PeepholeOptimizer.cpp revision 280031
1//===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Perform peephole optimizations on the machine code:
11//
12// - Optimize Extensions
13//
14//     Optimization of sign / zero extension instructions. It may be extended to
15//     handle other instructions with similar properties.
16//
17//     On some targets, some instructions, e.g. X86 sign / zero extension, may
18//     leave the source value in the lower part of the result. This optimization
19//     will replace some uses of the pre-extension value with uses of the
20//     sub-register of the results.
21//
22// - Optimize Comparisons
23//
24//     Optimization of comparison instructions. For instance, in this code:
25//
26//       sub r1, 1
27//       cmp r1, 0
28//       bz  L1
29//
30//     If the "sub" instruction all ready sets (or could be modified to set) the
31//     same flag that the "cmp" instruction sets and that "bz" uses, then we can
32//     eliminate the "cmp" instruction.
33//
34//     Another instance, in this code:
35//
36//       sub r1, r3 | sub r1, imm
37//       cmp r3, r1 or cmp r1, r3 | cmp r1, imm
38//       bge L1
39//
40//     If the branch instruction can use flag from "sub", then we can replace
41//     "sub" with "subs" and eliminate the "cmp" instruction.
42//
43// - Optimize Loads:
44//
45//     Loads that can be folded into a later instruction. A load is foldable
46//     if it loads to virtual registers and the virtual register defined has
47//     a single use.
48//
49// - Optimize Copies and Bitcast (more generally, target specific copies):
50//
51//     Rewrite copies and bitcasts to avoid cross register bank copies
52//     when possible.
53//     E.g., Consider the following example, where capital and lower
54//     letters denote different register file:
55//     b = copy A <-- cross-bank copy
56//     C = copy b <-- cross-bank copy
57//   =>
58//     b = copy A <-- cross-bank copy
59//     C = copy A <-- same-bank copy
60//
61//     E.g., for bitcast:
62//     b = bitcast A <-- cross-bank copy
63//     C = bitcast b <-- cross-bank copy
64//   =>
65//     b = bitcast A <-- cross-bank copy
66//     C = copy A    <-- same-bank copy
67//===----------------------------------------------------------------------===//
68
69#include "llvm/CodeGen/Passes.h"
70#include "llvm/ADT/DenseMap.h"
71#include "llvm/ADT/SmallPtrSet.h"
72#include "llvm/ADT/SmallSet.h"
73#include "llvm/ADT/Statistic.h"
74#include "llvm/CodeGen/MachineDominators.h"
75#include "llvm/CodeGen/MachineInstrBuilder.h"
76#include "llvm/CodeGen/MachineRegisterInfo.h"
77#include "llvm/Support/CommandLine.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Target/TargetInstrInfo.h"
80#include "llvm/Target/TargetRegisterInfo.h"
81#include "llvm/Target/TargetSubtargetInfo.h"
82#include <utility>
83using namespace llvm;
84
85#define DEBUG_TYPE "peephole-opt"
86
87// Optimize Extensions
88static cl::opt<bool>
89Aggressive("aggressive-ext-opt", cl::Hidden,
90           cl::desc("Aggressive extension optimization"));
91
92static cl::opt<bool>
93DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
94                cl::desc("Disable the peephole optimizer"));
95
96static cl::opt<bool>
97DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
98                  cl::desc("Disable advanced copy optimization"));
99
100STATISTIC(NumReuse,      "Number of extension results reused");
101STATISTIC(NumCmps,       "Number of compares eliminated");
102STATISTIC(NumImmFold,    "Number of move immediate folded");
103STATISTIC(NumLoadFold,   "Number of loads folded");
104STATISTIC(NumSelects,    "Number of selects optimized");
105STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
106STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
107
108namespace {
109  class PeepholeOptimizer : public MachineFunctionPass {
110    const TargetInstrInfo *TII;
111    const TargetRegisterInfo *TRI;
112    MachineRegisterInfo   *MRI;
113    MachineDominatorTree  *DT;  // Machine dominator tree
114
115  public:
116    static char ID; // Pass identification
117    PeepholeOptimizer() : MachineFunctionPass(ID) {
118      initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
119    }
120
121    bool runOnMachineFunction(MachineFunction &MF) override;
122
123    void getAnalysisUsage(AnalysisUsage &AU) const override {
124      AU.setPreservesCFG();
125      MachineFunctionPass::getAnalysisUsage(AU);
126      if (Aggressive) {
127        AU.addRequired<MachineDominatorTree>();
128        AU.addPreserved<MachineDominatorTree>();
129      }
130    }
131
132  private:
133    bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB);
134    bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
135                          SmallPtrSetImpl<MachineInstr*> &LocalMIs);
136    bool optimizeSelect(MachineInstr *MI,
137                        SmallPtrSetImpl<MachineInstr *> &LocalMIs);
138    bool optimizeCondBranch(MachineInstr *MI);
139    bool optimizeCopyOrBitcast(MachineInstr *MI);
140    bool optimizeCoalescableCopy(MachineInstr *MI);
141    bool optimizeUncoalescableCopy(MachineInstr *MI,
142                                   SmallPtrSetImpl<MachineInstr *> &LocalMIs);
143    bool findNextSource(unsigned &Reg, unsigned &SubReg);
144    bool isMoveImmediate(MachineInstr *MI,
145                         SmallSet<unsigned, 4> &ImmDefRegs,
146                         DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
147    bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
148                       SmallSet<unsigned, 4> &ImmDefRegs,
149                       DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
150    bool isLoadFoldable(MachineInstr *MI,
151                        SmallSet<unsigned, 16> &FoldAsLoadDefCandidates);
152
153    /// \brief Check whether \p MI is understood by the register coalescer
154    /// but may require some rewriting.
155    bool isCoalescableCopy(const MachineInstr &MI) {
156      // SubregToRegs are not interesting, because they are already register
157      // coalescer friendly.
158      return MI.isCopy() || (!DisableAdvCopyOpt &&
159                             (MI.isRegSequence() || MI.isInsertSubreg() ||
160                              MI.isExtractSubreg()));
161    }
162
163    /// \brief Check whether \p MI is a copy like instruction that is
164    /// not recognized by the register coalescer.
165    bool isUncoalescableCopy(const MachineInstr &MI) {
166      return MI.isBitcast() ||
167             (!DisableAdvCopyOpt &&
168              (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
169               MI.isExtractSubregLike()));
170    }
171  };
172
173  /// \brief Helper class to track the possible sources of a value defined by
174  /// a (chain of) copy related instructions.
175  /// Given a definition (instruction and definition index), this class
176  /// follows the use-def chain to find successive suitable sources.
177  /// The given source can be used to rewrite the definition into
178  /// def = COPY src.
179  ///
180  /// For instance, let us consider the following snippet:
181  /// v0 =
182  /// v2 = INSERT_SUBREG v1, v0, sub0
183  /// def = COPY v2.sub0
184  ///
185  /// Using a ValueTracker for def = COPY v2.sub0 will give the following
186  /// suitable sources:
187  /// v2.sub0 and v0.
188  /// Then, def can be rewritten into def = COPY v0.
189  class ValueTracker {
190  private:
191    /// The current point into the use-def chain.
192    const MachineInstr *Def;
193    /// The index of the definition in Def.
194    unsigned DefIdx;
195    /// The sub register index of the definition.
196    unsigned DefSubReg;
197    /// The register where the value can be found.
198    unsigned Reg;
199    /// Specifiy whether or not the value tracking looks through
200    /// complex instructions. When this is false, the value tracker
201    /// bails on everything that is not a copy or a bitcast.
202    ///
203    /// Note: This could have been implemented as a specialized version of
204    /// the ValueTracker class but that would have complicated the code of
205    /// the users of this class.
206    bool UseAdvancedTracking;
207    /// MachineRegisterInfo used to perform tracking.
208    const MachineRegisterInfo &MRI;
209    /// Optional TargetInstrInfo used to perform some complex
210    /// tracking.
211    const TargetInstrInfo *TII;
212
213    /// \brief Dispatcher to the right underlying implementation of
214    /// getNextSource.
215    bool getNextSourceImpl(unsigned &SrcReg, unsigned &SrcSubReg);
216    /// \brief Specialized version of getNextSource for Copy instructions.
217    bool getNextSourceFromCopy(unsigned &SrcReg, unsigned &SrcSubReg);
218    /// \brief Specialized version of getNextSource for Bitcast instructions.
219    bool getNextSourceFromBitcast(unsigned &SrcReg, unsigned &SrcSubReg);
220    /// \brief Specialized version of getNextSource for RegSequence
221    /// instructions.
222    bool getNextSourceFromRegSequence(unsigned &SrcReg, unsigned &SrcSubReg);
223    /// \brief Specialized version of getNextSource for InsertSubreg
224    /// instructions.
225    bool getNextSourceFromInsertSubreg(unsigned &SrcReg, unsigned &SrcSubReg);
226    /// \brief Specialized version of getNextSource for ExtractSubreg
227    /// instructions.
228    bool getNextSourceFromExtractSubreg(unsigned &SrcReg, unsigned &SrcSubReg);
229    /// \brief Specialized version of getNextSource for SubregToReg
230    /// instructions.
231    bool getNextSourceFromSubregToReg(unsigned &SrcReg, unsigned &SrcSubReg);
232
233  public:
234    /// \brief Create a ValueTracker instance for the value defined by \p Reg.
235    /// \p DefSubReg represents the sub register index the value tracker will
236    /// track. It does not need to match the sub register index used in the
237    /// definition of \p Reg.
238    /// \p UseAdvancedTracking specifies whether or not the value tracker looks
239    /// through complex instructions. By default (false), it handles only copy
240    /// and bitcast instructions.
241    /// If \p Reg is a physical register, a value tracker constructed with
242    /// this constructor will not find any alternative source.
243    /// Indeed, when \p Reg is a physical register that constructor does not
244    /// know which definition of \p Reg it should track.
245    /// Use the next constructor to track a physical register.
246    ValueTracker(unsigned Reg, unsigned DefSubReg,
247                 const MachineRegisterInfo &MRI,
248                 bool UseAdvancedTracking = false,
249                 const TargetInstrInfo *TII = nullptr)
250        : Def(nullptr), DefIdx(0), DefSubReg(DefSubReg), Reg(Reg),
251          UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) {
252      if (!TargetRegisterInfo::isPhysicalRegister(Reg)) {
253        Def = MRI.getVRegDef(Reg);
254        DefIdx = MRI.def_begin(Reg).getOperandNo();
255      }
256    }
257
258    /// \brief Create a ValueTracker instance for the value defined by
259    /// the pair \p MI, \p DefIdx.
260    /// Unlike the other constructor, the value tracker produced by this one
261    /// may be able to find a new source when the definition is a physical
262    /// register.
263    /// This could be useful to rewrite target specific instructions into
264    /// generic copy instructions.
265    ValueTracker(const MachineInstr &MI, unsigned DefIdx, unsigned DefSubReg,
266                 const MachineRegisterInfo &MRI,
267                 bool UseAdvancedTracking = false,
268                 const TargetInstrInfo *TII = nullptr)
269        : Def(&MI), DefIdx(DefIdx), DefSubReg(DefSubReg),
270          UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) {
271      assert(DefIdx < Def->getDesc().getNumDefs() &&
272             Def->getOperand(DefIdx).isReg() && "Invalid definition");
273      Reg = Def->getOperand(DefIdx).getReg();
274    }
275
276    /// \brief Following the use-def chain, get the next available source
277    /// for the tracked value.
278    /// When the returned value is not nullptr, \p SrcReg gives the register
279    /// that contain the tracked value.
280    /// \note The sub register index returned in \p SrcSubReg must be used
281    /// on \p SrcReg to access the actual value.
282    /// \return Unless the returned value is nullptr (i.e., no source found),
283    /// \p SrcReg gives the register of the next source used in the returned
284    /// instruction and \p SrcSubReg the sub-register index to be used on that
285    /// source to get the tracked value. When nullptr is returned, no
286    /// alternative source has been found.
287    const MachineInstr *getNextSource(unsigned &SrcReg, unsigned &SrcSubReg);
288
289    /// \brief Get the last register where the initial value can be found.
290    /// Initially this is the register of the definition.
291    /// Then, after each successful call to getNextSource, this is the
292    /// register of the last source.
293    unsigned getReg() const { return Reg; }
294  };
295}
296
297char PeepholeOptimizer::ID = 0;
298char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
299INITIALIZE_PASS_BEGIN(PeepholeOptimizer, "peephole-opts",
300                "Peephole Optimizations", false, false)
301INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
302INITIALIZE_PASS_END(PeepholeOptimizer, "peephole-opts",
303                "Peephole Optimizations", false, false)
304
305/// optimizeExtInstr - If instruction is a copy-like instruction, i.e. it reads
306/// a single register and writes a single register and it does not modify the
307/// source, and if the source value is preserved as a sub-register of the
308/// result, then replace all reachable uses of the source with the subreg of the
309/// result.
310///
311/// Do not generate an EXTRACT that is used only in a debug use, as this changes
312/// the code. Since this code does not currently share EXTRACTs, just ignore all
313/// debug uses.
314bool PeepholeOptimizer::
315optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
316                 SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
317  unsigned SrcReg, DstReg, SubIdx;
318  if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx))
319    return false;
320
321  if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
322      TargetRegisterInfo::isPhysicalRegister(SrcReg))
323    return false;
324
325  if (MRI->hasOneNonDBGUse(SrcReg))
326    // No other uses.
327    return false;
328
329  // Ensure DstReg can get a register class that actually supports
330  // sub-registers. Don't change the class until we commit.
331  const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
332  DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
333  if (!DstRC)
334    return false;
335
336  // The ext instr may be operating on a sub-register of SrcReg as well.
337  // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
338  // register.
339  // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
340  // SrcReg:SubIdx should be replaced.
341  bool UseSrcSubIdx =
342      TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
343
344  // The source has other uses. See if we can replace the other uses with use of
345  // the result of the extension.
346  SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
347  for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
348    ReachedBBs.insert(UI.getParent());
349
350  // Uses that are in the same BB of uses of the result of the instruction.
351  SmallVector<MachineOperand*, 8> Uses;
352
353  // Uses that the result of the instruction can reach.
354  SmallVector<MachineOperand*, 8> ExtendedUses;
355
356  bool ExtendLife = true;
357  for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
358    MachineInstr *UseMI = UseMO.getParent();
359    if (UseMI == MI)
360      continue;
361
362    if (UseMI->isPHI()) {
363      ExtendLife = false;
364      continue;
365    }
366
367    // Only accept uses of SrcReg:SubIdx.
368    if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
369      continue;
370
371    // It's an error to translate this:
372    //
373    //    %reg1025 = <sext> %reg1024
374    //     ...
375    //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
376    //
377    // into this:
378    //
379    //    %reg1025 = <sext> %reg1024
380    //     ...
381    //    %reg1027 = COPY %reg1025:4
382    //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
383    //
384    // The problem here is that SUBREG_TO_REG is there to assert that an
385    // implicit zext occurs. It doesn't insert a zext instruction. If we allow
386    // the COPY here, it will give us the value after the <sext>, not the
387    // original value of %reg1024 before <sext>.
388    if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
389      continue;
390
391    MachineBasicBlock *UseMBB = UseMI->getParent();
392    if (UseMBB == MBB) {
393      // Local uses that come after the extension.
394      if (!LocalMIs.count(UseMI))
395        Uses.push_back(&UseMO);
396    } else if (ReachedBBs.count(UseMBB)) {
397      // Non-local uses where the result of the extension is used. Always
398      // replace these unless it's a PHI.
399      Uses.push_back(&UseMO);
400    } else if (Aggressive && DT->dominates(MBB, UseMBB)) {
401      // We may want to extend the live range of the extension result in order
402      // to replace these uses.
403      ExtendedUses.push_back(&UseMO);
404    } else {
405      // Both will be live out of the def MBB anyway. Don't extend live range of
406      // the extension result.
407      ExtendLife = false;
408      break;
409    }
410  }
411
412  if (ExtendLife && !ExtendedUses.empty())
413    // Extend the liveness of the extension result.
414    std::copy(ExtendedUses.begin(), ExtendedUses.end(),
415              std::back_inserter(Uses));
416
417  // Now replace all uses.
418  bool Changed = false;
419  if (!Uses.empty()) {
420    SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
421
422    // Look for PHI uses of the extended result, we don't want to extend the
423    // liveness of a PHI input. It breaks all kinds of assumptions down
424    // stream. A PHI use is expected to be the kill of its source values.
425    for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
426      if (UI.isPHI())
427        PHIBBs.insert(UI.getParent());
428
429    const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
430    for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
431      MachineOperand *UseMO = Uses[i];
432      MachineInstr *UseMI = UseMO->getParent();
433      MachineBasicBlock *UseMBB = UseMI->getParent();
434      if (PHIBBs.count(UseMBB))
435        continue;
436
437      // About to add uses of DstReg, clear DstReg's kill flags.
438      if (!Changed) {
439        MRI->clearKillFlags(DstReg);
440        MRI->constrainRegClass(DstReg, DstRC);
441      }
442
443      unsigned NewVR = MRI->createVirtualRegister(RC);
444      MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
445                                   TII->get(TargetOpcode::COPY), NewVR)
446        .addReg(DstReg, 0, SubIdx);
447      // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
448      if (UseSrcSubIdx) {
449        Copy->getOperand(0).setSubReg(SubIdx);
450        Copy->getOperand(0).setIsUndef();
451      }
452      UseMO->setReg(NewVR);
453      ++NumReuse;
454      Changed = true;
455    }
456  }
457
458  return Changed;
459}
460
461/// optimizeCmpInstr - If the instruction is a compare and the previous
462/// instruction it's comparing against all ready sets (or could be modified to
463/// set) the same flag as the compare, then we can remove the comparison and use
464/// the flag from the previous instruction.
465bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI,
466                                         MachineBasicBlock *MBB) {
467  // If this instruction is a comparison against zero and isn't comparing a
468  // physical register, we can try to optimize it.
469  unsigned SrcReg, SrcReg2;
470  int CmpMask, CmpValue;
471  if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
472      TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
473      (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2)))
474    return false;
475
476  // Attempt to optimize the comparison instruction.
477  if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
478    ++NumCmps;
479    return true;
480  }
481
482  return false;
483}
484
485/// Optimize a select instruction.
486bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI,
487                            SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
488  unsigned TrueOp = 0;
489  unsigned FalseOp = 0;
490  bool Optimizable = false;
491  SmallVector<MachineOperand, 4> Cond;
492  if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
493    return false;
494  if (!Optimizable)
495    return false;
496  if (!TII->optimizeSelect(MI, LocalMIs))
497    return false;
498  MI->eraseFromParent();
499  ++NumSelects;
500  return true;
501}
502
503/// \brief Check if a simpler conditional branch can be
504// generated
505bool PeepholeOptimizer::optimizeCondBranch(MachineInstr *MI) {
506  return TII->optimizeCondBranch(MI);
507}
508
509/// \brief Check if the registers defined by the pair (RegisterClass, SubReg)
510/// share the same register file.
511static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
512                                  const TargetRegisterClass *DefRC,
513                                  unsigned DefSubReg,
514                                  const TargetRegisterClass *SrcRC,
515                                  unsigned SrcSubReg) {
516  // Same register class.
517  if (DefRC == SrcRC)
518    return true;
519
520  // Both operands are sub registers. Check if they share a register class.
521  unsigned SrcIdx, DefIdx;
522  if (SrcSubReg && DefSubReg)
523    return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
524                                      SrcIdx, DefIdx) != nullptr;
525  // At most one of the register is a sub register, make it Src to avoid
526  // duplicating the test.
527  if (!SrcSubReg) {
528    std::swap(DefSubReg, SrcSubReg);
529    std::swap(DefRC, SrcRC);
530  }
531
532  // One of the register is a sub register, check if we can get a superclass.
533  if (SrcSubReg)
534    return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
535  // Plain copy.
536  return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
537}
538
539/// \brief Try to find the next source that share the same register file
540/// for the value defined by \p Reg and \p SubReg.
541/// When true is returned, \p Reg and \p SubReg are updated with the
542/// register number and sub-register index of the new source.
543/// \return False if no alternative sources are available. True otherwise.
544bool PeepholeOptimizer::findNextSource(unsigned &Reg, unsigned &SubReg) {
545  // Do not try to find a new source for a physical register.
546  // So far we do not have any motivating example for doing that.
547  // Thus, instead of maintaining untested code, we will revisit that if
548  // that changes at some point.
549  if (TargetRegisterInfo::isPhysicalRegister(Reg))
550    return false;
551
552  const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
553  unsigned DefSubReg = SubReg;
554
555  unsigned Src;
556  unsigned SrcSubReg;
557  bool ShouldRewrite = false;
558
559  // Follow the chain of copies until we reach the top of the use-def chain
560  // or find a more suitable source.
561  ValueTracker ValTracker(Reg, DefSubReg, *MRI, !DisableAdvCopyOpt, TII);
562  do {
563    unsigned CopySrcReg, CopySrcSubReg;
564    if (!ValTracker.getNextSource(CopySrcReg, CopySrcSubReg))
565      break;
566    Src = CopySrcReg;
567    SrcSubReg = CopySrcSubReg;
568
569    // Do not extend the live-ranges of physical registers as they add
570    // constraints to the register allocator.
571    // Moreover, if we want to extend the live-range of a physical register,
572    // unlike SSA virtual register, we will have to check that they are not
573    // redefine before the related use.
574    if (TargetRegisterInfo::isPhysicalRegister(Src))
575      break;
576
577    const TargetRegisterClass *SrcRC = MRI->getRegClass(Src);
578
579    // If this source does not incur a cross register bank copy, use it.
580    ShouldRewrite = shareSameRegisterFile(*TRI, DefRC, DefSubReg, SrcRC,
581                                          SrcSubReg);
582  } while (!ShouldRewrite);
583
584  // If we did not find a more suitable source, there is nothing to optimize.
585  if (!ShouldRewrite || Src == Reg)
586    return false;
587
588  Reg = Src;
589  SubReg = SrcSubReg;
590  return true;
591}
592
593namespace {
594/// \brief Helper class to rewrite the arguments of a copy-like instruction.
595class CopyRewriter {
596protected:
597  /// The copy-like instruction.
598  MachineInstr &CopyLike;
599  /// The index of the source being rewritten.
600  unsigned CurrentSrcIdx;
601
602public:
603  CopyRewriter(MachineInstr &MI) : CopyLike(MI), CurrentSrcIdx(0) {}
604
605  virtual ~CopyRewriter() {}
606
607  /// \brief Get the next rewritable source (SrcReg, SrcSubReg) and
608  /// the related value that it affects (TrackReg, TrackSubReg).
609  /// A source is considered rewritable if its register class and the
610  /// register class of the related TrackReg may not be register
611  /// coalescer friendly. In other words, given a copy-like instruction
612  /// not all the arguments may be returned at rewritable source, since
613  /// some arguments are none to be register coalescer friendly.
614  ///
615  /// Each call of this method moves the current source to the next
616  /// rewritable source.
617  /// For instance, let CopyLike be the instruction to rewrite.
618  /// CopyLike has one definition and one source:
619  /// dst.dstSubIdx = CopyLike src.srcSubIdx.
620  ///
621  /// The first call will give the first rewritable source, i.e.,
622  /// the only source this instruction has:
623  /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
624  /// This source defines the whole definition, i.e.,
625  /// (TrackReg, TrackSubReg) = (dst, dstSubIdx).
626  ///
627  /// The second and subsequent calls will return false, has there is only one
628  /// rewritable source.
629  ///
630  /// \return True if a rewritable source has been found, false otherwise.
631  /// The output arguments are valid if and only if true is returned.
632  virtual bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
633                                       unsigned &TrackReg,
634                                       unsigned &TrackSubReg) {
635    // If CurrentSrcIdx == 1, this means this function has already been
636    // called once. CopyLike has one defintiion and one argument, thus,
637    // there is nothing else to rewrite.
638    if (!CopyLike.isCopy() || CurrentSrcIdx == 1)
639      return false;
640    // This is the first call to getNextRewritableSource.
641    // Move the CurrentSrcIdx to remember that we made that call.
642    CurrentSrcIdx = 1;
643    // The rewritable source is the argument.
644    const MachineOperand &MOSrc = CopyLike.getOperand(1);
645    SrcReg = MOSrc.getReg();
646    SrcSubReg = MOSrc.getSubReg();
647    // What we track are the alternative sources of the definition.
648    const MachineOperand &MODef = CopyLike.getOperand(0);
649    TrackReg = MODef.getReg();
650    TrackSubReg = MODef.getSubReg();
651    return true;
652  }
653
654  /// \brief Rewrite the current source with \p NewReg and \p NewSubReg
655  /// if possible.
656  /// \return True if the rewritting was possible, false otherwise.
657  virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) {
658    if (!CopyLike.isCopy() || CurrentSrcIdx != 1)
659      return false;
660    MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
661    MOSrc.setReg(NewReg);
662    MOSrc.setSubReg(NewSubReg);
663    return true;
664  }
665};
666
667/// \brief Specialized rewriter for INSERT_SUBREG instruction.
668class InsertSubregRewriter : public CopyRewriter {
669public:
670  InsertSubregRewriter(MachineInstr &MI) : CopyRewriter(MI) {
671    assert(MI.isInsertSubreg() && "Invalid instruction");
672  }
673
674  /// \brief See CopyRewriter::getNextRewritableSource.
675  /// Here CopyLike has the following form:
676  /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
677  /// Src1 has the same register class has dst, hence, there is
678  /// nothing to rewrite.
679  /// Src2.src2SubIdx, may not be register coalescer friendly.
680  /// Therefore, the first call to this method returns:
681  /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
682  /// (TrackReg, TrackSubReg) = (dst, subIdx).
683  ///
684  /// Subsequence calls will return false.
685  bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
686                               unsigned &TrackReg,
687                               unsigned &TrackSubReg) override {
688    // If we already get the only source we can rewrite, return false.
689    if (CurrentSrcIdx == 2)
690      return false;
691    // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
692    CurrentSrcIdx = 2;
693    const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
694    SrcReg = MOInsertedReg.getReg();
695    SrcSubReg = MOInsertedReg.getSubReg();
696    const MachineOperand &MODef = CopyLike.getOperand(0);
697
698    // We want to track something that is compatible with the
699    // partial definition.
700    TrackReg = MODef.getReg();
701    if (MODef.getSubReg())
702      // Bails if we have to compose sub-register indices.
703      return false;
704    TrackSubReg = (unsigned)CopyLike.getOperand(3).getImm();
705    return true;
706  }
707  bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
708    if (CurrentSrcIdx != 2)
709      return false;
710    // We are rewriting the inserted reg.
711    MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
712    MO.setReg(NewReg);
713    MO.setSubReg(NewSubReg);
714    return true;
715  }
716};
717
718/// \brief Specialized rewriter for EXTRACT_SUBREG instruction.
719class ExtractSubregRewriter : public CopyRewriter {
720  const TargetInstrInfo &TII;
721
722public:
723  ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
724      : CopyRewriter(MI), TII(TII) {
725    assert(MI.isExtractSubreg() && "Invalid instruction");
726  }
727
728  /// \brief See CopyRewriter::getNextRewritableSource.
729  /// Here CopyLike has the following form:
730  /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
731  /// There is only one rewritable source: Src.subIdx,
732  /// which defines dst.dstSubIdx.
733  bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
734                               unsigned &TrackReg,
735                               unsigned &TrackSubReg) override {
736    // If we already get the only source we can rewrite, return false.
737    if (CurrentSrcIdx == 1)
738      return false;
739    // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
740    CurrentSrcIdx = 1;
741    const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
742    SrcReg = MOExtractedReg.getReg();
743    // If we have to compose sub-register indices, bails out.
744    if (MOExtractedReg.getSubReg())
745      return false;
746
747    SrcSubReg = CopyLike.getOperand(2).getImm();
748
749    // We want to track something that is compatible with the definition.
750    const MachineOperand &MODef = CopyLike.getOperand(0);
751    TrackReg = MODef.getReg();
752    TrackSubReg = MODef.getSubReg();
753    return true;
754  }
755
756  bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
757    // The only source we can rewrite is the input register.
758    if (CurrentSrcIdx != 1)
759      return false;
760
761    CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
762
763    // If we find a source that does not require to extract something,
764    // rewrite the operation with a copy.
765    if (!NewSubReg) {
766      // Move the current index to an invalid position.
767      // We do not want another call to this method to be able
768      // to do any change.
769      CurrentSrcIdx = -1;
770      // Rewrite the operation as a COPY.
771      // Get rid of the sub-register index.
772      CopyLike.RemoveOperand(2);
773      // Morph the operation into a COPY.
774      CopyLike.setDesc(TII.get(TargetOpcode::COPY));
775      return true;
776    }
777    CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
778    return true;
779  }
780};
781
782/// \brief Specialized rewriter for REG_SEQUENCE instruction.
783class RegSequenceRewriter : public CopyRewriter {
784public:
785  RegSequenceRewriter(MachineInstr &MI) : CopyRewriter(MI) {
786    assert(MI.isRegSequence() && "Invalid instruction");
787  }
788
789  /// \brief See CopyRewriter::getNextRewritableSource.
790  /// Here CopyLike has the following form:
791  /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
792  /// Each call will return a different source, walking all the available
793  /// source.
794  ///
795  /// The first call returns:
796  /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
797  /// (TrackReg, TrackSubReg) = (dst, subIdx1).
798  ///
799  /// The second call returns:
800  /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
801  /// (TrackReg, TrackSubReg) = (dst, subIdx2).
802  ///
803  /// And so on, until all the sources have been traversed, then
804  /// it returns false.
805  bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
806                               unsigned &TrackReg,
807                               unsigned &TrackSubReg) override {
808    // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
809
810    // If this is the first call, move to the first argument.
811    if (CurrentSrcIdx == 0) {
812      CurrentSrcIdx = 1;
813    } else {
814      // Otherwise, move to the next argument and check that it is valid.
815      CurrentSrcIdx += 2;
816      if (CurrentSrcIdx >= CopyLike.getNumOperands())
817        return false;
818    }
819    const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
820    SrcReg = MOInsertedReg.getReg();
821    // If we have to compose sub-register indices, bails out.
822    if ((SrcSubReg = MOInsertedReg.getSubReg()))
823      return false;
824
825    // We want to track something that is compatible with the related
826    // partial definition.
827    TrackSubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
828
829    const MachineOperand &MODef = CopyLike.getOperand(0);
830    TrackReg = MODef.getReg();
831    // If we have to compose sub-registers, bails.
832    return MODef.getSubReg() == 0;
833  }
834
835  bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
836    // We cannot rewrite out of bound operands.
837    // Moreover, rewritable sources are at odd positions.
838    if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
839      return false;
840
841    MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
842    MO.setReg(NewReg);
843    MO.setSubReg(NewSubReg);
844    return true;
845  }
846};
847} // End namespace.
848
849/// \brief Get the appropriated CopyRewriter for \p MI.
850/// \return A pointer to a dynamically allocated CopyRewriter or nullptr
851/// if no rewriter works for \p MI.
852static CopyRewriter *getCopyRewriter(MachineInstr &MI,
853                                     const TargetInstrInfo &TII) {
854  switch (MI.getOpcode()) {
855  default:
856    return nullptr;
857  case TargetOpcode::COPY:
858    return new CopyRewriter(MI);
859  case TargetOpcode::INSERT_SUBREG:
860    return new InsertSubregRewriter(MI);
861  case TargetOpcode::EXTRACT_SUBREG:
862    return new ExtractSubregRewriter(MI, TII);
863  case TargetOpcode::REG_SEQUENCE:
864    return new RegSequenceRewriter(MI);
865  }
866  llvm_unreachable(nullptr);
867}
868
869/// \brief Optimize generic copy instructions to avoid cross
870/// register bank copy. The optimization looks through a chain of
871/// copies and tries to find a source that has a compatible register
872/// class.
873/// Two register classes are considered to be compatible if they share
874/// the same register bank.
875/// New copies issued by this optimization are register allocator
876/// friendly. This optimization does not remove any copy as it may
877/// overconstraint the register allocator, but replaces some operands
878/// when possible.
879/// \pre isCoalescableCopy(*MI) is true.
880/// \return True, when \p MI has been rewritten. False otherwise.
881bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr *MI) {
882  assert(MI && isCoalescableCopy(*MI) && "Invalid argument");
883  assert(MI->getDesc().getNumDefs() == 1 &&
884         "Coalescer can understand multiple defs?!");
885  const MachineOperand &MODef = MI->getOperand(0);
886  // Do not rewrite physical definitions.
887  if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg()))
888    return false;
889
890  bool Changed = false;
891  // Get the right rewriter for the current copy.
892  std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII));
893  // If none exists, bails out.
894  if (!CpyRewriter)
895    return false;
896  // Rewrite each rewritable source.
897  unsigned SrcReg, SrcSubReg, TrackReg, TrackSubReg;
898  while (CpyRewriter->getNextRewritableSource(SrcReg, SrcSubReg, TrackReg,
899                                              TrackSubReg)) {
900    unsigned NewSrc = TrackReg;
901    unsigned NewSubReg = TrackSubReg;
902    // Try to find a more suitable source.
903    // If we failed to do so, or get the actual source,
904    // move to the next source.
905    if (!findNextSource(NewSrc, NewSubReg) || SrcReg == NewSrc)
906      continue;
907    // Rewrite source.
908    if (CpyRewriter->RewriteCurrentSource(NewSrc, NewSubReg)) {
909      // We may have extended the live-range of NewSrc, account for that.
910      MRI->clearKillFlags(NewSrc);
911      Changed = true;
912    }
913  }
914  // TODO: We could have a clean-up method to tidy the instruction.
915  // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
916  // => v0 = COPY v1
917  // Currently we haven't seen motivating example for that and we
918  // want to avoid untested code.
919  NumRewrittenCopies += Changed == true;
920  return Changed;
921}
922
923/// \brief Optimize copy-like instructions to create
924/// register coalescer friendly instruction.
925/// The optimization tries to kill-off the \p MI by looking
926/// through a chain of copies to find a source that has a compatible
927/// register class.
928/// If such a source is found, it replace \p MI by a generic COPY
929/// operation.
930/// \pre isUncoalescableCopy(*MI) is true.
931/// \return True, when \p MI has been optimized. In that case, \p MI has
932/// been removed from its parent.
933/// All COPY instructions created, are inserted in \p LocalMIs.
934bool PeepholeOptimizer::optimizeUncoalescableCopy(
935    MachineInstr *MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
936  assert(MI && isUncoalescableCopy(*MI) && "Invalid argument");
937
938  // Check if we can rewrite all the values defined by this instruction.
939  SmallVector<
940      std::pair<TargetInstrInfo::RegSubRegPair, TargetInstrInfo::RegSubRegPair>,
941      4> RewritePairs;
942  for (const MachineOperand &MODef : MI->defs()) {
943    if (MODef.isDead())
944      // We can ignore those.
945      continue;
946
947    // If a physical register is here, this is probably for a good reason.
948    // Do not rewrite that.
949    if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg()))
950      return false;
951
952    // If we do not know how to rewrite this definition, there is no point
953    // in trying to kill this instruction.
954    TargetInstrInfo::RegSubRegPair Def(MODef.getReg(), MODef.getSubReg());
955    TargetInstrInfo::RegSubRegPair Src = Def;
956    if (!findNextSource(Src.Reg, Src.SubReg))
957      return false;
958    RewritePairs.push_back(std::make_pair(Def, Src));
959  }
960  // The change is possible for all defs, do it.
961  for (const auto &PairDefSrc : RewritePairs) {
962    const auto &Def = PairDefSrc.first;
963    const auto &Src = PairDefSrc.second;
964    // Rewrite the "copy" in a way the register coalescer understands.
965    assert(!TargetRegisterInfo::isPhysicalRegister(Def.Reg) &&
966           "We do not rewrite physical registers");
967    const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
968    unsigned NewVR = MRI->createVirtualRegister(DefRC);
969    MachineInstr *NewCopy = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
970                                    TII->get(TargetOpcode::COPY),
971                                    NewVR).addReg(Src.Reg, 0, Src.SubReg);
972    NewCopy->getOperand(0).setSubReg(Def.SubReg);
973    if (Def.SubReg)
974      NewCopy->getOperand(0).setIsUndef();
975    LocalMIs.insert(NewCopy);
976    MRI->replaceRegWith(Def.Reg, NewVR);
977    MRI->clearKillFlags(NewVR);
978    // We extended the lifetime of Src.
979    // Clear the kill flags to account for that.
980    MRI->clearKillFlags(Src.Reg);
981  }
982  // MI is now dead.
983  MI->eraseFromParent();
984  ++NumUncoalescableCopies;
985  return true;
986}
987
988/// isLoadFoldable - Check whether MI is a candidate for folding into a later
989/// instruction. We only fold loads to virtual registers and the virtual
990/// register defined has a single use.
991bool PeepholeOptimizer::isLoadFoldable(
992                              MachineInstr *MI,
993                              SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) {
994  if (!MI->canFoldAsLoad() || !MI->mayLoad())
995    return false;
996  const MCInstrDesc &MCID = MI->getDesc();
997  if (MCID.getNumDefs() != 1)
998    return false;
999
1000  unsigned Reg = MI->getOperand(0).getReg();
1001  // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting
1002  // loads. It should be checked when processing uses of the load, since
1003  // uses can be removed during peephole.
1004  if (!MI->getOperand(0).getSubReg() &&
1005      TargetRegisterInfo::isVirtualRegister(Reg) &&
1006      MRI->hasOneNonDBGUse(Reg)) {
1007    FoldAsLoadDefCandidates.insert(Reg);
1008    return true;
1009  }
1010  return false;
1011}
1012
1013bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI,
1014                                        SmallSet<unsigned, 4> &ImmDefRegs,
1015                                 DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
1016  const MCInstrDesc &MCID = MI->getDesc();
1017  if (!MI->isMoveImmediate())
1018    return false;
1019  if (MCID.getNumDefs() != 1)
1020    return false;
1021  unsigned Reg = MI->getOperand(0).getReg();
1022  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1023    ImmDefMIs.insert(std::make_pair(Reg, MI));
1024    ImmDefRegs.insert(Reg);
1025    return true;
1026  }
1027
1028  return false;
1029}
1030
1031/// foldImmediate - Try folding register operands that are defined by move
1032/// immediate instructions, i.e. a trivial constant folding optimization, if
1033/// and only if the def and use are in the same BB.
1034bool PeepholeOptimizer::foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
1035                                      SmallSet<unsigned, 4> &ImmDefRegs,
1036                                 DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
1037  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
1038    MachineOperand &MO = MI->getOperand(i);
1039    if (!MO.isReg() || MO.isDef())
1040      continue;
1041    unsigned Reg = MO.getReg();
1042    if (!TargetRegisterInfo::isVirtualRegister(Reg))
1043      continue;
1044    if (ImmDefRegs.count(Reg) == 0)
1045      continue;
1046    DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
1047    assert(II != ImmDefMIs.end());
1048    if (TII->FoldImmediate(MI, II->second, Reg, MRI)) {
1049      ++NumImmFold;
1050      return true;
1051    }
1052  }
1053  return false;
1054}
1055
1056bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
1057  if (skipOptnoneFunction(*MF.getFunction()))
1058    return false;
1059
1060  DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
1061  DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
1062
1063  if (DisablePeephole)
1064    return false;
1065
1066  TII = MF.getSubtarget().getInstrInfo();
1067  TRI = MF.getSubtarget().getRegisterInfo();
1068  MRI = &MF.getRegInfo();
1069  DT  = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
1070
1071  bool Changed = false;
1072
1073  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
1074    MachineBasicBlock *MBB = &*I;
1075
1076    bool SeenMoveImm = false;
1077
1078    // During this forward scan, at some point it needs to answer the question
1079    // "given a pointer to an MI in the current BB, is it located before or
1080    // after the current instruction".
1081    // To perform this, the following set keeps track of the MIs already seen
1082    // during the scan, if a MI is not in the set, it is assumed to be located
1083    // after. Newly created MIs have to be inserted in the set as well.
1084    SmallPtrSet<MachineInstr*, 16> LocalMIs;
1085    SmallSet<unsigned, 4> ImmDefRegs;
1086    DenseMap<unsigned, MachineInstr*> ImmDefMIs;
1087    SmallSet<unsigned, 16> FoldAsLoadDefCandidates;
1088
1089    for (MachineBasicBlock::iterator
1090           MII = I->begin(), MIE = I->end(); MII != MIE; ) {
1091      MachineInstr *MI = &*MII;
1092      // We may be erasing MI below, increment MII now.
1093      ++MII;
1094      LocalMIs.insert(MI);
1095
1096      // Skip debug values. They should not affect this peephole optimization.
1097      if (MI->isDebugValue())
1098          continue;
1099
1100      // If there exists an instruction which belongs to the following
1101      // categories, we will discard the load candidates.
1102      if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() ||
1103          MI->isKill() || MI->isInlineAsm() ||
1104          MI->hasUnmodeledSideEffects()) {
1105        FoldAsLoadDefCandidates.clear();
1106        continue;
1107      }
1108      if (MI->mayStore() || MI->isCall())
1109        FoldAsLoadDefCandidates.clear();
1110
1111      if ((isUncoalescableCopy(*MI) &&
1112           optimizeUncoalescableCopy(MI, LocalMIs)) ||
1113          (MI->isCompare() && optimizeCmpInstr(MI, MBB)) ||
1114          (MI->isSelect() && optimizeSelect(MI, LocalMIs))) {
1115        // MI is deleted.
1116        LocalMIs.erase(MI);
1117        Changed = true;
1118        continue;
1119      }
1120
1121      if (MI->isConditionalBranch() && optimizeCondBranch(MI)) {
1122        Changed = true;
1123        continue;
1124      }
1125
1126      if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(MI)) {
1127        // MI is just rewritten.
1128        Changed = true;
1129        continue;
1130      }
1131
1132      if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) {
1133        SeenMoveImm = true;
1134      } else {
1135        Changed |= optimizeExtInstr(MI, MBB, LocalMIs);
1136        // optimizeExtInstr might have created new instructions after MI
1137        // and before the already incremented MII. Adjust MII so that the
1138        // next iteration sees the new instructions.
1139        MII = MI;
1140        ++MII;
1141        if (SeenMoveImm)
1142          Changed |= foldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs);
1143      }
1144
1145      // Check whether MI is a load candidate for folding into a later
1146      // instruction. If MI is not a candidate, check whether we can fold an
1147      // earlier load into MI.
1148      if (!isLoadFoldable(MI, FoldAsLoadDefCandidates) &&
1149          !FoldAsLoadDefCandidates.empty()) {
1150        const MCInstrDesc &MIDesc = MI->getDesc();
1151        for (unsigned i = MIDesc.getNumDefs(); i != MIDesc.getNumOperands();
1152             ++i) {
1153          const MachineOperand &MOp = MI->getOperand(i);
1154          if (!MOp.isReg())
1155            continue;
1156          unsigned FoldAsLoadDefReg = MOp.getReg();
1157          if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
1158            // We need to fold load after optimizeCmpInstr, since
1159            // optimizeCmpInstr can enable folding by converting SUB to CMP.
1160            // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
1161            // we need it for markUsesInDebugValueAsUndef().
1162            unsigned FoldedReg = FoldAsLoadDefReg;
1163            MachineInstr *DefMI = nullptr;
1164            MachineInstr *FoldMI = TII->optimizeLoadInstr(MI, MRI,
1165                                                          FoldAsLoadDefReg,
1166                                                          DefMI);
1167            if (FoldMI) {
1168              // Update LocalMIs since we replaced MI with FoldMI and deleted
1169              // DefMI.
1170              DEBUG(dbgs() << "Replacing: " << *MI);
1171              DEBUG(dbgs() << "     With: " << *FoldMI);
1172              LocalMIs.erase(MI);
1173              LocalMIs.erase(DefMI);
1174              LocalMIs.insert(FoldMI);
1175              MI->eraseFromParent();
1176              DefMI->eraseFromParent();
1177              MRI->markUsesInDebugValueAsUndef(FoldedReg);
1178              FoldAsLoadDefCandidates.erase(FoldedReg);
1179              ++NumLoadFold;
1180              // MI is replaced with FoldMI.
1181              Changed = true;
1182              break;
1183            }
1184          }
1185        }
1186      }
1187    }
1188  }
1189
1190  return Changed;
1191}
1192
1193bool ValueTracker::getNextSourceFromCopy(unsigned &SrcReg,
1194                                         unsigned &SrcSubReg) {
1195  assert(Def->isCopy() && "Invalid definition");
1196  // Copy instruction are supposed to be: Def = Src.
1197  // If someone breaks this assumption, bad things will happen everywhere.
1198  assert(Def->getNumOperands() == 2 && "Invalid number of operands");
1199
1200  if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
1201    // If we look for a different subreg, it means we want a subreg of src.
1202    // Bails as we do not support composing subreg yet.
1203    return false;
1204  // Otherwise, we want the whole source.
1205  const MachineOperand &Src = Def->getOperand(1);
1206  SrcReg = Src.getReg();
1207  SrcSubReg = Src.getSubReg();
1208  return true;
1209}
1210
1211bool ValueTracker::getNextSourceFromBitcast(unsigned &SrcReg,
1212                                            unsigned &SrcSubReg) {
1213  assert(Def->isBitcast() && "Invalid definition");
1214
1215  // Bail if there are effects that a plain copy will not expose.
1216  if (Def->hasUnmodeledSideEffects())
1217    return false;
1218
1219  // Bitcasts with more than one def are not supported.
1220  if (Def->getDesc().getNumDefs() != 1)
1221    return false;
1222  if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
1223    // If we look for a different subreg, it means we want a subreg of the src.
1224    // Bails as we do not support composing subreg yet.
1225    return false;
1226
1227  unsigned SrcIdx = Def->getNumOperands();
1228  for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
1229       ++OpIdx) {
1230    const MachineOperand &MO = Def->getOperand(OpIdx);
1231    if (!MO.isReg() || !MO.getReg())
1232      continue;
1233    assert(!MO.isDef() && "We should have skipped all the definitions by now");
1234    if (SrcIdx != EndOpIdx)
1235      // Multiple sources?
1236      return false;
1237    SrcIdx = OpIdx;
1238  }
1239  const MachineOperand &Src = Def->getOperand(SrcIdx);
1240  SrcReg = Src.getReg();
1241  SrcSubReg = Src.getSubReg();
1242  return true;
1243}
1244
1245bool ValueTracker::getNextSourceFromRegSequence(unsigned &SrcReg,
1246                                                unsigned &SrcSubReg) {
1247  assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
1248         "Invalid definition");
1249
1250  if (Def->getOperand(DefIdx).getSubReg())
1251    // If we are composing subreg, bails out.
1252    // The case we are checking is Def.<subreg> = REG_SEQUENCE.
1253    // This should almost never happen as the SSA property is tracked at
1254    // the register level (as opposed to the subreg level).
1255    // I.e.,
1256    // Def.sub0 =
1257    // Def.sub1 =
1258    // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
1259    // Def. Thus, it must not be generated.
1260    // However, some code could theoretically generates a single
1261    // Def.sub0 (i.e, not defining the other subregs) and we would
1262    // have this case.
1263    // If we can ascertain (or force) that this never happens, we could
1264    // turn that into an assertion.
1265    return false;
1266
1267  if (!TII)
1268    // We could handle the REG_SEQUENCE here, but we do not want to
1269    // duplicate the code from the generic TII.
1270    return false;
1271
1272  SmallVector<TargetInstrInfo::RegSubRegPairAndIdx, 8> RegSeqInputRegs;
1273  if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
1274    return false;
1275
1276  // We are looking at:
1277  // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1278  // Check if one of the operand defines the subreg we are interested in.
1279  for (auto &RegSeqInput : RegSeqInputRegs) {
1280    if (RegSeqInput.SubIdx == DefSubReg) {
1281      if (RegSeqInput.SubReg)
1282        // Bails if we have to compose sub registers.
1283        return false;
1284
1285      SrcReg = RegSeqInput.Reg;
1286      SrcSubReg = RegSeqInput.SubReg;
1287      return true;
1288    }
1289  }
1290
1291  // If the subreg we are tracking is super-defined by another subreg,
1292  // we could follow this value. However, this would require to compose
1293  // the subreg and we do not do that for now.
1294  return false;
1295}
1296
1297bool ValueTracker::getNextSourceFromInsertSubreg(unsigned &SrcReg,
1298                                                 unsigned &SrcSubReg) {
1299  assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
1300         "Invalid definition");
1301
1302  if (Def->getOperand(DefIdx).getSubReg())
1303    // If we are composing subreg, bails out.
1304    // Same remark as getNextSourceFromRegSequence.
1305    // I.e., this may be turned into an assert.
1306    return false;
1307
1308  if (!TII)
1309    // We could handle the REG_SEQUENCE here, but we do not want to
1310    // duplicate the code from the generic TII.
1311    return false;
1312
1313  TargetInstrInfo::RegSubRegPair BaseReg;
1314  TargetInstrInfo::RegSubRegPairAndIdx InsertedReg;
1315  if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
1316    return false;
1317
1318  // We are looking at:
1319  // Def = INSERT_SUBREG v0, v1, sub1
1320  // There are two cases:
1321  // 1. DefSubReg == sub1, get v1.
1322  // 2. DefSubReg != sub1, the value may be available through v0.
1323
1324  // #1 Check if the inserted register matches the required sub index.
1325  if (InsertedReg.SubIdx == DefSubReg) {
1326    SrcReg = InsertedReg.Reg;
1327    SrcSubReg = InsertedReg.SubReg;
1328    return true;
1329  }
1330  // #2 Otherwise, if the sub register we are looking for is not partial
1331  // defined by the inserted element, we can look through the main
1332  // register (v0).
1333  const MachineOperand &MODef = Def->getOperand(DefIdx);
1334  // If the result register (Def) and the base register (v0) do not
1335  // have the same register class or if we have to compose
1336  // subregisters, bails out.
1337  if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
1338      BaseReg.SubReg)
1339    return false;
1340
1341  // Get the TRI and check if the inserted sub-register overlaps with the
1342  // sub-register we are tracking.
1343  const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
1344  if (!TRI ||
1345      (TRI->getSubRegIndexLaneMask(DefSubReg) &
1346       TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)) != 0)
1347    return false;
1348  // At this point, the value is available in v0 via the same subreg
1349  // we used for Def.
1350  SrcReg = BaseReg.Reg;
1351  SrcSubReg = DefSubReg;
1352  return true;
1353}
1354
1355bool ValueTracker::getNextSourceFromExtractSubreg(unsigned &SrcReg,
1356                                                  unsigned &SrcSubReg) {
1357  assert((Def->isExtractSubreg() ||
1358          Def->isExtractSubregLike()) && "Invalid definition");
1359  // We are looking at:
1360  // Def = EXTRACT_SUBREG v0, sub0
1361
1362  // Bails if we have to compose sub registers.
1363  // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
1364  if (DefSubReg)
1365    return false;
1366
1367  if (!TII)
1368    // We could handle the EXTRACT_SUBREG here, but we do not want to
1369    // duplicate the code from the generic TII.
1370    return false;
1371
1372  TargetInstrInfo::RegSubRegPairAndIdx ExtractSubregInputReg;
1373  if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
1374    return false;
1375
1376  // Bails if we have to compose sub registers.
1377  // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
1378  if (ExtractSubregInputReg.SubReg)
1379    return false;
1380  // Otherwise, the value is available in the v0.sub0.
1381  SrcReg = ExtractSubregInputReg.Reg;
1382  SrcSubReg = ExtractSubregInputReg.SubIdx;
1383  return true;
1384}
1385
1386bool ValueTracker::getNextSourceFromSubregToReg(unsigned &SrcReg,
1387                                                unsigned &SrcSubReg) {
1388  assert(Def->isSubregToReg() && "Invalid definition");
1389  // We are looking at:
1390  // Def = SUBREG_TO_REG Imm, v0, sub0
1391
1392  // Bails if we have to compose sub registers.
1393  // If DefSubReg != sub0, we would have to check that all the bits
1394  // we track are included in sub0 and if yes, we would have to
1395  // determine the right subreg in v0.
1396  if (DefSubReg != Def->getOperand(3).getImm())
1397    return false;
1398  // Bails if we have to compose sub registers.
1399  // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
1400  if (Def->getOperand(2).getSubReg())
1401    return false;
1402
1403  SrcReg = Def->getOperand(2).getReg();
1404  SrcSubReg = Def->getOperand(3).getImm();
1405  return true;
1406}
1407
1408bool ValueTracker::getNextSourceImpl(unsigned &SrcReg, unsigned &SrcSubReg) {
1409  assert(Def && "This method needs a valid definition");
1410
1411  assert(
1412      (DefIdx < Def->getDesc().getNumDefs() || Def->getDesc().isVariadic()) &&
1413      Def->getOperand(DefIdx).isDef() && "Invalid DefIdx");
1414  if (Def->isCopy())
1415    return getNextSourceFromCopy(SrcReg, SrcSubReg);
1416  if (Def->isBitcast())
1417    return getNextSourceFromBitcast(SrcReg, SrcSubReg);
1418  // All the remaining cases involve "complex" instructions.
1419  // Bails if we did not ask for the advanced tracking.
1420  if (!UseAdvancedTracking)
1421    return false;
1422  if (Def->isRegSequence() || Def->isRegSequenceLike())
1423    return getNextSourceFromRegSequence(SrcReg, SrcSubReg);
1424  if (Def->isInsertSubreg() || Def->isInsertSubregLike())
1425    return getNextSourceFromInsertSubreg(SrcReg, SrcSubReg);
1426  if (Def->isExtractSubreg() || Def->isExtractSubregLike())
1427    return getNextSourceFromExtractSubreg(SrcReg, SrcSubReg);
1428  if (Def->isSubregToReg())
1429    return getNextSourceFromSubregToReg(SrcReg, SrcSubReg);
1430  return false;
1431}
1432
1433const MachineInstr *ValueTracker::getNextSource(unsigned &SrcReg,
1434                                                unsigned &SrcSubReg) {
1435  // If we reach a point where we cannot move up in the use-def chain,
1436  // there is nothing we can get.
1437  if (!Def)
1438    return nullptr;
1439
1440  const MachineInstr *PrevDef = nullptr;
1441  // Try to find the next source.
1442  if (getNextSourceImpl(SrcReg, SrcSubReg)) {
1443    // Update definition, definition index, and subregister for the
1444    // next call of getNextSource.
1445    // Update the current register.
1446    Reg = SrcReg;
1447    // Update the return value before moving up in the use-def chain.
1448    PrevDef = Def;
1449    // If we can still move up in the use-def chain, move to the next
1450    // defintion.
1451    if (!TargetRegisterInfo::isPhysicalRegister(Reg)) {
1452      Def = MRI.getVRegDef(Reg);
1453      DefIdx = MRI.def_begin(Reg).getOperandNo();
1454      DefSubReg = SrcSubReg;
1455      return PrevDef;
1456    }
1457  }
1458  // If we end up here, this means we will not be able to find another source
1459  // for the next iteration.
1460  // Make sure any new call to getNextSource bails out early by cutting the
1461  // use-def chain.
1462  Def = nullptr;
1463  return PrevDef;
1464}
1465