "real" use, identify the set of reaching defs
766        // coming from each predecessor P, and add them to PhiLOX[P].
767        //
768        auto PrA = DFG.addr<BlockNode*>(PUA.Addr->getPredecessor());
769        RefMap &LOX = PhiLOX[PrA.Addr->getCode()];
770
771        for (const std::pair<const RegisterId, NodeRefSet> &RS : RUs) {
772          // We need to visit each individual use.
773          for (std::pair<NodeId,LaneBitmask> P : RS.second) {
774            // Create a register ref corresponding to the use, and find
775            // all reaching defs starting from the phi use, and treating
776            // all related shadows as a single use cluster.
777            RegisterRef S(RS.first, P.second);
778            NodeList Ds = getAllReachingDefs(S, PUA, true, false, NoRegs);
779            for (NodeAddr<DefNode*> D : Ds) {
780              // Calculate the mask corresponding to the visited def.
781              RegisterAggr TA(PRI);
782              TA.insert(D.Addr->getRegRef(DFG)).intersect(S);
783              LaneBitmask TM = TA.makeRegRef().Mask;
784              LOX[S.Reg].insert({D.Id, TM});
785            }
786          }
787        }
788
789        for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PA, PUA))
790          SeenUses.insert(T.Id);
791      }  // for U : phi uses
792    }  // for P : Phis
793  }  // for B : Blocks
794
795  if (Trace) {
796    dbgs() << "Phi live-on-exit map:\n";
797    for (auto &I : PhiLOX)
798      dbgs() << "block #" << I.first->getNumber() << " -> "
799             << Print<RefMap>(I.second, DFG) << '\n';
800  }
801
802  RefMap LiveIn;
803  traverse(&MF.front(), LiveIn);
804
805  // Add function live-ins to the live-in set of the function entry block.
806  LiveMap[&MF.front()].insert(DFG.getLiveIns());
807
808  if (Trace) {
809    // Dump the liveness map
810    for (MachineBasicBlock &B : MF) {
811      std::vector<RegisterRef> LV;
812      for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
813        LV.push_back(RegisterRef(I->PhysReg, I->LaneMask));
814      llvm::sort(LV);
815      dbgs() << printMBBReference(B) << "\t rec = {";
816      for (auto I : LV)
817        dbgs() << ' ' << Print<RegisterRef>(I, DFG);
818      dbgs() << " }\n";
819      //dbgs() << "\tcomp = " << Print<RegisterAggr>(LiveMap[&B], DFG) << '\n';
820
821      LV.clear();
822      const RegisterAggr &LG = LiveMap[&B];
823      for (auto I = LG.rr_begin(), E = LG.rr_end(); I != E; ++I)
824        LV.push_back(*I);
825      llvm::sort(LV);
826      dbgs() << "\tcomp = {";
827      for (auto I : LV)
828        dbgs() << ' ' << Print<RegisterRef>(I, DFG);
829      dbgs() << " }\n";
830
831    }
832  }
833}
834
835void Liveness::resetLiveIns() {
836  for (auto &B : DFG.getMF()) {
837    // Remove all live-ins.
838    std::vector<unsigned> T;
839    for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
840      T.push_back(I->PhysReg);
841    for (auto I : T)
842      B.removeLiveIn(I);
843    // Add the newly computed live-ins.
844    const RegisterAggr &LiveIns = LiveMap[&B];
845    for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
846      RegisterRef R = *I;
847      B.addLiveIn({MCPhysReg(R.Reg), R.Mask});
848    }
849  }
850}
851
852void Liveness::resetKills() {
853  for (auto &B : DFG.getMF())
854    resetKills(&B);
855}
856
857void Liveness::resetKills(MachineBasicBlock *B) {
858  auto CopyLiveIns = [this] (MachineBasicBlock *B, BitVector &LV) -> void {
859    for (auto I : B->liveins()) {
860      MCSubRegIndexIterator S(I.PhysReg, &TRI);
861      if (!S.isValid()) {
862        LV.set(I.PhysReg);
863        continue;
864      }
865      do {
866        LaneBitmask M = TRI.getSubRegIndexLaneMask(S.getSubRegIndex());
867        if ((M & I.LaneMask).any())
868          LV.set(S.getSubReg());
869        ++S;
870      } while (S.isValid());
871    }
872  };
873
874  BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs());
875  CopyLiveIns(B, LiveIn);
876  for (auto SI : B->successors())
877    CopyLiveIns(SI, Live);
878
879  for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
880    MachineInstr *MI = &*I;
881    if (MI->isDebugInstr())
882      continue;
883
884    MI->clearKillInfo();
885    for (auto &Op : MI->operands()) {
886      // An implicit def of a super-register may not necessarily start a
887      // live range of it, since an implicit use could be used to keep parts
888      // of it live. Instead of analyzing the implicit operands, ignore
889      // implicit defs.
890      if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
891        continue;
892      Register R = Op.getReg();
893      if (!Register::isPhysicalRegister(R))
894        continue;
895      for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
896        Live.reset(*SR);
897    }
898    for (auto &Op : MI->operands()) {
899      if (!Op.isReg() || !Op.isUse() || Op.isUndef())
900        continue;
901      Register R = Op.getReg();
902      if (!Register::isPhysicalRegister(R))
903        continue;
904      bool IsLive = false;
905      for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) {
906        if (!Live[*AR])
907          continue;
908        IsLive = true;
909        break;
910      }
911      if (!IsLive)
912        Op.setIsKill(true);
913      for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
914        Live.set(*SR);
915    }
916  }
917}
918
919// Helper function to obtain the basic block containing the reaching def
920// of the given use.
921MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const {
922  auto F = NBMap.find(RN);
923  if (F != NBMap.end())
924    return F->second;
925  llvm_unreachable("Node id not in map");
926}
927
928void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) {
929  // The LiveIn map, for each (physical) register, contains the set of live
930  // reaching defs of that register that are live on entry to the associated
931  // block.
932
933  // The summary of the traversal algorithm:
934  //
935  // R is live-in in B, if there exists a U(R), such that rdef(R) dom B
936  // and (U \in IDF(B) or B dom U).
937  //
938  // for (C : children) {
939  //   LU = {}
940  //   traverse(C, LU)
941  //   LiveUses += LU
942  // }
943  //
944  // LiveUses -= Defs(B);
945  // LiveUses += UpwardExposedUses(B);
946  // for (C : IIDF[B])
947  //   for (U : LiveUses)
948  //     if (Rdef(U) dom C)
949  //       C.addLiveIn(U)
950  //
951
952  // Go up the dominator tree (depth-first).
953  MachineDomTreeNode *N = MDT.getNode(B);
954  for (auto I : *N) {
955    RefMap L;
956    MachineBasicBlock *SB = I->getBlock();
957    traverse(SB, L);
958
959    for (auto S : L)
960      LiveIn[S.first].insert(S.second.begin(), S.second.end());
961  }
962
963  if (Trace) {
964    dbgs() << "\n-- " << printMBBReference(*B) << ": " << __func__
965           << " after recursion into: {";
966    for (auto I : *N)
967      dbgs() << ' ' << I->getBlock()->getNumber();
968    dbgs() << " }\n";
969    dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
970    dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
971  }
972
973  // Add reaching defs of phi uses that are live on exit from this block.
974  RefMap &PUs = PhiLOX[B];
975  for (auto &S : PUs)
976    LiveIn[S.first].insert(S.second.begin(), S.second.end());
977
978  if (Trace) {
979    dbgs() << "after LOX\n";
980    dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
981    dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
982  }
983
984  // The LiveIn map at this point has all defs that are live-on-exit from B,
985  // as if they were live-on-entry to B. First, we need to filter out all
986  // defs that are present in this block. Then we will add reaching defs of
987  // all upward-exposed uses.
988
989  // To filter out the defs, first make a copy of LiveIn, and then re-populate
990  // LiveIn with the defs that should remain.
991  RefMap LiveInCopy = LiveIn;
992  LiveIn.clear();
993
994  for (const std::pair<const RegisterId, NodeRefSet> &LE : LiveInCopy) {
995    RegisterRef LRef(LE.first);
996    NodeRefSet &NewDefs = LiveIn[LRef.Reg]; // To be filled.
997    const NodeRefSet &OldDefs = LE.second;
998    for (NodeRef OR : OldDefs) {
999      // R is a def node that was live-on-exit
1000      auto DA = DFG.addr<DefNode*>(OR.first);
1001      NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
1002      NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
1003      if (B != BA.Addr->getCode()) {
1004        // Defs from a different block need to be preserved. Defs from this
1005        // block will need to be processed further, except for phi defs, the
1006        // liveness of which is handled through the PhiLON/PhiLOX maps.
1007        NewDefs.insert(OR);
1008        continue;
1009      }
1010
1011      // Defs from this block need to stop the liveness from being
1012      // propagated upwards. This only applies to non-preserving defs,
1013      // and to the parts of the register actually covered by those defs.
1014      // (Note that phi defs should always be preserving.)
1015      RegisterAggr RRs(PRI);
1016      LRef.Mask = OR.second;
1017
1018      if (!DFG.IsPreservingDef(DA)) {
1019        assert(!(IA.Addr->getFlags() & NodeAttrs::Phi));
1020        // DA is a non-phi def that is live-on-exit from this block, and
1021        // that is also located in this block. LRef is a register ref
1022        // whose use this def reaches. If DA covers LRef, then no part
1023        // of LRef is exposed upwards.A
1024        if (RRs.insert(DA.Addr->getRegRef(DFG)).hasCoverOf(LRef))
1025          continue;
1026      }
1027
1028      // DA itself was not sufficient to cover LRef. In general, it is
1029      // the last in a chain of aliased defs before the exit from this block.
1030      // There could be other defs in this block that are a part of that
1031      // chain. Check that now: accumulate the registers from these defs,
1032      // and if they all together cover LRef, it is not live-on-entry.
1033      for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) {
1034        // DefNode -> InstrNode -> BlockNode.
1035        NodeAddr<InstrNode*> ITA = TA.Addr->getOwner(DFG);
1036        NodeAddr<BlockNode*> BTA = ITA.Addr->getOwner(DFG);
1037        // Reaching defs are ordered in the upward direction.
1038        if (BTA.Addr->getCode() != B) {
1039          // We have reached past the beginning of B, and the accumulated
1040          // registers are not covering LRef. The first def from the
1041          // upward chain will be live.
1042          // Subtract all accumulated defs (RRs) from LRef.
1043          RegisterRef T = RRs.clearIn(LRef);
1044          assert(T);
1045          NewDefs.insert({TA.Id,T.Mask});
1046          break;
1047        }
1048
1049        // TA is in B. Only add this def to the accumulated cover if it is
1050        // not preserving.
1051        if (!(TA.Addr->getFlags() & NodeAttrs::Preserving))
1052          RRs.insert(TA.Addr->getRegRef(DFG));
1053        // If this is enough to cover LRef, then stop.
1054        if (RRs.hasCoverOf(LRef))
1055          break;
1056      }
1057    }
1058  }
1059
1060  emptify(LiveIn);
1061
1062  if (Trace) {
1063    dbgs() << "after defs in block\n";
1064    dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1065    dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
1066  }
1067
1068  // Scan the block for upward-exposed uses and add them to the tracking set.
1069  for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) {
1070    NodeAddr<InstrNode*> IA = I;
1071    if (IA.Addr->getKind() != NodeAttrs::Stmt)
1072      continue;
1073    for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
1074      if (UA.Addr->getFlags() & NodeAttrs::Undef)
1075        continue;
1076      RegisterRef RR = PRI.normalize(UA.Addr->getRegRef(DFG));
1077      for (NodeAddr<DefNode*> D : getAllReachingDefs(UA))
1078        if (getBlockWithRef(D.Id) != B)
1079          LiveIn[RR.Reg].insert({D.Id,RR.Mask});
1080    }
1081  }
1082
1083  if (Trace) {
1084    dbgs() << "after uses in block\n";
1085    dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1086    dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
1087  }
1088
1089  // Phi uses should not be propagated up the dominator tree, since they
1090  // are not dominated by their corresponding reaching defs.
1091  RegisterAggr &Local = LiveMap[B];
1092  RefMap &LON = PhiLON[B];
1093  for (auto &R : LON) {
1094    LaneBitmask M;
1095    for (auto P : R.second)
1096      M |= P.second;
1097    Local.insert(RegisterRef(R.first,M));
1098  }
1099
1100  if (Trace) {
1101    dbgs() << "after phi uses in block\n";
1102    dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1103    dbgs() << "  Local:  " << Print<RegisterAggr>(Local, DFG) << '\n';
1104  }
1105
1106  for (auto C : IIDF[B]) {
1107    RegisterAggr &LiveC = LiveMap[C];
1108    for (const std::pair<const RegisterId, NodeRefSet> &S : LiveIn)
1109      for (auto R : S.second)
1110        if (MDT.properlyDominates(getBlockWithRef(R.first), C))
1111          LiveC.insert(RegisterRef(S.first, R.second));
1112  }
1113}
1114
1115void Liveness::emptify(RefMap &M) {
1116  for (auto I = M.begin(), E = M.end(); I != E; )
1117    I = I->second.empty() ? M.erase(I) : std::next(I);
1118}
1119