RDFGraph.cpp revision 363496
1//===- RDFGraph.cpp -------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Target-independent, SSA-based data flow graph for register data flow (RDF).
10//
11#include "llvm/ADT/BitVector.h"
12#include "llvm/ADT/STLExtras.h"
13#include "llvm/ADT/SetVector.h"
14#include "llvm/CodeGen/MachineBasicBlock.h"
15#include "llvm/CodeGen/MachineDominanceFrontier.h"
16#include "llvm/CodeGen/MachineDominators.h"
17#include "llvm/CodeGen/MachineFunction.h"
18#include "llvm/CodeGen/MachineInstr.h"
19#include "llvm/CodeGen/MachineOperand.h"
20#include "llvm/CodeGen/MachineRegisterInfo.h"
21#include "llvm/CodeGen/RDFGraph.h"
22#include "llvm/CodeGen/RDFRegisters.h"
23#include "llvm/CodeGen/TargetInstrInfo.h"
24#include "llvm/CodeGen/TargetLowering.h"
25#include "llvm/CodeGen/TargetRegisterInfo.h"
26#include "llvm/CodeGen/TargetSubtargetInfo.h"
27#include "llvm/IR/Function.h"
28#include "llvm/MC/LaneBitmask.h"
29#include "llvm/MC/MCInstrDesc.h"
30#include "llvm/MC/MCRegisterInfo.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/raw_ostream.h"
34#include <algorithm>
35#include <cassert>
36#include <cstdint>
37#include <cstring>
38#include <iterator>
39#include <set>
40#include <utility>
41#include <vector>
42
43using namespace llvm;
44using namespace rdf;
45
46// Printing functions. Have them here first, so that the rest of the code
47// can use them.
48namespace llvm {
49namespace rdf {
50
51raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P) {
52  if (!P.Mask.all())
53    OS << ':' << PrintLaneMask(P.Mask);
54  return OS;
55}
56
57raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) {
58  auto &TRI = P.G.getTRI();
59  if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs())
60    OS << TRI.getName(P.Obj.Reg);
61  else
62    OS << '#' << P.Obj.Reg;
63  OS << PrintLaneMaskOpt(P.Obj.Mask);
64  return OS;
65}
66
67raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) {
68  auto NA = P.G.addr<NodeBase*>(P.Obj);
69  uint16_t Attrs = NA.Addr->getAttrs();
70  uint16_t Kind = NodeAttrs::kind(Attrs);
71  uint16_t Flags = NodeAttrs::flags(Attrs);
72  switch (NodeAttrs::type(Attrs)) {
73    case NodeAttrs::Code:
74      switch (Kind) {
75        case NodeAttrs::Func:   OS << 'f'; break;
76        case NodeAttrs::Block:  OS << 'b'; break;
77        case NodeAttrs::Stmt:   OS << 's'; break;
78        case NodeAttrs::Phi:    OS << 'p'; break;
79        default:                OS << "c?"; break;
80      }
81      break;
82    case NodeAttrs::Ref:
83      if (Flags & NodeAttrs::Undef)
84        OS << '/';
85      if (Flags & NodeAttrs::Dead)
86        OS << '\\';
87      if (Flags & NodeAttrs::Preserving)
88        OS << '+';
89      if (Flags & NodeAttrs::Clobbering)
90        OS << '~';
91      switch (Kind) {
92        case NodeAttrs::Use:    OS << 'u'; break;
93        case NodeAttrs::Def:    OS << 'd'; break;
94        case NodeAttrs::Block:  OS << 'b'; break;
95        default:                OS << "r?"; break;
96      }
97      break;
98    default:
99      OS << '?';
100      break;
101  }
102  OS << P.Obj;
103  if (Flags & NodeAttrs::Shadow)
104    OS << '"';
105  return OS;
106}
107
108static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA,
109                const DataFlowGraph &G) {
110  OS << Print<NodeId>(RA.Id, G) << '<'
111     << Print<RegisterRef>(RA.Addr->getRegRef(G), G) << '>';
112  if (RA.Addr->getFlags() & NodeAttrs::Fixed)
113    OS << '!';
114}
115
116raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) {
117  printRefHeader(OS, P.Obj, P.G);
118  OS << '(';
119  if (NodeId N = P.Obj.Addr->getReachingDef())
120    OS << Print<NodeId>(N, P.G);
121  OS << ',';
122  if (NodeId N = P.Obj.Addr->getReachedDef())
123    OS << Print<NodeId>(N, P.G);
124  OS << ',';
125  if (NodeId N = P.Obj.Addr->getReachedUse())
126    OS << Print<NodeId>(N, P.G);
127  OS << "):";
128  if (NodeId N = P.Obj.Addr->getSibling())
129    OS << Print<NodeId>(N, P.G);
130  return OS;
131}
132
133raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) {
134  printRefHeader(OS, P.Obj, P.G);
135  OS << '(';
136  if (NodeId N = P.Obj.Addr->getReachingDef())
137    OS << Print<NodeId>(N, P.G);
138  OS << "):";
139  if (NodeId N = P.Obj.Addr->getSibling())
140    OS << Print<NodeId>(N, P.G);
141  return OS;
142}
143
144raw_ostream &operator<< (raw_ostream &OS,
145      const Print<NodeAddr<PhiUseNode*>> &P) {
146  printRefHeader(OS, P.Obj, P.G);
147  OS << '(';
148  if (NodeId N = P.Obj.Addr->getReachingDef())
149    OS << Print<NodeId>(N, P.G);
150  OS << ',';
151  if (NodeId N = P.Obj.Addr->getPredecessor())
152    OS << Print<NodeId>(N, P.G);
153  OS << "):";
154  if (NodeId N = P.Obj.Addr->getSibling())
155    OS << Print<NodeId>(N, P.G);
156  return OS;
157}
158
159raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) {
160  switch (P.Obj.Addr->getKind()) {
161    case NodeAttrs::Def:
162      OS << PrintNode<DefNode*>(P.Obj, P.G);
163      break;
164    case NodeAttrs::Use:
165      if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef)
166        OS << PrintNode<PhiUseNode*>(P.Obj, P.G);
167      else
168        OS << PrintNode<UseNode*>(P.Obj, P.G);
169      break;
170  }
171  return OS;
172}
173
174raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) {
175  unsigned N = P.Obj.size();
176  for (auto I : P.Obj) {
177    OS << Print<NodeId>(I.Id, P.G);
178    if (--N)
179      OS << ' ';
180  }
181  return OS;
182}
183
184raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) {
185  unsigned N = P.Obj.size();
186  for (auto I : P.Obj) {
187    OS << Print<NodeId>(I, P.G);
188    if (--N)
189      OS << ' ';
190  }
191  return OS;
192}
193
194namespace {
195
196  template <typename T>
197  struct PrintListV {
198    PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {}
199
200    using Type = T;
201    const NodeList &List;
202    const DataFlowGraph &G;
203  };
204
205  template <typename T>
206  raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) {
207    unsigned N = P.List.size();
208    for (NodeAddr<T> A : P.List) {
209      OS << PrintNode<T>(A, P.G);
210      if (--N)
211        OS << ", ";
212    }
213    return OS;
214  }
215
216} // end anonymous namespace
217
218raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) {
219  OS << Print<NodeId>(P.Obj.Id, P.G) << ": phi ["
220     << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
221  return OS;
222}
223
224raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<StmtNode *>> &P) {
225  const MachineInstr &MI = *P.Obj.Addr->getCode();
226  unsigned Opc = MI.getOpcode();
227  OS << Print<NodeId>(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc);
228  // Print the target for calls and branches (for readability).
229  if (MI.isCall() || MI.isBranch()) {
230    MachineInstr::const_mop_iterator T =
231          llvm::find_if(MI.operands(),
232                        [] (const MachineOperand &Op) -> bool {
233                          return Op.isMBB() || Op.isGlobal() || Op.isSymbol();
234                        });
235    if (T != MI.operands_end()) {
236      OS << ' ';
237      if (T->isMBB())
238        OS << printMBBReference(*T->getMBB());
239      else if (T->isGlobal())
240        OS << T->getGlobal()->getName();
241      else if (T->isSymbol())
242        OS << T->getSymbolName();
243    }
244  }
245  OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
246  return OS;
247}
248
249raw_ostream &operator<< (raw_ostream &OS,
250      const Print<NodeAddr<InstrNode*>> &P) {
251  switch (P.Obj.Addr->getKind()) {
252    case NodeAttrs::Phi:
253      OS << PrintNode<PhiNode*>(P.Obj, P.G);
254      break;
255    case NodeAttrs::Stmt:
256      OS << PrintNode<StmtNode*>(P.Obj, P.G);
257      break;
258    default:
259      OS << "instr? " << Print<NodeId>(P.Obj.Id, P.G);
260      break;
261  }
262  return OS;
263}
264
265raw_ostream &operator<< (raw_ostream &OS,
266      const Print<NodeAddr<BlockNode*>> &P) {
267  MachineBasicBlock *BB = P.Obj.Addr->getCode();
268  unsigned NP = BB->pred_size();
269  std::vector<int> Ns;
270  auto PrintBBs = [&OS] (std::vector<int> Ns) -> void {
271    unsigned N = Ns.size();
272    for (int I : Ns) {
273      OS << "%bb." << I;
274      if (--N)
275        OS << ", ";
276    }
277  };
278
279  OS << Print<NodeId>(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB)
280     << " --- preds(" << NP << "): ";
281  for (MachineBasicBlock *B : BB->predecessors())
282    Ns.push_back(B->getNumber());
283  PrintBBs(Ns);
284
285  unsigned NS = BB->succ_size();
286  OS << "  succs(" << NS << "): ";
287  Ns.clear();
288  for (MachineBasicBlock *B : BB->successors())
289    Ns.push_back(B->getNumber());
290  PrintBBs(Ns);
291  OS << '\n';
292
293  for (auto I : P.Obj.Addr->members(P.G))
294    OS << PrintNode<InstrNode*>(I, P.G) << '\n';
295  return OS;
296}
297
298raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<FuncNode *>> &P) {
299  OS << "DFG dump:[\n" << Print<NodeId>(P.Obj.Id, P.G) << ": Function: "
300     << P.Obj.Addr->getCode()->getName() << '\n';
301  for (auto I : P.Obj.Addr->members(P.G))
302    OS << PrintNode<BlockNode*>(I, P.G) << '\n';
303  OS << "]\n";
304  return OS;
305}
306
307raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) {
308  OS << '{';
309  for (auto I : P.Obj)
310    OS << ' ' << Print<RegisterRef>(I, P.G);
311  OS << " }";
312  return OS;
313}
314
315raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) {
316  P.Obj.print(OS);
317  return OS;
318}
319
320raw_ostream &operator<< (raw_ostream &OS,
321      const Print<DataFlowGraph::DefStack> &P) {
322  for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) {
323    OS << Print<NodeId>(I->Id, P.G)
324       << '<' << Print<RegisterRef>(I->Addr->getRegRef(P.G), P.G) << '>';
325    I.down();
326    if (I != E)
327      OS << ' ';
328  }
329  return OS;
330}
331
332} // end namespace rdf
333} // end namespace llvm
334
335// Node allocation functions.
336//
337// Node allocator is like a slab memory allocator: it allocates blocks of
338// memory in sizes that are multiples of the size of a node. Each block has
339// the same size. Nodes are allocated from the currently active block, and
340// when it becomes full, a new one is created.
341// There is a mapping scheme between node id and its location in a block,
342// and within that block is described in the header file.
343//
344void NodeAllocator::startNewBlock() {
345  void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize);
346  char *P = static_cast<char*>(T);
347  Blocks.push_back(P);
348  // Check if the block index is still within the allowed range, i.e. less
349  // than 2^N, where N is the number of bits in NodeId for the block index.
350  // BitsPerIndex is the number of bits per node index.
351  assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) &&
352         "Out of bits for block index");
353  ActiveEnd = P;
354}
355
356bool NodeAllocator::needNewBlock() {
357  if (Blocks.empty())
358    return true;
359
360  char *ActiveBegin = Blocks.back();
361  uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize;
362  return Index >= NodesPerBlock;
363}
364
365NodeAddr<NodeBase*> NodeAllocator::New() {
366  if (needNewBlock())
367    startNewBlock();
368
369  uint32_t ActiveB = Blocks.size()-1;
370  uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize;
371  NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd),
372                             makeId(ActiveB, Index) };
373  ActiveEnd += NodeMemSize;
374  return NA;
375}
376
377NodeId NodeAllocator::id(const NodeBase *P) const {
378  uintptr_t A = reinterpret_cast<uintptr_t>(P);
379  for (unsigned i = 0, n = Blocks.size(); i != n; ++i) {
380    uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]);
381    if (A < B || A >= B + NodesPerBlock*NodeMemSize)
382      continue;
383    uint32_t Idx = (A-B)/NodeMemSize;
384    return makeId(i, Idx);
385  }
386  llvm_unreachable("Invalid node address");
387}
388
389void NodeAllocator::clear() {
390  MemPool.Reset();
391  Blocks.clear();
392  ActiveEnd = nullptr;
393}
394
395// Insert node NA after "this" in the circular chain.
396void NodeBase::append(NodeAddr<NodeBase*> NA) {
397  NodeId Nx = Next;
398  // If NA is already "next", do nothing.
399  if (Next != NA.Id) {
400    Next = NA.Id;
401    NA.Addr->Next = Nx;
402  }
403}
404
405// Fundamental node manipulator functions.
406
407// Obtain the register reference from a reference node.
408RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const {
409  assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
410  if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)
411    return G.unpack(Ref.PR);
412  assert(Ref.Op != nullptr);
413  return G.makeRegRef(*Ref.Op);
414}
415
416// Set the register reference in the reference node directly (for references
417// in phi nodes).
418void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) {
419  assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
420  assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef);
421  Ref.PR = G.pack(RR);
422}
423
424// Set the register reference in the reference node based on a machine
425// operand (for references in statement nodes).
426void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) {
427  assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
428  assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef));
429  (void)G;
430  Ref.Op = Op;
431}
432
433// Get the owner of a given reference node.
434NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) {
435  NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
436
437  while (NA.Addr != this) {
438    if (NA.Addr->getType() == NodeAttrs::Code)
439      return NA;
440    NA = G.addr<NodeBase*>(NA.Addr->getNext());
441  }
442  llvm_unreachable("No owner in circular list");
443}
444
445// Connect the def node to the reaching def node.
446void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
447  Ref.RD = DA.Id;
448  Ref.Sib = DA.Addr->getReachedDef();
449  DA.Addr->setReachedDef(Self);
450}
451
452// Connect the use node to the reaching def node.
453void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
454  Ref.RD = DA.Id;
455  Ref.Sib = DA.Addr->getReachedUse();
456  DA.Addr->setReachedUse(Self);
457}
458
459// Get the first member of the code node.
460NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const {
461  if (Code.FirstM == 0)
462    return NodeAddr<NodeBase*>();
463  return G.addr<NodeBase*>(Code.FirstM);
464}
465
466// Get the last member of the code node.
467NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const {
468  if (Code.LastM == 0)
469    return NodeAddr<NodeBase*>();
470  return G.addr<NodeBase*>(Code.LastM);
471}
472
473// Add node NA at the end of the member list of the given code node.
474void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
475  NodeAddr<NodeBase*> ML = getLastMember(G);
476  if (ML.Id != 0) {
477    ML.Addr->append(NA);
478  } else {
479    Code.FirstM = NA.Id;
480    NodeId Self = G.id(this);
481    NA.Addr->setNext(Self);
482  }
483  Code.LastM = NA.Id;
484}
485
486// Add node NA after member node MA in the given code node.
487void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
488      const DataFlowGraph &G) {
489  MA.Addr->append(NA);
490  if (Code.LastM == MA.Id)
491    Code.LastM = NA.Id;
492}
493
494// Remove member node NA from the given code node.
495void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
496  NodeAddr<NodeBase*> MA = getFirstMember(G);
497  assert(MA.Id != 0);
498
499  // Special handling if the member to remove is the first member.
500  if (MA.Id == NA.Id) {
501    if (Code.LastM == MA.Id) {
502      // If it is the only member, set both first and last to 0.
503      Code.FirstM = Code.LastM = 0;
504    } else {
505      // Otherwise, advance the first member.
506      Code.FirstM = MA.Addr->getNext();
507    }
508    return;
509  }
510
511  while (MA.Addr != this) {
512    NodeId MX = MA.Addr->getNext();
513    if (MX == NA.Id) {
514      MA.Addr->setNext(NA.Addr->getNext());
515      // If the member to remove happens to be the last one, update the
516      // LastM indicator.
517      if (Code.LastM == NA.Id)
518        Code.LastM = MA.Id;
519      return;
520    }
521    MA = G.addr<NodeBase*>(MX);
522  }
523  llvm_unreachable("No such member");
524}
525
526// Return the list of all members of the code node.
527NodeList CodeNode::members(const DataFlowGraph &G) const {
528  static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; };
529  return members_if(True, G);
530}
531
532// Return the owner of the given instr node.
533NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) {
534  NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
535
536  while (NA.Addr != this) {
537    assert(NA.Addr->getType() == NodeAttrs::Code);
538    if (NA.Addr->getKind() == NodeAttrs::Block)
539      return NA;
540    NA = G.addr<NodeBase*>(NA.Addr->getNext());
541  }
542  llvm_unreachable("No owner in circular list");
543}
544
545// Add the phi node PA to the given block node.
546void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) {
547  NodeAddr<NodeBase*> M = getFirstMember(G);
548  if (M.Id == 0) {
549    addMember(PA, G);
550    return;
551  }
552
553  assert(M.Addr->getType() == NodeAttrs::Code);
554  if (M.Addr->getKind() == NodeAttrs::Stmt) {
555    // If the first member of the block is a statement, insert the phi as
556    // the first member.
557    Code.FirstM = PA.Id;
558    PA.Addr->setNext(M.Id);
559  } else {
560    // If the first member is a phi, find the last phi, and append PA to it.
561    assert(M.Addr->getKind() == NodeAttrs::Phi);
562    NodeAddr<NodeBase*> MN = M;
563    do {
564      M = MN;
565      MN = G.addr<NodeBase*>(M.Addr->getNext());
566      assert(MN.Addr->getType() == NodeAttrs::Code);
567    } while (MN.Addr->getKind() == NodeAttrs::Phi);
568
569    // M is the last phi.
570    addMemberAfter(M, PA, G);
571  }
572}
573
574// Find the block node corresponding to the machine basic block BB in the
575// given func node.
576NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB,
577      const DataFlowGraph &G) const {
578  auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool {
579    return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB;
580  };
581  NodeList Ms = members_if(EqBB, G);
582  if (!Ms.empty())
583    return Ms[0];
584  return NodeAddr<BlockNode*>();
585}
586
587// Get the block node for the entry block in the given function.
588NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) {
589  MachineBasicBlock *EntryB = &getCode()->front();
590  return findBlock(EntryB, G);
591}
592
593// Target operand information.
594//
595
596// For a given instruction, check if there are any bits of RR that can remain
597// unchanged across this def.
598bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum)
599      const {
600  return TII.isPredicated(In);
601}
602
603// Check if the definition of RR produces an unspecified value.
604bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum)
605      const {
606  const MachineOperand &Op = In.getOperand(OpNum);
607  if (Op.isRegMask())
608    return true;
609  assert(Op.isReg());
610  if (In.isCall())
611    if (Op.isDef() && Op.isDead())
612      return true;
613  return false;
614}
615
616// Check if the given instruction specifically requires
617bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum)
618      const {
619  if (In.isCall() || In.isReturn() || In.isInlineAsm())
620    return true;
621  // Check for a tail call.
622  if (In.isBranch())
623    for (const MachineOperand &O : In.operands())
624      if (O.isGlobal() || O.isSymbol())
625        return true;
626
627  const MCInstrDesc &D = In.getDesc();
628  if (!D.getImplicitDefs() && !D.getImplicitUses())
629    return false;
630  const MachineOperand &Op = In.getOperand(OpNum);
631  // If there is a sub-register, treat the operand as non-fixed. Currently,
632  // fixed registers are those that are listed in the descriptor as implicit
633  // uses or defs, and those lists do not allow sub-registers.
634  if (Op.getSubReg() != 0)
635    return false;
636  Register Reg = Op.getReg();
637  const MCPhysReg *ImpR = Op.isDef() ? D.getImplicitDefs()
638                                     : D.getImplicitUses();
639  if (!ImpR)
640    return false;
641  while (*ImpR)
642    if (*ImpR++ == Reg)
643      return true;
644  return false;
645}
646
647//
648// The data flow graph construction.
649//
650
651DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
652      const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
653      const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi)
654    : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi),
655      LiveIns(PRI) {
656}
657
658// The implementation of the definition stack.
659// Each register reference has its own definition stack. In particular,
660// for a register references "Reg" and "Reg:subreg" will each have their
661// own definition stacks.
662
663// Construct a stack iterator.
664DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S,
665      bool Top) : DS(S) {
666  if (!Top) {
667    // Initialize to bottom.
668    Pos = 0;
669    return;
670  }
671  // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty).
672  Pos = DS.Stack.size();
673  while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1]))
674    Pos--;
675}
676
677// Return the size of the stack, including block delimiters.
678unsigned DataFlowGraph::DefStack::size() const {
679  unsigned S = 0;
680  for (auto I = top(), E = bottom(); I != E; I.down())
681    S++;
682  return S;
683}
684
685// Remove the top entry from the stack. Remove all intervening delimiters
686// so that after this, the stack is either empty, or the top of the stack
687// is a non-delimiter.
688void DataFlowGraph::DefStack::pop() {
689  assert(!empty());
690  unsigned P = nextDown(Stack.size());
691  Stack.resize(P);
692}
693
694// Push a delimiter for block node N on the stack.
695void DataFlowGraph::DefStack::start_block(NodeId N) {
696  assert(N != 0);
697  Stack.push_back(NodeAddr<DefNode*>(nullptr, N));
698}
699
700// Remove all nodes from the top of the stack, until the delimited for
701// block node N is encountered. Remove the delimiter as well. In effect,
702// this will remove from the stack all definitions from block N.
703void DataFlowGraph::DefStack::clear_block(NodeId N) {
704  assert(N != 0);
705  unsigned P = Stack.size();
706  while (P > 0) {
707    bool Found = isDelimiter(Stack[P-1], N);
708    P--;
709    if (Found)
710      break;
711  }
712  // This will also remove the delimiter, if found.
713  Stack.resize(P);
714}
715
716// Move the stack iterator up by one.
717unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const {
718  // Get the next valid position after P (skipping all delimiters).
719  // The input position P does not have to point to a non-delimiter.
720  unsigned SS = Stack.size();
721  bool IsDelim;
722  assert(P < SS);
723  do {
724    P++;
725    IsDelim = isDelimiter(Stack[P-1]);
726  } while (P < SS && IsDelim);
727  assert(!IsDelim);
728  return P;
729}
730
731// Move the stack iterator down by one.
732unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const {
733  // Get the preceding valid position before P (skipping all delimiters).
734  // The input position P does not have to point to a non-delimiter.
735  assert(P > 0 && P <= Stack.size());
736  bool IsDelim = isDelimiter(Stack[P-1]);
737  do {
738    if (--P == 0)
739      break;
740    IsDelim = isDelimiter(Stack[P-1]);
741  } while (P > 0 && IsDelim);
742  assert(!IsDelim);
743  return P;
744}
745
746// Register information.
747
748RegisterSet DataFlowGraph::getLandingPadLiveIns() const {
749  RegisterSet LR;
750  const Function &F = MF.getFunction();
751  const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn()
752                                            : nullptr;
753  const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
754  if (RegisterId R = TLI.getExceptionPointerRegister(PF))
755    LR.insert(RegisterRef(R));
756  if (!isFuncletEHPersonality(classifyEHPersonality(PF))) {
757    if (RegisterId R = TLI.getExceptionSelectorRegister(PF))
758      LR.insert(RegisterRef(R));
759  }
760  return LR;
761}
762
763// Node management functions.
764
765// Get the pointer to the node with the id N.
766NodeBase *DataFlowGraph::ptr(NodeId N) const {
767  if (N == 0)
768    return nullptr;
769  return Memory.ptr(N);
770}
771
772// Get the id of the node at the address P.
773NodeId DataFlowGraph::id(const NodeBase *P) const {
774  if (P == nullptr)
775    return 0;
776  return Memory.id(P);
777}
778
779// Allocate a new node and set the attributes to Attrs.
780NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) {
781  NodeAddr<NodeBase*> P = Memory.New();
782  P.Addr->init();
783  P.Addr->setAttrs(Attrs);
784  return P;
785}
786
787// Make a copy of the given node B, except for the data-flow links, which
788// are set to 0.
789NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) {
790  NodeAddr<NodeBase*> NA = newNode(0);
791  memcpy(NA.Addr, B.Addr, sizeof(NodeBase));
792  // Ref nodes need to have the data-flow links reset.
793  if (NA.Addr->getType() == NodeAttrs::Ref) {
794    NodeAddr<RefNode*> RA = NA;
795    RA.Addr->setReachingDef(0);
796    RA.Addr->setSibling(0);
797    if (NA.Addr->getKind() == NodeAttrs::Def) {
798      NodeAddr<DefNode*> DA = NA;
799      DA.Addr->setReachedDef(0);
800      DA.Addr->setReachedUse(0);
801    }
802  }
803  return NA;
804}
805
806// Allocation routines for specific node types/kinds.
807
808NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner,
809      MachineOperand &Op, uint16_t Flags) {
810  NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
811  UA.Addr->setRegRef(&Op, *this);
812  return UA;
813}
814
815NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner,
816      RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) {
817  NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
818  assert(Flags & NodeAttrs::PhiRef);
819  PUA.Addr->setRegRef(RR, *this);
820  PUA.Addr->setPredecessor(PredB.Id);
821  return PUA;
822}
823
824NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
825      MachineOperand &Op, uint16_t Flags) {
826  NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
827  DA.Addr->setRegRef(&Op, *this);
828  return DA;
829}
830
831NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
832      RegisterRef RR, uint16_t Flags) {
833  NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
834  assert(Flags & NodeAttrs::PhiRef);
835  DA.Addr->setRegRef(RR, *this);
836  return DA;
837}
838
839NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) {
840  NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi);
841  Owner.Addr->addPhi(PA, *this);
842  return PA;
843}
844
845NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner,
846      MachineInstr *MI) {
847  NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt);
848  SA.Addr->setCode(MI);
849  Owner.Addr->addMember(SA, *this);
850  return SA;
851}
852
853NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner,
854      MachineBasicBlock *BB) {
855  NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block);
856  BA.Addr->setCode(BB);
857  Owner.Addr->addMember(BA, *this);
858  return BA;
859}
860
861NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) {
862  NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func);
863  FA.Addr->setCode(MF);
864  return FA;
865}
866
867// Build the data flow graph.
868void DataFlowGraph::build(unsigned Options) {
869  reset();
870  Func = newFunc(&MF);
871
872  if (MF.empty())
873    return;
874
875  for (MachineBasicBlock &B : MF) {
876    NodeAddr<BlockNode*> BA = newBlock(Func, &B);
877    BlockNodes.insert(std::make_pair(&B, BA));
878    for (MachineInstr &I : B) {
879      if (I.isDebugInstr())
880        continue;
881      buildStmt(BA, I);
882    }
883  }
884
885  NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this);
886  NodeList Blocks = Func.Addr->members(*this);
887
888  // Collect information about block references.
889  RegisterSet AllRefs;
890  for (NodeAddr<BlockNode*> BA : Blocks)
891    for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
892      for (NodeAddr<RefNode*> RA : IA.Addr->members(*this))
893        AllRefs.insert(RA.Addr->getRegRef(*this));
894
895  // Collect function live-ins and entry block live-ins.
896  MachineRegisterInfo &MRI = MF.getRegInfo();
897  MachineBasicBlock &EntryB = *EA.Addr->getCode();
898  assert(EntryB.pred_empty() && "Function entry block has predecessors");
899  for (std::pair<unsigned,unsigned> P : MRI.liveins())
900    LiveIns.insert(RegisterRef(P.first));
901  if (MRI.tracksLiveness()) {
902    for (auto I : EntryB.liveins())
903      LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask));
904  }
905
906  // Add function-entry phi nodes for the live-in registers.
907  //for (std::pair<RegisterId,LaneBitmask> P : LiveIns) {
908  for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
909    RegisterRef RR = *I;
910    NodeAddr<PhiNode*> PA = newPhi(EA);
911    uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
912    NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
913    PA.Addr->addMember(DA, *this);
914  }
915
916  // Add phis for landing pads.
917  // Landing pads, unlike usual backs blocks, are not entered through
918  // branches in the program, or fall-throughs from other blocks. They
919  // are entered from the exception handling runtime and target's ABI
920  // may define certain registers as defined on entry to such a block.
921  RegisterSet EHRegs = getLandingPadLiveIns();
922  if (!EHRegs.empty()) {
923    for (NodeAddr<BlockNode*> BA : Blocks) {
924      const MachineBasicBlock &B = *BA.Addr->getCode();
925      if (!B.isEHPad())
926        continue;
927
928      // Prepare a list of NodeIds of the block's predecessors.
929      NodeList Preds;
930      for (MachineBasicBlock *PB : B.predecessors())
931        Preds.push_back(findBlock(PB));
932
933      // Build phi nodes for each live-in.
934      for (RegisterRef RR : EHRegs) {
935        NodeAddr<PhiNode*> PA = newPhi(BA);
936        uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
937        // Add def:
938        NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
939        PA.Addr->addMember(DA, *this);
940        // Add uses (no reaching defs for phi uses):
941        for (NodeAddr<BlockNode*> PBA : Preds) {
942          NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
943          PA.Addr->addMember(PUA, *this);
944        }
945      }
946    }
947  }
948
949  // Build a map "PhiM" which will contain, for each block, the set
950  // of references that will require phi definitions in that block.
951  BlockRefsMap PhiM;
952  for (NodeAddr<BlockNode*> BA : Blocks)
953    recordDefsForDF(PhiM, BA);
954  for (NodeAddr<BlockNode*> BA : Blocks)
955    buildPhis(PhiM, AllRefs, BA);
956
957  // Link all the refs. This will recursively traverse the dominator tree.
958  DefStackMap DM;
959  linkBlockRefs(DM, EA);
960
961  // Finally, remove all unused phi nodes.
962  if (!(Options & BuildOptions::KeepDeadPhis))
963    removeUnusedPhis();
964}
965
966RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const {
967  assert(PhysicalRegisterInfo::isRegMaskId(Reg) ||
968         Register::isPhysicalRegister(Reg));
969  assert(Reg != 0);
970  if (Sub != 0)
971    Reg = TRI.getSubReg(Reg, Sub);
972  return RegisterRef(Reg);
973}
974
975RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const {
976  assert(Op.isReg() || Op.isRegMask());
977  if (Op.isReg())
978    return makeRegRef(Op.getReg(), Op.getSubReg());
979  return RegisterRef(PRI.getRegMaskId(Op.getRegMask()), LaneBitmask::getAll());
980}
981
982RegisterRef DataFlowGraph::restrictRef(RegisterRef AR, RegisterRef BR) const {
983  if (AR.Reg == BR.Reg) {
984    LaneBitmask M = AR.Mask & BR.Mask;
985    return M.any() ? RegisterRef(AR.Reg, M) : RegisterRef();
986  }
987#ifndef NDEBUG
988//  RegisterRef NAR = PRI.normalize(AR);
989//  RegisterRef NBR = PRI.normalize(BR);
990//  assert(NAR.Reg != NBR.Reg);
991#endif
992  // This isn't strictly correct, because the overlap may happen in the
993  // part masked out.
994  if (PRI.alias(AR, BR))
995    return AR;
996  return RegisterRef();
997}
998
999// For each stack in the map DefM, push the delimiter for block B on it.
1000void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) {
1001  // Push block delimiters.
1002  for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
1003    I->second.start_block(B);
1004}
1005
1006// Remove all definitions coming from block B from each stack in DefM.
1007void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) {
1008  // Pop all defs from this block from the definition stack. Defs that were
1009  // added to the map during the traversal of instructions will not have a
1010  // delimiter, but for those, the whole stack will be emptied.
1011  for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
1012    I->second.clear_block(B);
1013
1014  // Finally, remove empty stacks from the map.
1015  for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) {
1016    NextI = std::next(I);
1017    // This preserves the validity of iterators other than I.
1018    if (I->second.empty())
1019      DefM.erase(I);
1020  }
1021}
1022
1023// Push all definitions from the instruction node IA to an appropriate
1024// stack in DefM.
1025void DataFlowGraph::pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1026  pushClobbers(IA, DefM);
1027  pushDefs(IA, DefM);
1028}
1029
1030// Push all definitions from the instruction node IA to an appropriate
1031// stack in DefM.
1032void DataFlowGraph::pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1033  NodeSet Visited;
1034  std::set<RegisterId> Defined;
1035
1036  // The important objectives of this function are:
1037  // - to be able to handle instructions both while the graph is being
1038  //   constructed, and after the graph has been constructed, and
1039  // - maintain proper ordering of definitions on the stack for each
1040  //   register reference:
1041  //   - if there are two or more related defs in IA (i.e. coming from
1042  //     the same machine operand), then only push one def on the stack,
1043  //   - if there are multiple unrelated defs of non-overlapping
1044  //     subregisters of S, then the stack for S will have both (in an
1045  //     unspecified order), but the order does not matter from the data-
1046  //     -flow perspective.
1047
1048  for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
1049    if (Visited.count(DA.Id))
1050      continue;
1051    if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering))
1052      continue;
1053
1054    NodeList Rel = getRelatedRefs(IA, DA);
1055    NodeAddr<DefNode*> PDA = Rel.front();
1056    RegisterRef RR = PDA.Addr->getRegRef(*this);
1057
1058    // Push the definition on the stack for the register and all aliases.
1059    // The def stack traversal in linkNodeUp will check the exact aliasing.
1060    DefM[RR.Reg].push(DA);
1061    Defined.insert(RR.Reg);
1062    for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
1063      // Check that we don't push the same def twice.
1064      assert(A != RR.Reg);
1065      if (!Defined.count(A))
1066        DefM[A].push(DA);
1067    }
1068    // Mark all the related defs as visited.
1069    for (NodeAddr<NodeBase*> T : Rel)
1070      Visited.insert(T.Id);
1071  }
1072}
1073
1074// Push all definitions from the instruction node IA to an appropriate
1075// stack in DefM.
1076void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1077  NodeSet Visited;
1078#ifndef NDEBUG
1079  std::set<RegisterId> Defined;
1080#endif
1081
1082  // The important objectives of this function are:
1083  // - to be able to handle instructions both while the graph is being
1084  //   constructed, and after the graph has been constructed, and
1085  // - maintain proper ordering of definitions on the stack for each
1086  //   register reference:
1087  //   - if there are two or more related defs in IA (i.e. coming from
1088  //     the same machine operand), then only push one def on the stack,
1089  //   - if there are multiple unrelated defs of non-overlapping
1090  //     subregisters of S, then the stack for S will have both (in an
1091  //     unspecified order), but the order does not matter from the data-
1092  //     -flow perspective.
1093
1094  for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
1095    if (Visited.count(DA.Id))
1096      continue;
1097    if (DA.Addr->getFlags() & NodeAttrs::Clobbering)
1098      continue;
1099
1100    NodeList Rel = getRelatedRefs(IA, DA);
1101    NodeAddr<DefNode*> PDA = Rel.front();
1102    RegisterRef RR = PDA.Addr->getRegRef(*this);
1103#ifndef NDEBUG
1104    // Assert if the register is defined in two or more unrelated defs.
1105    // This could happen if there are two or more def operands defining it.
1106    if (!Defined.insert(RR.Reg).second) {
1107      MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
1108      dbgs() << "Multiple definitions of register: "
1109             << Print<RegisterRef>(RR, *this) << " in\n  " << *MI << "in "
1110             << printMBBReference(*MI->getParent()) << '\n';
1111      llvm_unreachable(nullptr);
1112    }
1113#endif
1114    // Push the definition on the stack for the register and all aliases.
1115    // The def stack traversal in linkNodeUp will check the exact aliasing.
1116    DefM[RR.Reg].push(DA);
1117    for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
1118      // Check that we don't push the same def twice.
1119      assert(A != RR.Reg);
1120      DefM[A].push(DA);
1121    }
1122    // Mark all the related defs as visited.
1123    for (NodeAddr<NodeBase*> T : Rel)
1124      Visited.insert(T.Id);
1125  }
1126}
1127
1128// Return the list of all reference nodes related to RA, including RA itself.
1129// See "getNextRelated" for the meaning of a "related reference".
1130NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA,
1131      NodeAddr<RefNode*> RA) const {
1132  assert(IA.Id != 0 && RA.Id != 0);
1133
1134  NodeList Refs;
1135  NodeId Start = RA.Id;
1136  do {
1137    Refs.push_back(RA);
1138    RA = getNextRelated(IA, RA);
1139  } while (RA.Id != 0 && RA.Id != Start);
1140  return Refs;
1141}
1142
1143// Clear all information in the graph.
1144void DataFlowGraph::reset() {
1145  Memory.clear();
1146  BlockNodes.clear();
1147  Func = NodeAddr<FuncNode*>();
1148}
1149
1150// Return the next reference node in the instruction node IA that is related
1151// to RA. Conceptually, two reference nodes are related if they refer to the
1152// same instance of a register access, but differ in flags or other minor
1153// characteristics. Specific examples of related nodes are shadow reference
1154// nodes.
1155// Return the equivalent of nullptr if there are no more related references.
1156NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA,
1157      NodeAddr<RefNode*> RA) const {
1158  assert(IA.Id != 0 && RA.Id != 0);
1159
1160  auto Related = [this,RA](NodeAddr<RefNode*> TA) -> bool {
1161    if (TA.Addr->getKind() != RA.Addr->getKind())
1162      return false;
1163    if (TA.Addr->getRegRef(*this) != RA.Addr->getRegRef(*this))
1164      return false;
1165    return true;
1166  };
1167  auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
1168    return Related(TA) &&
1169           &RA.Addr->getOp() == &TA.Addr->getOp();
1170  };
1171  auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
1172    if (!Related(TA))
1173      return false;
1174    if (TA.Addr->getKind() != NodeAttrs::Use)
1175      return true;
1176    // For phi uses, compare predecessor blocks.
1177    const NodeAddr<const PhiUseNode*> TUA = TA;
1178    const NodeAddr<const PhiUseNode*> RUA = RA;
1179    return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor();
1180  };
1181
1182  RegisterRef RR = RA.Addr->getRegRef(*this);
1183  if (IA.Addr->getKind() == NodeAttrs::Stmt)
1184    return RA.Addr->getNextRef(RR, RelatedStmt, true, *this);
1185  return RA.Addr->getNextRef(RR, RelatedPhi, true, *this);
1186}
1187
1188// Find the next node related to RA in IA that satisfies condition P.
1189// If such a node was found, return a pair where the second element is the
1190// located node. If such a node does not exist, return a pair where the
1191// first element is the element after which such a node should be inserted,
1192// and the second element is a null-address.
1193template <typename Predicate>
1194std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
1195DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
1196      Predicate P) const {
1197  assert(IA.Id != 0 && RA.Id != 0);
1198
1199  NodeAddr<RefNode*> NA;
1200  NodeId Start = RA.Id;
1201  while (true) {
1202    NA = getNextRelated(IA, RA);
1203    if (NA.Id == 0 || NA.Id == Start)
1204      break;
1205    if (P(NA))
1206      break;
1207    RA = NA;
1208  }
1209
1210  if (NA.Id != 0 && NA.Id != Start)
1211    return std::make_pair(RA, NA);
1212  return std::make_pair(RA, NodeAddr<RefNode*>());
1213}
1214
1215// Get the next shadow node in IA corresponding to RA, and optionally create
1216// such a node if it does not exist.
1217NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
1218      NodeAddr<RefNode*> RA, bool Create) {
1219  assert(IA.Id != 0 && RA.Id != 0);
1220
1221  uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
1222  auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
1223    return TA.Addr->getFlags() == Flags;
1224  };
1225  auto Loc = locateNextRef(IA, RA, IsShadow);
1226  if (Loc.second.Id != 0 || !Create)
1227    return Loc.second;
1228
1229  // Create a copy of RA and mark is as shadow.
1230  NodeAddr<RefNode*> NA = cloneNode(RA);
1231  NA.Addr->setFlags(Flags | NodeAttrs::Shadow);
1232  IA.Addr->addMemberAfter(Loc.first, NA, *this);
1233  return NA;
1234}
1235
1236// Get the next shadow node in IA corresponding to RA. Return null-address
1237// if such a node does not exist.
1238NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
1239      NodeAddr<RefNode*> RA) const {
1240  assert(IA.Id != 0 && RA.Id != 0);
1241  uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
1242  auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
1243    return TA.Addr->getFlags() == Flags;
1244  };
1245  return locateNextRef(IA, RA, IsShadow).second;
1246}
1247
1248// Create a new statement node in the block node BA that corresponds to
1249// the machine instruction MI.
1250void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) {
1251  NodeAddr<StmtNode*> SA = newStmt(BA, &In);
1252
1253  auto isCall = [] (const MachineInstr &In) -> bool {
1254    if (In.isCall())
1255      return true;
1256    // Is tail call?
1257    if (In.isBranch()) {
1258      for (const MachineOperand &Op : In.operands())
1259        if (Op.isGlobal() || Op.isSymbol())
1260          return true;
1261      // Assume indirect branches are calls. This is for the purpose of
1262      // keeping implicit operands, and so it won't hurt on intra-function
1263      // indirect branches.
1264      if (In.isIndirectBranch())
1265        return true;
1266    }
1267    return false;
1268  };
1269
1270  auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool {
1271    // This instruction defines DR. Check if there is a use operand that
1272    // would make DR live on entry to the instruction.
1273    for (const MachineOperand &Op : In.operands()) {
1274      if (!Op.isReg() || Op.getReg() == 0 || !Op.isUse() || Op.isUndef())
1275        continue;
1276      RegisterRef UR = makeRegRef(Op);
1277      if (PRI.alias(DR, UR))
1278        return false;
1279    }
1280    return true;
1281  };
1282
1283  bool IsCall = isCall(In);
1284  unsigned NumOps = In.getNumOperands();
1285
1286  // Avoid duplicate implicit defs. This will not detect cases of implicit
1287  // defs that define registers that overlap, but it is not clear how to
1288  // interpret that in the absence of explicit defs. Overlapping explicit
1289  // defs are likely illegal already.
1290  BitVector DoneDefs(TRI.getNumRegs());
1291  // Process explicit defs first.
1292  for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1293    MachineOperand &Op = In.getOperand(OpN);
1294    if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1295      continue;
1296    Register R = Op.getReg();
1297    if (!R || !Register::isPhysicalRegister(R))
1298      continue;
1299    uint16_t Flags = NodeAttrs::None;
1300    if (TOI.isPreserving(In, OpN)) {
1301      Flags |= NodeAttrs::Preserving;
1302      // If the def is preserving, check if it is also undefined.
1303      if (isDefUndef(In, makeRegRef(Op)))
1304        Flags |= NodeAttrs::Undef;
1305    }
1306    if (TOI.isClobbering(In, OpN))
1307      Flags |= NodeAttrs::Clobbering;
1308    if (TOI.isFixedReg(In, OpN))
1309      Flags |= NodeAttrs::Fixed;
1310    if (IsCall && Op.isDead())
1311      Flags |= NodeAttrs::Dead;
1312    NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1313    SA.Addr->addMember(DA, *this);
1314    assert(!DoneDefs.test(R));
1315    DoneDefs.set(R);
1316  }
1317
1318  // Process reg-masks (as clobbers).
1319  BitVector DoneClobbers(TRI.getNumRegs());
1320  for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1321    MachineOperand &Op = In.getOperand(OpN);
1322    if (!Op.isRegMask())
1323      continue;
1324    uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed |
1325                     NodeAttrs::Dead;
1326    NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1327    SA.Addr->addMember(DA, *this);
1328    // Record all clobbered registers in DoneDefs.
1329    const uint32_t *RM = Op.getRegMask();
1330    for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i)
1331      if (!(RM[i/32] & (1u << (i%32))))
1332        DoneClobbers.set(i);
1333  }
1334
1335  // Process implicit defs, skipping those that have already been added
1336  // as explicit.
1337  for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1338    MachineOperand &Op = In.getOperand(OpN);
1339    if (!Op.isReg() || !Op.isDef() || !Op.isImplicit())
1340      continue;
1341    Register R = Op.getReg();
1342    if (!R || !Register::isPhysicalRegister(R) || DoneDefs.test(R))
1343      continue;
1344    RegisterRef RR = makeRegRef(Op);
1345    uint16_t Flags = NodeAttrs::None;
1346    if (TOI.isPreserving(In, OpN)) {
1347      Flags |= NodeAttrs::Preserving;
1348      // If the def is preserving, check if it is also undefined.
1349      if (isDefUndef(In, RR))
1350        Flags |= NodeAttrs::Undef;
1351    }
1352    if (TOI.isClobbering(In, OpN))
1353      Flags |= NodeAttrs::Clobbering;
1354    if (TOI.isFixedReg(In, OpN))
1355      Flags |= NodeAttrs::Fixed;
1356    if (IsCall && Op.isDead()) {
1357      if (DoneClobbers.test(R))
1358        continue;
1359      Flags |= NodeAttrs::Dead;
1360    }
1361    NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1362    SA.Addr->addMember(DA, *this);
1363    DoneDefs.set(R);
1364  }
1365
1366  for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1367    MachineOperand &Op = In.getOperand(OpN);
1368    if (!Op.isReg() || !Op.isUse())
1369      continue;
1370    Register R = Op.getReg();
1371    if (!R || !Register::isPhysicalRegister(R))
1372      continue;
1373    uint16_t Flags = NodeAttrs::None;
1374    if (Op.isUndef())
1375      Flags |= NodeAttrs::Undef;
1376    if (TOI.isFixedReg(In, OpN))
1377      Flags |= NodeAttrs::Fixed;
1378    NodeAddr<UseNode*> UA = newUse(SA, Op, Flags);
1379    SA.Addr->addMember(UA, *this);
1380  }
1381}
1382
1383// Scan all defs in the block node BA and record in PhiM the locations of
1384// phi nodes corresponding to these defs.
1385void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM,
1386      NodeAddr<BlockNode*> BA) {
1387  // Check all defs from block BA and record them in each block in BA's
1388  // iterated dominance frontier. This information will later be used to
1389  // create phi nodes.
1390  MachineBasicBlock *BB = BA.Addr->getCode();
1391  assert(BB);
1392  auto DFLoc = MDF.find(BB);
1393  if (DFLoc == MDF.end() || DFLoc->second.empty())
1394    return;
1395
1396  // Traverse all instructions in the block and collect the set of all
1397  // defined references. For each reference there will be a phi created
1398  // in the block's iterated dominance frontier.
1399  // This is done to make sure that each defined reference gets only one
1400  // phi node, even if it is defined multiple times.
1401  RegisterSet Defs;
1402  for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
1403    for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this))
1404      Defs.insert(RA.Addr->getRegRef(*this));
1405
1406  // Calculate the iterated dominance frontier of BB.
1407  const MachineDominanceFrontier::DomSetType &DF = DFLoc->second;
1408  SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end());
1409  for (unsigned i = 0; i < IDF.size(); ++i) {
1410    auto F = MDF.find(IDF[i]);
1411    if (F != MDF.end())
1412      IDF.insert(F->second.begin(), F->second.end());
1413  }
1414
1415  // Finally, add the set of defs to each block in the iterated dominance
1416  // frontier.
1417  for (auto DB : IDF) {
1418    NodeAddr<BlockNode*> DBA = findBlock(DB);
1419    PhiM[DBA.Id].insert(Defs.begin(), Defs.end());
1420  }
1421}
1422
1423// Given the locations of phi nodes in the map PhiM, create the phi nodes
1424// that are located in the block node BA.
1425void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
1426      NodeAddr<BlockNode*> BA) {
1427  // Check if this blocks has any DF defs, i.e. if there are any defs
1428  // that this block is in the iterated dominance frontier of.
1429  auto HasDF = PhiM.find(BA.Id);
1430  if (HasDF == PhiM.end() || HasDF->second.empty())
1431    return;
1432
1433  // First, remove all R in Refs in such that there exists T in Refs
1434  // such that T covers R. In other words, only leave those refs that
1435  // are not covered by another ref (i.e. maximal with respect to covering).
1436
1437  auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef {
1438    for (RegisterRef I : RRs)
1439      if (I != RR && RegisterAggr::isCoverOf(I, RR, PRI))
1440        RR = I;
1441    return RR;
1442  };
1443
1444  RegisterSet MaxDF;
1445  for (RegisterRef I : HasDF->second)
1446    MaxDF.insert(MaxCoverIn(I, HasDF->second));
1447
1448  std::vector<RegisterRef> MaxRefs;
1449  for (RegisterRef I : MaxDF)
1450    MaxRefs.push_back(MaxCoverIn(I, AllRefs));
1451
1452  // Now, for each R in MaxRefs, get the alias closure of R. If the closure
1453  // only has R in it, create a phi a def for R. Otherwise, create a phi,
1454  // and add a def for each S in the closure.
1455
1456  // Sort the refs so that the phis will be created in a deterministic order.
1457  llvm::sort(MaxRefs);
1458  // Remove duplicates.
1459  auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end());
1460  MaxRefs.erase(NewEnd, MaxRefs.end());
1461
1462  auto Aliased = [this,&MaxRefs](RegisterRef RR,
1463                                 std::vector<unsigned> &Closure) -> bool {
1464    for (unsigned I : Closure)
1465      if (PRI.alias(RR, MaxRefs[I]))
1466        return true;
1467    return false;
1468  };
1469
1470  // Prepare a list of NodeIds of the block's predecessors.
1471  NodeList Preds;
1472  const MachineBasicBlock *MBB = BA.Addr->getCode();
1473  for (MachineBasicBlock *PB : MBB->predecessors())
1474    Preds.push_back(findBlock(PB));
1475
1476  while (!MaxRefs.empty()) {
1477    // Put the first element in the closure, and then add all subsequent
1478    // elements from MaxRefs to it, if they alias at least one element
1479    // already in the closure.
1480    // ClosureIdx: vector of indices in MaxRefs of members of the closure.
1481    std::vector<unsigned> ClosureIdx = { 0 };
1482    for (unsigned i = 1; i != MaxRefs.size(); ++i)
1483      if (Aliased(MaxRefs[i], ClosureIdx))
1484        ClosureIdx.push_back(i);
1485
1486    // Build a phi for the closure.
1487    unsigned CS = ClosureIdx.size();
1488    NodeAddr<PhiNode*> PA = newPhi(BA);
1489
1490    // Add defs.
1491    for (unsigned X = 0; X != CS; ++X) {
1492      RegisterRef RR = MaxRefs[ClosureIdx[X]];
1493      uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
1494      NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
1495      PA.Addr->addMember(DA, *this);
1496    }
1497    // Add phi uses.
1498    for (NodeAddr<BlockNode*> PBA : Preds) {
1499      for (unsigned X = 0; X != CS; ++X) {
1500        RegisterRef RR = MaxRefs[ClosureIdx[X]];
1501        NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
1502        PA.Addr->addMember(PUA, *this);
1503      }
1504    }
1505
1506    // Erase from MaxRefs all elements in the closure.
1507    auto Begin = MaxRefs.begin();
1508    for (unsigned i = ClosureIdx.size(); i != 0; --i)
1509      MaxRefs.erase(Begin + ClosureIdx[i-1]);
1510  }
1511}
1512
1513// Remove any unneeded phi nodes that were created during the build process.
1514void DataFlowGraph::removeUnusedPhis() {
1515  // This will remove unused phis, i.e. phis where each def does not reach
1516  // any uses or other defs. This will not detect or remove circular phi
1517  // chains that are otherwise dead. Unused/dead phis are created during
1518  // the build process and this function is intended to remove these cases
1519  // that are easily determinable to be unnecessary.
1520
1521  SetVector<NodeId> PhiQ;
1522  for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) {
1523    for (auto P : BA.Addr->members_if(IsPhi, *this))
1524      PhiQ.insert(P.Id);
1525  }
1526
1527  static auto HasUsedDef = [](NodeList &Ms) -> bool {
1528    for (NodeAddr<NodeBase*> M : Ms) {
1529      if (M.Addr->getKind() != NodeAttrs::Def)
1530        continue;
1531      NodeAddr<DefNode*> DA = M;
1532      if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0)
1533        return true;
1534    }
1535    return false;
1536  };
1537
1538  // Any phi, if it is removed, may affect other phis (make them dead).
1539  // For each removed phi, collect the potentially affected phis and add
1540  // them back to the queue.
1541  while (!PhiQ.empty()) {
1542    auto PA = addr<PhiNode*>(PhiQ[0]);
1543    PhiQ.remove(PA.Id);
1544    NodeList Refs = PA.Addr->members(*this);
1545    if (HasUsedDef(Refs))
1546      continue;
1547    for (NodeAddr<RefNode*> RA : Refs) {
1548      if (NodeId RD = RA.Addr->getReachingDef()) {
1549        auto RDA = addr<DefNode*>(RD);
1550        NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this);
1551        if (IsPhi(OA))
1552          PhiQ.insert(OA.Id);
1553      }
1554      if (RA.Addr->isDef())
1555        unlinkDef(RA, true);
1556      else
1557        unlinkUse(RA, true);
1558    }
1559    NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this);
1560    BA.Addr->removeMember(PA, *this);
1561  }
1562}
1563
1564// For a given reference node TA in an instruction node IA, connect the
1565// reaching def of TA to the appropriate def node. Create any shadow nodes
1566// as appropriate.
1567template <typename T>
1568void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA,
1569      DefStack &DS) {
1570  if (DS.empty())
1571    return;
1572  RegisterRef RR = TA.Addr->getRegRef(*this);
1573  NodeAddr<T> TAP;
1574
1575  // References from the def stack that have been examined so far.
1576  RegisterAggr Defs(PRI);
1577
1578  for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) {
1579    RegisterRef QR = I->Addr->getRegRef(*this);
1580
1581    // Skip all defs that are aliased to any of the defs that we have already
1582    // seen. If this completes a cover of RR, stop the stack traversal.
1583    bool Alias = Defs.hasAliasOf(QR);
1584    bool Cover = Defs.insert(QR).hasCoverOf(RR);
1585    if (Alias) {
1586      if (Cover)
1587        break;
1588      continue;
1589    }
1590
1591    // The reaching def.
1592    NodeAddr<DefNode*> RDA = *I;
1593
1594    // Pick the reached node.
1595    if (TAP.Id == 0) {
1596      TAP = TA;
1597    } else {
1598      // Mark the existing ref as "shadow" and create a new shadow.
1599      TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow);
1600      TAP = getNextShadow(IA, TAP, true);
1601    }
1602
1603    // Create the link.
1604    TAP.Addr->linkToDef(TAP.Id, RDA);
1605
1606    if (Cover)
1607      break;
1608  }
1609}
1610
1611// Create data-flow links for all reference nodes in the statement node SA.
1612template <typename Predicate>
1613void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA,
1614      Predicate P) {
1615#ifndef NDEBUG
1616  RegisterSet Defs;
1617#endif
1618
1619  // Link all nodes (upwards in the data-flow) with their reaching defs.
1620  for (NodeAddr<RefNode*> RA : SA.Addr->members_if(P, *this)) {
1621    uint16_t Kind = RA.Addr->getKind();
1622    assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use);
1623    RegisterRef RR = RA.Addr->getRegRef(*this);
1624#ifndef NDEBUG
1625    // Do not expect multiple defs of the same reference.
1626    assert(Kind != NodeAttrs::Def || !Defs.count(RR));
1627    Defs.insert(RR);
1628#endif
1629
1630    auto F = DefM.find(RR.Reg);
1631    if (F == DefM.end())
1632      continue;
1633    DefStack &DS = F->second;
1634    if (Kind == NodeAttrs::Use)
1635      linkRefUp<UseNode*>(SA, RA, DS);
1636    else if (Kind == NodeAttrs::Def)
1637      linkRefUp<DefNode*>(SA, RA, DS);
1638    else
1639      llvm_unreachable("Unexpected node in instruction");
1640  }
1641}
1642
1643// Create data-flow links for all instructions in the block node BA. This
1644// will include updating any phi nodes in BA.
1645void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) {
1646  // Push block delimiters.
1647  markBlock(BA.Id, DefM);
1648
1649  auto IsClobber = [] (NodeAddr<RefNode*> RA) -> bool {
1650    return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering);
1651  };
1652  auto IsNoClobber = [] (NodeAddr<RefNode*> RA) -> bool {
1653    return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering);
1654  };
1655
1656  assert(BA.Addr && "block node address is needed to create a data-flow link");
1657  // For each non-phi instruction in the block, link all the defs and uses
1658  // to their reaching defs. For any member of the block (including phis),
1659  // push the defs on the corresponding stacks.
1660  for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) {
1661    // Ignore phi nodes here. They will be linked part by part from the
1662    // predecessors.
1663    if (IA.Addr->getKind() == NodeAttrs::Stmt) {
1664      linkStmtRefs(DefM, IA, IsUse);
1665      linkStmtRefs(DefM, IA, IsClobber);
1666    }
1667
1668    // Push the definitions on the stack.
1669    pushClobbers(IA, DefM);
1670
1671    if (IA.Addr->getKind() == NodeAttrs::Stmt)
1672      linkStmtRefs(DefM, IA, IsNoClobber);
1673
1674    pushDefs(IA, DefM);
1675  }
1676
1677  // Recursively process all children in the dominator tree.
1678  MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode());
1679  for (auto I : *N) {
1680    MachineBasicBlock *SB = I->getBlock();
1681    NodeAddr<BlockNode*> SBA = findBlock(SB);
1682    linkBlockRefs(DefM, SBA);
1683  }
1684
1685  // Link the phi uses from the successor blocks.
1686  auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool {
1687    if (NA.Addr->getKind() != NodeAttrs::Use)
1688      return false;
1689    assert(NA.Addr->getFlags() & NodeAttrs::PhiRef);
1690    NodeAddr<PhiUseNode*> PUA = NA;
1691    return PUA.Addr->getPredecessor() == BA.Id;
1692  };
1693
1694  RegisterSet EHLiveIns = getLandingPadLiveIns();
1695  MachineBasicBlock *MBB = BA.Addr->getCode();
1696
1697  for (MachineBasicBlock *SB : MBB->successors()) {
1698    bool IsEHPad = SB->isEHPad();
1699    NodeAddr<BlockNode*> SBA = findBlock(SB);
1700    for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) {
1701      // Do not link phi uses for landing pad live-ins.
1702      if (IsEHPad) {
1703        // Find what register this phi is for.
1704        NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this);
1705        assert(RA.Id != 0);
1706        if (EHLiveIns.count(RA.Addr->getRegRef(*this)))
1707          continue;
1708      }
1709      // Go over each phi use associated with MBB, and link it.
1710      for (auto U : IA.Addr->members_if(IsUseForBA, *this)) {
1711        NodeAddr<PhiUseNode*> PUA = U;
1712        RegisterRef RR = PUA.Addr->getRegRef(*this);
1713        linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]);
1714      }
1715    }
1716  }
1717
1718  // Pop all defs from this block from the definition stacks.
1719  releaseBlock(BA.Id, DefM);
1720}
1721
1722// Remove the use node UA from any data-flow and structural links.
1723void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) {
1724  NodeId RD = UA.Addr->getReachingDef();
1725  NodeId Sib = UA.Addr->getSibling();
1726
1727  if (RD == 0) {
1728    assert(Sib == 0);
1729    return;
1730  }
1731
1732  auto RDA = addr<DefNode*>(RD);
1733  auto TA = addr<UseNode*>(RDA.Addr->getReachedUse());
1734  if (TA.Id == UA.Id) {
1735    RDA.Addr->setReachedUse(Sib);
1736    return;
1737  }
1738
1739  while (TA.Id != 0) {
1740    NodeId S = TA.Addr->getSibling();
1741    if (S == UA.Id) {
1742      TA.Addr->setSibling(UA.Addr->getSibling());
1743      return;
1744    }
1745    TA = addr<UseNode*>(S);
1746  }
1747}
1748
1749// Remove the def node DA from any data-flow and structural links.
1750void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) {
1751  //
1752  //         RD
1753  //         | reached
1754  //         | def
1755  //         :
1756  //         .
1757  //        +----+
1758  // ... -- | DA | -- ... -- 0  : sibling chain of DA
1759  //        +----+
1760  //         |  | reached
1761  //         |  : def
1762  //         |  .
1763  //         | ...  : Siblings (defs)
1764  //         |
1765  //         : reached
1766  //         . use
1767  //        ... : sibling chain of reached uses
1768
1769  NodeId RD = DA.Addr->getReachingDef();
1770
1771  // Visit all siblings of the reached def and reset their reaching defs.
1772  // Also, defs reached by DA are now "promoted" to being reached by RD,
1773  // so all of them will need to be spliced into the sibling chain where
1774  // DA belongs.
1775  auto getAllNodes = [this] (NodeId N) -> NodeList {
1776    NodeList Res;
1777    while (N) {
1778      auto RA = addr<RefNode*>(N);
1779      // Keep the nodes in the exact sibling order.
1780      Res.push_back(RA);
1781      N = RA.Addr->getSibling();
1782    }
1783    return Res;
1784  };
1785  NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef());
1786  NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse());
1787
1788  if (RD == 0) {
1789    for (NodeAddr<RefNode*> I : ReachedDefs)
1790      I.Addr->setSibling(0);
1791    for (NodeAddr<RefNode*> I : ReachedUses)
1792      I.Addr->setSibling(0);
1793  }
1794  for (NodeAddr<DefNode*> I : ReachedDefs)
1795    I.Addr->setReachingDef(RD);
1796  for (NodeAddr<UseNode*> I : ReachedUses)
1797    I.Addr->setReachingDef(RD);
1798
1799  NodeId Sib = DA.Addr->getSibling();
1800  if (RD == 0) {
1801    assert(Sib == 0);
1802    return;
1803  }
1804
1805  // Update the reaching def node and remove DA from the sibling list.
1806  auto RDA = addr<DefNode*>(RD);
1807  auto TA = addr<DefNode*>(RDA.Addr->getReachedDef());
1808  if (TA.Id == DA.Id) {
1809    // If DA is the first reached def, just update the RD's reached def
1810    // to the DA's sibling.
1811    RDA.Addr->setReachedDef(Sib);
1812  } else {
1813    // Otherwise, traverse the sibling list of the reached defs and remove
1814    // DA from it.
1815    while (TA.Id != 0) {
1816      NodeId S = TA.Addr->getSibling();
1817      if (S == DA.Id) {
1818        TA.Addr->setSibling(Sib);
1819        break;
1820      }
1821      TA = addr<DefNode*>(S);
1822    }
1823  }
1824
1825  // Splice the DA's reached defs into the RDA's reached def chain.
1826  if (!ReachedDefs.empty()) {
1827    auto Last = NodeAddr<DefNode*>(ReachedDefs.back());
1828    Last.Addr->setSibling(RDA.Addr->getReachedDef());
1829    RDA.Addr->setReachedDef(ReachedDefs.front().Id);
1830  }
1831  // Splice the DA's reached uses into the RDA's reached use chain.
1832  if (!ReachedUses.empty()) {
1833    auto Last = NodeAddr<UseNode*>(ReachedUses.back());
1834    Last.Addr->setSibling(RDA.Addr->getReachedUse());
1835    RDA.Addr->setReachedUse(ReachedUses.front().Id);
1836  }
1837}
1838