MachineVerifier.cpp revision 355940
1//===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Pass to verify generated machine code. The following is checked:
10//
11// Operand counts: All explicit operands must be present.
12//
13// Register classes: All physical and virtual register operands must be
14// compatible with the register class required by the instruction descriptor.
15//
16// Register live intervals: Registers must be defined only once, and must be
17// defined before use.
18//
19// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
20// command-line option -verify-machineinstrs, or by defining the environment
21// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
22// the verifier errors.
23//===----------------------------------------------------------------------===//
24
25#include "LiveRangeCalc.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/DenseSet.h"
29#include "llvm/ADT/DepthFirstIterator.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SetOperations.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/StringRef.h"
35#include "llvm/ADT/Twine.h"
36#include "llvm/Analysis/EHPersonalities.h"
37#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
38#include "llvm/CodeGen/LiveInterval.h"
39#include "llvm/CodeGen/LiveIntervals.h"
40#include "llvm/CodeGen/LiveStacks.h"
41#include "llvm/CodeGen/LiveVariables.h"
42#include "llvm/CodeGen/MachineBasicBlock.h"
43#include "llvm/CodeGen/MachineFrameInfo.h"
44#include "llvm/CodeGen/MachineFunction.h"
45#include "llvm/CodeGen/MachineFunctionPass.h"
46#include "llvm/CodeGen/MachineInstr.h"
47#include "llvm/CodeGen/MachineInstrBundle.h"
48#include "llvm/CodeGen/MachineMemOperand.h"
49#include "llvm/CodeGen/MachineOperand.h"
50#include "llvm/CodeGen/MachineRegisterInfo.h"
51#include "llvm/CodeGen/PseudoSourceValue.h"
52#include "llvm/CodeGen/SlotIndexes.h"
53#include "llvm/CodeGen/StackMaps.h"
54#include "llvm/CodeGen/TargetInstrInfo.h"
55#include "llvm/CodeGen/TargetOpcodes.h"
56#include "llvm/CodeGen/TargetRegisterInfo.h"
57#include "llvm/CodeGen/TargetSubtargetInfo.h"
58#include "llvm/IR/BasicBlock.h"
59#include "llvm/IR/Function.h"
60#include "llvm/IR/InlineAsm.h"
61#include "llvm/IR/Instructions.h"
62#include "llvm/MC/LaneBitmask.h"
63#include "llvm/MC/MCAsmInfo.h"
64#include "llvm/MC/MCInstrDesc.h"
65#include "llvm/MC/MCRegisterInfo.h"
66#include "llvm/MC/MCTargetOptions.h"
67#include "llvm/Pass.h"
68#include "llvm/Support/Casting.h"
69#include "llvm/Support/ErrorHandling.h"
70#include "llvm/Support/LowLevelTypeImpl.h"
71#include "llvm/Support/MathExtras.h"
72#include "llvm/Support/raw_ostream.h"
73#include "llvm/Target/TargetMachine.h"
74#include <algorithm>
75#include <cassert>
76#include <cstddef>
77#include <cstdint>
78#include <iterator>
79#include <string>
80#include <utility>
81
82using namespace llvm;
83
84namespace {
85
86  struct MachineVerifier {
87    MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88
89    unsigned verify(MachineFunction &MF);
90
91    Pass *const PASS;
92    const char *Banner;
93    const MachineFunction *MF;
94    const TargetMachine *TM;
95    const TargetInstrInfo *TII;
96    const TargetRegisterInfo *TRI;
97    const MachineRegisterInfo *MRI;
98
99    unsigned foundErrors;
100
101    // Avoid querying the MachineFunctionProperties for each operand.
102    bool isFunctionRegBankSelected;
103    bool isFunctionSelected;
104
105    using RegVector = SmallVector<unsigned, 16>;
106    using RegMaskVector = SmallVector<const uint32_t *, 4>;
107    using RegSet = DenseSet<unsigned>;
108    using RegMap = DenseMap<unsigned, const MachineInstr *>;
109    using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110
111    const MachineInstr *FirstNonPHI;
112    const MachineInstr *FirstTerminator;
113    BlockSet FunctionBlocks;
114
115    BitVector regsReserved;
116    RegSet regsLive;
117    RegVector regsDefined, regsDead, regsKilled;
118    RegMaskVector regMasks;
119
120    SlotIndex lastIndex;
121
122    // Add Reg and any sub-registers to RV
123    void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
124      RV.push_back(Reg);
125      if (TargetRegisterInfo::isPhysicalRegister(Reg))
126        for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
127          RV.push_back(*SubRegs);
128    }
129
130    struct BBInfo {
131      // Is this MBB reachable from the MF entry point?
132      bool reachable = false;
133
134      // Vregs that must be live in because they are used without being
135      // defined. Map value is the user.
136      RegMap vregsLiveIn;
137
138      // Regs killed in MBB. They may be defined again, and will then be in both
139      // regsKilled and regsLiveOut.
140      RegSet regsKilled;
141
142      // Regs defined in MBB and live out. Note that vregs passing through may
143      // be live out without being mentioned here.
144      RegSet regsLiveOut;
145
146      // Vregs that pass through MBB untouched. This set is disjoint from
147      // regsKilled and regsLiveOut.
148      RegSet vregsPassed;
149
150      // Vregs that must pass through MBB because they are needed by a successor
151      // block. This set is disjoint from regsLiveOut.
152      RegSet vregsRequired;
153
154      // Set versions of block's predecessor and successor lists.
155      BlockSet Preds, Succs;
156
157      BBInfo() = default;
158
159      // Add register to vregsPassed if it belongs there. Return true if
160      // anything changed.
161      bool addPassed(unsigned Reg) {
162        if (!TargetRegisterInfo::isVirtualRegister(Reg))
163          return false;
164        if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
165          return false;
166        return vregsPassed.insert(Reg).second;
167      }
168
169      // Same for a full set.
170      bool addPassed(const RegSet &RS) {
171        bool changed = false;
172        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
173          if (addPassed(*I))
174            changed = true;
175        return changed;
176      }
177
178      // Add register to vregsRequired if it belongs there. Return true if
179      // anything changed.
180      bool addRequired(unsigned Reg) {
181        if (!TargetRegisterInfo::isVirtualRegister(Reg))
182          return false;
183        if (regsLiveOut.count(Reg))
184          return false;
185        return vregsRequired.insert(Reg).second;
186      }
187
188      // Same for a full set.
189      bool addRequired(const RegSet &RS) {
190        bool changed = false;
191        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
192          if (addRequired(*I))
193            changed = true;
194        return changed;
195      }
196
197      // Same for a full map.
198      bool addRequired(const RegMap &RM) {
199        bool changed = false;
200        for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
201          if (addRequired(I->first))
202            changed = true;
203        return changed;
204      }
205
206      // Live-out registers are either in regsLiveOut or vregsPassed.
207      bool isLiveOut(unsigned Reg) const {
208        return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
209      }
210    };
211
212    // Extra register info per MBB.
213    DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
214
215    bool isReserved(unsigned Reg) {
216      return Reg < regsReserved.size() && regsReserved.test(Reg);
217    }
218
219    bool isAllocatable(unsigned Reg) const {
220      return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
221             !regsReserved.test(Reg);
222    }
223
224    // Analysis information if available
225    LiveVariables *LiveVars;
226    LiveIntervals *LiveInts;
227    LiveStacks *LiveStks;
228    SlotIndexes *Indexes;
229
230    void visitMachineFunctionBefore();
231    void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
232    void visitMachineBundleBefore(const MachineInstr *MI);
233
234    bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
235    void verifyPreISelGenericInstruction(const MachineInstr *MI);
236    void visitMachineInstrBefore(const MachineInstr *MI);
237    void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
238    void visitMachineInstrAfter(const MachineInstr *MI);
239    void visitMachineBundleAfter(const MachineInstr *MI);
240    void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
241    void visitMachineFunctionAfter();
242
243    void report(const char *msg, const MachineFunction *MF);
244    void report(const char *msg, const MachineBasicBlock *MBB);
245    void report(const char *msg, const MachineInstr *MI);
246    void report(const char *msg, const MachineOperand *MO, unsigned MONum,
247                LLT MOVRegType = LLT{});
248
249    void report_context(const LiveInterval &LI) const;
250    void report_context(const LiveRange &LR, unsigned VRegUnit,
251                        LaneBitmask LaneMask) const;
252    void report_context(const LiveRange::Segment &S) const;
253    void report_context(const VNInfo &VNI) const;
254    void report_context(SlotIndex Pos) const;
255    void report_context(MCPhysReg PhysReg) const;
256    void report_context_liverange(const LiveRange &LR) const;
257    void report_context_lanemask(LaneBitmask LaneMask) const;
258    void report_context_vreg(unsigned VReg) const;
259    void report_context_vreg_regunit(unsigned VRegOrUnit) const;
260
261    void verifyInlineAsm(const MachineInstr *MI);
262
263    void checkLiveness(const MachineOperand *MO, unsigned MONum);
264    void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
265                            SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
266                            LaneBitmask LaneMask = LaneBitmask::getNone());
267    void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
268                            SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
269                            bool SubRangeCheck = false,
270                            LaneBitmask LaneMask = LaneBitmask::getNone());
271
272    void markReachable(const MachineBasicBlock *MBB);
273    void calcRegsPassed();
274    void checkPHIOps(const MachineBasicBlock &MBB);
275
276    void calcRegsRequired();
277    void verifyLiveVariables();
278    void verifyLiveIntervals();
279    void verifyLiveInterval(const LiveInterval&);
280    void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
281                              LaneBitmask);
282    void verifyLiveRangeSegment(const LiveRange&,
283                                const LiveRange::const_iterator I, unsigned,
284                                LaneBitmask);
285    void verifyLiveRange(const LiveRange&, unsigned,
286                         LaneBitmask LaneMask = LaneBitmask::getNone());
287
288    void verifyStackFrame();
289
290    void verifySlotIndexes() const;
291    void verifyProperties(const MachineFunction &MF);
292  };
293
294  struct MachineVerifierPass : public MachineFunctionPass {
295    static char ID; // Pass ID, replacement for typeid
296
297    const std::string Banner;
298
299    MachineVerifierPass(std::string banner = std::string())
300      : MachineFunctionPass(ID), Banner(std::move(banner)) {
301        initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
302      }
303
304    void getAnalysisUsage(AnalysisUsage &AU) const override {
305      AU.setPreservesAll();
306      MachineFunctionPass::getAnalysisUsage(AU);
307    }
308
309    bool runOnMachineFunction(MachineFunction &MF) override {
310      unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
311      if (FoundErrors)
312        report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
313      return false;
314    }
315  };
316
317} // end anonymous namespace
318
319char MachineVerifierPass::ID = 0;
320
321INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
322                "Verify generated machine code", false, false)
323
324FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
325  return new MachineVerifierPass(Banner);
326}
327
328bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
329    const {
330  MachineFunction &MF = const_cast<MachineFunction&>(*this);
331  unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
332  if (AbortOnErrors && FoundErrors)
333    report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
334  return FoundErrors == 0;
335}
336
337void MachineVerifier::verifySlotIndexes() const {
338  if (Indexes == nullptr)
339    return;
340
341  // Ensure the IdxMBB list is sorted by slot indexes.
342  SlotIndex Last;
343  for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
344       E = Indexes->MBBIndexEnd(); I != E; ++I) {
345    assert(!Last.isValid() || I->first > Last);
346    Last = I->first;
347  }
348}
349
350void MachineVerifier::verifyProperties(const MachineFunction &MF) {
351  // If a pass has introduced virtual registers without clearing the
352  // NoVRegs property (or set it without allocating the vregs)
353  // then report an error.
354  if (MF.getProperties().hasProperty(
355          MachineFunctionProperties::Property::NoVRegs) &&
356      MRI->getNumVirtRegs())
357    report("Function has NoVRegs property but there are VReg operands", &MF);
358}
359
360unsigned MachineVerifier::verify(MachineFunction &MF) {
361  foundErrors = 0;
362
363  this->MF = &MF;
364  TM = &MF.getTarget();
365  TII = MF.getSubtarget().getInstrInfo();
366  TRI = MF.getSubtarget().getRegisterInfo();
367  MRI = &MF.getRegInfo();
368
369  const bool isFunctionFailedISel = MF.getProperties().hasProperty(
370      MachineFunctionProperties::Property::FailedISel);
371
372  // If we're mid-GlobalISel and we already triggered the fallback path then
373  // it's expected that the MIR is somewhat broken but that's ok since we'll
374  // reset it and clear the FailedISel attribute in ResetMachineFunctions.
375  if (isFunctionFailedISel)
376    return foundErrors;
377
378  isFunctionRegBankSelected =
379      !isFunctionFailedISel &&
380      MF.getProperties().hasProperty(
381          MachineFunctionProperties::Property::RegBankSelected);
382  isFunctionSelected = !isFunctionFailedISel &&
383                       MF.getProperties().hasProperty(
384                           MachineFunctionProperties::Property::Selected);
385  LiveVars = nullptr;
386  LiveInts = nullptr;
387  LiveStks = nullptr;
388  Indexes = nullptr;
389  if (PASS) {
390    LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
391    // We don't want to verify LiveVariables if LiveIntervals is available.
392    if (!LiveInts)
393      LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
394    LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
395    Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
396  }
397
398  verifySlotIndexes();
399
400  verifyProperties(MF);
401
402  visitMachineFunctionBefore();
403  for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
404       MFI!=MFE; ++MFI) {
405    visitMachineBasicBlockBefore(&*MFI);
406    // Keep track of the current bundle header.
407    const MachineInstr *CurBundle = nullptr;
408    // Do we expect the next instruction to be part of the same bundle?
409    bool InBundle = false;
410
411    for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
412           MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
413      if (MBBI->getParent() != &*MFI) {
414        report("Bad instruction parent pointer", &*MFI);
415        errs() << "Instruction: " << *MBBI;
416        continue;
417      }
418
419      // Check for consistent bundle flags.
420      if (InBundle && !MBBI->isBundledWithPred())
421        report("Missing BundledPred flag, "
422               "BundledSucc was set on predecessor",
423               &*MBBI);
424      if (!InBundle && MBBI->isBundledWithPred())
425        report("BundledPred flag is set, "
426               "but BundledSucc not set on predecessor",
427               &*MBBI);
428
429      // Is this a bundle header?
430      if (!MBBI->isInsideBundle()) {
431        if (CurBundle)
432          visitMachineBundleAfter(CurBundle);
433        CurBundle = &*MBBI;
434        visitMachineBundleBefore(CurBundle);
435      } else if (!CurBundle)
436        report("No bundle header", &*MBBI);
437      visitMachineInstrBefore(&*MBBI);
438      for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
439        const MachineInstr &MI = *MBBI;
440        const MachineOperand &Op = MI.getOperand(I);
441        if (Op.getParent() != &MI) {
442          // Make sure to use correct addOperand / RemoveOperand / ChangeTo
443          // functions when replacing operands of a MachineInstr.
444          report("Instruction has operand with wrong parent set", &MI);
445        }
446
447        visitMachineOperand(&Op, I);
448      }
449
450      visitMachineInstrAfter(&*MBBI);
451
452      // Was this the last bundled instruction?
453      InBundle = MBBI->isBundledWithSucc();
454    }
455    if (CurBundle)
456      visitMachineBundleAfter(CurBundle);
457    if (InBundle)
458      report("BundledSucc flag set on last instruction in block", &MFI->back());
459    visitMachineBasicBlockAfter(&*MFI);
460  }
461  visitMachineFunctionAfter();
462
463  // Clean up.
464  regsLive.clear();
465  regsDefined.clear();
466  regsDead.clear();
467  regsKilled.clear();
468  regMasks.clear();
469  MBBInfoMap.clear();
470
471  return foundErrors;
472}
473
474void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
475  assert(MF);
476  errs() << '\n';
477  if (!foundErrors++) {
478    if (Banner)
479      errs() << "# " << Banner << '\n';
480    if (LiveInts != nullptr)
481      LiveInts->print(errs());
482    else
483      MF->print(errs(), Indexes);
484  }
485  errs() << "*** Bad machine code: " << msg << " ***\n"
486      << "- function:    " << MF->getName() << "\n";
487}
488
489void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
490  assert(MBB);
491  report(msg, MBB->getParent());
492  errs() << "- basic block: " << printMBBReference(*MBB) << ' '
493         << MBB->getName() << " (" << (const void *)MBB << ')';
494  if (Indexes)
495    errs() << " [" << Indexes->getMBBStartIdx(MBB)
496        << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
497  errs() << '\n';
498}
499
500void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
501  assert(MI);
502  report(msg, MI->getParent());
503  errs() << "- instruction: ";
504  if (Indexes && Indexes->hasIndex(*MI))
505    errs() << Indexes->getInstructionIndex(*MI) << '\t';
506  MI->print(errs(), /*SkipOpers=*/true);
507}
508
509void MachineVerifier::report(const char *msg, const MachineOperand *MO,
510                             unsigned MONum, LLT MOVRegType) {
511  assert(MO);
512  report(msg, MO->getParent());
513  errs() << "- operand " << MONum << ":   ";
514  MO->print(errs(), MOVRegType, TRI);
515  errs() << "\n";
516}
517
518void MachineVerifier::report_context(SlotIndex Pos) const {
519  errs() << "- at:          " << Pos << '\n';
520}
521
522void MachineVerifier::report_context(const LiveInterval &LI) const {
523  errs() << "- interval:    " << LI << '\n';
524}
525
526void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
527                                     LaneBitmask LaneMask) const {
528  report_context_liverange(LR);
529  report_context_vreg_regunit(VRegUnit);
530  if (LaneMask.any())
531    report_context_lanemask(LaneMask);
532}
533
534void MachineVerifier::report_context(const LiveRange::Segment &S) const {
535  errs() << "- segment:     " << S << '\n';
536}
537
538void MachineVerifier::report_context(const VNInfo &VNI) const {
539  errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
540}
541
542void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
543  errs() << "- liverange:   " << LR << '\n';
544}
545
546void MachineVerifier::report_context(MCPhysReg PReg) const {
547  errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
548}
549
550void MachineVerifier::report_context_vreg(unsigned VReg) const {
551  errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
552}
553
554void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
555  if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
556    report_context_vreg(VRegOrUnit);
557  } else {
558    errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
559  }
560}
561
562void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
563  errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
564}
565
566void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
567  BBInfo &MInfo = MBBInfoMap[MBB];
568  if (!MInfo.reachable) {
569    MInfo.reachable = true;
570    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
571           SuE = MBB->succ_end(); SuI != SuE; ++SuI)
572      markReachable(*SuI);
573  }
574}
575
576void MachineVerifier::visitMachineFunctionBefore() {
577  lastIndex = SlotIndex();
578  regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
579                                           : TRI->getReservedRegs(*MF);
580
581  if (!MF->empty())
582    markReachable(&MF->front());
583
584  // Build a set of the basic blocks in the function.
585  FunctionBlocks.clear();
586  for (const auto &MBB : *MF) {
587    FunctionBlocks.insert(&MBB);
588    BBInfo &MInfo = MBBInfoMap[&MBB];
589
590    MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
591    if (MInfo.Preds.size() != MBB.pred_size())
592      report("MBB has duplicate entries in its predecessor list.", &MBB);
593
594    MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
595    if (MInfo.Succs.size() != MBB.succ_size())
596      report("MBB has duplicate entries in its successor list.", &MBB);
597  }
598
599  // Check that the register use lists are sane.
600  MRI->verifyUseLists();
601
602  if (!MF->empty())
603    verifyStackFrame();
604}
605
606// Does iterator point to a and b as the first two elements?
607static bool matchPair(MachineBasicBlock::const_succ_iterator i,
608                      const MachineBasicBlock *a, const MachineBasicBlock *b) {
609  if (*i == a)
610    return *++i == b;
611  if (*i == b)
612    return *++i == a;
613  return false;
614}
615
616void
617MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
618  FirstTerminator = nullptr;
619  FirstNonPHI = nullptr;
620
621  if (!MF->getProperties().hasProperty(
622      MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
623    // If this block has allocatable physical registers live-in, check that
624    // it is an entry block or landing pad.
625    for (const auto &LI : MBB->liveins()) {
626      if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
627          MBB->getIterator() != MBB->getParent()->begin()) {
628        report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
629        report_context(LI.PhysReg);
630      }
631    }
632  }
633
634  // Count the number of landing pad successors.
635  SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
636  for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
637       E = MBB->succ_end(); I != E; ++I) {
638    if ((*I)->isEHPad())
639      LandingPadSuccs.insert(*I);
640    if (!FunctionBlocks.count(*I))
641      report("MBB has successor that isn't part of the function.", MBB);
642    if (!MBBInfoMap[*I].Preds.count(MBB)) {
643      report("Inconsistent CFG", MBB);
644      errs() << "MBB is not in the predecessor list of the successor "
645             << printMBBReference(*(*I)) << ".\n";
646    }
647  }
648
649  // Check the predecessor list.
650  for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
651       E = MBB->pred_end(); I != E; ++I) {
652    if (!FunctionBlocks.count(*I))
653      report("MBB has predecessor that isn't part of the function.", MBB);
654    if (!MBBInfoMap[*I].Succs.count(MBB)) {
655      report("Inconsistent CFG", MBB);
656      errs() << "MBB is not in the successor list of the predecessor "
657             << printMBBReference(*(*I)) << ".\n";
658    }
659  }
660
661  const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
662  const BasicBlock *BB = MBB->getBasicBlock();
663  const Function &F = MF->getFunction();
664  if (LandingPadSuccs.size() > 1 &&
665      !(AsmInfo &&
666        AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
667        BB && isa<SwitchInst>(BB->getTerminator())) &&
668      !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
669    report("MBB has more than one landing pad successor", MBB);
670
671  // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
672  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
673  SmallVector<MachineOperand, 4> Cond;
674  if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
675                          Cond)) {
676    // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
677    // check whether its answers match up with reality.
678    if (!TBB && !FBB) {
679      // Block falls through to its successor.
680      MachineFunction::const_iterator MBBI = MBB->getIterator();
681      ++MBBI;
682      if (MBBI == MF->end()) {
683        // It's possible that the block legitimately ends with a noreturn
684        // call or an unreachable, in which case it won't actually fall
685        // out the bottom of the function.
686      } else if (MBB->succ_size() == LandingPadSuccs.size()) {
687        // It's possible that the block legitimately ends with a noreturn
688        // call or an unreachable, in which case it won't actually fall
689        // out of the block.
690      } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
691        report("MBB exits via unconditional fall-through but doesn't have "
692               "exactly one CFG successor!", MBB);
693      } else if (!MBB->isSuccessor(&*MBBI)) {
694        report("MBB exits via unconditional fall-through but its successor "
695               "differs from its CFG successor!", MBB);
696      }
697      if (!MBB->empty() && MBB->back().isBarrier() &&
698          !TII->isPredicated(MBB->back())) {
699        report("MBB exits via unconditional fall-through but ends with a "
700               "barrier instruction!", MBB);
701      }
702      if (!Cond.empty()) {
703        report("MBB exits via unconditional fall-through but has a condition!",
704               MBB);
705      }
706    } else if (TBB && !FBB && Cond.empty()) {
707      // Block unconditionally branches somewhere.
708      // If the block has exactly one successor, that happens to be a
709      // landingpad, accept it as valid control flow.
710      if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
711          (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
712           *MBB->succ_begin() != *LandingPadSuccs.begin())) {
713        report("MBB exits via unconditional branch but doesn't have "
714               "exactly one CFG successor!", MBB);
715      } else if (!MBB->isSuccessor(TBB)) {
716        report("MBB exits via unconditional branch but the CFG "
717               "successor doesn't match the actual successor!", MBB);
718      }
719      if (MBB->empty()) {
720        report("MBB exits via unconditional branch but doesn't contain "
721               "any instructions!", MBB);
722      } else if (!MBB->back().isBarrier()) {
723        report("MBB exits via unconditional branch but doesn't end with a "
724               "barrier instruction!", MBB);
725      } else if (!MBB->back().isTerminator()) {
726        report("MBB exits via unconditional branch but the branch isn't a "
727               "terminator instruction!", MBB);
728      }
729    } else if (TBB && !FBB && !Cond.empty()) {
730      // Block conditionally branches somewhere, otherwise falls through.
731      MachineFunction::const_iterator MBBI = MBB->getIterator();
732      ++MBBI;
733      if (MBBI == MF->end()) {
734        report("MBB conditionally falls through out of function!", MBB);
735      } else if (MBB->succ_size() == 1) {
736        // A conditional branch with only one successor is weird, but allowed.
737        if (&*MBBI != TBB)
738          report("MBB exits via conditional branch/fall-through but only has "
739                 "one CFG successor!", MBB);
740        else if (TBB != *MBB->succ_begin())
741          report("MBB exits via conditional branch/fall-through but the CFG "
742                 "successor don't match the actual successor!", MBB);
743      } else if (MBB->succ_size() != 2) {
744        report("MBB exits via conditional branch/fall-through but doesn't have "
745               "exactly two CFG successors!", MBB);
746      } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
747        report("MBB exits via conditional branch/fall-through but the CFG "
748               "successors don't match the actual successors!", MBB);
749      }
750      if (MBB->empty()) {
751        report("MBB exits via conditional branch/fall-through but doesn't "
752               "contain any instructions!", MBB);
753      } else if (MBB->back().isBarrier()) {
754        report("MBB exits via conditional branch/fall-through but ends with a "
755               "barrier instruction!", MBB);
756      } else if (!MBB->back().isTerminator()) {
757        report("MBB exits via conditional branch/fall-through but the branch "
758               "isn't a terminator instruction!", MBB);
759      }
760    } else if (TBB && FBB) {
761      // Block conditionally branches somewhere, otherwise branches
762      // somewhere else.
763      if (MBB->succ_size() == 1) {
764        // A conditional branch with only one successor is weird, but allowed.
765        if (FBB != TBB)
766          report("MBB exits via conditional branch/branch through but only has "
767                 "one CFG successor!", MBB);
768        else if (TBB != *MBB->succ_begin())
769          report("MBB exits via conditional branch/branch through but the CFG "
770                 "successor don't match the actual successor!", MBB);
771      } else if (MBB->succ_size() != 2) {
772        report("MBB exits via conditional branch/branch but doesn't have "
773               "exactly two CFG successors!", MBB);
774      } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
775        report("MBB exits via conditional branch/branch but the CFG "
776               "successors don't match the actual successors!", MBB);
777      }
778      if (MBB->empty()) {
779        report("MBB exits via conditional branch/branch but doesn't "
780               "contain any instructions!", MBB);
781      } else if (!MBB->back().isBarrier()) {
782        report("MBB exits via conditional branch/branch but doesn't end with a "
783               "barrier instruction!", MBB);
784      } else if (!MBB->back().isTerminator()) {
785        report("MBB exits via conditional branch/branch but the branch "
786               "isn't a terminator instruction!", MBB);
787      }
788      if (Cond.empty()) {
789        report("MBB exits via conditional branch/branch but there's no "
790               "condition!", MBB);
791      }
792    } else {
793      report("AnalyzeBranch returned invalid data!", MBB);
794    }
795  }
796
797  regsLive.clear();
798  if (MRI->tracksLiveness()) {
799    for (const auto &LI : MBB->liveins()) {
800      if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
801        report("MBB live-in list contains non-physical register", MBB);
802        continue;
803      }
804      for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
805           SubRegs.isValid(); ++SubRegs)
806        regsLive.insert(*SubRegs);
807    }
808  }
809
810  const MachineFrameInfo &MFI = MF->getFrameInfo();
811  BitVector PR = MFI.getPristineRegs(*MF);
812  for (unsigned I : PR.set_bits()) {
813    for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
814         SubRegs.isValid(); ++SubRegs)
815      regsLive.insert(*SubRegs);
816  }
817
818  regsKilled.clear();
819  regsDefined.clear();
820
821  if (Indexes)
822    lastIndex = Indexes->getMBBStartIdx(MBB);
823}
824
825// This function gets called for all bundle headers, including normal
826// stand-alone unbundled instructions.
827void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
828  if (Indexes && Indexes->hasIndex(*MI)) {
829    SlotIndex idx = Indexes->getInstructionIndex(*MI);
830    if (!(idx > lastIndex)) {
831      report("Instruction index out of order", MI);
832      errs() << "Last instruction was at " << lastIndex << '\n';
833    }
834    lastIndex = idx;
835  }
836
837  // Ensure non-terminators don't follow terminators.
838  // Ignore predicated terminators formed by if conversion.
839  // FIXME: If conversion shouldn't need to violate this rule.
840  if (MI->isTerminator() && !TII->isPredicated(*MI)) {
841    if (!FirstTerminator)
842      FirstTerminator = MI;
843  } else if (FirstTerminator && !MI->isDebugEntryValue()) {
844    report("Non-terminator instruction after the first terminator", MI);
845    errs() << "First terminator was:\t" << *FirstTerminator;
846  }
847}
848
849// The operands on an INLINEASM instruction must follow a template.
850// Verify that the flag operands make sense.
851void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
852  // The first two operands on INLINEASM are the asm string and global flags.
853  if (MI->getNumOperands() < 2) {
854    report("Too few operands on inline asm", MI);
855    return;
856  }
857  if (!MI->getOperand(0).isSymbol())
858    report("Asm string must be an external symbol", MI);
859  if (!MI->getOperand(1).isImm())
860    report("Asm flags must be an immediate", MI);
861  // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
862  // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
863  // and Extra_IsConvergent = 32.
864  if (!isUInt<6>(MI->getOperand(1).getImm()))
865    report("Unknown asm flags", &MI->getOperand(1), 1);
866
867  static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
868
869  unsigned OpNo = InlineAsm::MIOp_FirstOperand;
870  unsigned NumOps;
871  for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
872    const MachineOperand &MO = MI->getOperand(OpNo);
873    // There may be implicit ops after the fixed operands.
874    if (!MO.isImm())
875      break;
876    NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
877  }
878
879  if (OpNo > MI->getNumOperands())
880    report("Missing operands in last group", MI);
881
882  // An optional MDNode follows the groups.
883  if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
884    ++OpNo;
885
886  // All trailing operands must be implicit registers.
887  for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
888    const MachineOperand &MO = MI->getOperand(OpNo);
889    if (!MO.isReg() || !MO.isImplicit())
890      report("Expected implicit register after groups", &MO, OpNo);
891  }
892}
893
894/// Check that types are consistent when two operands need to have the same
895/// number of vector elements.
896/// \return true if the types are valid.
897bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
898                                               const MachineInstr *MI) {
899  if (Ty0.isVector() != Ty1.isVector()) {
900    report("operand types must be all-vector or all-scalar", MI);
901    // Generally we try to report as many issues as possible at once, but in
902    // this case it's not clear what should we be comparing the size of the
903    // scalar with: the size of the whole vector or its lane. Instead of
904    // making an arbitrary choice and emitting not so helpful message, let's
905    // avoid the extra noise and stop here.
906    return false;
907  }
908
909  if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
910    report("operand types must preserve number of vector elements", MI);
911    return false;
912  }
913
914  return true;
915}
916
917void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
918  if (isFunctionSelected)
919    report("Unexpected generic instruction in a Selected function", MI);
920
921  const MCInstrDesc &MCID = MI->getDesc();
922  unsigned NumOps = MI->getNumOperands();
923
924  // Check types.
925  SmallVector<LLT, 4> Types;
926  for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
927       I != E; ++I) {
928    if (!MCID.OpInfo[I].isGenericType())
929      continue;
930    // Generic instructions specify type equality constraints between some of
931    // their operands. Make sure these are consistent.
932    size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
933    Types.resize(std::max(TypeIdx + 1, Types.size()));
934
935    const MachineOperand *MO = &MI->getOperand(I);
936    if (!MO->isReg()) {
937      report("generic instruction must use register operands", MI);
938      continue;
939    }
940
941    LLT OpTy = MRI->getType(MO->getReg());
942    // Don't report a type mismatch if there is no actual mismatch, only a
943    // type missing, to reduce noise:
944    if (OpTy.isValid()) {
945      // Only the first valid type for a type index will be printed: don't
946      // overwrite it later so it's always clear which type was expected:
947      if (!Types[TypeIdx].isValid())
948        Types[TypeIdx] = OpTy;
949      else if (Types[TypeIdx] != OpTy)
950        report("Type mismatch in generic instruction", MO, I, OpTy);
951    } else {
952      // Generic instructions must have types attached to their operands.
953      report("Generic instruction is missing a virtual register type", MO, I);
954    }
955  }
956
957  // Generic opcodes must not have physical register operands.
958  for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
959    const MachineOperand *MO = &MI->getOperand(I);
960    if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg()))
961      report("Generic instruction cannot have physical register", MO, I);
962  }
963
964  // Avoid out of bounds in checks below. This was already reported earlier.
965  if (MI->getNumOperands() < MCID.getNumOperands())
966    return;
967
968  StringRef ErrorInfo;
969  if (!TII->verifyInstruction(*MI, ErrorInfo))
970    report(ErrorInfo.data(), MI);
971
972  // Verify properties of various specific instruction types
973  switch (MI->getOpcode()) {
974  case TargetOpcode::G_CONSTANT:
975  case TargetOpcode::G_FCONSTANT: {
976    if (MI->getNumOperands() < MCID.getNumOperands())
977      break;
978
979    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
980    if (DstTy.isVector())
981      report("Instruction cannot use a vector result type", MI);
982
983    if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
984      if (!MI->getOperand(1).isCImm()) {
985        report("G_CONSTANT operand must be cimm", MI);
986        break;
987      }
988
989      const ConstantInt *CI = MI->getOperand(1).getCImm();
990      if (CI->getBitWidth() != DstTy.getSizeInBits())
991        report("inconsistent constant size", MI);
992    } else {
993      if (!MI->getOperand(1).isFPImm()) {
994        report("G_FCONSTANT operand must be fpimm", MI);
995        break;
996      }
997      const ConstantFP *CF = MI->getOperand(1).getFPImm();
998
999      if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1000          DstTy.getSizeInBits()) {
1001        report("inconsistent constant size", MI);
1002      }
1003    }
1004
1005    break;
1006  }
1007  case TargetOpcode::G_LOAD:
1008  case TargetOpcode::G_STORE:
1009  case TargetOpcode::G_ZEXTLOAD:
1010  case TargetOpcode::G_SEXTLOAD: {
1011    LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1012    LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1013    if (!PtrTy.isPointer())
1014      report("Generic memory instruction must access a pointer", MI);
1015
1016    // Generic loads and stores must have a single MachineMemOperand
1017    // describing that access.
1018    if (!MI->hasOneMemOperand()) {
1019      report("Generic instruction accessing memory must have one mem operand",
1020             MI);
1021    } else {
1022      const MachineMemOperand &MMO = **MI->memoperands_begin();
1023      if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1024          MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1025        if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1026          report("Generic extload must have a narrower memory type", MI);
1027      } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1028        if (MMO.getSize() > ValTy.getSizeInBytes())
1029          report("load memory size cannot exceed result size", MI);
1030      } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1031        if (ValTy.getSizeInBytes() < MMO.getSize())
1032          report("store memory size cannot exceed value size", MI);
1033      }
1034    }
1035
1036    break;
1037  }
1038  case TargetOpcode::G_PHI: {
1039    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1040    if (!DstTy.isValid() ||
1041        !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
1042                     [this, &DstTy](const MachineOperand &MO) {
1043                       if (!MO.isReg())
1044                         return true;
1045                       LLT Ty = MRI->getType(MO.getReg());
1046                       if (!Ty.isValid() || (Ty != DstTy))
1047                         return false;
1048                       return true;
1049                     }))
1050      report("Generic Instruction G_PHI has operands with incompatible/missing "
1051             "types",
1052             MI);
1053    break;
1054  }
1055  case TargetOpcode::G_BITCAST: {
1056    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1057    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1058    if (!DstTy.isValid() || !SrcTy.isValid())
1059      break;
1060
1061    if (SrcTy.isPointer() != DstTy.isPointer())
1062      report("bitcast cannot convert between pointers and other types", MI);
1063
1064    if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1065      report("bitcast sizes must match", MI);
1066    break;
1067  }
1068  case TargetOpcode::G_INTTOPTR:
1069  case TargetOpcode::G_PTRTOINT:
1070  case TargetOpcode::G_ADDRSPACE_CAST: {
1071    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1072    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1073    if (!DstTy.isValid() || !SrcTy.isValid())
1074      break;
1075
1076    verifyVectorElementMatch(DstTy, SrcTy, MI);
1077
1078    DstTy = DstTy.getScalarType();
1079    SrcTy = SrcTy.getScalarType();
1080
1081    if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1082      if (!DstTy.isPointer())
1083        report("inttoptr result type must be a pointer", MI);
1084      if (SrcTy.isPointer())
1085        report("inttoptr source type must not be a pointer", MI);
1086    } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1087      if (!SrcTy.isPointer())
1088        report("ptrtoint source type must be a pointer", MI);
1089      if (DstTy.isPointer())
1090        report("ptrtoint result type must not be a pointer", MI);
1091    } else {
1092      assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1093      if (!SrcTy.isPointer() || !DstTy.isPointer())
1094        report("addrspacecast types must be pointers", MI);
1095      else {
1096        if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1097          report("addrspacecast must convert different address spaces", MI);
1098      }
1099    }
1100
1101    break;
1102  }
1103  case TargetOpcode::G_GEP: {
1104    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1105    LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1106    LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1107    if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1108      break;
1109
1110    if (!PtrTy.getScalarType().isPointer())
1111      report("gep first operand must be a pointer", MI);
1112
1113    if (OffsetTy.getScalarType().isPointer())
1114      report("gep offset operand must not be a pointer", MI);
1115
1116    // TODO: Is the offset allowed to be a scalar with a vector?
1117    break;
1118  }
1119  case TargetOpcode::G_SEXT:
1120  case TargetOpcode::G_ZEXT:
1121  case TargetOpcode::G_ANYEXT:
1122  case TargetOpcode::G_TRUNC:
1123  case TargetOpcode::G_FPEXT:
1124  case TargetOpcode::G_FPTRUNC: {
1125    // Number of operands and presense of types is already checked (and
1126    // reported in case of any issues), so no need to report them again. As
1127    // we're trying to report as many issues as possible at once, however, the
1128    // instructions aren't guaranteed to have the right number of operands or
1129    // types attached to them at this point
1130    assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1131    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1132    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1133    if (!DstTy.isValid() || !SrcTy.isValid())
1134      break;
1135
1136    LLT DstElTy = DstTy.getScalarType();
1137    LLT SrcElTy = SrcTy.getScalarType();
1138    if (DstElTy.isPointer() || SrcElTy.isPointer())
1139      report("Generic extend/truncate can not operate on pointers", MI);
1140
1141    verifyVectorElementMatch(DstTy, SrcTy, MI);
1142
1143    unsigned DstSize = DstElTy.getSizeInBits();
1144    unsigned SrcSize = SrcElTy.getSizeInBits();
1145    switch (MI->getOpcode()) {
1146    default:
1147      if (DstSize <= SrcSize)
1148        report("Generic extend has destination type no larger than source", MI);
1149      break;
1150    case TargetOpcode::G_TRUNC:
1151    case TargetOpcode::G_FPTRUNC:
1152      if (DstSize >= SrcSize)
1153        report("Generic truncate has destination type no smaller than source",
1154               MI);
1155      break;
1156    }
1157    break;
1158  }
1159  case TargetOpcode::G_SELECT: {
1160    LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1161    LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1162    if (!SelTy.isValid() || !CondTy.isValid())
1163      break;
1164
1165    // Scalar condition select on a vector is valid.
1166    if (CondTy.isVector())
1167      verifyVectorElementMatch(SelTy, CondTy, MI);
1168    break;
1169  }
1170  case TargetOpcode::G_MERGE_VALUES: {
1171    // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1172    // e.g. s2N = MERGE sN, sN
1173    // Merging multiple scalars into a vector is not allowed, should use
1174    // G_BUILD_VECTOR for that.
1175    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1176    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1177    if (DstTy.isVector() || SrcTy.isVector())
1178      report("G_MERGE_VALUES cannot operate on vectors", MI);
1179
1180    const unsigned NumOps = MI->getNumOperands();
1181    if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1182      report("G_MERGE_VALUES result size is inconsistent", MI);
1183
1184    for (unsigned I = 2; I != NumOps; ++I) {
1185      if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1186        report("G_MERGE_VALUES source types do not match", MI);
1187    }
1188
1189    break;
1190  }
1191  case TargetOpcode::G_UNMERGE_VALUES: {
1192    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1193    LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1194    // For now G_UNMERGE can split vectors.
1195    for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1196      if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1197        report("G_UNMERGE_VALUES destination types do not match", MI);
1198    }
1199    if (SrcTy.getSizeInBits() !=
1200        (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1201      report("G_UNMERGE_VALUES source operand does not cover dest operands",
1202             MI);
1203    }
1204    break;
1205  }
1206  case TargetOpcode::G_BUILD_VECTOR: {
1207    // Source types must be scalars, dest type a vector. Total size of scalars
1208    // must match the dest vector size.
1209    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1210    LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1211    if (!DstTy.isVector() || SrcEltTy.isVector()) {
1212      report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1213      break;
1214    }
1215
1216    if (DstTy.getElementType() != SrcEltTy)
1217      report("G_BUILD_VECTOR result element type must match source type", MI);
1218
1219    if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1220      report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1221
1222    for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1223      if (MRI->getType(MI->getOperand(1).getReg()) !=
1224          MRI->getType(MI->getOperand(i).getReg()))
1225        report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1226    }
1227
1228    break;
1229  }
1230  case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1231    // Source types must be scalars, dest type a vector. Scalar types must be
1232    // larger than the dest vector elt type, as this is a truncating operation.
1233    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1234    LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1235    if (!DstTy.isVector() || SrcEltTy.isVector())
1236      report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1237             MI);
1238    for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1239      if (MRI->getType(MI->getOperand(1).getReg()) !=
1240          MRI->getType(MI->getOperand(i).getReg()))
1241        report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1242               MI);
1243    }
1244    if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1245      report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1246             "dest elt type",
1247             MI);
1248    break;
1249  }
1250  case TargetOpcode::G_CONCAT_VECTORS: {
1251    // Source types should be vectors, and total size should match the dest
1252    // vector size.
1253    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1254    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1255    if (!DstTy.isVector() || !SrcTy.isVector())
1256      report("G_CONCAT_VECTOR requires vector source and destination operands",
1257             MI);
1258    for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1259      if (MRI->getType(MI->getOperand(1).getReg()) !=
1260          MRI->getType(MI->getOperand(i).getReg()))
1261        report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1262    }
1263    if (DstTy.getNumElements() !=
1264        SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1265      report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1266    break;
1267  }
1268  case TargetOpcode::G_ICMP:
1269  case TargetOpcode::G_FCMP: {
1270    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1271    LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1272
1273    if ((DstTy.isVector() != SrcTy.isVector()) ||
1274        (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1275      report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1276
1277    break;
1278  }
1279  case TargetOpcode::G_EXTRACT: {
1280    const MachineOperand &SrcOp = MI->getOperand(1);
1281    if (!SrcOp.isReg()) {
1282      report("extract source must be a register", MI);
1283      break;
1284    }
1285
1286    const MachineOperand &OffsetOp = MI->getOperand(2);
1287    if (!OffsetOp.isImm()) {
1288      report("extract offset must be a constant", MI);
1289      break;
1290    }
1291
1292    unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1293    unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1294    if (SrcSize == DstSize)
1295      report("extract source must be larger than result", MI);
1296
1297    if (DstSize + OffsetOp.getImm() > SrcSize)
1298      report("extract reads past end of register", MI);
1299    break;
1300  }
1301  case TargetOpcode::G_INSERT: {
1302    const MachineOperand &SrcOp = MI->getOperand(2);
1303    if (!SrcOp.isReg()) {
1304      report("insert source must be a register", MI);
1305      break;
1306    }
1307
1308    const MachineOperand &OffsetOp = MI->getOperand(3);
1309    if (!OffsetOp.isImm()) {
1310      report("insert offset must be a constant", MI);
1311      break;
1312    }
1313
1314    unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1315    unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1316
1317    if (DstSize <= SrcSize)
1318      report("inserted size must be smaller than total register", MI);
1319
1320    if (SrcSize + OffsetOp.getImm() > DstSize)
1321      report("insert writes past end of register", MI);
1322
1323    break;
1324  }
1325  case TargetOpcode::G_JUMP_TABLE: {
1326    if (!MI->getOperand(1).isJTI())
1327      report("G_JUMP_TABLE source operand must be a jump table index", MI);
1328    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1329    if (!DstTy.isPointer())
1330      report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1331    break;
1332  }
1333  case TargetOpcode::G_BRJT: {
1334    if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1335      report("G_BRJT src operand 0 must be a pointer type", MI);
1336
1337    if (!MI->getOperand(1).isJTI())
1338      report("G_BRJT src operand 1 must be a jump table index", MI);
1339
1340    const auto &IdxOp = MI->getOperand(2);
1341    if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1342      report("G_BRJT src operand 2 must be a scalar reg type", MI);
1343    break;
1344  }
1345  case TargetOpcode::G_INTRINSIC:
1346  case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1347    // TODO: Should verify number of def and use operands, but the current
1348    // interface requires passing in IR types for mangling.
1349    const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1350    if (!IntrIDOp.isIntrinsicID()) {
1351      report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1352      break;
1353    }
1354
1355    bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1356    unsigned IntrID = IntrIDOp.getIntrinsicID();
1357    if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1358      AttributeList Attrs
1359        = Intrinsic::getAttributes(MF->getFunction().getContext(),
1360                                   static_cast<Intrinsic::ID>(IntrID));
1361      bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
1362      if (NoSideEffects && DeclHasSideEffects) {
1363        report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1364        break;
1365      }
1366      if (!NoSideEffects && !DeclHasSideEffects) {
1367        report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1368        break;
1369      }
1370    }
1371
1372    break;
1373  }
1374  default:
1375    break;
1376  }
1377}
1378
1379void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1380  const MCInstrDesc &MCID = MI->getDesc();
1381  if (MI->getNumOperands() < MCID.getNumOperands()) {
1382    report("Too few operands", MI);
1383    errs() << MCID.getNumOperands() << " operands expected, but "
1384           << MI->getNumOperands() << " given.\n";
1385  }
1386
1387  if (MI->isPHI()) {
1388    if (MF->getProperties().hasProperty(
1389            MachineFunctionProperties::Property::NoPHIs))
1390      report("Found PHI instruction with NoPHIs property set", MI);
1391
1392    if (FirstNonPHI)
1393      report("Found PHI instruction after non-PHI", MI);
1394  } else if (FirstNonPHI == nullptr)
1395    FirstNonPHI = MI;
1396
1397  // Check the tied operands.
1398  if (MI->isInlineAsm())
1399    verifyInlineAsm(MI);
1400
1401  // Check the MachineMemOperands for basic consistency.
1402  for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
1403                                  E = MI->memoperands_end();
1404       I != E; ++I) {
1405    if ((*I)->isLoad() && !MI->mayLoad())
1406      report("Missing mayLoad flag", MI);
1407    if ((*I)->isStore() && !MI->mayStore())
1408      report("Missing mayStore flag", MI);
1409  }
1410
1411  // Debug values must not have a slot index.
1412  // Other instructions must have one, unless they are inside a bundle.
1413  if (LiveInts) {
1414    bool mapped = !LiveInts->isNotInMIMap(*MI);
1415    if (MI->isDebugInstr()) {
1416      if (mapped)
1417        report("Debug instruction has a slot index", MI);
1418    } else if (MI->isInsideBundle()) {
1419      if (mapped)
1420        report("Instruction inside bundle has a slot index", MI);
1421    } else {
1422      if (!mapped)
1423        report("Missing slot index", MI);
1424    }
1425  }
1426
1427  if (isPreISelGenericOpcode(MCID.getOpcode())) {
1428    verifyPreISelGenericInstruction(MI);
1429    return;
1430  }
1431
1432  StringRef ErrorInfo;
1433  if (!TII->verifyInstruction(*MI, ErrorInfo))
1434    report(ErrorInfo.data(), MI);
1435
1436  // Verify properties of various specific instruction types
1437  switch (MI->getOpcode()) {
1438  case TargetOpcode::COPY: {
1439    if (foundErrors)
1440      break;
1441    const MachineOperand &DstOp = MI->getOperand(0);
1442    const MachineOperand &SrcOp = MI->getOperand(1);
1443    LLT DstTy = MRI->getType(DstOp.getReg());
1444    LLT SrcTy = MRI->getType(SrcOp.getReg());
1445    if (SrcTy.isValid() && DstTy.isValid()) {
1446      // If both types are valid, check that the types are the same.
1447      if (SrcTy != DstTy) {
1448        report("Copy Instruction is illegal with mismatching types", MI);
1449        errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1450      }
1451    }
1452    if (SrcTy.isValid() || DstTy.isValid()) {
1453      // If one of them have valid types, let's just check they have the same
1454      // size.
1455      unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1456      unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1457      assert(SrcSize && "Expecting size here");
1458      assert(DstSize && "Expecting size here");
1459      if (SrcSize != DstSize)
1460        if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1461          report("Copy Instruction is illegal with mismatching sizes", MI);
1462          errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1463                 << "\n";
1464        }
1465    }
1466    break;
1467  }
1468  case TargetOpcode::STATEPOINT:
1469    if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
1470        !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
1471        !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
1472      report("meta operands to STATEPOINT not constant!", MI);
1473    break;
1474
1475    auto VerifyStackMapConstant = [&](unsigned Offset) {
1476      if (!MI->getOperand(Offset).isImm() ||
1477          MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
1478          !MI->getOperand(Offset + 1).isImm())
1479        report("stack map constant to STATEPOINT not well formed!", MI);
1480    };
1481    const unsigned VarStart = StatepointOpers(MI).getVarIdx();
1482    VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
1483    VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
1484    VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
1485
1486    // TODO: verify we have properly encoded deopt arguments
1487    break;
1488  }
1489}
1490
1491void
1492MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1493  const MachineInstr *MI = MO->getParent();
1494  const MCInstrDesc &MCID = MI->getDesc();
1495  unsigned NumDefs = MCID.getNumDefs();
1496  if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1497    NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1498
1499  // The first MCID.NumDefs operands must be explicit register defines
1500  if (MONum < NumDefs) {
1501    const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1502    if (!MO->isReg())
1503      report("Explicit definition must be a register", MO, MONum);
1504    else if (!MO->isDef() && !MCOI.isOptionalDef())
1505      report("Explicit definition marked as use", MO, MONum);
1506    else if (MO->isImplicit())
1507      report("Explicit definition marked as implicit", MO, MONum);
1508  } else if (MONum < MCID.getNumOperands()) {
1509    const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1510    // Don't check if it's the last operand in a variadic instruction. See,
1511    // e.g., LDM_RET in the arm back end.
1512    if (MO->isReg() &&
1513        !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
1514      if (MO->isDef() && !MCOI.isOptionalDef())
1515        report("Explicit operand marked as def", MO, MONum);
1516      if (MO->isImplicit())
1517        report("Explicit operand marked as implicit", MO, MONum);
1518    }
1519
1520    int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1521    if (TiedTo != -1) {
1522      if (!MO->isReg())
1523        report("Tied use must be a register", MO, MONum);
1524      else if (!MO->isTied())
1525        report("Operand should be tied", MO, MONum);
1526      else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1527        report("Tied def doesn't match MCInstrDesc", MO, MONum);
1528      else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) {
1529        const MachineOperand &MOTied = MI->getOperand(TiedTo);
1530        if (!MOTied.isReg())
1531          report("Tied counterpart must be a register", &MOTied, TiedTo);
1532        else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) &&
1533                 MO->getReg() != MOTied.getReg())
1534          report("Tied physical registers must match.", &MOTied, TiedTo);
1535      }
1536    } else if (MO->isReg() && MO->isTied())
1537      report("Explicit operand should not be tied", MO, MONum);
1538  } else {
1539    // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1540    if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1541      report("Extra explicit operand on non-variadic instruction", MO, MONum);
1542  }
1543
1544  switch (MO->getType()) {
1545  case MachineOperand::MO_Register: {
1546    const unsigned Reg = MO->getReg();
1547    if (!Reg)
1548      return;
1549    if (MRI->tracksLiveness() && !MI->isDebugValue())
1550      checkLiveness(MO, MONum);
1551
1552    // Verify the consistency of tied operands.
1553    if (MO->isTied()) {
1554      unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1555      const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1556      if (!OtherMO.isReg())
1557        report("Must be tied to a register", MO, MONum);
1558      if (!OtherMO.isTied())
1559        report("Missing tie flags on tied operand", MO, MONum);
1560      if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1561        report("Inconsistent tie links", MO, MONum);
1562      if (MONum < MCID.getNumDefs()) {
1563        if (OtherIdx < MCID.getNumOperands()) {
1564          if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1565            report("Explicit def tied to explicit use without tie constraint",
1566                   MO, MONum);
1567        } else {
1568          if (!OtherMO.isImplicit())
1569            report("Explicit def should be tied to implicit use", MO, MONum);
1570        }
1571      }
1572    }
1573
1574    // Verify two-address constraints after leaving SSA form.
1575    unsigned DefIdx;
1576    if (!MRI->isSSA() && MO->isUse() &&
1577        MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1578        Reg != MI->getOperand(DefIdx).getReg())
1579      report("Two-address instruction operands must be identical", MO, MONum);
1580
1581    // Check register classes.
1582    unsigned SubIdx = MO->getSubReg();
1583
1584    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1585      if (SubIdx) {
1586        report("Illegal subregister index for physical register", MO, MONum);
1587        return;
1588      }
1589      if (MONum < MCID.getNumOperands()) {
1590        if (const TargetRegisterClass *DRC =
1591              TII->getRegClass(MCID, MONum, TRI, *MF)) {
1592          if (!DRC->contains(Reg)) {
1593            report("Illegal physical register for instruction", MO, MONum);
1594            errs() << printReg(Reg, TRI) << " is not a "
1595                   << TRI->getRegClassName(DRC) << " register.\n";
1596          }
1597        }
1598      }
1599      if (MO->isRenamable()) {
1600        if (MRI->isReserved(Reg)) {
1601          report("isRenamable set on reserved register", MO, MONum);
1602          return;
1603        }
1604      }
1605      if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1606        report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1607        return;
1608      }
1609    } else {
1610      // Virtual register.
1611      const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1612      if (!RC) {
1613        // This is a generic virtual register.
1614
1615        // If we're post-Select, we can't have gvregs anymore.
1616        if (isFunctionSelected) {
1617          report("Generic virtual register invalid in a Selected function",
1618                 MO, MONum);
1619          return;
1620        }
1621
1622        // The gvreg must have a type and it must not have a SubIdx.
1623        LLT Ty = MRI->getType(Reg);
1624        if (!Ty.isValid()) {
1625          report("Generic virtual register must have a valid type", MO,
1626                 MONum);
1627          return;
1628        }
1629
1630        const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1631
1632        // If we're post-RegBankSelect, the gvreg must have a bank.
1633        if (!RegBank && isFunctionRegBankSelected) {
1634          report("Generic virtual register must have a bank in a "
1635                 "RegBankSelected function",
1636                 MO, MONum);
1637          return;
1638        }
1639
1640        // Make sure the register fits into its register bank if any.
1641        if (RegBank && Ty.isValid() &&
1642            RegBank->getSize() < Ty.getSizeInBits()) {
1643          report("Register bank is too small for virtual register", MO,
1644                 MONum);
1645          errs() << "Register bank " << RegBank->getName() << " too small("
1646                 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1647                 << "-bits\n";
1648          return;
1649        }
1650        if (SubIdx)  {
1651          report("Generic virtual register does not allow subregister index", MO,
1652                 MONum);
1653          return;
1654        }
1655
1656        // If this is a target specific instruction and this operand
1657        // has register class constraint, the virtual register must
1658        // comply to it.
1659        if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1660            MONum < MCID.getNumOperands() &&
1661            TII->getRegClass(MCID, MONum, TRI, *MF)) {
1662          report("Virtual register does not match instruction constraint", MO,
1663                 MONum);
1664          errs() << "Expect register class "
1665                 << TRI->getRegClassName(
1666                        TII->getRegClass(MCID, MONum, TRI, *MF))
1667                 << " but got nothing\n";
1668          return;
1669        }
1670
1671        break;
1672      }
1673      if (SubIdx) {
1674        const TargetRegisterClass *SRC =
1675          TRI->getSubClassWithSubReg(RC, SubIdx);
1676        if (!SRC) {
1677          report("Invalid subregister index for virtual register", MO, MONum);
1678          errs() << "Register class " << TRI->getRegClassName(RC)
1679              << " does not support subreg index " << SubIdx << "\n";
1680          return;
1681        }
1682        if (RC != SRC) {
1683          report("Invalid register class for subregister index", MO, MONum);
1684          errs() << "Register class " << TRI->getRegClassName(RC)
1685              << " does not fully support subreg index " << SubIdx << "\n";
1686          return;
1687        }
1688      }
1689      if (MONum < MCID.getNumOperands()) {
1690        if (const TargetRegisterClass *DRC =
1691              TII->getRegClass(MCID, MONum, TRI, *MF)) {
1692          if (SubIdx) {
1693            const TargetRegisterClass *SuperRC =
1694                TRI->getLargestLegalSuperClass(RC, *MF);
1695            if (!SuperRC) {
1696              report("No largest legal super class exists.", MO, MONum);
1697              return;
1698            }
1699            DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1700            if (!DRC) {
1701              report("No matching super-reg register class.", MO, MONum);
1702              return;
1703            }
1704          }
1705          if (!RC->hasSuperClassEq(DRC)) {
1706            report("Illegal virtual register for instruction", MO, MONum);
1707            errs() << "Expected a " << TRI->getRegClassName(DRC)
1708                << " register, but got a " << TRI->getRegClassName(RC)
1709                << " register\n";
1710          }
1711        }
1712      }
1713    }
1714    break;
1715  }
1716
1717  case MachineOperand::MO_RegisterMask:
1718    regMasks.push_back(MO->getRegMask());
1719    break;
1720
1721  case MachineOperand::MO_MachineBasicBlock:
1722    if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1723      report("PHI operand is not in the CFG", MO, MONum);
1724    break;
1725
1726  case MachineOperand::MO_FrameIndex:
1727    if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1728        LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1729      int FI = MO->getIndex();
1730      LiveInterval &LI = LiveStks->getInterval(FI);
1731      SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1732
1733      bool stores = MI->mayStore();
1734      bool loads = MI->mayLoad();
1735      // For a memory-to-memory move, we need to check if the frame
1736      // index is used for storing or loading, by inspecting the
1737      // memory operands.
1738      if (stores && loads) {
1739        for (auto *MMO : MI->memoperands()) {
1740          const PseudoSourceValue *PSV = MMO->getPseudoValue();
1741          if (PSV == nullptr) continue;
1742          const FixedStackPseudoSourceValue *Value =
1743            dyn_cast<FixedStackPseudoSourceValue>(PSV);
1744          if (Value == nullptr) continue;
1745          if (Value->getFrameIndex() != FI) continue;
1746
1747          if (MMO->isStore())
1748            loads = false;
1749          else
1750            stores = false;
1751          break;
1752        }
1753        if (loads == stores)
1754          report("Missing fixed stack memoperand.", MI);
1755      }
1756      if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1757        report("Instruction loads from dead spill slot", MO, MONum);
1758        errs() << "Live stack: " << LI << '\n';
1759      }
1760      if (stores && !LI.liveAt(Idx.getRegSlot())) {
1761        report("Instruction stores to dead spill slot", MO, MONum);
1762        errs() << "Live stack: " << LI << '\n';
1763      }
1764    }
1765    break;
1766
1767  default:
1768    break;
1769  }
1770}
1771
1772void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1773    unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1774    LaneBitmask LaneMask) {
1775  LiveQueryResult LRQ = LR.Query(UseIdx);
1776  // Check if we have a segment at the use, note however that we only need one
1777  // live subregister range, the others may be dead.
1778  if (!LRQ.valueIn() && LaneMask.none()) {
1779    report("No live segment at use", MO, MONum);
1780    report_context_liverange(LR);
1781    report_context_vreg_regunit(VRegOrUnit);
1782    report_context(UseIdx);
1783  }
1784  if (MO->isKill() && !LRQ.isKill()) {
1785    report("Live range continues after kill flag", MO, MONum);
1786    report_context_liverange(LR);
1787    report_context_vreg_regunit(VRegOrUnit);
1788    if (LaneMask.any())
1789      report_context_lanemask(LaneMask);
1790    report_context(UseIdx);
1791  }
1792}
1793
1794void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1795    unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1796    bool SubRangeCheck, LaneBitmask LaneMask) {
1797  if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1798    assert(VNI && "NULL valno is not allowed");
1799    if (VNI->def != DefIdx) {
1800      report("Inconsistent valno->def", MO, MONum);
1801      report_context_liverange(LR);
1802      report_context_vreg_regunit(VRegOrUnit);
1803      if (LaneMask.any())
1804        report_context_lanemask(LaneMask);
1805      report_context(*VNI);
1806      report_context(DefIdx);
1807    }
1808  } else {
1809    report("No live segment at def", MO, MONum);
1810    report_context_liverange(LR);
1811    report_context_vreg_regunit(VRegOrUnit);
1812    if (LaneMask.any())
1813      report_context_lanemask(LaneMask);
1814    report_context(DefIdx);
1815  }
1816  // Check that, if the dead def flag is present, LiveInts agree.
1817  if (MO->isDead()) {
1818    LiveQueryResult LRQ = LR.Query(DefIdx);
1819    if (!LRQ.isDeadDef()) {
1820      assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) &&
1821             "Expecting a virtual register.");
1822      // A dead subreg def only tells us that the specific subreg is dead. There
1823      // could be other non-dead defs of other subregs, or we could have other
1824      // parts of the register being live through the instruction. So unless we
1825      // are checking liveness for a subrange it is ok for the live range to
1826      // continue, given that we have a dead def of a subregister.
1827      if (SubRangeCheck || MO->getSubReg() == 0) {
1828        report("Live range continues after dead def flag", MO, MONum);
1829        report_context_liverange(LR);
1830        report_context_vreg_regunit(VRegOrUnit);
1831        if (LaneMask.any())
1832          report_context_lanemask(LaneMask);
1833      }
1834    }
1835  }
1836}
1837
1838void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1839  const MachineInstr *MI = MO->getParent();
1840  const unsigned Reg = MO->getReg();
1841
1842  // Both use and def operands can read a register.
1843  if (MO->readsReg()) {
1844    if (MO->isKill())
1845      addRegWithSubRegs(regsKilled, Reg);
1846
1847    // Check that LiveVars knows this kill.
1848    if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1849        MO->isKill()) {
1850      LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1851      if (!is_contained(VI.Kills, MI))
1852        report("Kill missing from LiveVariables", MO, MONum);
1853    }
1854
1855    // Check LiveInts liveness and kill.
1856    if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1857      SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1858      // Check the cached regunit intervals.
1859      if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1860        for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1861          if (MRI->isReservedRegUnit(*Units))
1862            continue;
1863          if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1864            checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1865        }
1866      }
1867
1868      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1869        if (LiveInts->hasInterval(Reg)) {
1870          // This is a virtual register interval.
1871          const LiveInterval &LI = LiveInts->getInterval(Reg);
1872          checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1873
1874          if (LI.hasSubRanges() && !MO->isDef()) {
1875            unsigned SubRegIdx = MO->getSubReg();
1876            LaneBitmask MOMask = SubRegIdx != 0
1877                               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1878                               : MRI->getMaxLaneMaskForVReg(Reg);
1879            LaneBitmask LiveInMask;
1880            for (const LiveInterval::SubRange &SR : LI.subranges()) {
1881              if ((MOMask & SR.LaneMask).none())
1882                continue;
1883              checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1884              LiveQueryResult LRQ = SR.Query(UseIdx);
1885              if (LRQ.valueIn())
1886                LiveInMask |= SR.LaneMask;
1887            }
1888            // At least parts of the register has to be live at the use.
1889            if ((LiveInMask & MOMask).none()) {
1890              report("No live subrange at use", MO, MONum);
1891              report_context(LI);
1892              report_context(UseIdx);
1893            }
1894          }
1895        } else {
1896          report("Virtual register has no live interval", MO, MONum);
1897        }
1898      }
1899    }
1900
1901    // Use of a dead register.
1902    if (!regsLive.count(Reg)) {
1903      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1904        // Reserved registers may be used even when 'dead'.
1905        bool Bad = !isReserved(Reg);
1906        // We are fine if just any subregister has a defined value.
1907        if (Bad) {
1908          for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1909               ++SubRegs) {
1910            if (regsLive.count(*SubRegs)) {
1911              Bad = false;
1912              break;
1913            }
1914          }
1915        }
1916        // If there is an additional implicit-use of a super register we stop
1917        // here. By definition we are fine if the super register is not
1918        // (completely) dead, if the complete super register is dead we will
1919        // get a report for its operand.
1920        if (Bad) {
1921          for (const MachineOperand &MOP : MI->uses()) {
1922            if (!MOP.isReg() || !MOP.isImplicit())
1923              continue;
1924
1925            if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg()))
1926              continue;
1927
1928            for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1929                 ++SubRegs) {
1930              if (*SubRegs == Reg) {
1931                Bad = false;
1932                break;
1933              }
1934            }
1935          }
1936        }
1937        if (Bad)
1938          report("Using an undefined physical register", MO, MONum);
1939      } else if (MRI->def_empty(Reg)) {
1940        report("Reading virtual register without a def", MO, MONum);
1941      } else {
1942        BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1943        // We don't know which virtual registers are live in, so only complain
1944        // if vreg was killed in this MBB. Otherwise keep track of vregs that
1945        // must be live in. PHI instructions are handled separately.
1946        if (MInfo.regsKilled.count(Reg))
1947          report("Using a killed virtual register", MO, MONum);
1948        else if (!MI->isPHI())
1949          MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1950      }
1951    }
1952  }
1953
1954  if (MO->isDef()) {
1955    // Register defined.
1956    // TODO: verify that earlyclobber ops are not used.
1957    if (MO->isDead())
1958      addRegWithSubRegs(regsDead, Reg);
1959    else
1960      addRegWithSubRegs(regsDefined, Reg);
1961
1962    // Verify SSA form.
1963    if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1964        std::next(MRI->def_begin(Reg)) != MRI->def_end())
1965      report("Multiple virtual register defs in SSA form", MO, MONum);
1966
1967    // Check LiveInts for a live segment, but only for virtual registers.
1968    if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1969      SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1970      DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1971
1972      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1973        if (LiveInts->hasInterval(Reg)) {
1974          const LiveInterval &LI = LiveInts->getInterval(Reg);
1975          checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1976
1977          if (LI.hasSubRanges()) {
1978            unsigned SubRegIdx = MO->getSubReg();
1979            LaneBitmask MOMask = SubRegIdx != 0
1980              ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1981              : MRI->getMaxLaneMaskForVReg(Reg);
1982            for (const LiveInterval::SubRange &SR : LI.subranges()) {
1983              if ((SR.LaneMask & MOMask).none())
1984                continue;
1985              checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
1986            }
1987          }
1988        } else {
1989          report("Virtual register has no Live interval", MO, MONum);
1990        }
1991      }
1992    }
1993  }
1994}
1995
1996void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
1997
1998// This function gets called after visiting all instructions in a bundle. The
1999// argument points to the bundle header.
2000// Normal stand-alone instructions are also considered 'bundles', and this
2001// function is called for all of them.
2002void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2003  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2004  set_union(MInfo.regsKilled, regsKilled);
2005  set_subtract(regsLive, regsKilled); regsKilled.clear();
2006  // Kill any masked registers.
2007  while (!regMasks.empty()) {
2008    const uint32_t *Mask = regMasks.pop_back_val();
2009    for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
2010      if (TargetRegisterInfo::isPhysicalRegister(*I) &&
2011          MachineOperand::clobbersPhysReg(Mask, *I))
2012        regsDead.push_back(*I);
2013  }
2014  set_subtract(regsLive, regsDead);   regsDead.clear();
2015  set_union(regsLive, regsDefined);   regsDefined.clear();
2016}
2017
2018void
2019MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2020  MBBInfoMap[MBB].regsLiveOut = regsLive;
2021  regsLive.clear();
2022
2023  if (Indexes) {
2024    SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2025    if (!(stop > lastIndex)) {
2026      report("Block ends before last instruction index", MBB);
2027      errs() << "Block ends at " << stop
2028          << " last instruction was at " << lastIndex << '\n';
2029    }
2030    lastIndex = stop;
2031  }
2032}
2033
2034// Calculate the largest possible vregsPassed sets. These are the registers that
2035// can pass through an MBB live, but may not be live every time. It is assumed
2036// that all vregsPassed sets are empty before the call.
2037void MachineVerifier::calcRegsPassed() {
2038  // First push live-out regs to successors' vregsPassed. Remember the MBBs that
2039  // have any vregsPassed.
2040  SmallPtrSet<const MachineBasicBlock*, 8> todo;
2041  for (const auto &MBB : *MF) {
2042    BBInfo &MInfo = MBBInfoMap[&MBB];
2043    if (!MInfo.reachable)
2044      continue;
2045    for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
2046           SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
2047      BBInfo &SInfo = MBBInfoMap[*SuI];
2048      if (SInfo.addPassed(MInfo.regsLiveOut))
2049        todo.insert(*SuI);
2050    }
2051  }
2052
2053  // Iteratively push vregsPassed to successors. This will converge to the same
2054  // final state regardless of DenseSet iteration order.
2055  while (!todo.empty()) {
2056    const MachineBasicBlock *MBB = *todo.begin();
2057    todo.erase(MBB);
2058    BBInfo &MInfo = MBBInfoMap[MBB];
2059    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
2060           SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
2061      if (*SuI == MBB)
2062        continue;
2063      BBInfo &SInfo = MBBInfoMap[*SuI];
2064      if (SInfo.addPassed(MInfo.vregsPassed))
2065        todo.insert(*SuI);
2066    }
2067  }
2068}
2069
2070// Calculate the set of virtual registers that must be passed through each basic
2071// block in order to satisfy the requirements of successor blocks. This is very
2072// similar to calcRegsPassed, only backwards.
2073void MachineVerifier::calcRegsRequired() {
2074  // First push live-in regs to predecessors' vregsRequired.
2075  SmallPtrSet<const MachineBasicBlock*, 8> todo;
2076  for (const auto &MBB : *MF) {
2077    BBInfo &MInfo = MBBInfoMap[&MBB];
2078    for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
2079           PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
2080      BBInfo &PInfo = MBBInfoMap[*PrI];
2081      if (PInfo.addRequired(MInfo.vregsLiveIn))
2082        todo.insert(*PrI);
2083    }
2084  }
2085
2086  // Iteratively push vregsRequired to predecessors. This will converge to the
2087  // same final state regardless of DenseSet iteration order.
2088  while (!todo.empty()) {
2089    const MachineBasicBlock *MBB = *todo.begin();
2090    todo.erase(MBB);
2091    BBInfo &MInfo = MBBInfoMap[MBB];
2092    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
2093           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
2094      if (*PrI == MBB)
2095        continue;
2096      BBInfo &SInfo = MBBInfoMap[*PrI];
2097      if (SInfo.addRequired(MInfo.vregsRequired))
2098        todo.insert(*PrI);
2099    }
2100  }
2101}
2102
2103// Check PHI instructions at the beginning of MBB. It is assumed that
2104// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2105void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2106  BBInfo &MInfo = MBBInfoMap[&MBB];
2107
2108  SmallPtrSet<const MachineBasicBlock*, 8> seen;
2109  for (const MachineInstr &Phi : MBB) {
2110    if (!Phi.isPHI())
2111      break;
2112    seen.clear();
2113
2114    const MachineOperand &MODef = Phi.getOperand(0);
2115    if (!MODef.isReg() || !MODef.isDef()) {
2116      report("Expected first PHI operand to be a register def", &MODef, 0);
2117      continue;
2118    }
2119    if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2120        MODef.isEarlyClobber() || MODef.isDebug())
2121      report("Unexpected flag on PHI operand", &MODef, 0);
2122    unsigned DefReg = MODef.getReg();
2123    if (!TargetRegisterInfo::isVirtualRegister(DefReg))
2124      report("Expected first PHI operand to be a virtual register", &MODef, 0);
2125
2126    for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2127      const MachineOperand &MO0 = Phi.getOperand(I);
2128      if (!MO0.isReg()) {
2129        report("Expected PHI operand to be a register", &MO0, I);
2130        continue;
2131      }
2132      if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2133          MO0.isDebug() || MO0.isTied())
2134        report("Unexpected flag on PHI operand", &MO0, I);
2135
2136      const MachineOperand &MO1 = Phi.getOperand(I + 1);
2137      if (!MO1.isMBB()) {
2138        report("Expected PHI operand to be a basic block", &MO1, I + 1);
2139        continue;
2140      }
2141
2142      const MachineBasicBlock &Pre = *MO1.getMBB();
2143      if (!Pre.isSuccessor(&MBB)) {
2144        report("PHI input is not a predecessor block", &MO1, I + 1);
2145        continue;
2146      }
2147
2148      if (MInfo.reachable) {
2149        seen.insert(&Pre);
2150        BBInfo &PrInfo = MBBInfoMap[&Pre];
2151        if (!MO0.isUndef() && PrInfo.reachable &&
2152            !PrInfo.isLiveOut(MO0.getReg()))
2153          report("PHI operand is not live-out from predecessor", &MO0, I);
2154      }
2155    }
2156
2157    // Did we see all predecessors?
2158    if (MInfo.reachable) {
2159      for (MachineBasicBlock *Pred : MBB.predecessors()) {
2160        if (!seen.count(Pred)) {
2161          report("Missing PHI operand", &Phi);
2162          errs() << printMBBReference(*Pred)
2163                 << " is a predecessor according to the CFG.\n";
2164        }
2165      }
2166    }
2167  }
2168}
2169
2170void MachineVerifier::visitMachineFunctionAfter() {
2171  calcRegsPassed();
2172
2173  for (const MachineBasicBlock &MBB : *MF)
2174    checkPHIOps(MBB);
2175
2176  // Now check liveness info if available
2177  calcRegsRequired();
2178
2179  // Check for killed virtual registers that should be live out.
2180  for (const auto &MBB : *MF) {
2181    BBInfo &MInfo = MBBInfoMap[&MBB];
2182    for (RegSet::iterator
2183         I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
2184         ++I)
2185      if (MInfo.regsKilled.count(*I)) {
2186        report("Virtual register killed in block, but needed live out.", &MBB);
2187        errs() << "Virtual register " << printReg(*I)
2188               << " is used after the block.\n";
2189      }
2190  }
2191
2192  if (!MF->empty()) {
2193    BBInfo &MInfo = MBBInfoMap[&MF->front()];
2194    for (RegSet::iterator
2195         I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
2196         ++I) {
2197      report("Virtual register defs don't dominate all uses.", MF);
2198      report_context_vreg(*I);
2199    }
2200  }
2201
2202  if (LiveVars)
2203    verifyLiveVariables();
2204  if (LiveInts)
2205    verifyLiveIntervals();
2206
2207  for (auto CSInfo : MF->getCallSitesInfo())
2208    if (!CSInfo.first->isCall())
2209      report("Call site info referencing instruction that is not call", MF);
2210}
2211
2212void MachineVerifier::verifyLiveVariables() {
2213  assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2214  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2215    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
2216    LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2217    for (const auto &MBB : *MF) {
2218      BBInfo &MInfo = MBBInfoMap[&MBB];
2219
2220      // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2221      if (MInfo.vregsRequired.count(Reg)) {
2222        if (!VI.AliveBlocks.test(MBB.getNumber())) {
2223          report("LiveVariables: Block missing from AliveBlocks", &MBB);
2224          errs() << "Virtual register " << printReg(Reg)
2225                 << " must be live through the block.\n";
2226        }
2227      } else {
2228        if (VI.AliveBlocks.test(MBB.getNumber())) {
2229          report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2230          errs() << "Virtual register " << printReg(Reg)
2231                 << " is not needed live through the block.\n";
2232        }
2233      }
2234    }
2235  }
2236}
2237
2238void MachineVerifier::verifyLiveIntervals() {
2239  assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2240  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2241    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
2242
2243    // Spilling and splitting may leave unused registers around. Skip them.
2244    if (MRI->reg_nodbg_empty(Reg))
2245      continue;
2246
2247    if (!LiveInts->hasInterval(Reg)) {
2248      report("Missing live interval for virtual register", MF);
2249      errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2250      continue;
2251    }
2252
2253    const LiveInterval &LI = LiveInts->getInterval(Reg);
2254    assert(Reg == LI.reg && "Invalid reg to interval mapping");
2255    verifyLiveInterval(LI);
2256  }
2257
2258  // Verify all the cached regunit intervals.
2259  for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2260    if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2261      verifyLiveRange(*LR, i);
2262}
2263
2264void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2265                                           const VNInfo *VNI, unsigned Reg,
2266                                           LaneBitmask LaneMask) {
2267  if (VNI->isUnused())
2268    return;
2269
2270  const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2271
2272  if (!DefVNI) {
2273    report("Value not live at VNInfo def and not marked unused", MF);
2274    report_context(LR, Reg, LaneMask);
2275    report_context(*VNI);
2276    return;
2277  }
2278
2279  if (DefVNI != VNI) {
2280    report("Live segment at def has different VNInfo", MF);
2281    report_context(LR, Reg, LaneMask);
2282    report_context(*VNI);
2283    return;
2284  }
2285
2286  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2287  if (!MBB) {
2288    report("Invalid VNInfo definition index", MF);
2289    report_context(LR, Reg, LaneMask);
2290    report_context(*VNI);
2291    return;
2292  }
2293
2294  if (VNI->isPHIDef()) {
2295    if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2296      report("PHIDef VNInfo is not defined at MBB start", MBB);
2297      report_context(LR, Reg, LaneMask);
2298      report_context(*VNI);
2299    }
2300    return;
2301  }
2302
2303  // Non-PHI def.
2304  const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2305  if (!MI) {
2306    report("No instruction at VNInfo def index", MBB);
2307    report_context(LR, Reg, LaneMask);
2308    report_context(*VNI);
2309    return;
2310  }
2311
2312  if (Reg != 0) {
2313    bool hasDef = false;
2314    bool isEarlyClobber = false;
2315    for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2316      if (!MOI->isReg() || !MOI->isDef())
2317        continue;
2318      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2319        if (MOI->getReg() != Reg)
2320          continue;
2321      } else {
2322        if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
2323            !TRI->hasRegUnit(MOI->getReg(), Reg))
2324          continue;
2325      }
2326      if (LaneMask.any() &&
2327          (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2328        continue;
2329      hasDef = true;
2330      if (MOI->isEarlyClobber())
2331        isEarlyClobber = true;
2332    }
2333
2334    if (!hasDef) {
2335      report("Defining instruction does not modify register", MI);
2336      report_context(LR, Reg, LaneMask);
2337      report_context(*VNI);
2338    }
2339
2340    // Early clobber defs begin at USE slots, but other defs must begin at
2341    // DEF slots.
2342    if (isEarlyClobber) {
2343      if (!VNI->def.isEarlyClobber()) {
2344        report("Early clobber def must be at an early-clobber slot", MBB);
2345        report_context(LR, Reg, LaneMask);
2346        report_context(*VNI);
2347      }
2348    } else if (!VNI->def.isRegister()) {
2349      report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2350      report_context(LR, Reg, LaneMask);
2351      report_context(*VNI);
2352    }
2353  }
2354}
2355
2356void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2357                                             const LiveRange::const_iterator I,
2358                                             unsigned Reg, LaneBitmask LaneMask)
2359{
2360  const LiveRange::Segment &S = *I;
2361  const VNInfo *VNI = S.valno;
2362  assert(VNI && "Live segment has no valno");
2363
2364  if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2365    report("Foreign valno in live segment", MF);
2366    report_context(LR, Reg, LaneMask);
2367    report_context(S);
2368    report_context(*VNI);
2369  }
2370
2371  if (VNI->isUnused()) {
2372    report("Live segment valno is marked unused", MF);
2373    report_context(LR, Reg, LaneMask);
2374    report_context(S);
2375  }
2376
2377  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2378  if (!MBB) {
2379    report("Bad start of live segment, no basic block", MF);
2380    report_context(LR, Reg, LaneMask);
2381    report_context(S);
2382    return;
2383  }
2384  SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2385  if (S.start != MBBStartIdx && S.start != VNI->def) {
2386    report("Live segment must begin at MBB entry or valno def", MBB);
2387    report_context(LR, Reg, LaneMask);
2388    report_context(S);
2389  }
2390
2391  const MachineBasicBlock *EndMBB =
2392    LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2393  if (!EndMBB) {
2394    report("Bad end of live segment, no basic block", MF);
2395    report_context(LR, Reg, LaneMask);
2396    report_context(S);
2397    return;
2398  }
2399
2400  // No more checks for live-out segments.
2401  if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2402    return;
2403
2404  // RegUnit intervals are allowed dead phis.
2405  if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2406      S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2407    return;
2408
2409  // The live segment is ending inside EndMBB
2410  const MachineInstr *MI =
2411    LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2412  if (!MI) {
2413    report("Live segment doesn't end at a valid instruction", EndMBB);
2414    report_context(LR, Reg, LaneMask);
2415    report_context(S);
2416    return;
2417  }
2418
2419  // The block slot must refer to a basic block boundary.
2420  if (S.end.isBlock()) {
2421    report("Live segment ends at B slot of an instruction", EndMBB);
2422    report_context(LR, Reg, LaneMask);
2423    report_context(S);
2424  }
2425
2426  if (S.end.isDead()) {
2427    // Segment ends on the dead slot.
2428    // That means there must be a dead def.
2429    if (!SlotIndex::isSameInstr(S.start, S.end)) {
2430      report("Live segment ending at dead slot spans instructions", EndMBB);
2431      report_context(LR, Reg, LaneMask);
2432      report_context(S);
2433    }
2434  }
2435
2436  // A live segment can only end at an early-clobber slot if it is being
2437  // redefined by an early-clobber def.
2438  if (S.end.isEarlyClobber()) {
2439    if (I+1 == LR.end() || (I+1)->start != S.end) {
2440      report("Live segment ending at early clobber slot must be "
2441             "redefined by an EC def in the same instruction", EndMBB);
2442      report_context(LR, Reg, LaneMask);
2443      report_context(S);
2444    }
2445  }
2446
2447  // The following checks only apply to virtual registers. Physreg liveness
2448  // is too weird to check.
2449  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2450    // A live segment can end with either a redefinition, a kill flag on a
2451    // use, or a dead flag on a def.
2452    bool hasRead = false;
2453    bool hasSubRegDef = false;
2454    bool hasDeadDef = false;
2455    for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2456      if (!MOI->isReg() || MOI->getReg() != Reg)
2457        continue;
2458      unsigned Sub = MOI->getSubReg();
2459      LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2460                                 : LaneBitmask::getAll();
2461      if (MOI->isDef()) {
2462        if (Sub != 0) {
2463          hasSubRegDef = true;
2464          // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2465          // mask for subregister defs. Read-undef defs will be handled by
2466          // readsReg below.
2467          SLM = ~SLM;
2468        }
2469        if (MOI->isDead())
2470          hasDeadDef = true;
2471      }
2472      if (LaneMask.any() && (LaneMask & SLM).none())
2473        continue;
2474      if (MOI->readsReg())
2475        hasRead = true;
2476    }
2477    if (S.end.isDead()) {
2478      // Make sure that the corresponding machine operand for a "dead" live
2479      // range has the dead flag. We cannot perform this check for subregister
2480      // liveranges as partially dead values are allowed.
2481      if (LaneMask.none() && !hasDeadDef) {
2482        report("Instruction ending live segment on dead slot has no dead flag",
2483               MI);
2484        report_context(LR, Reg, LaneMask);
2485        report_context(S);
2486      }
2487    } else {
2488      if (!hasRead) {
2489        // When tracking subregister liveness, the main range must start new
2490        // values on partial register writes, even if there is no read.
2491        if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2492            !hasSubRegDef) {
2493          report("Instruction ending live segment doesn't read the register",
2494                 MI);
2495          report_context(LR, Reg, LaneMask);
2496          report_context(S);
2497        }
2498      }
2499    }
2500  }
2501
2502  // Now check all the basic blocks in this live segment.
2503  MachineFunction::const_iterator MFI = MBB->getIterator();
2504  // Is this live segment the beginning of a non-PHIDef VN?
2505  if (S.start == VNI->def && !VNI->isPHIDef()) {
2506    // Not live-in to any blocks.
2507    if (MBB == EndMBB)
2508      return;
2509    // Skip this block.
2510    ++MFI;
2511  }
2512
2513  SmallVector<SlotIndex, 4> Undefs;
2514  if (LaneMask.any()) {
2515    LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2516    OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2517  }
2518
2519  while (true) {
2520    assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2521    // We don't know how to track physregs into a landing pad.
2522    if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
2523        MFI->isEHPad()) {
2524      if (&*MFI == EndMBB)
2525        break;
2526      ++MFI;
2527      continue;
2528    }
2529
2530    // Is VNI a PHI-def in the current block?
2531    bool IsPHI = VNI->isPHIDef() &&
2532      VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2533
2534    // Check that VNI is live-out of all predecessors.
2535    for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
2536         PE = MFI->pred_end(); PI != PE; ++PI) {
2537      SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
2538      const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2539
2540      // All predecessors must have a live-out value. However for a phi
2541      // instruction with subregister intervals
2542      // only one of the subregisters (not necessarily the current one) needs to
2543      // be defined.
2544      if (!PVNI && (LaneMask.none() || !IsPHI)) {
2545        if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes))
2546          continue;
2547        report("Register not marked live out of predecessor", *PI);
2548        report_context(LR, Reg, LaneMask);
2549        report_context(*VNI);
2550        errs() << " live into " << printMBBReference(*MFI) << '@'
2551               << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2552               << PEnd << '\n';
2553        continue;
2554      }
2555
2556      // Only PHI-defs can take different predecessor values.
2557      if (!IsPHI && PVNI != VNI) {
2558        report("Different value live out of predecessor", *PI);
2559        report_context(LR, Reg, LaneMask);
2560        errs() << "Valno #" << PVNI->id << " live out of "
2561               << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
2562               << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2563               << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2564      }
2565    }
2566    if (&*MFI == EndMBB)
2567      break;
2568    ++MFI;
2569  }
2570}
2571
2572void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2573                                      LaneBitmask LaneMask) {
2574  for (const VNInfo *VNI : LR.valnos)
2575    verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2576
2577  for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2578    verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2579}
2580
2581void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2582  unsigned Reg = LI.reg;
2583  assert(TargetRegisterInfo::isVirtualRegister(Reg));
2584  verifyLiveRange(LI, Reg);
2585
2586  LaneBitmask Mask;
2587  LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2588  for (const LiveInterval::SubRange &SR : LI.subranges()) {
2589    if ((Mask & SR.LaneMask).any()) {
2590      report("Lane masks of sub ranges overlap in live interval", MF);
2591      report_context(LI);
2592    }
2593    if ((SR.LaneMask & ~MaxMask).any()) {
2594      report("Subrange lanemask is invalid", MF);
2595      report_context(LI);
2596    }
2597    if (SR.empty()) {
2598      report("Subrange must not be empty", MF);
2599      report_context(SR, LI.reg, SR.LaneMask);
2600    }
2601    Mask |= SR.LaneMask;
2602    verifyLiveRange(SR, LI.reg, SR.LaneMask);
2603    if (!LI.covers(SR)) {
2604      report("A Subrange is not covered by the main range", MF);
2605      report_context(LI);
2606    }
2607  }
2608
2609  // Check the LI only has one connected component.
2610  ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2611  unsigned NumComp = ConEQ.Classify(LI);
2612  if (NumComp > 1) {
2613    report("Multiple connected components in live interval", MF);
2614    report_context(LI);
2615    for (unsigned comp = 0; comp != NumComp; ++comp) {
2616      errs() << comp << ": valnos";
2617      for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
2618           E = LI.vni_end(); I!=E; ++I)
2619        if (comp == ConEQ.getEqClass(*I))
2620          errs() << ' ' << (*I)->id;
2621      errs() << '\n';
2622    }
2623  }
2624}
2625
2626namespace {
2627
2628  // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2629  // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2630  // value is zero.
2631  // We use a bool plus an integer to capture the stack state.
2632  struct StackStateOfBB {
2633    StackStateOfBB() = default;
2634    StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2635      EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2636      ExitIsSetup(ExitSetup) {}
2637
2638    // Can be negative, which means we are setting up a frame.
2639    int EntryValue = 0;
2640    int ExitValue = 0;
2641    bool EntryIsSetup = false;
2642    bool ExitIsSetup = false;
2643  };
2644
2645} // end anonymous namespace
2646
2647/// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2648/// by a FrameDestroy <n>, stack adjustments are identical on all
2649/// CFG edges to a merge point, and frame is destroyed at end of a return block.
2650void MachineVerifier::verifyStackFrame() {
2651  unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2652  unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2653  if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2654    return;
2655
2656  SmallVector<StackStateOfBB, 8> SPState;
2657  SPState.resize(MF->getNumBlockIDs());
2658  df_iterator_default_set<const MachineBasicBlock*> Reachable;
2659
2660  // Visit the MBBs in DFS order.
2661  for (df_ext_iterator<const MachineFunction *,
2662                       df_iterator_default_set<const MachineBasicBlock *>>
2663       DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2664       DFI != DFE; ++DFI) {
2665    const MachineBasicBlock *MBB = *DFI;
2666
2667    StackStateOfBB BBState;
2668    // Check the exit state of the DFS stack predecessor.
2669    if (DFI.getPathLength() >= 2) {
2670      const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2671      assert(Reachable.count(StackPred) &&
2672             "DFS stack predecessor is already visited.\n");
2673      BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2674      BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2675      BBState.ExitValue = BBState.EntryValue;
2676      BBState.ExitIsSetup = BBState.EntryIsSetup;
2677    }
2678
2679    // Update stack state by checking contents of MBB.
2680    for (const auto &I : *MBB) {
2681      if (I.getOpcode() == FrameSetupOpcode) {
2682        if (BBState.ExitIsSetup)
2683          report("FrameSetup is after another FrameSetup", &I);
2684        BBState.ExitValue -= TII->getFrameTotalSize(I);
2685        BBState.ExitIsSetup = true;
2686      }
2687
2688      if (I.getOpcode() == FrameDestroyOpcode) {
2689        int Size = TII->getFrameTotalSize(I);
2690        if (!BBState.ExitIsSetup)
2691          report("FrameDestroy is not after a FrameSetup", &I);
2692        int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2693                                               BBState.ExitValue;
2694        if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2695          report("FrameDestroy <n> is after FrameSetup <m>", &I);
2696          errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2697              << AbsSPAdj << ">.\n";
2698        }
2699        BBState.ExitValue += Size;
2700        BBState.ExitIsSetup = false;
2701      }
2702    }
2703    SPState[MBB->getNumber()] = BBState;
2704
2705    // Make sure the exit state of any predecessor is consistent with the entry
2706    // state.
2707    for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2708         E = MBB->pred_end(); I != E; ++I) {
2709      if (Reachable.count(*I) &&
2710          (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2711           SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2712        report("The exit stack state of a predecessor is inconsistent.", MBB);
2713        errs() << "Predecessor " << printMBBReference(*(*I))
2714               << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
2715               << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
2716               << printMBBReference(*MBB) << " has entry state ("
2717               << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2718      }
2719    }
2720
2721    // Make sure the entry state of any successor is consistent with the exit
2722    // state.
2723    for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2724         E = MBB->succ_end(); I != E; ++I) {
2725      if (Reachable.count(*I) &&
2726          (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2727           SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2728        report("The entry stack state of a successor is inconsistent.", MBB);
2729        errs() << "Successor " << printMBBReference(*(*I))
2730               << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
2731               << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
2732               << printMBBReference(*MBB) << " has exit state ("
2733               << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2734      }
2735    }
2736
2737    // Make sure a basic block with return ends with zero stack adjustment.
2738    if (!MBB->empty() && MBB->back().isReturn()) {
2739      if (BBState.ExitIsSetup)
2740        report("A return block ends with a FrameSetup.", MBB);
2741      if (BBState.ExitValue)
2742        report("A return block ends with a nonzero stack adjustment.", MBB);
2743    }
2744  }
2745}
2746