1327952Sdim//===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===//
2212793Sdim//
3353358Sdim// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4353358Sdim// See https://llvm.org/LICENSE.txt for license information.
5353358Sdim// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6212793Sdim//
7212793Sdim//===----------------------------------------------------------------------===//
8212793Sdim//
9212793Sdim// Perform peephole optimizations on the machine code:
10212793Sdim//
11212793Sdim// - Optimize Extensions
12212793Sdim//
13212793Sdim//     Optimization of sign / zero extension instructions. It may be extended to
14212793Sdim//     handle other instructions with similar properties.
15212793Sdim//
16212793Sdim//     On some targets, some instructions, e.g. X86 sign / zero extension, may
17212793Sdim//     leave the source value in the lower part of the result. This optimization
18212793Sdim//     will replace some uses of the pre-extension value with uses of the
19212793Sdim//     sub-register of the results.
20212793Sdim//
21212793Sdim// - Optimize Comparisons
22212793Sdim//
23212793Sdim//     Optimization of comparison instructions. For instance, in this code:
24212793Sdim//
25212793Sdim//       sub r1, 1
26212793Sdim//       cmp r1, 0
27212793Sdim//       bz  L1
28212793Sdim//
29212793Sdim//     If the "sub" instruction all ready sets (or could be modified to set) the
30212793Sdim//     same flag that the "cmp" instruction sets and that "bz" uses, then we can
31212793Sdim//     eliminate the "cmp" instruction.
32221345Sdim//
33239462Sdim//     Another instance, in this code:
34239462Sdim//
35239462Sdim//       sub r1, r3 | sub r1, imm
36239462Sdim//       cmp r3, r1 or cmp r1, r3 | cmp r1, imm
37239462Sdim//       bge L1
38239462Sdim//
39239462Sdim//     If the branch instruction can use flag from "sub", then we can replace
40239462Sdim//     "sub" with "subs" and eliminate the "cmp" instruction.
41239462Sdim//
42249423Sdim// - Optimize Loads:
43249423Sdim//
44249423Sdim//     Loads that can be folded into a later instruction. A load is foldable
45296417Sdim//     if it loads to virtual registers and the virtual register defined has
46249423Sdim//     a single use.
47261991Sdim//
48280031Sdim// - Optimize Copies and Bitcast (more generally, target specific copies):
49261991Sdim//
50261991Sdim//     Rewrite copies and bitcasts to avoid cross register bank copies
51261991Sdim//     when possible.
52261991Sdim//     E.g., Consider the following example, where capital and lower
53261991Sdim//     letters denote different register file:
54261991Sdim//     b = copy A <-- cross-bank copy
55261991Sdim//     C = copy b <-- cross-bank copy
56261991Sdim//   =>
57261991Sdim//     b = copy A <-- cross-bank copy
58261991Sdim//     C = copy A <-- same-bank copy
59261991Sdim//
60261991Sdim//     E.g., for bitcast:
61261991Sdim//     b = bitcast A <-- cross-bank copy
62261991Sdim//     C = bitcast b <-- cross-bank copy
63261991Sdim//   =>
64261991Sdim//     b = bitcast A <-- cross-bank copy
65261991Sdim//     C = copy A    <-- same-bank copy
66212793Sdim//===----------------------------------------------------------------------===//
67212793Sdim
68249423Sdim#include "llvm/ADT/DenseMap.h"
69327952Sdim#include "llvm/ADT/Optional.h"
70249423Sdim#include "llvm/ADT/SmallPtrSet.h"
71249423Sdim#include "llvm/ADT/SmallSet.h"
72314564Sdim#include "llvm/ADT/SmallVector.h"
73249423Sdim#include "llvm/ADT/Statistic.h"
74314564Sdim#include "llvm/CodeGen/MachineBasicBlock.h"
75212793Sdim#include "llvm/CodeGen/MachineDominators.h"
76314564Sdim#include "llvm/CodeGen/MachineFunction.h"
77327952Sdim#include "llvm/CodeGen/MachineFunctionPass.h"
78314564Sdim#include "llvm/CodeGen/MachineInstr.h"
79212793Sdim#include "llvm/CodeGen/MachineInstrBuilder.h"
80321369Sdim#include "llvm/CodeGen/MachineLoopInfo.h"
81314564Sdim#include "llvm/CodeGen/MachineOperand.h"
82212793Sdim#include "llvm/CodeGen/MachineRegisterInfo.h"
83327952Sdim#include "llvm/CodeGen/TargetInstrInfo.h"
84327952Sdim#include "llvm/CodeGen/TargetOpcodes.h"
85327952Sdim#include "llvm/CodeGen/TargetRegisterInfo.h"
86327952Sdim#include "llvm/CodeGen/TargetSubtargetInfo.h"
87360784Sdim#include "llvm/InitializePasses.h"
88327952Sdim#include "llvm/MC/LaneBitmask.h"
89314564Sdim#include "llvm/MC/MCInstrDesc.h"
90327952Sdim#include "llvm/Pass.h"
91249423Sdim#include "llvm/Support/CommandLine.h"
92249423Sdim#include "llvm/Support/Debug.h"
93314564Sdim#include "llvm/Support/ErrorHandling.h"
94288943Sdim#include "llvm/Support/raw_ostream.h"
95314564Sdim#include <cassert>
96314564Sdim#include <cstdint>
97314564Sdim#include <memory>
98280031Sdim#include <utility>
99314564Sdim
100212793Sdimusing namespace llvm;
101333715Sdimusing RegSubRegPair = TargetInstrInfo::RegSubRegPair;
102333715Sdimusing RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx;
103212793Sdim
104276479Sdim#define DEBUG_TYPE "peephole-opt"
105276479Sdim
106212793Sdim// Optimize Extensions
107212793Sdimstatic cl::opt<bool>
108212793SdimAggressive("aggressive-ext-opt", cl::Hidden,
109212793Sdim           cl::desc("Aggressive extension optimization"));
110212793Sdim
111218893Sdimstatic cl::opt<bool>
112218893SdimDisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
113218893Sdim                cl::desc("Disable the peephole optimizer"));
114218893Sdim
115333715Sdim/// Specifiy whether or not the value tracking looks through
116333715Sdim/// complex instructions. When this is true, the value tracker
117333715Sdim/// bails on everything that is not a copy or a bitcast.
118276479Sdimstatic cl::opt<bool>
119280031SdimDisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
120276479Sdim                  cl::desc("Disable advanced copy optimization"));
121276479Sdim
122296417Sdimstatic cl::opt<bool> DisableNAPhysCopyOpt(
123296417Sdim    "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false),
124296417Sdim    cl::desc("Disable non-allocatable physical register copy optimization"));
125296417Sdim
126296417Sdim// Limit the number of PHI instructions to process
127296417Sdim// in PeepholeOptimizer::getNextSource.
128296417Sdimstatic cl::opt<unsigned> RewritePHILimit(
129296417Sdim    "rewrite-phi-limit", cl::Hidden, cl::init(10),
130296417Sdim    cl::desc("Limit the length of PHI chains to lookup"));
131296417Sdim
132321369Sdim// Limit the length of recurrence chain when evaluating the benefit of
133321369Sdim// commuting operands.
134321369Sdimstatic cl::opt<unsigned> MaxRecurrenceChain(
135321369Sdim    "recurrence-chain-limit", cl::Hidden, cl::init(3),
136321369Sdim    cl::desc("Maximum length of recurrence chain when evaluating the benefit "
137321369Sdim             "of commuting operands"));
138321369Sdim
139321369Sdim
140333715SdimSTATISTIC(NumReuse, "Number of extension results reused");
141333715SdimSTATISTIC(NumCmps, "Number of compares eliminated");
142333715SdimSTATISTIC(NumImmFold, "Number of move immediate folded");
143333715SdimSTATISTIC(NumLoadFold, "Number of loads folded");
144333715SdimSTATISTIC(NumSelects, "Number of selects optimized");
145280031SdimSTATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
146280031SdimSTATISTIC(NumRewrittenCopies, "Number of copies rewritten");
147296417SdimSTATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed");
148212793Sdim
149212793Sdimnamespace {
150314564Sdim
151296417Sdim  class ValueTrackerResult;
152321369Sdim  class RecurrenceInstr;
153296417Sdim
154212793Sdim  class PeepholeOptimizer : public MachineFunctionPass {
155212793Sdim    const TargetInstrInfo *TII;
156280031Sdim    const TargetRegisterInfo *TRI;
157333715Sdim    MachineRegisterInfo *MRI;
158333715Sdim    MachineDominatorTree *DT;  // Machine dominator tree
159333715Sdim    MachineLoopInfo *MLI;
160212793Sdim
161212793Sdim  public:
162212793Sdim    static char ID; // Pass identification
163314564Sdim
164218893Sdim    PeepholeOptimizer() : MachineFunctionPass(ID) {
165218893Sdim      initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
166218893Sdim    }
167212793Sdim
168276479Sdim    bool runOnMachineFunction(MachineFunction &MF) override;
169212793Sdim
170276479Sdim    void getAnalysisUsage(AnalysisUsage &AU) const override {
171212793Sdim      AU.setPreservesCFG();
172212793Sdim      MachineFunctionPass::getAnalysisUsage(AU);
173321369Sdim      AU.addRequired<MachineLoopInfo>();
174321369Sdim      AU.addPreserved<MachineLoopInfo>();
175212793Sdim      if (Aggressive) {
176212793Sdim        AU.addRequired<MachineDominatorTree>();
177212793Sdim        AU.addPreserved<MachineDominatorTree>();
178212793Sdim      }
179212793Sdim    }
180212793Sdim
181333715Sdim    /// Track Def -> Use info used for rewriting copies.
182333715Sdim    using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>;
183296417Sdim
184333715Sdim    /// Sequence of instructions that formulate recurrence cycle.
185327952Sdim    using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>;
186321369Sdim
187212793Sdim  private:
188333715Sdim    bool optimizeCmpInstr(MachineInstr &MI);
189333715Sdim    bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
190280031Sdim                          SmallPtrSetImpl<MachineInstr*> &LocalMIs);
191333715Sdim    bool optimizeSelect(MachineInstr &MI,
192280031Sdim                        SmallPtrSetImpl<MachineInstr *> &LocalMIs);
193333715Sdim    bool optimizeCondBranch(MachineInstr &MI);
194333715Sdim    bool optimizeCoalescableCopy(MachineInstr &MI);
195333715Sdim    bool optimizeUncoalescableCopy(MachineInstr &MI,
196280031Sdim                                   SmallPtrSetImpl<MachineInstr *> &LocalMIs);
197321369Sdim    bool optimizeRecurrence(MachineInstr &PHI);
198333715Sdim    bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap);
199333715Sdim    bool isMoveImmediate(MachineInstr &MI,
200218893Sdim                         SmallSet<unsigned, 4> &ImmDefRegs,
201218893Sdim                         DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
202333715Sdim    bool foldImmediate(MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs,
203218893Sdim                       DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
204327952Sdim
205341825Sdim    /// Finds recurrence cycles, but only ones that formulated around
206321369Sdim    /// a def operand and a use operand that are tied. If there is a use
207321369Sdim    /// operand commutable with the tied use operand, find recurrence cycle
208321369Sdim    /// along that operand as well.
209321369Sdim    bool findTargetRecurrence(unsigned Reg,
210321369Sdim                              const SmallSet<unsigned, 2> &TargetReg,
211321369Sdim                              RecurrenceCycle &RC);
212296417Sdim
213341825Sdim    /// If copy instruction \p MI is a virtual register copy, track it in
214296417Sdim    /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was
215296417Sdim    /// previously seen as a copy, replace the uses of this copy with the
216296417Sdim    /// previously seen copy's destination register.
217333715Sdim    bool foldRedundantCopy(MachineInstr &MI,
218296417Sdim                           SmallSet<unsigned, 4> &CopySrcRegs,
219296417Sdim                           DenseMap<unsigned, MachineInstr *> &CopyMIs);
220296417Sdim
221333715Sdim    /// Is the register \p Reg a non-allocatable physical register?
222296417Sdim    bool isNAPhysCopy(unsigned Reg);
223296417Sdim
224341825Sdim    /// If copy instruction \p MI is a non-allocatable virtual<->physical
225296417Sdim    /// register copy, track it in the \p NAPhysToVirtMIs map. If this
226296417Sdim    /// non-allocatable physical register was previously copied to a virtual
227296417Sdim    /// registered and hasn't been clobbered, the virt->phys copy can be
228296417Sdim    /// deleted.
229333715Sdim    bool foldRedundantNAPhysCopy(MachineInstr &MI,
230296417Sdim        DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs);
231296417Sdim
232333715Sdim    bool isLoadFoldable(MachineInstr &MI,
233276479Sdim                        SmallSet<unsigned, 16> &FoldAsLoadDefCandidates);
234280031Sdim
235341825Sdim    /// Check whether \p MI is understood by the register coalescer
236280031Sdim    /// but may require some rewriting.
237280031Sdim    bool isCoalescableCopy(const MachineInstr &MI) {
238280031Sdim      // SubregToRegs are not interesting, because they are already register
239280031Sdim      // coalescer friendly.
240280031Sdim      return MI.isCopy() || (!DisableAdvCopyOpt &&
241280031Sdim                             (MI.isRegSequence() || MI.isInsertSubreg() ||
242280031Sdim                              MI.isExtractSubreg()));
243280031Sdim    }
244280031Sdim
245341825Sdim    /// Check whether \p MI is a copy like instruction that is
246280031Sdim    /// not recognized by the register coalescer.
247280031Sdim    bool isUncoalescableCopy(const MachineInstr &MI) {
248280031Sdim      return MI.isBitcast() ||
249280031Sdim             (!DisableAdvCopyOpt &&
250280031Sdim              (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
251280031Sdim               MI.isExtractSubregLike()));
252280031Sdim    }
253333715Sdim
254333715Sdim    MachineInstr &rewriteSource(MachineInstr &CopyLike,
255333715Sdim                                RegSubRegPair Def, RewriteMapTy &RewriteMap);
256212793Sdim  };
257276479Sdim
258333715Sdim  /// Helper class to hold instructions that are inside recurrence cycles.
259333715Sdim  /// The recurrence cycle is formulated around 1) a def operand and its
260321369Sdim  /// tied use operand, or 2) a def operand and a use operand that is commutable
261321369Sdim  /// with another use operand which is tied to the def operand. In the latter
262321369Sdim  /// case, index of the tied use operand and the commutable use operand are
263321369Sdim  /// maintained with CommutePair.
264321369Sdim  class RecurrenceInstr {
265321369Sdim  public:
266327952Sdim    using IndexPair = std::pair<unsigned, unsigned>;
267321369Sdim
268321369Sdim    RecurrenceInstr(MachineInstr *MI) : MI(MI) {}
269321369Sdim    RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2)
270321369Sdim      : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {}
271321369Sdim
272321369Sdim    MachineInstr *getMI() const { return MI; }
273321369Sdim    Optional<IndexPair> getCommutePair() const { return CommutePair; }
274321369Sdim
275321369Sdim  private:
276321369Sdim    MachineInstr *MI;
277321369Sdim    Optional<IndexPair> CommutePair;
278321369Sdim  };
279321369Sdim
280333715Sdim  /// Helper class to hold a reply for ValueTracker queries.
281333715Sdim  /// Contains the returned sources for a given search and the instructions
282333715Sdim  /// where the sources were tracked from.
283296417Sdim  class ValueTrackerResult {
284296417Sdim  private:
285296417Sdim    /// Track all sources found by one ValueTracker query.
286333715Sdim    SmallVector<RegSubRegPair, 2> RegSrcs;
287296417Sdim
288296417Sdim    /// Instruction using the sources in 'RegSrcs'.
289327952Sdim    const MachineInstr *Inst = nullptr;
290296417Sdim
291296417Sdim  public:
292327952Sdim    ValueTrackerResult() = default;
293327952Sdim
294327952Sdim    ValueTrackerResult(unsigned Reg, unsigned SubReg) {
295296417Sdim      addSource(Reg, SubReg);
296296417Sdim    }
297296417Sdim
298296417Sdim    bool isValid() const { return getNumSources() > 0; }
299296417Sdim
300296417Sdim    void setInst(const MachineInstr *I) { Inst = I; }
301296417Sdim    const MachineInstr *getInst() const { return Inst; }
302296417Sdim
303296417Sdim    void clear() {
304296417Sdim      RegSrcs.clear();
305296417Sdim      Inst = nullptr;
306296417Sdim    }
307296417Sdim
308296417Sdim    void addSource(unsigned SrcReg, unsigned SrcSubReg) {
309333715Sdim      RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg));
310296417Sdim    }
311296417Sdim
312296417Sdim    void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) {
313296417Sdim      assert(Idx < getNumSources() && "Reg pair source out of index");
314333715Sdim      RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg);
315296417Sdim    }
316296417Sdim
317296417Sdim    int getNumSources() const { return RegSrcs.size(); }
318296417Sdim
319333715Sdim    RegSubRegPair getSrc(int Idx) const {
320333715Sdim      return RegSrcs[Idx];
321333715Sdim    }
322333715Sdim
323296417Sdim    unsigned getSrcReg(int Idx) const {
324296417Sdim      assert(Idx < getNumSources() && "Reg source out of index");
325296417Sdim      return RegSrcs[Idx].Reg;
326296417Sdim    }
327296417Sdim
328296417Sdim    unsigned getSrcSubReg(int Idx) const {
329296417Sdim      assert(Idx < getNumSources() && "SubReg source out of index");
330296417Sdim      return RegSrcs[Idx].SubReg;
331296417Sdim    }
332296417Sdim
333296417Sdim    bool operator==(const ValueTrackerResult &Other) {
334296417Sdim      if (Other.getInst() != getInst())
335296417Sdim        return false;
336296417Sdim
337296417Sdim      if (Other.getNumSources() != getNumSources())
338296417Sdim        return false;
339296417Sdim
340296417Sdim      for (int i = 0, e = Other.getNumSources(); i != e; ++i)
341296417Sdim        if (Other.getSrcReg(i) != getSrcReg(i) ||
342296417Sdim            Other.getSrcSubReg(i) != getSrcSubReg(i))
343296417Sdim          return false;
344296417Sdim      return true;
345296417Sdim    }
346296417Sdim  };
347296417Sdim
348341825Sdim  /// Helper class to track the possible sources of a value defined by
349276479Sdim  /// a (chain of) copy related instructions.
350276479Sdim  /// Given a definition (instruction and definition index), this class
351276479Sdim  /// follows the use-def chain to find successive suitable sources.
352276479Sdim  /// The given source can be used to rewrite the definition into
353276479Sdim  /// def = COPY src.
354276479Sdim  ///
355276479Sdim  /// For instance, let us consider the following snippet:
356276479Sdim  /// v0 =
357276479Sdim  /// v2 = INSERT_SUBREG v1, v0, sub0
358276479Sdim  /// def = COPY v2.sub0
359276479Sdim  ///
360276479Sdim  /// Using a ValueTracker for def = COPY v2.sub0 will give the following
361276479Sdim  /// suitable sources:
362276479Sdim  /// v2.sub0 and v0.
363276479Sdim  /// Then, def can be rewritten into def = COPY v0.
364276479Sdim  class ValueTracker {
365276479Sdim  private:
366276479Sdim    /// The current point into the use-def chain.
367327952Sdim    const MachineInstr *Def = nullptr;
368327952Sdim
369276479Sdim    /// The index of the definition in Def.
370327952Sdim    unsigned DefIdx = 0;
371327952Sdim
372276479Sdim    /// The sub register index of the definition.
373276479Sdim    unsigned DefSubReg;
374327952Sdim
375276479Sdim    /// The register where the value can be found.
376276479Sdim    unsigned Reg;
377327952Sdim
378280031Sdim    /// MachineRegisterInfo used to perform tracking.
379280031Sdim    const MachineRegisterInfo &MRI;
380327952Sdim
381333715Sdim    /// Optional TargetInstrInfo used to perform some complex tracking.
382280031Sdim    const TargetInstrInfo *TII;
383276479Sdim
384333715Sdim    /// Dispatcher to the right underlying implementation of getNextSource.
385296417Sdim    ValueTrackerResult getNextSourceImpl();
386327952Sdim
387333715Sdim    /// Specialized version of getNextSource for Copy instructions.
388296417Sdim    ValueTrackerResult getNextSourceFromCopy();
389327952Sdim
390333715Sdim    /// Specialized version of getNextSource for Bitcast instructions.
391296417Sdim    ValueTrackerResult getNextSourceFromBitcast();
392327952Sdim
393333715Sdim    /// Specialized version of getNextSource for RegSequence instructions.
394296417Sdim    ValueTrackerResult getNextSourceFromRegSequence();
395327952Sdim
396333715Sdim    /// Specialized version of getNextSource for InsertSubreg instructions.
397296417Sdim    ValueTrackerResult getNextSourceFromInsertSubreg();
398327952Sdim
399333715Sdim    /// Specialized version of getNextSource for ExtractSubreg instructions.
400296417Sdim    ValueTrackerResult getNextSourceFromExtractSubreg();
401327952Sdim
402333715Sdim    /// Specialized version of getNextSource for SubregToReg instructions.
403296417Sdim    ValueTrackerResult getNextSourceFromSubregToReg();
404327952Sdim
405333715Sdim    /// Specialized version of getNextSource for PHI instructions.
406296417Sdim    ValueTrackerResult getNextSourceFromPHI();
407276479Sdim
408276479Sdim  public:
409333715Sdim    /// Create a ValueTracker instance for the value defined by \p Reg.
410276479Sdim    /// \p DefSubReg represents the sub register index the value tracker will
411280031Sdim    /// track. It does not need to match the sub register index used in the
412280031Sdim    /// definition of \p Reg.
413280031Sdim    /// If \p Reg is a physical register, a value tracker constructed with
414280031Sdim    /// this constructor will not find any alternative source.
415280031Sdim    /// Indeed, when \p Reg is a physical register that constructor does not
416280031Sdim    /// know which definition of \p Reg it should track.
417280031Sdim    /// Use the next constructor to track a physical register.
418280031Sdim    ValueTracker(unsigned Reg, unsigned DefSubReg,
419280031Sdim                 const MachineRegisterInfo &MRI,
420280031Sdim                 const TargetInstrInfo *TII = nullptr)
421333715Sdim        : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) {
422360784Sdim      if (!Register::isPhysicalRegister(Reg)) {
423280031Sdim        Def = MRI.getVRegDef(Reg);
424280031Sdim        DefIdx = MRI.def_begin(Reg).getOperandNo();
425280031Sdim      }
426280031Sdim    }
427280031Sdim
428341825Sdim    /// Following the use-def chain, get the next available source
429276479Sdim    /// for the tracked value.
430296417Sdim    /// \return A ValueTrackerResult containing a set of registers
431296417Sdim    /// and sub registers with tracked values. A ValueTrackerResult with
432296417Sdim    /// an empty set of registers means no source was found.
433296417Sdim    ValueTrackerResult getNextSource();
434276479Sdim  };
435212793Sdim
436314564Sdim} // end anonymous namespace
437314564Sdim
438212793Sdimchar PeepholeOptimizer::ID = 0;
439327952Sdim
440234353Sdimchar &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
441314564Sdim
442309124SdimINITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE,
443333715Sdim                      "Peephole Optimizations", false, false)
444218893SdimINITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
445321369SdimINITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
446309124SdimINITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE,
447333715Sdim                    "Peephole Optimizations", false, false)
448212793Sdim
449296417Sdim/// If instruction is a copy-like instruction, i.e. it reads a single register
450296417Sdim/// and writes a single register and it does not modify the source, and if the
451296417Sdim/// source value is preserved as a sub-register of the result, then replace all
452296417Sdim/// reachable uses of the source with the subreg of the result.
453234353Sdim///
454212793Sdim/// Do not generate an EXTRACT that is used only in a debug use, as this changes
455212793Sdim/// the code. Since this code does not currently share EXTRACTs, just ignore all
456212793Sdim/// debug uses.
457212793Sdimbool PeepholeOptimizer::
458333715SdimoptimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
459280031Sdim                 SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
460212793Sdim  unsigned SrcReg, DstReg, SubIdx;
461333715Sdim  if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx))
462212793Sdim    return false;
463234353Sdim
464360784Sdim  if (Register::isPhysicalRegister(DstReg) ||
465360784Sdim      Register::isPhysicalRegister(SrcReg))
466212793Sdim    return false;
467212793Sdim
468239462Sdim  if (MRI->hasOneNonDBGUse(SrcReg))
469212793Sdim    // No other uses.
470212793Sdim    return false;
471212793Sdim
472239462Sdim  // Ensure DstReg can get a register class that actually supports
473239462Sdim  // sub-registers. Don't change the class until we commit.
474239462Sdim  const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
475280031Sdim  DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
476239462Sdim  if (!DstRC)
477239462Sdim    return false;
478239462Sdim
479239462Sdim  // The ext instr may be operating on a sub-register of SrcReg as well.
480239462Sdim  // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
481239462Sdim  // register.
482239462Sdim  // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
483239462Sdim  // SrcReg:SubIdx should be replaced.
484280031Sdim  bool UseSrcSubIdx =
485280031Sdim      TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
486239462Sdim
487212793Sdim  // The source has other uses. See if we can replace the other uses with use of
488212793Sdim  // the result of the extension.
489212793Sdim  SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
490276479Sdim  for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
491276479Sdim    ReachedBBs.insert(UI.getParent());
492212793Sdim
493212793Sdim  // Uses that are in the same BB of uses of the result of the instruction.
494212793Sdim  SmallVector<MachineOperand*, 8> Uses;
495212793Sdim
496212793Sdim  // Uses that the result of the instruction can reach.
497212793Sdim  SmallVector<MachineOperand*, 8> ExtendedUses;
498212793Sdim
499212793Sdim  bool ExtendLife = true;
500276479Sdim  for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
501276479Sdim    MachineInstr *UseMI = UseMO.getParent();
502333715Sdim    if (UseMI == &MI)
503212793Sdim      continue;
504212793Sdim
505212793Sdim    if (UseMI->isPHI()) {
506212793Sdim      ExtendLife = false;
507212793Sdim      continue;
508212793Sdim    }
509212793Sdim
510239462Sdim    // Only accept uses of SrcReg:SubIdx.
511239462Sdim    if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
512239462Sdim      continue;
513239462Sdim
514212793Sdim    // It's an error to translate this:
515212793Sdim    //
516212793Sdim    //    %reg1025 = <sext> %reg1024
517212793Sdim    //     ...
518212793Sdim    //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
519212793Sdim    //
520212793Sdim    // into this:
521212793Sdim    //
522212793Sdim    //    %reg1025 = <sext> %reg1024
523212793Sdim    //     ...
524212793Sdim    //    %reg1027 = COPY %reg1025:4
525212793Sdim    //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
526212793Sdim    //
527212793Sdim    // The problem here is that SUBREG_TO_REG is there to assert that an
528212793Sdim    // implicit zext occurs. It doesn't insert a zext instruction. If we allow
529212793Sdim    // the COPY here, it will give us the value after the <sext>, not the
530212793Sdim    // original value of %reg1024 before <sext>.
531212793Sdim    if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
532212793Sdim      continue;
533212793Sdim
534212793Sdim    MachineBasicBlock *UseMBB = UseMI->getParent();
535333715Sdim    if (UseMBB == &MBB) {
536212793Sdim      // Local uses that come after the extension.
537212793Sdim      if (!LocalMIs.count(UseMI))
538212793Sdim        Uses.push_back(&UseMO);
539212793Sdim    } else if (ReachedBBs.count(UseMBB)) {
540212793Sdim      // Non-local uses where the result of the extension is used. Always
541212793Sdim      // replace these unless it's a PHI.
542212793Sdim      Uses.push_back(&UseMO);
543333715Sdim    } else if (Aggressive && DT->dominates(&MBB, UseMBB)) {
544212793Sdim      // We may want to extend the live range of the extension result in order
545212793Sdim      // to replace these uses.
546212793Sdim      ExtendedUses.push_back(&UseMO);
547212793Sdim    } else {
548212793Sdim      // Both will be live out of the def MBB anyway. Don't extend live range of
549212793Sdim      // the extension result.
550212793Sdim      ExtendLife = false;
551212793Sdim      break;
552212793Sdim    }
553212793Sdim  }
554212793Sdim
555212793Sdim  if (ExtendLife && !ExtendedUses.empty())
556212793Sdim    // Extend the liveness of the extension result.
557288943Sdim    Uses.append(ExtendedUses.begin(), ExtendedUses.end());
558212793Sdim
559212793Sdim  // Now replace all uses.
560212793Sdim  bool Changed = false;
561212793Sdim  if (!Uses.empty()) {
562212793Sdim    SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
563212793Sdim
564212793Sdim    // Look for PHI uses of the extended result, we don't want to extend the
565212793Sdim    // liveness of a PHI input. It breaks all kinds of assumptions down
566212793Sdim    // stream. A PHI use is expected to be the kill of its source values.
567276479Sdim    for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
568276479Sdim      if (UI.isPHI())
569276479Sdim        PHIBBs.insert(UI.getParent());
570212793Sdim
571212793Sdim    const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
572212793Sdim    for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
573212793Sdim      MachineOperand *UseMO = Uses[i];
574212793Sdim      MachineInstr *UseMI = UseMO->getParent();
575212793Sdim      MachineBasicBlock *UseMBB = UseMI->getParent();
576212793Sdim      if (PHIBBs.count(UseMBB))
577212793Sdim        continue;
578212793Sdim
579234353Sdim      // About to add uses of DstReg, clear DstReg's kill flags.
580239462Sdim      if (!Changed) {
581234353Sdim        MRI->clearKillFlags(DstReg);
582239462Sdim        MRI->constrainRegClass(DstReg, DstRC);
583239462Sdim      }
584234353Sdim
585360784Sdim      Register NewVR = MRI->createVirtualRegister(RC);
586239462Sdim      MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
587239462Sdim                                   TII->get(TargetOpcode::COPY), NewVR)
588212793Sdim        .addReg(DstReg, 0, SubIdx);
589239462Sdim      // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
590239462Sdim      if (UseSrcSubIdx) {
591239462Sdim        Copy->getOperand(0).setSubReg(SubIdx);
592239462Sdim        Copy->getOperand(0).setIsUndef();
593239462Sdim      }
594212793Sdim      UseMO->setReg(NewVR);
595212793Sdim      ++NumReuse;
596212793Sdim      Changed = true;
597212793Sdim    }
598212793Sdim  }
599212793Sdim
600212793Sdim  return Changed;
601212793Sdim}
602212793Sdim
603296417Sdim/// If the instruction is a compare and the previous instruction it's comparing
604296417Sdim/// against already sets (or could be modified to set) the same flag as the
605296417Sdim/// compare, then we can remove the comparison and use the flag from the
606296417Sdim/// previous instruction.
607333715Sdimbool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) {
608212793Sdim  // If this instruction is a comparison against zero and isn't comparing a
609212793Sdim  // physical register, we can try to optimize it.
610239462Sdim  unsigned SrcReg, SrcReg2;
611218893Sdim  int CmpMask, CmpValue;
612333715Sdim  if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
613360784Sdim      Register::isPhysicalRegister(SrcReg) ||
614360784Sdim      (SrcReg2 != 0 && Register::isPhysicalRegister(SrcReg2)))
615212793Sdim    return false;
616212793Sdim
617218893Sdim  // Attempt to optimize the comparison instruction.
618333715Sdim  if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
619221345Sdim    ++NumCmps;
620212793Sdim    return true;
621212793Sdim  }
622212793Sdim
623212793Sdim  return false;
624212793Sdim}
625212793Sdim
626239462Sdim/// Optimize a select instruction.
627333715Sdimbool PeepholeOptimizer::optimizeSelect(MachineInstr &MI,
628280031Sdim                            SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
629239462Sdim  unsigned TrueOp = 0;
630239462Sdim  unsigned FalseOp = 0;
631239462Sdim  bool Optimizable = false;
632239462Sdim  SmallVector<MachineOperand, 4> Cond;
633333715Sdim  if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
634239462Sdim    return false;
635239462Sdim  if (!Optimizable)
636239462Sdim    return false;
637333715Sdim  if (!TII->optimizeSelect(MI, LocalMIs))
638239462Sdim    return false;
639333715Sdim  MI.eraseFromParent();
640239462Sdim  ++NumSelects;
641239462Sdim  return true;
642239462Sdim}
643239462Sdim
644333715Sdim/// Check if a simpler conditional branch can be generated.
645333715Sdimbool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) {
646333715Sdim  return TII->optimizeCondBranch(MI);
647280031Sdim}
648280031Sdim
649341825Sdim/// Try to find the next source that share the same register file
650280031Sdim/// for the value defined by \p Reg and \p SubReg.
651296417Sdim/// When true is returned, the \p RewriteMap can be used by the client to
652296417Sdim/// retrieve all Def -> Use along the way up to the next source. Any found
653296417Sdim/// Use that is not itself a key for another entry, is the next source to
654296417Sdim/// use. During the search for the next source, multiple sources can be found
655296417Sdim/// given multiple incoming sources of a PHI instruction. In this case, we
656296417Sdim/// look in each PHI source for the next source; all found next sources must
657296417Sdim/// share the same register file as \p Reg and \p SubReg. The client should
658296417Sdim/// then be capable to rewrite all intermediate PHIs to get the next source.
659280031Sdim/// \return False if no alternative sources are available. True otherwise.
660333715Sdimbool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg,
661296417Sdim                                       RewriteMapTy &RewriteMap) {
662280031Sdim  // Do not try to find a new source for a physical register.
663280031Sdim  // So far we do not have any motivating example for doing that.
664280031Sdim  // Thus, instead of maintaining untested code, we will revisit that if
665280031Sdim  // that changes at some point.
666333715Sdim  unsigned Reg = RegSubReg.Reg;
667360784Sdim  if (Register::isPhysicalRegister(Reg))
668261991Sdim    return false;
669280031Sdim  const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
670261991Sdim
671333715Sdim  SmallVector<RegSubRegPair, 4> SrcToLook;
672333715Sdim  RegSubRegPair CurSrcPair = RegSubReg;
673296417Sdim  SrcToLook.push_back(CurSrcPair);
674261991Sdim
675296417Sdim  unsigned PHICount = 0;
676333715Sdim  do {
677333715Sdim    CurSrcPair = SrcToLook.pop_back_val();
678296417Sdim    // As explained above, do not handle physical registers
679360784Sdim    if (Register::isPhysicalRegister(CurSrcPair.Reg))
680296417Sdim      return false;
681261991Sdim
682333715Sdim    ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII);
683261991Sdim
684328381Sdim    // Follow the chain of copies until we find a more suitable source, a phi
685328381Sdim    // or have to abort.
686328381Sdim    while (true) {
687328381Sdim      ValueTrackerResult Res = ValTracker.getNextSource();
688328381Sdim      // Abort at the end of a chain (without finding a suitable source).
689296417Sdim      if (!Res.isValid())
690328381Sdim        return false;
691261991Sdim
692296417Sdim      // Insert the Def -> Use entry for the recently found source.
693296417Sdim      ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair);
694296417Sdim      if (CurSrcRes.isValid()) {
695296417Sdim        assert(CurSrcRes == Res && "ValueTrackerResult found must match");
696296417Sdim        // An existent entry with multiple sources is a PHI cycle we must avoid.
697296417Sdim        // Otherwise it's an entry with a valid next source we already found.
698296417Sdim        if (CurSrcRes.getNumSources() > 1) {
699341825Sdim          LLVM_DEBUG(dbgs()
700341825Sdim                     << "findNextSource: found PHI cycle, aborting...\n");
701296417Sdim          return false;
702296417Sdim        }
703296417Sdim        break;
704296417Sdim      }
705296417Sdim      RewriteMap.insert(std::make_pair(CurSrcPair, Res));
706261991Sdim
707296417Sdim      // ValueTrackerResult usually have one source unless it's the result from
708296417Sdim      // a PHI instruction. Add the found PHI edges to be looked up further.
709296417Sdim      unsigned NumSrcs = Res.getNumSources();
710296417Sdim      if (NumSrcs > 1) {
711296417Sdim        PHICount++;
712333715Sdim        if (PHICount >= RewritePHILimit) {
713341825Sdim          LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n");
714333715Sdim          return false;
715333715Sdim        }
716333715Sdim
717296417Sdim        for (unsigned i = 0; i < NumSrcs; ++i)
718333715Sdim          SrcToLook.push_back(Res.getSrc(i));
719296417Sdim        break;
720296417Sdim      }
721296417Sdim
722333715Sdim      CurSrcPair = Res.getSrc(0);
723296417Sdim      // Do not extend the live-ranges of physical registers as they add
724296417Sdim      // constraints to the register allocator. Moreover, if we want to extend
725296417Sdim      // the live-range of a physical register, unlike SSA virtual register,
726296417Sdim      // we will have to check that they aren't redefine before the related use.
727360784Sdim      if (Register::isPhysicalRegister(CurSrcPair.Reg))
728296417Sdim        return false;
729296417Sdim
730328381Sdim      // Keep following the chain if the value isn't any better yet.
731296417Sdim      const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg);
732333715Sdim      if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC,
733333715Sdim                                     CurSrcPair.SubReg))
734328381Sdim        continue;
735296417Sdim
736328381Sdim      // We currently cannot deal with subreg operands on PHI instructions
737328381Sdim      // (see insertPHI()).
738328381Sdim      if (PHICount > 0 && CurSrcPair.SubReg != 0)
739328381Sdim        continue;
740296417Sdim
741328381Sdim      // We found a suitable source, and are done with this chain.
742328381Sdim      break;
743328381Sdim    }
744333715Sdim  } while (!SrcToLook.empty());
745296417Sdim
746296417Sdim  // If we did not find a more suitable source, there is nothing to optimize.
747296417Sdim  return CurSrcPair.Reg != Reg;
748280031Sdim}
749261991Sdim
750341825Sdim/// Insert a PHI instruction with incoming edges \p SrcRegs that are
751296417Sdim/// guaranteed to have the same register class. This is necessary whenever we
752296417Sdim/// successfully traverse a PHI instruction and find suitable sources coming
753296417Sdim/// from its edges. By inserting a new PHI, we provide a rewritten PHI def
754296417Sdim/// suitable to be used in a new COPY instruction.
755333715Sdimstatic MachineInstr &
756333715SdiminsertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
757333715Sdim          const SmallVectorImpl<RegSubRegPair> &SrcRegs,
758333715Sdim          MachineInstr &OrigPHI) {
759296417Sdim  assert(!SrcRegs.empty() && "No sources to create a PHI instruction?");
760296417Sdim
761333715Sdim  const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg);
762328381Sdim  // NewRC is only correct if no subregisters are involved. findNextSource()
763328381Sdim  // should have rejected those cases already.
764328381Sdim  assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand");
765360784Sdim  Register NewVR = MRI.createVirtualRegister(NewRC);
766333715Sdim  MachineBasicBlock *MBB = OrigPHI.getParent();
767333715Sdim  MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(),
768333715Sdim                                    TII.get(TargetOpcode::PHI), NewVR);
769296417Sdim
770296417Sdim  unsigned MBBOpIdx = 2;
771333715Sdim  for (const RegSubRegPair &RegPair : SrcRegs) {
772296417Sdim    MIB.addReg(RegPair.Reg, 0, RegPair.SubReg);
773333715Sdim    MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB());
774296417Sdim    // Since we're extended the lifetime of RegPair.Reg, clear the
775296417Sdim    // kill flags to account for that and make RegPair.Reg reaches
776296417Sdim    // the new PHI.
777333715Sdim    MRI.clearKillFlags(RegPair.Reg);
778296417Sdim    MBBOpIdx += 2;
779296417Sdim  }
780296417Sdim
781333715Sdim  return *MIB;
782296417Sdim}
783296417Sdim
784280031Sdimnamespace {
785314564Sdim
786333715Sdim/// Interface to query instructions amenable to copy rewriting.
787333715Sdimclass Rewriter {
788280031Sdimprotected:
789280031Sdim  MachineInstr &CopyLike;
790333715Sdim  unsigned CurrentSrcIdx = 0;   ///< The index of the source being rewritten.
791280031Sdimpublic:
792333715Sdim  Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {}
793333715Sdim  virtual ~Rewriter() {}
794280031Sdim
795341825Sdim  /// Get the next rewritable source (SrcReg, SrcSubReg) and
796333715Sdim  /// the related value that it affects (DstReg, DstSubReg).
797280031Sdim  /// A source is considered rewritable if its register class and the
798333715Sdim  /// register class of the related DstReg may not be register
799280031Sdim  /// coalescer friendly. In other words, given a copy-like instruction
800280031Sdim  /// not all the arguments may be returned at rewritable source, since
801280031Sdim  /// some arguments are none to be register coalescer friendly.
802280031Sdim  ///
803280031Sdim  /// Each call of this method moves the current source to the next
804280031Sdim  /// rewritable source.
805280031Sdim  /// For instance, let CopyLike be the instruction to rewrite.
806280031Sdim  /// CopyLike has one definition and one source:
807280031Sdim  /// dst.dstSubIdx = CopyLike src.srcSubIdx.
808280031Sdim  ///
809280031Sdim  /// The first call will give the first rewritable source, i.e.,
810280031Sdim  /// the only source this instruction has:
811280031Sdim  /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
812280031Sdim  /// This source defines the whole definition, i.e.,
813333715Sdim  /// (DstReg, DstSubReg) = (dst, dstSubIdx).
814280031Sdim  ///
815296417Sdim  /// The second and subsequent calls will return false, as there is only one
816280031Sdim  /// rewritable source.
817280031Sdim  ///
818280031Sdim  /// \return True if a rewritable source has been found, false otherwise.
819280031Sdim  /// The output arguments are valid if and only if true is returned.
820333715Sdim  virtual bool getNextRewritableSource(RegSubRegPair &Src,
821333715Sdim                                       RegSubRegPair &Dst) = 0;
822333715Sdim
823333715Sdim  /// Rewrite the current source with \p NewReg and \p NewSubReg if possible.
824333715Sdim  /// \return True if the rewriting was possible, false otherwise.
825333715Sdim  virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) = 0;
826333715Sdim};
827333715Sdim
828333715Sdim/// Rewriter for COPY instructions.
829333715Sdimclass CopyRewriter : public Rewriter {
830333715Sdimpublic:
831333715Sdim  CopyRewriter(MachineInstr &MI) : Rewriter(MI) {
832333715Sdim    assert(MI.isCopy() && "Expected copy instruction");
833333715Sdim  }
834333715Sdim  virtual ~CopyRewriter() = default;
835333715Sdim
836333715Sdim  bool getNextRewritableSource(RegSubRegPair &Src,
837333715Sdim                               RegSubRegPair &Dst) override {
838333715Sdim    // CurrentSrcIdx > 0 means this function has already been called.
839333715Sdim    if (CurrentSrcIdx > 0)
840280031Sdim      return false;
841280031Sdim    // This is the first call to getNextRewritableSource.
842280031Sdim    // Move the CurrentSrcIdx to remember that we made that call.
843280031Sdim    CurrentSrcIdx = 1;
844280031Sdim    // The rewritable source is the argument.
845280031Sdim    const MachineOperand &MOSrc = CopyLike.getOperand(1);
846333715Sdim    Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg());
847280031Sdim    // What we track are the alternative sources of the definition.
848280031Sdim    const MachineOperand &MODef = CopyLike.getOperand(0);
849333715Sdim    Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
850280031Sdim    return true;
851280031Sdim  }
852280031Sdim
853333715Sdim  bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
854333715Sdim    if (CurrentSrcIdx != 1)
855280031Sdim      return false;
856280031Sdim    MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
857280031Sdim    MOSrc.setReg(NewReg);
858280031Sdim    MOSrc.setSubReg(NewSubReg);
859280031Sdim    return true;
860280031Sdim  }
861280031Sdim};
862280031Sdim
863341825Sdim/// Helper class to rewrite uncoalescable copy like instructions
864296417Sdim/// into new COPY (coalescable friendly) instructions.
865333715Sdimclass UncoalescableRewriter : public Rewriter {
866333715Sdim  unsigned NumDefs;  ///< Number of defs in the bitcast.
867327952Sdim
868296417Sdimpublic:
869333715Sdim  UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) {
870296417Sdim    NumDefs = MI.getDesc().getNumDefs();
871296417Sdim  }
872296417Sdim
873333715Sdim  /// \see See Rewriter::getNextRewritableSource()
874296417Sdim  /// All such sources need to be considered rewritable in order to
875296417Sdim  /// rewrite a uncoalescable copy-like instruction. This method return
876296417Sdim  /// each definition that must be checked if rewritable.
877333715Sdim  bool getNextRewritableSource(RegSubRegPair &Src,
878333715Sdim                               RegSubRegPair &Dst) override {
879296417Sdim    // Find the next non-dead definition and continue from there.
880296417Sdim    if (CurrentSrcIdx == NumDefs)
881296417Sdim      return false;
882296417Sdim
883296417Sdim    while (CopyLike.getOperand(CurrentSrcIdx).isDead()) {
884296417Sdim      ++CurrentSrcIdx;
885296417Sdim      if (CurrentSrcIdx == NumDefs)
886296417Sdim        return false;
887296417Sdim    }
888296417Sdim
889296417Sdim    // What we track are the alternative sources of the definition.
890333715Sdim    Src = RegSubRegPair(0, 0);
891296417Sdim    const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx);
892333715Sdim    Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
893296417Sdim
894296417Sdim    CurrentSrcIdx++;
895296417Sdim    return true;
896296417Sdim  }
897296417Sdim
898333715Sdim  bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
899333715Sdim    return false;
900296417Sdim  }
901296417Sdim};
902296417Sdim
903333715Sdim/// Specialized rewriter for INSERT_SUBREG instruction.
904333715Sdimclass InsertSubregRewriter : public Rewriter {
905280031Sdimpublic:
906333715Sdim  InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) {
907280031Sdim    assert(MI.isInsertSubreg() && "Invalid instruction");
908280031Sdim  }
909280031Sdim
910333715Sdim  /// \see See Rewriter::getNextRewritableSource()
911280031Sdim  /// Here CopyLike has the following form:
912280031Sdim  /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
913280031Sdim  /// Src1 has the same register class has dst, hence, there is
914280031Sdim  /// nothing to rewrite.
915280031Sdim  /// Src2.src2SubIdx, may not be register coalescer friendly.
916280031Sdim  /// Therefore, the first call to this method returns:
917280031Sdim  /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
918333715Sdim  /// (DstReg, DstSubReg) = (dst, subIdx).
919280031Sdim  ///
920280031Sdim  /// Subsequence calls will return false.
921333715Sdim  bool getNextRewritableSource(RegSubRegPair &Src,
922333715Sdim                               RegSubRegPair &Dst) override {
923280031Sdim    // If we already get the only source we can rewrite, return false.
924280031Sdim    if (CurrentSrcIdx == 2)
925280031Sdim      return false;
926280031Sdim    // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
927280031Sdim    CurrentSrcIdx = 2;
928280031Sdim    const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
929333715Sdim    Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg());
930280031Sdim    const MachineOperand &MODef = CopyLike.getOperand(0);
931280031Sdim
932280031Sdim    // We want to track something that is compatible with the
933280031Sdim    // partial definition.
934280031Sdim    if (MODef.getSubReg())
935296417Sdim      // Bail if we have to compose sub-register indices.
936280031Sdim      return false;
937333715Sdim    Dst = RegSubRegPair(MODef.getReg(),
938333715Sdim                        (unsigned)CopyLike.getOperand(3).getImm());
939280031Sdim    return true;
940280031Sdim  }
941314564Sdim
942280031Sdim  bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
943280031Sdim    if (CurrentSrcIdx != 2)
944280031Sdim      return false;
945280031Sdim    // We are rewriting the inserted reg.
946280031Sdim    MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
947280031Sdim    MO.setReg(NewReg);
948280031Sdim    MO.setSubReg(NewSubReg);
949280031Sdim    return true;
950280031Sdim  }
951280031Sdim};
952280031Sdim
953333715Sdim/// Specialized rewriter for EXTRACT_SUBREG instruction.
954333715Sdimclass ExtractSubregRewriter : public Rewriter {
955280031Sdim  const TargetInstrInfo &TII;
956280031Sdim
957280031Sdimpublic:
958280031Sdim  ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
959333715Sdim      : Rewriter(MI), TII(TII) {
960280031Sdim    assert(MI.isExtractSubreg() && "Invalid instruction");
961280031Sdim  }
962280031Sdim
963333715Sdim  /// \see Rewriter::getNextRewritableSource()
964280031Sdim  /// Here CopyLike has the following form:
965280031Sdim  /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
966280031Sdim  /// There is only one rewritable source: Src.subIdx,
967280031Sdim  /// which defines dst.dstSubIdx.
968333715Sdim  bool getNextRewritableSource(RegSubRegPair &Src,
969333715Sdim                               RegSubRegPair &Dst) override {
970280031Sdim    // If we already get the only source we can rewrite, return false.
971280031Sdim    if (CurrentSrcIdx == 1)
972280031Sdim      return false;
973280031Sdim    // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
974280031Sdim    CurrentSrcIdx = 1;
975280031Sdim    const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
976296417Sdim    // If we have to compose sub-register indices, bail out.
977280031Sdim    if (MOExtractedReg.getSubReg())
978280031Sdim      return false;
979280031Sdim
980333715Sdim    Src = RegSubRegPair(MOExtractedReg.getReg(),
981333715Sdim                        CopyLike.getOperand(2).getImm());
982280031Sdim
983280031Sdim    // We want to track something that is compatible with the definition.
984280031Sdim    const MachineOperand &MODef = CopyLike.getOperand(0);
985333715Sdim    Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
986280031Sdim    return true;
987280031Sdim  }
988280031Sdim
989280031Sdim  bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
990280031Sdim    // The only source we can rewrite is the input register.
991280031Sdim    if (CurrentSrcIdx != 1)
992280031Sdim      return false;
993280031Sdim
994280031Sdim    CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
995280031Sdim
996280031Sdim    // If we find a source that does not require to extract something,
997280031Sdim    // rewrite the operation with a copy.
998280031Sdim    if (!NewSubReg) {
999280031Sdim      // Move the current index to an invalid position.
1000280031Sdim      // We do not want another call to this method to be able
1001280031Sdim      // to do any change.
1002280031Sdim      CurrentSrcIdx = -1;
1003280031Sdim      // Rewrite the operation as a COPY.
1004280031Sdim      // Get rid of the sub-register index.
1005280031Sdim      CopyLike.RemoveOperand(2);
1006280031Sdim      // Morph the operation into a COPY.
1007280031Sdim      CopyLike.setDesc(TII.get(TargetOpcode::COPY));
1008280031Sdim      return true;
1009280031Sdim    }
1010280031Sdim    CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
1011280031Sdim    return true;
1012280031Sdim  }
1013280031Sdim};
1014280031Sdim
1015333715Sdim/// Specialized rewriter for REG_SEQUENCE instruction.
1016333715Sdimclass RegSequenceRewriter : public Rewriter {
1017280031Sdimpublic:
1018333715Sdim  RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) {
1019280031Sdim    assert(MI.isRegSequence() && "Invalid instruction");
1020280031Sdim  }
1021280031Sdim
1022333715Sdim  /// \see Rewriter::getNextRewritableSource()
1023280031Sdim  /// Here CopyLike has the following form:
1024280031Sdim  /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
1025280031Sdim  /// Each call will return a different source, walking all the available
1026280031Sdim  /// source.
1027280031Sdim  ///
1028280031Sdim  /// The first call returns:
1029280031Sdim  /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
1030333715Sdim  /// (DstReg, DstSubReg) = (dst, subIdx1).
1031280031Sdim  ///
1032280031Sdim  /// The second call returns:
1033280031Sdim  /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
1034333715Sdim  /// (DstReg, DstSubReg) = (dst, subIdx2).
1035280031Sdim  ///
1036280031Sdim  /// And so on, until all the sources have been traversed, then
1037280031Sdim  /// it returns false.
1038333715Sdim  bool getNextRewritableSource(RegSubRegPair &Src,
1039333715Sdim                               RegSubRegPair &Dst) override {
1040280031Sdim    // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
1041280031Sdim
1042280031Sdim    // If this is the first call, move to the first argument.
1043280031Sdim    if (CurrentSrcIdx == 0) {
1044280031Sdim      CurrentSrcIdx = 1;
1045280031Sdim    } else {
1046280031Sdim      // Otherwise, move to the next argument and check that it is valid.
1047280031Sdim      CurrentSrcIdx += 2;
1048280031Sdim      if (CurrentSrcIdx >= CopyLike.getNumOperands())
1049280031Sdim        return false;
1050280031Sdim    }
1051280031Sdim    const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
1052333715Sdim    Src.Reg = MOInsertedReg.getReg();
1053296417Sdim    // If we have to compose sub-register indices, bail out.
1054333715Sdim    if ((Src.SubReg = MOInsertedReg.getSubReg()))
1055280031Sdim      return false;
1056280031Sdim
1057280031Sdim    // We want to track something that is compatible with the related
1058280031Sdim    // partial definition.
1059333715Sdim    Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
1060280031Sdim
1061280031Sdim    const MachineOperand &MODef = CopyLike.getOperand(0);
1062333715Sdim    Dst.Reg = MODef.getReg();
1063296417Sdim    // If we have to compose sub-registers, bail.
1064280031Sdim    return MODef.getSubReg() == 0;
1065280031Sdim  }
1066280031Sdim
1067280031Sdim  bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
1068280031Sdim    // We cannot rewrite out of bound operands.
1069280031Sdim    // Moreover, rewritable sources are at odd positions.
1070280031Sdim    if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
1071280031Sdim      return false;
1072280031Sdim
1073280031Sdim    MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
1074280031Sdim    MO.setReg(NewReg);
1075280031Sdim    MO.setSubReg(NewSubReg);
1076280031Sdim    return true;
1077280031Sdim  }
1078280031Sdim};
1079280031Sdim
1080327952Sdim} // end anonymous namespace
1081314564Sdim
1082333715Sdim/// Get the appropriated Rewriter for \p MI.
1083333715Sdim/// \return A pointer to a dynamically allocated Rewriter or nullptr if no
1084333715Sdim/// rewriter works for \p MI.
1085333715Sdimstatic Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) {
1086296417Sdim  // Handle uncoalescable copy-like instructions.
1087333715Sdim  if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
1088333715Sdim      MI.isExtractSubregLike())
1089333715Sdim    return new UncoalescableRewriter(MI);
1090296417Sdim
1091280031Sdim  switch (MI.getOpcode()) {
1092280031Sdim  default:
1093280031Sdim    return nullptr;
1094280031Sdim  case TargetOpcode::COPY:
1095280031Sdim    return new CopyRewriter(MI);
1096280031Sdim  case TargetOpcode::INSERT_SUBREG:
1097280031Sdim    return new InsertSubregRewriter(MI);
1098280031Sdim  case TargetOpcode::EXTRACT_SUBREG:
1099280031Sdim    return new ExtractSubregRewriter(MI, TII);
1100280031Sdim  case TargetOpcode::REG_SEQUENCE:
1101280031Sdim    return new RegSequenceRewriter(MI);
1102280031Sdim  }
1103280031Sdim}
1104280031Sdim
1105341825Sdim/// Given a \p Def.Reg and Def.SubReg  pair, use \p RewriteMap to find
1106333715Sdim/// the new source to use for rewrite. If \p HandleMultipleSources is true and
1107333715Sdim/// multiple sources for a given \p Def are found along the way, we found a
1108333715Sdim/// PHI instructions that needs to be rewritten.
1109333715Sdim/// TODO: HandleMultipleSources should be removed once we test PHI handling
1110333715Sdim/// with coalescable copies.
1111333715Sdimstatic RegSubRegPair
1112333715SdimgetNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
1113333715Sdim             RegSubRegPair Def,
1114333715Sdim             const PeepholeOptimizer::RewriteMapTy &RewriteMap,
1115333715Sdim             bool HandleMultipleSources = true) {
1116333715Sdim  RegSubRegPair LookupSrc(Def.Reg, Def.SubReg);
1117333715Sdim  while (true) {
1118333715Sdim    ValueTrackerResult Res = RewriteMap.lookup(LookupSrc);
1119333715Sdim    // If there are no entries on the map, LookupSrc is the new source.
1120333715Sdim    if (!Res.isValid())
1121333715Sdim      return LookupSrc;
1122333715Sdim
1123333715Sdim    // There's only one source for this definition, keep searching...
1124333715Sdim    unsigned NumSrcs = Res.getNumSources();
1125333715Sdim    if (NumSrcs == 1) {
1126333715Sdim      LookupSrc.Reg = Res.getSrcReg(0);
1127333715Sdim      LookupSrc.SubReg = Res.getSrcSubReg(0);
1128333715Sdim      continue;
1129333715Sdim    }
1130333715Sdim
1131333715Sdim    // TODO: Remove once multiple srcs w/ coalescable copies are supported.
1132333715Sdim    if (!HandleMultipleSources)
1133333715Sdim      break;
1134333715Sdim
1135333715Sdim    // Multiple sources, recurse into each source to find a new source
1136333715Sdim    // for it. Then, rewrite the PHI accordingly to its new edges.
1137333715Sdim    SmallVector<RegSubRegPair, 4> NewPHISrcs;
1138333715Sdim    for (unsigned i = 0; i < NumSrcs; ++i) {
1139333715Sdim      RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i));
1140333715Sdim      NewPHISrcs.push_back(
1141333715Sdim          getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources));
1142333715Sdim    }
1143333715Sdim
1144333715Sdim    // Build the new PHI node and return its def register as the new source.
1145333715Sdim    MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst());
1146333715Sdim    MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI);
1147341825Sdim    LLVM_DEBUG(dbgs() << "-- getNewSource\n");
1148341825Sdim    LLVM_DEBUG(dbgs() << "   Replacing: " << OrigPHI);
1149341825Sdim    LLVM_DEBUG(dbgs() << "        With: " << NewPHI);
1150333715Sdim    const MachineOperand &MODef = NewPHI.getOperand(0);
1151333715Sdim    return RegSubRegPair(MODef.getReg(), MODef.getSubReg());
1152333715Sdim  }
1153333715Sdim
1154333715Sdim  return RegSubRegPair(0, 0);
1155333715Sdim}
1156333715Sdim
1157333715Sdim/// Optimize generic copy instructions to avoid cross register bank copy.
1158333715Sdim/// The optimization looks through a chain of copies and tries to find a source
1159333715Sdim/// that has a compatible register class.
1160333715Sdim/// Two register classes are considered to be compatible if they share the same
1161333715Sdim/// register bank.
1162280031Sdim/// New copies issued by this optimization are register allocator
1163280031Sdim/// friendly. This optimization does not remove any copy as it may
1164296417Sdim/// overconstrain the register allocator, but replaces some operands
1165280031Sdim/// when possible.
1166280031Sdim/// \pre isCoalescableCopy(*MI) is true.
1167280031Sdim/// \return True, when \p MI has been rewritten. False otherwise.
1168333715Sdimbool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) {
1169333715Sdim  assert(isCoalescableCopy(MI) && "Invalid argument");
1170333715Sdim  assert(MI.getDesc().getNumDefs() == 1 &&
1171280031Sdim         "Coalescer can understand multiple defs?!");
1172333715Sdim  const MachineOperand &MODef = MI.getOperand(0);
1173280031Sdim  // Do not rewrite physical definitions.
1174360784Sdim  if (Register::isPhysicalRegister(MODef.getReg()))
1175280031Sdim    return false;
1176280031Sdim
1177280031Sdim  bool Changed = false;
1178280031Sdim  // Get the right rewriter for the current copy.
1179333715Sdim  std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII));
1180296417Sdim  // If none exists, bail out.
1181280031Sdim  if (!CpyRewriter)
1182280031Sdim    return false;
1183280031Sdim  // Rewrite each rewritable source.
1184333715Sdim  RegSubRegPair Src;
1185333715Sdim  RegSubRegPair TrackPair;
1186333715Sdim  while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) {
1187296417Sdim    // Keep track of PHI nodes and its incoming edges when looking for sources.
1188296417Sdim    RewriteMapTy RewriteMap;
1189296417Sdim    // Try to find a more suitable source. If we failed to do so, or get the
1190296417Sdim    // actual source, move to the next source.
1191333715Sdim    if (!findNextSource(TrackPair, RewriteMap))
1192280031Sdim      continue;
1193296417Sdim
1194296417Sdim    // Get the new source to rewrite. TODO: Only enable handling of multiple
1195296417Sdim    // sources (PHIs) once we have a motivating example and testcases for it.
1196333715Sdim    RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap,
1197333715Sdim                                        /*HandleMultipleSources=*/false);
1198333715Sdim    if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0)
1199296417Sdim      continue;
1200296417Sdim
1201280031Sdim    // Rewrite source.
1202296417Sdim    if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) {
1203280031Sdim      // We may have extended the live-range of NewSrc, account for that.
1204296417Sdim      MRI->clearKillFlags(NewSrc.Reg);
1205280031Sdim      Changed = true;
1206280031Sdim    }
1207280031Sdim  }
1208280031Sdim  // TODO: We could have a clean-up method to tidy the instruction.
1209280031Sdim  // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
1210280031Sdim  // => v0 = COPY v1
1211280031Sdim  // Currently we haven't seen motivating example for that and we
1212280031Sdim  // want to avoid untested code.
1213288943Sdim  NumRewrittenCopies += Changed;
1214280031Sdim  return Changed;
1215280031Sdim}
1216280031Sdim
1217341825Sdim/// Rewrite the source found through \p Def, by using the \p RewriteMap
1218333715Sdim/// and create a new COPY instruction. More info about RewriteMap in
1219333715Sdim/// PeepholeOptimizer::findNextSource. Right now this is only used to handle
1220333715Sdim/// Uncoalescable copies, since they are copy like instructions that aren't
1221333715Sdim/// recognized by the register allocator.
1222333715SdimMachineInstr &
1223333715SdimPeepholeOptimizer::rewriteSource(MachineInstr &CopyLike,
1224333715Sdim                                 RegSubRegPair Def, RewriteMapTy &RewriteMap) {
1225360784Sdim  assert(!Register::isPhysicalRegister(Def.Reg) &&
1226333715Sdim         "We do not rewrite physical registers");
1227333715Sdim
1228333715Sdim  // Find the new source to use in the COPY rewrite.
1229333715Sdim  RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap);
1230333715Sdim
1231333715Sdim  // Insert the COPY.
1232333715Sdim  const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
1233360784Sdim  Register NewVReg = MRI->createVirtualRegister(DefRC);
1234333715Sdim
1235333715Sdim  MachineInstr *NewCopy =
1236333715Sdim      BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(),
1237333715Sdim              TII->get(TargetOpcode::COPY), NewVReg)
1238333715Sdim          .addReg(NewSrc.Reg, 0, NewSrc.SubReg);
1239333715Sdim
1240333715Sdim  if (Def.SubReg) {
1241333715Sdim    NewCopy->getOperand(0).setSubReg(Def.SubReg);
1242333715Sdim    NewCopy->getOperand(0).setIsUndef();
1243333715Sdim  }
1244333715Sdim
1245341825Sdim  LLVM_DEBUG(dbgs() << "-- RewriteSource\n");
1246341825Sdim  LLVM_DEBUG(dbgs() << "   Replacing: " << CopyLike);
1247341825Sdim  LLVM_DEBUG(dbgs() << "        With: " << *NewCopy);
1248333715Sdim  MRI->replaceRegWith(Def.Reg, NewVReg);
1249333715Sdim  MRI->clearKillFlags(NewVReg);
1250333715Sdim
1251333715Sdim  // We extended the lifetime of NewSrc.Reg, clear the kill flags to
1252333715Sdim  // account for that.
1253333715Sdim  MRI->clearKillFlags(NewSrc.Reg);
1254333715Sdim
1255333715Sdim  return *NewCopy;
1256333715Sdim}
1257333715Sdim
1258341825Sdim/// Optimize copy-like instructions to create
1259280031Sdim/// register coalescer friendly instruction.
1260280031Sdim/// The optimization tries to kill-off the \p MI by looking
1261280031Sdim/// through a chain of copies to find a source that has a compatible
1262280031Sdim/// register class.
1263280031Sdim/// If such a source is found, it replace \p MI by a generic COPY
1264280031Sdim/// operation.
1265280031Sdim/// \pre isUncoalescableCopy(*MI) is true.
1266280031Sdim/// \return True, when \p MI has been optimized. In that case, \p MI has
1267280031Sdim/// been removed from its parent.
1268280031Sdim/// All COPY instructions created, are inserted in \p LocalMIs.
1269280031Sdimbool PeepholeOptimizer::optimizeUncoalescableCopy(
1270333715Sdim    MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
1271333715Sdim  assert(isUncoalescableCopy(MI) && "Invalid argument");
1272333715Sdim  UncoalescableRewriter CpyRewriter(MI);
1273280031Sdim
1274296417Sdim  // Rewrite each rewritable source by generating new COPYs. This works
1275296417Sdim  // differently from optimizeCoalescableCopy since it first makes sure that all
1276296417Sdim  // definitions can be rewritten.
1277296417Sdim  RewriteMapTy RewriteMap;
1278333715Sdim  RegSubRegPair Src;
1279333715Sdim  RegSubRegPair Def;
1280333715Sdim  SmallVector<RegSubRegPair, 4> RewritePairs;
1281333715Sdim  while (CpyRewriter.getNextRewritableSource(Src, Def)) {
1282280031Sdim    // If a physical register is here, this is probably for a good reason.
1283280031Sdim    // Do not rewrite that.
1284360784Sdim    if (Register::isPhysicalRegister(Def.Reg))
1285280031Sdim      return false;
1286280031Sdim
1287280031Sdim    // If we do not know how to rewrite this definition, there is no point
1288280031Sdim    // in trying to kill this instruction.
1289333715Sdim    if (!findNextSource(Def, RewriteMap))
1290280031Sdim      return false;
1291296417Sdim
1292296417Sdim    RewritePairs.push_back(Def);
1293280031Sdim  }
1294296417Sdim
1295280031Sdim  // The change is possible for all defs, do it.
1296333715Sdim  for (const RegSubRegPair &Def : RewritePairs) {
1297280031Sdim    // Rewrite the "copy" in a way the register coalescer understands.
1298333715Sdim    MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap);
1299333715Sdim    LocalMIs.insert(&NewCopy);
1300280031Sdim  }
1301296417Sdim
1302280031Sdim  // MI is now dead.
1303333715Sdim  MI.eraseFromParent();
1304280031Sdim  ++NumUncoalescableCopies;
1305261991Sdim  return true;
1306261991Sdim}
1307261991Sdim
1308296417Sdim/// Check whether MI is a candidate for folding into a later instruction.
1309296417Sdim/// We only fold loads to virtual registers and the virtual register defined
1310353358Sdim/// has a single user.
1311276479Sdimbool PeepholeOptimizer::isLoadFoldable(
1312333715Sdim    MachineInstr &MI, SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) {
1313333715Sdim  if (!MI.canFoldAsLoad() || !MI.mayLoad())
1314239462Sdim    return false;
1315333715Sdim  const MCInstrDesc &MCID = MI.getDesc();
1316239462Sdim  if (MCID.getNumDefs() != 1)
1317239462Sdim    return false;
1318239462Sdim
1319360784Sdim  Register Reg = MI.getOperand(0).getReg();
1320353358Sdim  // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting
1321239462Sdim  // loads. It should be checked when processing uses of the load, since
1322239462Sdim  // uses can be removed during peephole.
1323360784Sdim  if (!MI.getOperand(0).getSubReg() && Register::isVirtualRegister(Reg) &&
1324353358Sdim      MRI->hasOneNonDBGUser(Reg)) {
1325276479Sdim    FoldAsLoadDefCandidates.insert(Reg);
1326239462Sdim    return true;
1327239462Sdim  }
1328239462Sdim  return false;
1329239462Sdim}
1330239462Sdim
1331296417Sdimbool PeepholeOptimizer::isMoveImmediate(
1332333715Sdim    MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs,
1333296417Sdim    DenseMap<unsigned, MachineInstr *> &ImmDefMIs) {
1334333715Sdim  const MCInstrDesc &MCID = MI.getDesc();
1335333715Sdim  if (!MI.isMoveImmediate())
1336218893Sdim    return false;
1337224145Sdim  if (MCID.getNumDefs() != 1)
1338218893Sdim    return false;
1339360784Sdim  Register Reg = MI.getOperand(0).getReg();
1340360784Sdim  if (Register::isVirtualRegister(Reg)) {
1341333715Sdim    ImmDefMIs.insert(std::make_pair(Reg, &MI));
1342218893Sdim    ImmDefRegs.insert(Reg);
1343218893Sdim    return true;
1344218893Sdim  }
1345234353Sdim
1346218893Sdim  return false;
1347218893Sdim}
1348218893Sdim
1349296417Sdim/// Try folding register operands that are defined by move immediate
1350296417Sdim/// instructions, i.e. a trivial constant folding optimization, if
1351218893Sdim/// and only if the def and use are in the same BB.
1352333715Sdimbool PeepholeOptimizer::foldImmediate(MachineInstr &MI,
1353333715Sdim    SmallSet<unsigned, 4> &ImmDefRegs,
1354296417Sdim    DenseMap<unsigned, MachineInstr *> &ImmDefMIs) {
1355333715Sdim  for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1356333715Sdim    MachineOperand &MO = MI.getOperand(i);
1357218893Sdim    if (!MO.isReg() || MO.isDef())
1358218893Sdim      continue;
1359296417Sdim    // Ignore dead implicit defs.
1360296417Sdim    if (MO.isImplicit() && MO.isDead())
1361296417Sdim      continue;
1362360784Sdim    Register Reg = MO.getReg();
1363360784Sdim    if (!Register::isVirtualRegister(Reg))
1364218893Sdim      continue;
1365218893Sdim    if (ImmDefRegs.count(Reg) == 0)
1366218893Sdim      continue;
1367218893Sdim    DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
1368296417Sdim    assert(II != ImmDefMIs.end() && "couldn't find immediate definition");
1369333715Sdim    if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) {
1370218893Sdim      ++NumImmFold;
1371218893Sdim      return true;
1372218893Sdim    }
1373218893Sdim  }
1374218893Sdim  return false;
1375218893Sdim}
1376218893Sdim
1377296417Sdim// FIXME: This is very simple and misses some cases which should be handled when
1378296417Sdim// motivating examples are found.
1379296417Sdim//
1380296417Sdim// The copy rewriting logic should look at uses as well as defs and be able to
1381296417Sdim// eliminate copies across blocks.
1382296417Sdim//
1383296417Sdim// Later copies that are subregister extracts will also not be eliminated since
1384296417Sdim// only the first copy is considered.
1385296417Sdim//
1386296417Sdim// e.g.
1387327952Sdim// %1 = COPY %0
1388327952Sdim// %2 = COPY %0:sub1
1389296417Sdim//
1390327952Sdim// Should replace %2 uses with %1:sub1
1391333715Sdimbool PeepholeOptimizer::foldRedundantCopy(MachineInstr &MI,
1392333715Sdim    SmallSet<unsigned, 4> &CopySrcRegs,
1393296417Sdim    DenseMap<unsigned, MachineInstr *> &CopyMIs) {
1394333715Sdim  assert(MI.isCopy() && "expected a COPY machine instruction");
1395296417Sdim
1396360784Sdim  Register SrcReg = MI.getOperand(1).getReg();
1397360784Sdim  if (!Register::isVirtualRegister(SrcReg))
1398296417Sdim    return false;
1399296417Sdim
1400360784Sdim  Register DstReg = MI.getOperand(0).getReg();
1401360784Sdim  if (!Register::isVirtualRegister(DstReg))
1402296417Sdim    return false;
1403296417Sdim
1404296417Sdim  if (CopySrcRegs.insert(SrcReg).second) {
1405296417Sdim    // First copy of this reg seen.
1406333715Sdim    CopyMIs.insert(std::make_pair(SrcReg, &MI));
1407296417Sdim    return false;
1408296417Sdim  }
1409296417Sdim
1410296417Sdim  MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second;
1411296417Sdim
1412333715Sdim  unsigned SrcSubReg = MI.getOperand(1).getSubReg();
1413296417Sdim  unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg();
1414296417Sdim
1415296417Sdim  // Can't replace different subregister extracts.
1416296417Sdim  if (SrcSubReg != PrevSrcSubReg)
1417296417Sdim    return false;
1418296417Sdim
1419360784Sdim  Register PrevDstReg = PrevCopy->getOperand(0).getReg();
1420296417Sdim
1421296417Sdim  // Only replace if the copy register class is the same.
1422296417Sdim  //
1423296417Sdim  // TODO: If we have multiple copies to different register classes, we may want
1424296417Sdim  // to track multiple copies of the same source register.
1425296417Sdim  if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg))
1426296417Sdim    return false;
1427296417Sdim
1428296417Sdim  MRI->replaceRegWith(DstReg, PrevDstReg);
1429296417Sdim
1430296417Sdim  // Lifetime of the previous copy has been extended.
1431296417Sdim  MRI->clearKillFlags(PrevDstReg);
1432296417Sdim  return true;
1433296417Sdim}
1434296417Sdim
1435296417Sdimbool PeepholeOptimizer::isNAPhysCopy(unsigned Reg) {
1436360784Sdim  return Register::isPhysicalRegister(Reg) && !MRI->isAllocatable(Reg);
1437296417Sdim}
1438296417Sdim
1439296417Sdimbool PeepholeOptimizer::foldRedundantNAPhysCopy(
1440333715Sdim    MachineInstr &MI, DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs) {
1441333715Sdim  assert(MI.isCopy() && "expected a COPY machine instruction");
1442296417Sdim
1443296417Sdim  if (DisableNAPhysCopyOpt)
1444296417Sdim    return false;
1445296417Sdim
1446360784Sdim  Register DstReg = MI.getOperand(0).getReg();
1447360784Sdim  Register SrcReg = MI.getOperand(1).getReg();
1448360784Sdim  if (isNAPhysCopy(SrcReg) && Register::isVirtualRegister(DstReg)) {
1449327952Sdim    // %vreg = COPY %physreg
1450296417Sdim    // Avoid using a datastructure which can track multiple live non-allocatable
1451296417Sdim    // phys->virt copies since LLVM doesn't seem to do this.
1452333715Sdim    NAPhysToVirtMIs.insert({SrcReg, &MI});
1453296417Sdim    return false;
1454296417Sdim  }
1455296417Sdim
1456360784Sdim  if (!(Register::isVirtualRegister(SrcReg) && isNAPhysCopy(DstReg)))
1457296417Sdim    return false;
1458296417Sdim
1459327952Sdim  // %physreg = COPY %vreg
1460296417Sdim  auto PrevCopy = NAPhysToVirtMIs.find(DstReg);
1461296417Sdim  if (PrevCopy == NAPhysToVirtMIs.end()) {
1462296417Sdim    // We can't remove the copy: there was an intervening clobber of the
1463296417Sdim    // non-allocatable physical register after the copy to virtual.
1464341825Sdim    LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing "
1465341825Sdim                      << MI);
1466296417Sdim    return false;
1467296417Sdim  }
1468296417Sdim
1469360784Sdim  Register PrevDstReg = PrevCopy->second->getOperand(0).getReg();
1470296417Sdim  if (PrevDstReg == SrcReg) {
1471296417Sdim    // Remove the virt->phys copy: we saw the virtual register definition, and
1472296417Sdim    // the non-allocatable physical register's state hasn't changed since then.
1473341825Sdim    LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI);
1474296417Sdim    ++NumNAPhysCopies;
1475296417Sdim    return true;
1476296417Sdim  }
1477296417Sdim
1478296417Sdim  // Potential missed optimization opportunity: we saw a different virtual
1479296417Sdim  // register get a copy of the non-allocatable physical register, and we only
1480296417Sdim  // track one such copy. Avoid getting confused by this new non-allocatable
1481296417Sdim  // physical register definition, and remove it from the tracked copies.
1482341825Sdim  LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI);
1483296417Sdim  NAPhysToVirtMIs.erase(PrevCopy);
1484296417Sdim  return false;
1485296417Sdim}
1486296417Sdim
1487321369Sdim/// \bried Returns true if \p MO is a virtual register operand.
1488321369Sdimstatic bool isVirtualRegisterOperand(MachineOperand &MO) {
1489321369Sdim  if (!MO.isReg())
1490321369Sdim    return false;
1491360784Sdim  return Register::isVirtualRegister(MO.getReg());
1492321369Sdim}
1493321369Sdim
1494321369Sdimbool PeepholeOptimizer::findTargetRecurrence(
1495321369Sdim    unsigned Reg, const SmallSet<unsigned, 2> &TargetRegs,
1496321369Sdim    RecurrenceCycle &RC) {
1497321369Sdim  // Recurrence found if Reg is in TargetRegs.
1498321369Sdim  if (TargetRegs.count(Reg))
1499321369Sdim    return true;
1500321369Sdim
1501321369Sdim  // TODO: Curerntly, we only allow the last instruction of the recurrence
1502321369Sdim  // cycle (the instruction that feeds the PHI instruction) to have more than
1503321369Sdim  // one uses to guarantee that commuting operands does not tie registers
1504321369Sdim  // with overlapping live range. Once we have actual live range info of
1505321369Sdim  // each register, this constraint can be relaxed.
1506321369Sdim  if (!MRI->hasOneNonDBGUse(Reg))
1507321369Sdim    return false;
1508321369Sdim
1509321369Sdim  // Give up if the reccurrence chain length is longer than the limit.
1510321369Sdim  if (RC.size() >= MaxRecurrenceChain)
1511321369Sdim    return false;
1512321369Sdim
1513321369Sdim  MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg));
1514321369Sdim  unsigned Idx = MI.findRegisterUseOperandIdx(Reg);
1515321369Sdim
1516321369Sdim  // Only interested in recurrences whose instructions have only one def, which
1517321369Sdim  // is a virtual register.
1518321369Sdim  if (MI.getDesc().getNumDefs() != 1)
1519321369Sdim    return false;
1520321369Sdim
1521321369Sdim  MachineOperand &DefOp = MI.getOperand(0);
1522321369Sdim  if (!isVirtualRegisterOperand(DefOp))
1523321369Sdim    return false;
1524321369Sdim
1525321369Sdim  // Check if def operand of MI is tied to any use operand. We are only
1526321369Sdim  // interested in the case that all the instructions in the recurrence chain
1527321369Sdim  // have there def operand tied with one of the use operand.
1528321369Sdim  unsigned TiedUseIdx;
1529321369Sdim  if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx))
1530321369Sdim    return false;
1531321369Sdim
1532321369Sdim  if (Idx == TiedUseIdx) {
1533321369Sdim    RC.push_back(RecurrenceInstr(&MI));
1534321369Sdim    return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1535321369Sdim  } else {
1536321369Sdim    // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx.
1537321369Sdim    unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex;
1538321369Sdim    if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) {
1539321369Sdim      RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx));
1540321369Sdim      return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1541321369Sdim    }
1542321369Sdim  }
1543321369Sdim
1544321369Sdim  return false;
1545321369Sdim}
1546321369Sdim
1547333715Sdim/// Phi instructions will eventually be lowered to copy instructions.
1548333715Sdim/// If phi is in a loop header, a recurrence may formulated around the source
1549333715Sdim/// and destination of the phi. For such case commuting operands of the
1550333715Sdim/// instructions in the recurrence may enable coalescing of the copy instruction
1551333715Sdim/// generated from the phi. For example, if there is a recurrence of
1552321369Sdim///
1553321369Sdim/// LoopHeader:
1554327952Sdim///   %1 = phi(%0, %100)
1555321369Sdim/// LoopLatch:
1556327952Sdim///   %0<def, tied1> = ADD %2<def, tied0>, %1
1557321369Sdim///
1558327952Sdim/// , the fact that %0 and %2 are in the same tied operands set makes
1559321369Sdim/// the coalescing of copy instruction generated from the phi in
1560327952Sdim/// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and
1561327952Sdim/// %2 have overlapping live range. This introduces additional move
1562327952Sdim/// instruction to the final assembly. However, if we commute %2 and
1563327952Sdim/// %1 of ADD instruction, the redundant move instruction can be
1564321369Sdim/// avoided.
1565321369Sdimbool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) {
1566321369Sdim  SmallSet<unsigned, 2> TargetRegs;
1567321369Sdim  for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) {
1568321369Sdim    MachineOperand &MO = PHI.getOperand(Idx);
1569321369Sdim    assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction");
1570321369Sdim    TargetRegs.insert(MO.getReg());
1571321369Sdim  }
1572321369Sdim
1573321369Sdim  bool Changed = false;
1574321369Sdim  RecurrenceCycle RC;
1575321369Sdim  if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) {
1576321369Sdim    // Commutes operands of instructions in RC if necessary so that the copy to
1577321369Sdim    // be generated from PHI can be coalesced.
1578341825Sdim    LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI);
1579321369Sdim    for (auto &RI : RC) {
1580341825Sdim      LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI()));
1581321369Sdim      auto CP = RI.getCommutePair();
1582321369Sdim      if (CP) {
1583321369Sdim        Changed = true;
1584321369Sdim        TII->commuteInstruction(*(RI.getMI()), false, (*CP).first,
1585321369Sdim                                (*CP).second);
1586341825Sdim        LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI()));
1587321369Sdim      }
1588321369Sdim    }
1589321369Sdim  }
1590321369Sdim
1591321369Sdim  return Changed;
1592321369Sdim}
1593321369Sdim
1594212793Sdimbool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
1595327952Sdim  if (skipFunction(MF.getFunction()))
1596276479Sdim    return false;
1597276479Sdim
1598341825Sdim  LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
1599341825Sdim  LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
1600249423Sdim
1601218893Sdim  if (DisablePeephole)
1602218893Sdim    return false;
1603234353Sdim
1604280031Sdim  TII = MF.getSubtarget().getInstrInfo();
1605280031Sdim  TRI = MF.getSubtarget().getRegisterInfo();
1606212793Sdim  MRI = &MF.getRegInfo();
1607276479Sdim  DT  = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
1608321369Sdim  MLI = &getAnalysis<MachineLoopInfo>();
1609212793Sdim
1610212793Sdim  bool Changed = false;
1611212793Sdim
1612296417Sdim  for (MachineBasicBlock &MBB : MF) {
1613218893Sdim    bool SeenMoveImm = false;
1614280031Sdim
1615280031Sdim    // During this forward scan, at some point it needs to answer the question
1616280031Sdim    // "given a pointer to an MI in the current BB, is it located before or
1617280031Sdim    // after the current instruction".
1618280031Sdim    // To perform this, the following set keeps track of the MIs already seen
1619280031Sdim    // during the scan, if a MI is not in the set, it is assumed to be located
1620280031Sdim    // after. Newly created MIs have to be inserted in the set as well.
1621280031Sdim    SmallPtrSet<MachineInstr*, 16> LocalMIs;
1622276479Sdim    SmallSet<unsigned, 4> ImmDefRegs;
1623276479Sdim    DenseMap<unsigned, MachineInstr*> ImmDefMIs;
1624276479Sdim    SmallSet<unsigned, 16> FoldAsLoadDefCandidates;
1625212793Sdim
1626296417Sdim    // Track when a non-allocatable physical register is copied to a virtual
1627296417Sdim    // register so that useless moves can be removed.
1628296417Sdim    //
1629327952Sdim    // %physreg is the map index; MI is the last valid `%vreg = COPY %physreg`
1630327952Sdim    // without any intervening re-definition of %physreg.
1631296417Sdim    DenseMap<unsigned, MachineInstr *> NAPhysToVirtMIs;
1632296417Sdim
1633296417Sdim    // Set of virtual registers that are copied from.
1634296417Sdim    SmallSet<unsigned, 4> CopySrcRegs;
1635296417Sdim    DenseMap<unsigned, MachineInstr *> CopySrcMIs;
1636296417Sdim
1637321369Sdim    bool IsLoopHeader = MLI->isLoopHeader(&MBB);
1638321369Sdim
1639296417Sdim    for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
1640296417Sdim         MII != MIE; ) {
1641212793Sdim      MachineInstr *MI = &*MII;
1642239462Sdim      // We may be erasing MI below, increment MII now.
1643239462Sdim      ++MII;
1644218893Sdim      LocalMIs.insert(MI);
1645212793Sdim
1646341825Sdim      // Skip debug instructions. They should not affect this peephole optimization.
1647341825Sdim      if (MI->isDebugInstr())
1648276479Sdim          continue;
1649276479Sdim
1650321369Sdim      if (MI->isPosition())
1651218893Sdim        continue;
1652296417Sdim
1653321369Sdim      if (IsLoopHeader && MI->isPHI()) {
1654321369Sdim        if (optimizeRecurrence(*MI)) {
1655321369Sdim          Changed = true;
1656321369Sdim          continue;
1657321369Sdim        }
1658321369Sdim      }
1659321369Sdim
1660296417Sdim      if (!MI->isCopy()) {
1661333715Sdim        for (const MachineOperand &MO : MI->operands()) {
1662296417Sdim          // Visit all operands: definitions can be implicit or explicit.
1663333715Sdim          if (MO.isReg()) {
1664360784Sdim            Register Reg = MO.getReg();
1665333715Sdim            if (MO.isDef() && isNAPhysCopy(Reg)) {
1666296417Sdim              const auto &Def = NAPhysToVirtMIs.find(Reg);
1667296417Sdim              if (Def != NAPhysToVirtMIs.end()) {
1668296417Sdim                // A new definition of the non-allocatable physical register
1669296417Sdim                // invalidates previous copies.
1670341825Sdim                LLVM_DEBUG(dbgs()
1671341825Sdim                           << "NAPhysCopy: invalidating because of " << *MI);
1672296417Sdim                NAPhysToVirtMIs.erase(Def);
1673296417Sdim              }
1674296417Sdim            }
1675333715Sdim          } else if (MO.isRegMask()) {
1676333715Sdim            const uint32_t *RegMask = MO.getRegMask();
1677296417Sdim            for (auto &RegMI : NAPhysToVirtMIs) {
1678296417Sdim              unsigned Def = RegMI.first;
1679296417Sdim              if (MachineOperand::clobbersPhysReg(RegMask, Def)) {
1680341825Sdim                LLVM_DEBUG(dbgs()
1681341825Sdim                           << "NAPhysCopy: invalidating because of " << *MI);
1682296417Sdim                NAPhysToVirtMIs.erase(Def);
1683296417Sdim              }
1684296417Sdim            }
1685296417Sdim          }
1686296417Sdim        }
1687218893Sdim      }
1688218893Sdim
1689296417Sdim      if (MI->isImplicitDef() || MI->isKill())
1690296417Sdim        continue;
1691296417Sdim
1692296417Sdim      if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) {
1693296417Sdim        // Blow away all non-allocatable physical registers knowledge since we
1694296417Sdim        // don't know what's correct anymore.
1695296417Sdim        //
1696296417Sdim        // FIXME: handle explicit asm clobbers.
1697341825Sdim        LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to "
1698341825Sdim                          << *MI);
1699296417Sdim        NAPhysToVirtMIs.clear();
1700296417Sdim      }
1701296417Sdim
1702280031Sdim      if ((isUncoalescableCopy(*MI) &&
1703333715Sdim           optimizeUncoalescableCopy(*MI, LocalMIs)) ||
1704333715Sdim          (MI->isCompare() && optimizeCmpInstr(*MI)) ||
1705333715Sdim          (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) {
1706239462Sdim        // MI is deleted.
1707239462Sdim        LocalMIs.erase(MI);
1708239462Sdim        Changed = true;
1709239462Sdim        continue;
1710218893Sdim      }
1711218893Sdim
1712333715Sdim      if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) {
1713280031Sdim        Changed = true;
1714280031Sdim        continue;
1715280031Sdim      }
1716280031Sdim
1717333715Sdim      if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) {
1718280031Sdim        // MI is just rewritten.
1719280031Sdim        Changed = true;
1720280031Sdim        continue;
1721280031Sdim      }
1722280031Sdim
1723296417Sdim      if (MI->isCopy() &&
1724333715Sdim          (foldRedundantCopy(*MI, CopySrcRegs, CopySrcMIs) ||
1725333715Sdim           foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) {
1726296417Sdim        LocalMIs.erase(MI);
1727296417Sdim        MI->eraseFromParent();
1728296417Sdim        Changed = true;
1729296417Sdim        continue;
1730296417Sdim      }
1731296417Sdim
1732333715Sdim      if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) {
1733218893Sdim        SeenMoveImm = true;
1734212793Sdim      } else {
1735333715Sdim        Changed |= optimizeExtInstr(*MI, MBB, LocalMIs);
1736243830Sdim        // optimizeExtInstr might have created new instructions after MI
1737243830Sdim        // and before the already incremented MII. Adjust MII so that the
1738243830Sdim        // next iteration sees the new instructions.
1739243830Sdim        MII = MI;
1740243830Sdim        ++MII;
1741218893Sdim        if (SeenMoveImm)
1742333715Sdim          Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs);
1743212793Sdim      }
1744218893Sdim
1745239462Sdim      // Check whether MI is a load candidate for folding into a later
1746239462Sdim      // instruction. If MI is not a candidate, check whether we can fold an
1747239462Sdim      // earlier load into MI.
1748333715Sdim      if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) &&
1749276479Sdim          !FoldAsLoadDefCandidates.empty()) {
1750314564Sdim
1751314564Sdim        // We visit each operand even after successfully folding a previous
1752314564Sdim        // one.  This allows us to fold multiple loads into a single
1753314564Sdim        // instruction.  We do assume that optimizeLoadInstr doesn't insert
1754314564Sdim        // foldable uses earlier in the argument list.  Since we don't restart
1755314564Sdim        // iteration, we'd miss such cases.
1756276479Sdim        const MCInstrDesc &MIDesc = MI->getDesc();
1757314564Sdim        for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands();
1758276479Sdim             ++i) {
1759276479Sdim          const MachineOperand &MOp = MI->getOperand(i);
1760276479Sdim          if (!MOp.isReg())
1761276479Sdim            continue;
1762276479Sdim          unsigned FoldAsLoadDefReg = MOp.getReg();
1763276479Sdim          if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
1764276479Sdim            // We need to fold load after optimizeCmpInstr, since
1765276479Sdim            // optimizeCmpInstr can enable folding by converting SUB to CMP.
1766276479Sdim            // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
1767276479Sdim            // we need it for markUsesInDebugValueAsUndef().
1768276479Sdim            unsigned FoldedReg = FoldAsLoadDefReg;
1769276479Sdim            MachineInstr *DefMI = nullptr;
1770309124Sdim            if (MachineInstr *FoldMI =
1771309124Sdim                    TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) {
1772276479Sdim              // Update LocalMIs since we replaced MI with FoldMI and deleted
1773276479Sdim              // DefMI.
1774341825Sdim              LLVM_DEBUG(dbgs() << "Replacing: " << *MI);
1775341825Sdim              LLVM_DEBUG(dbgs() << "     With: " << *FoldMI);
1776276479Sdim              LocalMIs.erase(MI);
1777276479Sdim              LocalMIs.erase(DefMI);
1778276479Sdim              LocalMIs.insert(FoldMI);
1779353358Sdim              if (MI->isCall())
1780360784Sdim                MI->getMF()->moveCallSiteInfo(MI, FoldMI);
1781276479Sdim              MI->eraseFromParent();
1782276479Sdim              DefMI->eraseFromParent();
1783276479Sdim              MRI->markUsesInDebugValueAsUndef(FoldedReg);
1784276479Sdim              FoldAsLoadDefCandidates.erase(FoldedReg);
1785276479Sdim              ++NumLoadFold;
1786321369Sdim
1787314564Sdim              // MI is replaced with FoldMI so we can continue trying to fold
1788276479Sdim              Changed = true;
1789314564Sdim              MI = FoldMI;
1790276479Sdim            }
1791276479Sdim          }
1792239462Sdim        }
1793239462Sdim      }
1794321369Sdim
1795314564Sdim      // If we run into an instruction we can't fold across, discard
1796314564Sdim      // the load candidates.  Note: We might be able to fold *into* this
1797314564Sdim      // instruction, so this needs to be after the folding logic.
1798314564Sdim      if (MI->isLoadFoldBarrier()) {
1799341825Sdim        LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI);
1800314564Sdim        FoldAsLoadDefCandidates.clear();
1801314564Sdim      }
1802212793Sdim    }
1803212793Sdim  }
1804212793Sdim
1805212793Sdim  return Changed;
1806212793Sdim}
1807276479Sdim
1808296417SdimValueTrackerResult ValueTracker::getNextSourceFromCopy() {
1809276479Sdim  assert(Def->isCopy() && "Invalid definition");
1810276479Sdim  // Copy instruction are supposed to be: Def = Src.
1811276479Sdim  // If someone breaks this assumption, bad things will happen everywhere.
1812360784Sdim  // There may be implicit uses preventing the copy to be moved across
1813360784Sdim  // some target specific register definitions
1814360784Sdim  assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 &&
1815360784Sdim         "Invalid number of operands");
1816360784Sdim  assert(!Def->hasImplicitDef() && "Only implicit uses are allowed");
1817276479Sdim
1818276479Sdim  if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
1819276479Sdim    // If we look for a different subreg, it means we want a subreg of src.
1820296417Sdim    // Bails as we do not support composing subregs yet.
1821296417Sdim    return ValueTrackerResult();
1822276479Sdim  // Otherwise, we want the whole source.
1823280031Sdim  const MachineOperand &Src = Def->getOperand(1);
1824335799Sdim  if (Src.isUndef())
1825335799Sdim    return ValueTrackerResult();
1826296417Sdim  return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1827276479Sdim}
1828276479Sdim
1829296417SdimValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
1830276479Sdim  assert(Def->isBitcast() && "Invalid definition");
1831276479Sdim
1832276479Sdim  // Bail if there are effects that a plain copy will not expose.
1833353358Sdim  if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects())
1834296417Sdim    return ValueTrackerResult();
1835276479Sdim
1836276479Sdim  // Bitcasts with more than one def are not supported.
1837276479Sdim  if (Def->getDesc().getNumDefs() != 1)
1838296417Sdim    return ValueTrackerResult();
1839314564Sdim  const MachineOperand DefOp = Def->getOperand(DefIdx);
1840314564Sdim  if (DefOp.getSubReg() != DefSubReg)
1841276479Sdim    // If we look for a different subreg, it means we want a subreg of the src.
1842296417Sdim    // Bails as we do not support composing subregs yet.
1843296417Sdim    return ValueTrackerResult();
1844276479Sdim
1845280031Sdim  unsigned SrcIdx = Def->getNumOperands();
1846276479Sdim  for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
1847276479Sdim       ++OpIdx) {
1848276479Sdim    const MachineOperand &MO = Def->getOperand(OpIdx);
1849276479Sdim    if (!MO.isReg() || !MO.getReg())
1850276479Sdim      continue;
1851296417Sdim    // Ignore dead implicit defs.
1852296417Sdim    if (MO.isImplicit() && MO.isDead())
1853296417Sdim      continue;
1854276479Sdim    assert(!MO.isDef() && "We should have skipped all the definitions by now");
1855276479Sdim    if (SrcIdx != EndOpIdx)
1856276479Sdim      // Multiple sources?
1857296417Sdim      return ValueTrackerResult();
1858276479Sdim    SrcIdx = OpIdx;
1859276479Sdim  }
1860314564Sdim
1861360784Sdim  // In some rare case, Def has no input, SrcIdx is out of bound,
1862360784Sdim  // getOperand(SrcIdx) will fail below.
1863360784Sdim  if (SrcIdx >= Def->getNumOperands())
1864360784Sdim    return ValueTrackerResult();
1865360784Sdim
1866314564Sdim  // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY
1867314564Sdim  // will break the assumed guarantees for the upper bits.
1868314564Sdim  for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) {
1869314564Sdim    if (UseMI.isSubregToReg())
1870314564Sdim      return ValueTrackerResult();
1871314564Sdim  }
1872314564Sdim
1873280031Sdim  const MachineOperand &Src = Def->getOperand(SrcIdx);
1874335799Sdim  if (Src.isUndef())
1875335799Sdim    return ValueTrackerResult();
1876296417Sdim  return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1877276479Sdim}
1878276479Sdim
1879296417SdimValueTrackerResult ValueTracker::getNextSourceFromRegSequence() {
1880280031Sdim  assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
1881280031Sdim         "Invalid definition");
1882276479Sdim
1883276479Sdim  if (Def->getOperand(DefIdx).getSubReg())
1884296417Sdim    // If we are composing subregs, bail out.
1885276479Sdim    // The case we are checking is Def.<subreg> = REG_SEQUENCE.
1886276479Sdim    // This should almost never happen as the SSA property is tracked at
1887276479Sdim    // the register level (as opposed to the subreg level).
1888276479Sdim    // I.e.,
1889276479Sdim    // Def.sub0 =
1890276479Sdim    // Def.sub1 =
1891276479Sdim    // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
1892276479Sdim    // Def. Thus, it must not be generated.
1893276479Sdim    // However, some code could theoretically generates a single
1894276479Sdim    // Def.sub0 (i.e, not defining the other subregs) and we would
1895276479Sdim    // have this case.
1896276479Sdim    // If we can ascertain (or force) that this never happens, we could
1897276479Sdim    // turn that into an assertion.
1898296417Sdim    return ValueTrackerResult();
1899276479Sdim
1900280031Sdim  if (!TII)
1901280031Sdim    // We could handle the REG_SEQUENCE here, but we do not want to
1902280031Sdim    // duplicate the code from the generic TII.
1903296417Sdim    return ValueTrackerResult();
1904280031Sdim
1905333715Sdim  SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs;
1906280031Sdim  if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
1907296417Sdim    return ValueTrackerResult();
1908280031Sdim
1909276479Sdim  // We are looking at:
1910276479Sdim  // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1911276479Sdim  // Check if one of the operand defines the subreg we are interested in.
1912333715Sdim  for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) {
1913353358Sdim    if (RegSeqInput.SubIdx == DefSubReg)
1914296417Sdim      return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg);
1915276479Sdim  }
1916276479Sdim
1917276479Sdim  // If the subreg we are tracking is super-defined by another subreg,
1918276479Sdim  // we could follow this value. However, this would require to compose
1919276479Sdim  // the subreg and we do not do that for now.
1920296417Sdim  return ValueTrackerResult();
1921276479Sdim}
1922276479Sdim
1923296417SdimValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() {
1924280031Sdim  assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
1925280031Sdim         "Invalid definition");
1926280031Sdim
1927276479Sdim  if (Def->getOperand(DefIdx).getSubReg())
1928296417Sdim    // If we are composing subreg, bail out.
1929276479Sdim    // Same remark as getNextSourceFromRegSequence.
1930276479Sdim    // I.e., this may be turned into an assert.
1931296417Sdim    return ValueTrackerResult();
1932276479Sdim
1933280031Sdim  if (!TII)
1934280031Sdim    // We could handle the REG_SEQUENCE here, but we do not want to
1935280031Sdim    // duplicate the code from the generic TII.
1936296417Sdim    return ValueTrackerResult();
1937280031Sdim
1938333715Sdim  RegSubRegPair BaseReg;
1939333715Sdim  RegSubRegPairAndIdx InsertedReg;
1940280031Sdim  if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
1941296417Sdim    return ValueTrackerResult();
1942280031Sdim
1943276479Sdim  // We are looking at:
1944276479Sdim  // Def = INSERT_SUBREG v0, v1, sub1
1945276479Sdim  // There are two cases:
1946276479Sdim  // 1. DefSubReg == sub1, get v1.
1947276479Sdim  // 2. DefSubReg != sub1, the value may be available through v0.
1948276479Sdim
1949280031Sdim  // #1 Check if the inserted register matches the required sub index.
1950280031Sdim  if (InsertedReg.SubIdx == DefSubReg) {
1951296417Sdim    return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg);
1952276479Sdim  }
1953276479Sdim  // #2 Otherwise, if the sub register we are looking for is not partial
1954276479Sdim  // defined by the inserted element, we can look through the main
1955276479Sdim  // register (v0).
1956276479Sdim  const MachineOperand &MODef = Def->getOperand(DefIdx);
1957276479Sdim  // If the result register (Def) and the base register (v0) do not
1958276479Sdim  // have the same register class or if we have to compose
1959296417Sdim  // subregisters, bail out.
1960280031Sdim  if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
1961280031Sdim      BaseReg.SubReg)
1962296417Sdim    return ValueTrackerResult();
1963276479Sdim
1964280031Sdim  // Get the TRI and check if the inserted sub-register overlaps with the
1965280031Sdim  // sub-register we are tracking.
1966280031Sdim  const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
1967276479Sdim  if (!TRI ||
1968314564Sdim      !(TRI->getSubRegIndexLaneMask(DefSubReg) &
1969314564Sdim        TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none())
1970296417Sdim    return ValueTrackerResult();
1971276479Sdim  // At this point, the value is available in v0 via the same subreg
1972276479Sdim  // we used for Def.
1973296417Sdim  return ValueTrackerResult(BaseReg.Reg, DefSubReg);
1974276479Sdim}
1975276479Sdim
1976296417SdimValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() {
1977280031Sdim  assert((Def->isExtractSubreg() ||
1978280031Sdim          Def->isExtractSubregLike()) && "Invalid definition");
1979276479Sdim  // We are looking at:
1980276479Sdim  // Def = EXTRACT_SUBREG v0, sub0
1981276479Sdim
1982296417Sdim  // Bail if we have to compose sub registers.
1983276479Sdim  // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
1984276479Sdim  if (DefSubReg)
1985296417Sdim    return ValueTrackerResult();
1986276479Sdim
1987280031Sdim  if (!TII)
1988280031Sdim    // We could handle the EXTRACT_SUBREG here, but we do not want to
1989280031Sdim    // duplicate the code from the generic TII.
1990296417Sdim    return ValueTrackerResult();
1991280031Sdim
1992333715Sdim  RegSubRegPairAndIdx ExtractSubregInputReg;
1993280031Sdim  if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
1994296417Sdim    return ValueTrackerResult();
1995280031Sdim
1996296417Sdim  // Bail if we have to compose sub registers.
1997276479Sdim  // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
1998280031Sdim  if (ExtractSubregInputReg.SubReg)
1999296417Sdim    return ValueTrackerResult();
2000276479Sdim  // Otherwise, the value is available in the v0.sub0.
2001296417Sdim  return ValueTrackerResult(ExtractSubregInputReg.Reg,
2002296417Sdim                            ExtractSubregInputReg.SubIdx);
2003276479Sdim}
2004276479Sdim
2005296417SdimValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() {
2006276479Sdim  assert(Def->isSubregToReg() && "Invalid definition");
2007276479Sdim  // We are looking at:
2008276479Sdim  // Def = SUBREG_TO_REG Imm, v0, sub0
2009276479Sdim
2010296417Sdim  // Bail if we have to compose sub registers.
2011276479Sdim  // If DefSubReg != sub0, we would have to check that all the bits
2012276479Sdim  // we track are included in sub0 and if yes, we would have to
2013276479Sdim  // determine the right subreg in v0.
2014276479Sdim  if (DefSubReg != Def->getOperand(3).getImm())
2015296417Sdim    return ValueTrackerResult();
2016296417Sdim  // Bail if we have to compose sub registers.
2017276479Sdim  // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
2018276479Sdim  if (Def->getOperand(2).getSubReg())
2019296417Sdim    return ValueTrackerResult();
2020276479Sdim
2021296417Sdim  return ValueTrackerResult(Def->getOperand(2).getReg(),
2022296417Sdim                            Def->getOperand(3).getImm());
2023276479Sdim}
2024276479Sdim
2025333715Sdim/// Explore each PHI incoming operand and return its sources.
2026296417SdimValueTrackerResult ValueTracker::getNextSourceFromPHI() {
2027296417Sdim  assert(Def->isPHI() && "Invalid definition");
2028296417Sdim  ValueTrackerResult Res;
2029296417Sdim
2030296417Sdim  // If we look for a different subreg, bail as we do not support composing
2031296417Sdim  // subregs yet.
2032296417Sdim  if (Def->getOperand(0).getSubReg() != DefSubReg)
2033296417Sdim    return ValueTrackerResult();
2034296417Sdim
2035296417Sdim  // Return all register sources for PHI instructions.
2036296417Sdim  for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) {
2037333715Sdim    const MachineOperand &MO = Def->getOperand(i);
2038296417Sdim    assert(MO.isReg() && "Invalid PHI instruction");
2039335799Sdim    // We have no code to deal with undef operands. They shouldn't happen in
2040335799Sdim    // normal programs anyway.
2041335799Sdim    if (MO.isUndef())
2042335799Sdim      return ValueTrackerResult();
2043296417Sdim    Res.addSource(MO.getReg(), MO.getSubReg());
2044296417Sdim  }
2045296417Sdim
2046296417Sdim  return Res;
2047296417Sdim}
2048296417Sdim
2049296417SdimValueTrackerResult ValueTracker::getNextSourceImpl() {
2050276479Sdim  assert(Def && "This method needs a valid definition");
2051276479Sdim
2052309124Sdim  assert(((Def->getOperand(DefIdx).isDef() &&
2053309124Sdim           (DefIdx < Def->getDesc().getNumDefs() ||
2054309124Sdim            Def->getDesc().isVariadic())) ||
2055309124Sdim          Def->getOperand(DefIdx).isImplicit()) &&
2056309124Sdim         "Invalid DefIdx");
2057276479Sdim  if (Def->isCopy())
2058296417Sdim    return getNextSourceFromCopy();
2059276479Sdim  if (Def->isBitcast())
2060296417Sdim    return getNextSourceFromBitcast();
2061276479Sdim  // All the remaining cases involve "complex" instructions.
2062296417Sdim  // Bail if we did not ask for the advanced tracking.
2063333715Sdim  if (DisableAdvCopyOpt)
2064296417Sdim    return ValueTrackerResult();
2065280031Sdim  if (Def->isRegSequence() || Def->isRegSequenceLike())
2066296417Sdim    return getNextSourceFromRegSequence();
2067280031Sdim  if (Def->isInsertSubreg() || Def->isInsertSubregLike())
2068296417Sdim    return getNextSourceFromInsertSubreg();
2069280031Sdim  if (Def->isExtractSubreg() || Def->isExtractSubregLike())
2070296417Sdim    return getNextSourceFromExtractSubreg();
2071276479Sdim  if (Def->isSubregToReg())
2072296417Sdim    return getNextSourceFromSubregToReg();
2073296417Sdim  if (Def->isPHI())
2074296417Sdim    return getNextSourceFromPHI();
2075296417Sdim  return ValueTrackerResult();
2076276479Sdim}
2077276479Sdim
2078296417SdimValueTrackerResult ValueTracker::getNextSource() {
2079276479Sdim  // If we reach a point where we cannot move up in the use-def chain,
2080276479Sdim  // there is nothing we can get.
2081276479Sdim  if (!Def)
2082296417Sdim    return ValueTrackerResult();
2083276479Sdim
2084296417Sdim  ValueTrackerResult Res = getNextSourceImpl();
2085296417Sdim  if (Res.isValid()) {
2086276479Sdim    // Update definition, definition index, and subregister for the
2087276479Sdim    // next call of getNextSource.
2088276479Sdim    // Update the current register.
2089296417Sdim    bool OneRegSrc = Res.getNumSources() == 1;
2090296417Sdim    if (OneRegSrc)
2091296417Sdim      Reg = Res.getSrcReg(0);
2092296417Sdim    // Update the result before moving up in the use-def chain
2093296417Sdim    // with the instruction containing the last found sources.
2094296417Sdim    Res.setInst(Def);
2095296417Sdim
2096276479Sdim    // If we can still move up in the use-def chain, move to the next
2097296417Sdim    // definition.
2098360784Sdim    if (!Register::isPhysicalRegister(Reg) && OneRegSrc) {
2099335799Sdim      MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg);
2100335799Sdim      if (DI != MRI.def_end()) {
2101335799Sdim        Def = DI->getParent();
2102335799Sdim        DefIdx = DI.getOperandNo();
2103335799Sdim        DefSubReg = Res.getSrcSubReg(0);
2104335799Sdim      } else {
2105335799Sdim        Def = nullptr;
2106335799Sdim      }
2107296417Sdim      return Res;
2108276479Sdim    }
2109276479Sdim  }
2110276479Sdim  // If we end up here, this means we will not be able to find another source
2111296417Sdim  // for the next iteration. Make sure any new call to getNextSource bails out
2112296417Sdim  // early by cutting the use-def chain.
2113276479Sdim  Def = nullptr;
2114296417Sdim  return Res;
2115276479Sdim}
2116