MachineSink.cpp revision 360660
1//===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass moves instructions into successor blocks when possible, so that
10// they aren't executed on paths where their results aren't needed.
11//
12// This pass is not intended to be a replacement or a complete alternative
13// for an LLVM-IR-level sinking pass. It is only designed to sink simple
14// constructs that are not exposed before lowering and instruction selection.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/ADT/SetVector.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/SparseBitVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/MachineBasicBlock.h"
25#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27#include "llvm/CodeGen/MachineDominators.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineLoopInfo.h"
32#include "llvm/CodeGen/MachineOperand.h"
33#include "llvm/CodeGen/MachinePostDominators.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/TargetInstrInfo.h"
36#include "llvm/CodeGen/TargetRegisterInfo.h"
37#include "llvm/CodeGen/TargetSubtargetInfo.h"
38#include "llvm/IR/BasicBlock.h"
39#include "llvm/IR/LLVMContext.h"
40#include "llvm/IR/DebugInfoMetadata.h"
41#include "llvm/Pass.h"
42#include "llvm/Support/BranchProbability.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/raw_ostream.h"
46#include <algorithm>
47#include <cassert>
48#include <cstdint>
49#include <map>
50#include <utility>
51#include <vector>
52
53using namespace llvm;
54
55#define DEBUG_TYPE "machine-sink"
56
57static cl::opt<bool>
58SplitEdges("machine-sink-split",
59           cl::desc("Split critical edges during machine sinking"),
60           cl::init(true), cl::Hidden);
61
62static cl::opt<bool>
63UseBlockFreqInfo("machine-sink-bfi",
64           cl::desc("Use block frequency info to find successors to sink"),
65           cl::init(true), cl::Hidden);
66
67static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
68    "machine-sink-split-probability-threshold",
69    cl::desc(
70        "Percentage threshold for splitting single-instruction critical edge. "
71        "If the branch threshold is higher than this threshold, we allow "
72        "speculative execution of up to 1 instruction to avoid branching to "
73        "splitted critical edge"),
74    cl::init(40), cl::Hidden);
75
76STATISTIC(NumSunk,      "Number of machine instructions sunk");
77STATISTIC(NumSplit,     "Number of critical edges split");
78STATISTIC(NumCoalesces, "Number of copies coalesced");
79STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
80
81namespace {
82
83  class MachineSinking : public MachineFunctionPass {
84    const TargetInstrInfo *TII;
85    const TargetRegisterInfo *TRI;
86    MachineRegisterInfo  *MRI;     // Machine register information
87    MachineDominatorTree *DT;      // Machine dominator tree
88    MachinePostDominatorTree *PDT; // Machine post dominator tree
89    MachineLoopInfo *LI;
90    const MachineBlockFrequencyInfo *MBFI;
91    const MachineBranchProbabilityInfo *MBPI;
92    AliasAnalysis *AA;
93
94    // Remember which edges have been considered for breaking.
95    SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
96    CEBCandidates;
97    // Remember which edges we are about to split.
98    // This is different from CEBCandidates since those edges
99    // will be split.
100    SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
101
102    SparseBitVector<> RegsToClearKillFlags;
103
104    using AllSuccsCache =
105        std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
106
107  public:
108    static char ID; // Pass identification
109
110    MachineSinking() : MachineFunctionPass(ID) {
111      initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
112    }
113
114    bool runOnMachineFunction(MachineFunction &MF) override;
115
116    void getAnalysisUsage(AnalysisUsage &AU) const override {
117      AU.setPreservesCFG();
118      MachineFunctionPass::getAnalysisUsage(AU);
119      AU.addRequired<AAResultsWrapperPass>();
120      AU.addRequired<MachineDominatorTree>();
121      AU.addRequired<MachinePostDominatorTree>();
122      AU.addRequired<MachineLoopInfo>();
123      AU.addRequired<MachineBranchProbabilityInfo>();
124      AU.addPreserved<MachineDominatorTree>();
125      AU.addPreserved<MachinePostDominatorTree>();
126      AU.addPreserved<MachineLoopInfo>();
127      if (UseBlockFreqInfo)
128        AU.addRequired<MachineBlockFrequencyInfo>();
129    }
130
131    void releaseMemory() override {
132      CEBCandidates.clear();
133    }
134
135  private:
136    bool ProcessBlock(MachineBasicBlock &MBB);
137    bool isWorthBreakingCriticalEdge(MachineInstr &MI,
138                                     MachineBasicBlock *From,
139                                     MachineBasicBlock *To);
140
141    /// Postpone the splitting of the given critical
142    /// edge (\p From, \p To).
143    ///
144    /// We do not split the edges on the fly. Indeed, this invalidates
145    /// the dominance information and thus triggers a lot of updates
146    /// of that information underneath.
147    /// Instead, we postpone all the splits after each iteration of
148    /// the main loop. That way, the information is at least valid
149    /// for the lifetime of an iteration.
150    ///
151    /// \return True if the edge is marked as toSplit, false otherwise.
152    /// False can be returned if, for instance, this is not profitable.
153    bool PostponeSplitCriticalEdge(MachineInstr &MI,
154                                   MachineBasicBlock *From,
155                                   MachineBasicBlock *To,
156                                   bool BreakPHIEdge);
157    bool SinkInstruction(MachineInstr &MI, bool &SawStore,
158
159                         AllSuccsCache &AllSuccessors);
160    bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
161                                 MachineBasicBlock *DefMBB,
162                                 bool &BreakPHIEdge, bool &LocalUse) const;
163    MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
164               bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
165    bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
166                              MachineBasicBlock *MBB,
167                              MachineBasicBlock *SuccToSinkTo,
168                              AllSuccsCache &AllSuccessors);
169
170    bool PerformTrivialForwardCoalescing(MachineInstr &MI,
171                                         MachineBasicBlock *MBB);
172
173    SmallVector<MachineBasicBlock *, 4> &
174    GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
175                           AllSuccsCache &AllSuccessors) const;
176  };
177
178} // end anonymous namespace
179
180char MachineSinking::ID = 0;
181
182char &llvm::MachineSinkingID = MachineSinking::ID;
183
184INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
185                      "Machine code sinking", false, false)
186INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
187INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
188INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
189INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
190INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
191                    "Machine code sinking", false, false)
192
193bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
194                                                     MachineBasicBlock *MBB) {
195  if (!MI.isCopy())
196    return false;
197
198  unsigned SrcReg = MI.getOperand(1).getReg();
199  unsigned DstReg = MI.getOperand(0).getReg();
200  if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
201      !TargetRegisterInfo::isVirtualRegister(DstReg) ||
202      !MRI->hasOneNonDBGUse(SrcReg))
203    return false;
204
205  const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
206  const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
207  if (SRC != DRC)
208    return false;
209
210  MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
211  if (DefMI->isCopyLike())
212    return false;
213  LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
214  LLVM_DEBUG(dbgs() << "*** to: " << MI);
215  MRI->replaceRegWith(DstReg, SrcReg);
216  MI.eraseFromParent();
217
218  // Conservatively, clear any kill flags, since it's possible that they are no
219  // longer correct.
220  MRI->clearKillFlags(SrcReg);
221
222  ++NumCoalesces;
223  return true;
224}
225
226/// AllUsesDominatedByBlock - Return true if all uses of the specified register
227/// occur in blocks dominated by the specified block. If any use is in the
228/// definition block, then return false since it is never legal to move def
229/// after uses.
230bool
231MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
232                                        MachineBasicBlock *MBB,
233                                        MachineBasicBlock *DefMBB,
234                                        bool &BreakPHIEdge,
235                                        bool &LocalUse) const {
236  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
237         "Only makes sense for vregs");
238
239  // Ignore debug uses because debug info doesn't affect the code.
240  if (MRI->use_nodbg_empty(Reg))
241    return true;
242
243  // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
244  // into and they are all PHI nodes. In this case, machine-sink must break
245  // the critical edge first. e.g.
246  //
247  // %bb.1: derived from LLVM BB %bb4.preheader
248  //   Predecessors according to CFG: %bb.0
249  //     ...
250  //     %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags
251  //     ...
252  //     JE_4 <%bb.37>, implicit %eflags
253  //   Successors according to CFG: %bb.37 %bb.2
254  //
255  // %bb.2: derived from LLVM BB %bb.nph
256  //   Predecessors according to CFG: %bb.0 %bb.1
257  //     %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1
258  BreakPHIEdge = true;
259  for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
260    MachineInstr *UseInst = MO.getParent();
261    unsigned OpNo = &MO - &UseInst->getOperand(0);
262    MachineBasicBlock *UseBlock = UseInst->getParent();
263    if (!(UseBlock == MBB && UseInst->isPHI() &&
264          UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
265      BreakPHIEdge = false;
266      break;
267    }
268  }
269  if (BreakPHIEdge)
270    return true;
271
272  for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
273    // Determine the block of the use.
274    MachineInstr *UseInst = MO.getParent();
275    unsigned OpNo = &MO - &UseInst->getOperand(0);
276    MachineBasicBlock *UseBlock = UseInst->getParent();
277    if (UseInst->isPHI()) {
278      // PHI nodes use the operand in the predecessor block, not the block with
279      // the PHI.
280      UseBlock = UseInst->getOperand(OpNo+1).getMBB();
281    } else if (UseBlock == DefMBB) {
282      LocalUse = true;
283      return false;
284    }
285
286    // Check that it dominates.
287    if (!DT->dominates(MBB, UseBlock))
288      return false;
289  }
290
291  return true;
292}
293
294bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
295  if (skipFunction(MF.getFunction()))
296    return false;
297
298  LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
299
300  TII = MF.getSubtarget().getInstrInfo();
301  TRI = MF.getSubtarget().getRegisterInfo();
302  MRI = &MF.getRegInfo();
303  DT = &getAnalysis<MachineDominatorTree>();
304  PDT = &getAnalysis<MachinePostDominatorTree>();
305  LI = &getAnalysis<MachineLoopInfo>();
306  MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
307  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
308  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
309
310  bool EverMadeChange = false;
311
312  while (true) {
313    bool MadeChange = false;
314
315    // Process all basic blocks.
316    CEBCandidates.clear();
317    ToSplit.clear();
318    for (auto &MBB: MF)
319      MadeChange |= ProcessBlock(MBB);
320
321    // If we have anything we marked as toSplit, split it now.
322    for (auto &Pair : ToSplit) {
323      auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
324      if (NewSucc != nullptr) {
325        LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
326                          << printMBBReference(*Pair.first) << " -- "
327                          << printMBBReference(*NewSucc) << " -- "
328                          << printMBBReference(*Pair.second) << '\n');
329        MadeChange = true;
330        ++NumSplit;
331      } else
332        LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
333    }
334    // If this iteration over the code changed anything, keep iterating.
335    if (!MadeChange) break;
336    EverMadeChange = true;
337  }
338
339  // Now clear any kill flags for recorded registers.
340  for (auto I : RegsToClearKillFlags)
341    MRI->clearKillFlags(I);
342  RegsToClearKillFlags.clear();
343
344  return EverMadeChange;
345}
346
347bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
348  // Can't sink anything out of a block that has less than two successors.
349  if (MBB.succ_size() <= 1 || MBB.empty()) return false;
350
351  // Don't bother sinking code out of unreachable blocks. In addition to being
352  // unprofitable, it can also lead to infinite looping, because in an
353  // unreachable loop there may be nowhere to stop.
354  if (!DT->isReachableFromEntry(&MBB)) return false;
355
356  bool MadeChange = false;
357
358  // Cache all successors, sorted by frequency info and loop depth.
359  AllSuccsCache AllSuccessors;
360
361  // Walk the basic block bottom-up.  Remember if we saw a store.
362  MachineBasicBlock::iterator I = MBB.end();
363  --I;
364  bool ProcessedBegin, SawStore = false;
365  do {
366    MachineInstr &MI = *I;  // The instruction to sink.
367
368    // Predecrement I (if it's not begin) so that it isn't invalidated by
369    // sinking.
370    ProcessedBegin = I == MBB.begin();
371    if (!ProcessedBegin)
372      --I;
373
374    if (MI.isDebugInstr())
375      continue;
376
377    bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
378    if (Joined) {
379      MadeChange = true;
380      continue;
381    }
382
383    if (SinkInstruction(MI, SawStore, AllSuccessors)) {
384      ++NumSunk;
385      MadeChange = true;
386    }
387
388    // If we just processed the first instruction in the block, we're done.
389  } while (!ProcessedBegin);
390
391  return MadeChange;
392}
393
394bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
395                                                 MachineBasicBlock *From,
396                                                 MachineBasicBlock *To) {
397  // FIXME: Need much better heuristics.
398
399  // If the pass has already considered breaking this edge (during this pass
400  // through the function), then let's go ahead and break it. This means
401  // sinking multiple "cheap" instructions into the same block.
402  if (!CEBCandidates.insert(std::make_pair(From, To)).second)
403    return true;
404
405  if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
406    return true;
407
408  if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
409      BranchProbability(SplitEdgeProbabilityThreshold, 100))
410    return true;
411
412  // MI is cheap, we probably don't want to break the critical edge for it.
413  // However, if this would allow some definitions of its source operands
414  // to be sunk then it's probably worth it.
415  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
416    const MachineOperand &MO = MI.getOperand(i);
417    if (!MO.isReg() || !MO.isUse())
418      continue;
419    unsigned Reg = MO.getReg();
420    if (Reg == 0)
421      continue;
422
423    // We don't move live definitions of physical registers,
424    // so sinking their uses won't enable any opportunities.
425    if (TargetRegisterInfo::isPhysicalRegister(Reg))
426      continue;
427
428    // If this instruction is the only user of a virtual register,
429    // check if breaking the edge will enable sinking
430    // both this instruction and the defining instruction.
431    if (MRI->hasOneNonDBGUse(Reg)) {
432      // If the definition resides in same MBB,
433      // claim it's likely we can sink these together.
434      // If definition resides elsewhere, we aren't
435      // blocking it from being sunk so don't break the edge.
436      MachineInstr *DefMI = MRI->getVRegDef(Reg);
437      if (DefMI->getParent() == MI.getParent())
438        return true;
439    }
440  }
441
442  return false;
443}
444
445bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
446                                               MachineBasicBlock *FromBB,
447                                               MachineBasicBlock *ToBB,
448                                               bool BreakPHIEdge) {
449  if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
450    return false;
451
452  // Avoid breaking back edge. From == To means backedge for single BB loop.
453  if (!SplitEdges || FromBB == ToBB)
454    return false;
455
456  // Check for backedges of more "complex" loops.
457  if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
458      LI->isLoopHeader(ToBB))
459    return false;
460
461  // It's not always legal to break critical edges and sink the computation
462  // to the edge.
463  //
464  // %bb.1:
465  // v1024
466  // Beq %bb.3
467  // <fallthrough>
468  // %bb.2:
469  // ... no uses of v1024
470  // <fallthrough>
471  // %bb.3:
472  // ...
473  //       = v1024
474  //
475  // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
476  //
477  // %bb.1:
478  // ...
479  // Bne %bb.2
480  // %bb.4:
481  // v1024 =
482  // B %bb.3
483  // %bb.2:
484  // ... no uses of v1024
485  // <fallthrough>
486  // %bb.3:
487  // ...
488  //       = v1024
489  //
490  // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
491  // flow. We need to ensure the new basic block where the computation is
492  // sunk to dominates all the uses.
493  // It's only legal to break critical edge and sink the computation to the
494  // new block if all the predecessors of "To", except for "From", are
495  // not dominated by "From". Given SSA property, this means these
496  // predecessors are dominated by "To".
497  //
498  // There is no need to do this check if all the uses are PHI nodes. PHI
499  // sources are only defined on the specific predecessor edges.
500  if (!BreakPHIEdge) {
501    for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
502           E = ToBB->pred_end(); PI != E; ++PI) {
503      if (*PI == FromBB)
504        continue;
505      if (!DT->dominates(ToBB, *PI))
506        return false;
507    }
508  }
509
510  ToSplit.insert(std::make_pair(FromBB, ToBB));
511
512  return true;
513}
514
515/// isProfitableToSinkTo - Return true if it is profitable to sink MI.
516bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
517                                          MachineBasicBlock *MBB,
518                                          MachineBasicBlock *SuccToSinkTo,
519                                          AllSuccsCache &AllSuccessors) {
520  assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
521
522  if (MBB == SuccToSinkTo)
523    return false;
524
525  // It is profitable if SuccToSinkTo does not post dominate current block.
526  if (!PDT->dominates(SuccToSinkTo, MBB))
527    return true;
528
529  // It is profitable to sink an instruction from a deeper loop to a shallower
530  // loop, even if the latter post-dominates the former (PR21115).
531  if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
532    return true;
533
534  // Check if only use in post dominated block is PHI instruction.
535  bool NonPHIUse = false;
536  for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
537    MachineBasicBlock *UseBlock = UseInst.getParent();
538    if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
539      NonPHIUse = true;
540  }
541  if (!NonPHIUse)
542    return true;
543
544  // If SuccToSinkTo post dominates then also it may be profitable if MI
545  // can further profitably sinked into another block in next round.
546  bool BreakPHIEdge = false;
547  // FIXME - If finding successor is compile time expensive then cache results.
548  if (MachineBasicBlock *MBB2 =
549          FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
550    return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
551
552  // If SuccToSinkTo is final destination and it is a post dominator of current
553  // block then it is not profitable to sink MI into SuccToSinkTo block.
554  return false;
555}
556
557/// Get the sorted sequence of successors for this MachineBasicBlock, possibly
558/// computing it if it was not already cached.
559SmallVector<MachineBasicBlock *, 4> &
560MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
561                                       AllSuccsCache &AllSuccessors) const {
562  // Do we have the sorted successors in cache ?
563  auto Succs = AllSuccessors.find(MBB);
564  if (Succs != AllSuccessors.end())
565    return Succs->second;
566
567  SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
568                                               MBB->succ_end());
569
570  // Handle cases where sinking can happen but where the sink point isn't a
571  // successor. For example:
572  //
573  //   x = computation
574  //   if () {} else {}
575  //   use x
576  //
577  const std::vector<MachineDomTreeNode *> &Children =
578    DT->getNode(MBB)->getChildren();
579  for (const auto &DTChild : Children)
580    // DomTree children of MBB that have MBB as immediate dominator are added.
581    if (DTChild->getIDom()->getBlock() == MI.getParent() &&
582        // Skip MBBs already added to the AllSuccs vector above.
583        !MBB->isSuccessor(DTChild->getBlock()))
584      AllSuccs.push_back(DTChild->getBlock());
585
586  // Sort Successors according to their loop depth or block frequency info.
587  llvm::stable_sort(
588      AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
589        uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
590        uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
591        bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
592        return HasBlockFreq ? LHSFreq < RHSFreq
593                            : LI->getLoopDepth(L) < LI->getLoopDepth(R);
594      });
595
596  auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
597
598  return it.first->second;
599}
600
601/// FindSuccToSinkTo - Find a successor to sink this instruction to.
602MachineBasicBlock *
603MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
604                                 bool &BreakPHIEdge,
605                                 AllSuccsCache &AllSuccessors) {
606  assert (MBB && "Invalid MachineBasicBlock!");
607
608  // Loop over all the operands of the specified instruction.  If there is
609  // anything we can't handle, bail out.
610
611  // SuccToSinkTo - This is the successor to sink this instruction to, once we
612  // decide.
613  MachineBasicBlock *SuccToSinkTo = nullptr;
614  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
615    const MachineOperand &MO = MI.getOperand(i);
616    if (!MO.isReg()) continue;  // Ignore non-register operands.
617
618    unsigned Reg = MO.getReg();
619    if (Reg == 0) continue;
620
621    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
622      if (MO.isUse()) {
623        // If the physreg has no defs anywhere, it's just an ambient register
624        // and we can freely move its uses. Alternatively, if it's allocatable,
625        // it could get allocated to something with a def during allocation.
626        if (!MRI->isConstantPhysReg(Reg))
627          return nullptr;
628      } else if (!MO.isDead()) {
629        // A def that isn't dead. We can't move it.
630        return nullptr;
631      }
632    } else {
633      // Virtual register uses are always safe to sink.
634      if (MO.isUse()) continue;
635
636      // If it's not safe to move defs of the register class, then abort.
637      if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
638        return nullptr;
639
640      // Virtual register defs can only be sunk if all their uses are in blocks
641      // dominated by one of the successors.
642      if (SuccToSinkTo) {
643        // If a previous operand picked a block to sink to, then this operand
644        // must be sinkable to the same block.
645        bool LocalUse = false;
646        if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
647                                     BreakPHIEdge, LocalUse))
648          return nullptr;
649
650        continue;
651      }
652
653      // Otherwise, we should look at all the successors and decide which one
654      // we should sink to. If we have reliable block frequency information
655      // (frequency != 0) available, give successors with smaller frequencies
656      // higher priority, otherwise prioritize smaller loop depths.
657      for (MachineBasicBlock *SuccBlock :
658           GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
659        bool LocalUse = false;
660        if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
661                                    BreakPHIEdge, LocalUse)) {
662          SuccToSinkTo = SuccBlock;
663          break;
664        }
665        if (LocalUse)
666          // Def is used locally, it's never safe to move this def.
667          return nullptr;
668      }
669
670      // If we couldn't find a block to sink to, ignore this instruction.
671      if (!SuccToSinkTo)
672        return nullptr;
673      if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
674        return nullptr;
675    }
676  }
677
678  // It is not possible to sink an instruction into its own block.  This can
679  // happen with loops.
680  if (MBB == SuccToSinkTo)
681    return nullptr;
682
683  // It's not safe to sink instructions to EH landing pad. Control flow into
684  // landing pad is implicitly defined.
685  if (SuccToSinkTo && SuccToSinkTo->isEHPad())
686    return nullptr;
687
688  return SuccToSinkTo;
689}
690
691/// Return true if MI is likely to be usable as a memory operation by the
692/// implicit null check optimization.
693///
694/// This is a "best effort" heuristic, and should not be relied upon for
695/// correctness.  This returning true does not guarantee that the implicit null
696/// check optimization is legal over MI, and this returning false does not
697/// guarantee MI cannot possibly be used to do a null check.
698static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
699                                             const TargetInstrInfo *TII,
700                                             const TargetRegisterInfo *TRI) {
701  using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
702
703  auto *MBB = MI.getParent();
704  if (MBB->pred_size() != 1)
705    return false;
706
707  auto *PredMBB = *MBB->pred_begin();
708  auto *PredBB = PredMBB->getBasicBlock();
709
710  // Frontends that don't use implicit null checks have no reason to emit
711  // branches with make.implicit metadata, and this function should always
712  // return false for them.
713  if (!PredBB ||
714      !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
715    return false;
716
717  const MachineOperand *BaseOp;
718  int64_t Offset;
719  if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
720    return false;
721
722  if (!BaseOp->isReg())
723    return false;
724
725  if (!(MI.mayLoad() && !MI.isPredicable()))
726    return false;
727
728  MachineBranchPredicate MBP;
729  if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
730    return false;
731
732  return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
733         (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
734          MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
735         MBP.LHS.getReg() == BaseOp->getReg();
736}
737
738/// Sink an instruction and its associated debug instructions. If the debug
739/// instructions to be sunk are already known, they can be provided in DbgVals.
740static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
741                        MachineBasicBlock::iterator InsertPos,
742                        SmallVectorImpl<MachineInstr *> *DbgVals = nullptr) {
743  // If debug values are provided use those, otherwise call collectDebugValues.
744  SmallVector<MachineInstr *, 2> DbgValuesToSink;
745  if (DbgVals)
746    DbgValuesToSink.insert(DbgValuesToSink.begin(),
747                           DbgVals->begin(), DbgVals->end());
748  else
749    MI.collectDebugValues(DbgValuesToSink);
750
751  // If we cannot find a location to use (merge with), then we erase the debug
752  // location to prevent debug-info driven tools from potentially reporting
753  // wrong location information.
754  if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
755    MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
756                                                 InsertPos->getDebugLoc()));
757  else
758    MI.setDebugLoc(DebugLoc());
759
760  // Move the instruction.
761  MachineBasicBlock *ParentBlock = MI.getParent();
762  SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
763                      ++MachineBasicBlock::iterator(MI));
764
765  // Move previously adjacent debug value instructions to the insert position.
766  for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
767                                                 DBE = DbgValuesToSink.end();
768       DBI != DBE; ++DBI) {
769    MachineInstr *DbgMI = *DBI;
770    SuccToSinkTo.splice(InsertPos, ParentBlock, DbgMI,
771                        ++MachineBasicBlock::iterator(DbgMI));
772  }
773}
774
775/// SinkInstruction - Determine whether it is safe to sink the specified machine
776/// instruction out of its current block into a successor.
777bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
778                                     AllSuccsCache &AllSuccessors) {
779  // Don't sink instructions that the target prefers not to sink.
780  if (!TII->shouldSink(MI))
781    return false;
782
783  // Check if it's safe to move the instruction.
784  if (!MI.isSafeToMove(AA, SawStore))
785    return false;
786
787  // Convergent operations may not be made control-dependent on additional
788  // values.
789  if (MI.isConvergent())
790    return false;
791
792  // Don't break implicit null checks.  This is a performance heuristic, and not
793  // required for correctness.
794  if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
795    return false;
796
797  // FIXME: This should include support for sinking instructions within the
798  // block they are currently in to shorten the live ranges.  We often get
799  // instructions sunk into the top of a large block, but it would be better to
800  // also sink them down before their first use in the block.  This xform has to
801  // be careful not to *increase* register pressure though, e.g. sinking
802  // "x = y + z" down if it kills y and z would increase the live ranges of y
803  // and z and only shrink the live range of x.
804
805  bool BreakPHIEdge = false;
806  MachineBasicBlock *ParentBlock = MI.getParent();
807  MachineBasicBlock *SuccToSinkTo =
808      FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
809
810  // If there are no outputs, it must have side-effects.
811  if (!SuccToSinkTo)
812    return false;
813
814  // If the instruction to move defines a dead physical register which is live
815  // when leaving the basic block, don't move it because it could turn into a
816  // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
817  for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
818    const MachineOperand &MO = MI.getOperand(I);
819    if (!MO.isReg()) continue;
820    unsigned Reg = MO.getReg();
821    if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
822    if (SuccToSinkTo->isLiveIn(Reg))
823      return false;
824  }
825
826  LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
827
828  // If the block has multiple predecessors, this is a critical edge.
829  // Decide if we can sink along it or need to break the edge.
830  if (SuccToSinkTo->pred_size() > 1) {
831    // We cannot sink a load across a critical edge - there may be stores in
832    // other code paths.
833    bool TryBreak = false;
834    bool store = true;
835    if (!MI.isSafeToMove(AA, store)) {
836      LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
837      TryBreak = true;
838    }
839
840    // We don't want to sink across a critical edge if we don't dominate the
841    // successor. We could be introducing calculations to new code paths.
842    if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
843      LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
844      TryBreak = true;
845    }
846
847    // Don't sink instructions into a loop.
848    if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
849      LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
850      TryBreak = true;
851    }
852
853    // Otherwise we are OK with sinking along a critical edge.
854    if (!TryBreak)
855      LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
856    else {
857      // Mark this edge as to be split.
858      // If the edge can actually be split, the next iteration of the main loop
859      // will sink MI in the newly created block.
860      bool Status =
861        PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
862      if (!Status)
863        LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
864                             "break critical edge\n");
865      // The instruction will not be sunk this time.
866      return false;
867    }
868  }
869
870  if (BreakPHIEdge) {
871    // BreakPHIEdge is true if all the uses are in the successor MBB being
872    // sunken into and they are all PHI nodes. In this case, machine-sink must
873    // break the critical edge first.
874    bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
875                                            SuccToSinkTo, BreakPHIEdge);
876    if (!Status)
877      LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
878                           "break critical edge\n");
879    // The instruction will not be sunk this time.
880    return false;
881  }
882
883  // Determine where to insert into. Skip phi nodes.
884  MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
885  while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
886    ++InsertPos;
887
888  performSink(MI, *SuccToSinkTo, InsertPos);
889
890  // Conservatively, clear any kill flags, since it's possible that they are no
891  // longer correct.
892  // Note that we have to clear the kill flags for any register this instruction
893  // uses as we may sink over another instruction which currently kills the
894  // used registers.
895  for (MachineOperand &MO : MI.operands()) {
896    if (MO.isReg() && MO.isUse())
897      RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
898  }
899
900  return true;
901}
902
903//===----------------------------------------------------------------------===//
904// This pass is not intended to be a replacement or a complete alternative
905// for the pre-ra machine sink pass. It is only designed to sink COPY
906// instructions which should be handled after RA.
907//
908// This pass sinks COPY instructions into a successor block, if the COPY is not
909// used in the current block and the COPY is live-in to a single successor
910// (i.e., doesn't require the COPY to be duplicated).  This avoids executing the
911// copy on paths where their results aren't needed.  This also exposes
912// additional opportunites for dead copy elimination and shrink wrapping.
913//
914// These copies were either not handled by or are inserted after the MachineSink
915// pass. As an example of the former case, the MachineSink pass cannot sink
916// COPY instructions with allocatable source registers; for AArch64 these type
917// of copy instructions are frequently used to move function parameters (PhyReg)
918// into virtual registers in the entry block.
919//
920// For the machine IR below, this pass will sink %w19 in the entry into its
921// successor (%bb.1) because %w19 is only live-in in %bb.1.
922// %bb.0:
923//   %wzr = SUBSWri %w1, 1
924//   %w19 = COPY %w0
925//   Bcc 11, %bb.2
926// %bb.1:
927//   Live Ins: %w19
928//   BL @fun
929//   %w0 = ADDWrr %w0, %w19
930//   RET %w0
931// %bb.2:
932//   %w0 = COPY %wzr
933//   RET %w0
934// As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
935// able to see %bb.0 as a candidate.
936//===----------------------------------------------------------------------===//
937namespace {
938
939class PostRAMachineSinking : public MachineFunctionPass {
940public:
941  bool runOnMachineFunction(MachineFunction &MF) override;
942
943  static char ID;
944  PostRAMachineSinking() : MachineFunctionPass(ID) {}
945  StringRef getPassName() const override { return "PostRA Machine Sink"; }
946
947  void getAnalysisUsage(AnalysisUsage &AU) const override {
948    AU.setPreservesCFG();
949    MachineFunctionPass::getAnalysisUsage(AU);
950  }
951
952  MachineFunctionProperties getRequiredProperties() const override {
953    return MachineFunctionProperties().set(
954        MachineFunctionProperties::Property::NoVRegs);
955  }
956
957private:
958  /// Track which register units have been modified and used.
959  LiveRegUnits ModifiedRegUnits, UsedRegUnits;
960
961  /// Track DBG_VALUEs of (unmodified) register units.
962  DenseMap<unsigned, TinyPtrVector<MachineInstr*>> SeenDbgInstrs;
963
964  /// Sink Copy instructions unused in the same block close to their uses in
965  /// successors.
966  bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
967                     const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
968};
969} // namespace
970
971char PostRAMachineSinking::ID = 0;
972char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
973
974INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
975                "PostRA Machine Sink", false, false)
976
977static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
978                                  const TargetRegisterInfo *TRI) {
979  LiveRegUnits LiveInRegUnits(*TRI);
980  LiveInRegUnits.addLiveIns(MBB);
981  return !LiveInRegUnits.available(Reg);
982}
983
984static MachineBasicBlock *
985getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
986                      const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
987                      unsigned Reg, const TargetRegisterInfo *TRI) {
988  // Try to find a single sinkable successor in which Reg is live-in.
989  MachineBasicBlock *BB = nullptr;
990  for (auto *SI : SinkableBBs) {
991    if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
992      // If BB is set here, Reg is live-in to at least two sinkable successors,
993      // so quit.
994      if (BB)
995        return nullptr;
996      BB = SI;
997    }
998  }
999  // Reg is not live-in to any sinkable successors.
1000  if (!BB)
1001    return nullptr;
1002
1003  // Check if any register aliased with Reg is live-in in other successors.
1004  for (auto *SI : CurBB.successors()) {
1005    if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
1006      return nullptr;
1007  }
1008  return BB;
1009}
1010
1011static MachineBasicBlock *
1012getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1013                      const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1014                      ArrayRef<unsigned> DefedRegsInCopy,
1015                      const TargetRegisterInfo *TRI) {
1016  MachineBasicBlock *SingleBB = nullptr;
1017  for (auto DefReg : DefedRegsInCopy) {
1018    MachineBasicBlock *BB =
1019        getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1020    if (!BB || (SingleBB && SingleBB != BB))
1021      return nullptr;
1022    SingleBB = BB;
1023  }
1024  return SingleBB;
1025}
1026
1027static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1028                           SmallVectorImpl<unsigned> &UsedOpsInCopy,
1029                           LiveRegUnits &UsedRegUnits,
1030                           const TargetRegisterInfo *TRI) {
1031  for (auto U : UsedOpsInCopy) {
1032    MachineOperand &MO = MI->getOperand(U);
1033    unsigned SrcReg = MO.getReg();
1034    if (!UsedRegUnits.available(SrcReg)) {
1035      MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1036      for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1037        if (UI.killsRegister(SrcReg, TRI)) {
1038          UI.clearRegisterKills(SrcReg, TRI);
1039          MO.setIsKill(true);
1040          break;
1041        }
1042      }
1043    }
1044  }
1045}
1046
1047static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1048                         SmallVectorImpl<unsigned> &UsedOpsInCopy,
1049                         SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1050  MachineFunction &MF = *SuccBB->getParent();
1051  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1052  for (unsigned DefReg : DefedRegsInCopy)
1053    for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
1054      SuccBB->removeLiveIn(*S);
1055  for (auto U : UsedOpsInCopy) {
1056    unsigned Reg = MI->getOperand(U).getReg();
1057    if (!SuccBB->isLiveIn(Reg))
1058      SuccBB->addLiveIn(Reg);
1059  }
1060}
1061
1062static bool hasRegisterDependency(MachineInstr *MI,
1063                                  SmallVectorImpl<unsigned> &UsedOpsInCopy,
1064                                  SmallVectorImpl<unsigned> &DefedRegsInCopy,
1065                                  LiveRegUnits &ModifiedRegUnits,
1066                                  LiveRegUnits &UsedRegUnits) {
1067  bool HasRegDependency = false;
1068  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1069    MachineOperand &MO = MI->getOperand(i);
1070    if (!MO.isReg())
1071      continue;
1072    unsigned Reg = MO.getReg();
1073    if (!Reg)
1074      continue;
1075    if (MO.isDef()) {
1076      if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1077        HasRegDependency = true;
1078        break;
1079      }
1080      DefedRegsInCopy.push_back(Reg);
1081
1082      // FIXME: instead of isUse(), readsReg() would be a better fix here,
1083      // For example, we can ignore modifications in reg with undef. However,
1084      // it's not perfectly clear if skipping the internal read is safe in all
1085      // other targets.
1086    } else if (MO.isUse()) {
1087      if (!ModifiedRegUnits.available(Reg)) {
1088        HasRegDependency = true;
1089        break;
1090      }
1091      UsedOpsInCopy.push_back(i);
1092    }
1093  }
1094  return HasRegDependency;
1095}
1096
1097bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1098                                         MachineFunction &MF,
1099                                         const TargetRegisterInfo *TRI,
1100                                         const TargetInstrInfo *TII) {
1101  SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1102  // FIXME: For now, we sink only to a successor which has a single predecessor
1103  // so that we can directly sink COPY instructions to the successor without
1104  // adding any new block or branch instruction.
1105  for (MachineBasicBlock *SI : CurBB.successors())
1106    if (!SI->livein_empty() && SI->pred_size() == 1)
1107      SinkableBBs.insert(SI);
1108
1109  if (SinkableBBs.empty())
1110    return false;
1111
1112  bool Changed = false;
1113
1114  // Track which registers have been modified and used between the end of the
1115  // block and the current instruction.
1116  ModifiedRegUnits.clear();
1117  UsedRegUnits.clear();
1118  SeenDbgInstrs.clear();
1119
1120  for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
1121    MachineInstr *MI = &*I;
1122    ++I;
1123
1124    // Track the operand index for use in Copy.
1125    SmallVector<unsigned, 2> UsedOpsInCopy;
1126    // Track the register number defed in Copy.
1127    SmallVector<unsigned, 2> DefedRegsInCopy;
1128
1129    // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1130    // for DBG_VALUEs later, record them when they're encountered.
1131    if (MI->isDebugValue()) {
1132      auto &MO = MI->getOperand(0);
1133      if (MO.isReg() && TRI->isPhysicalRegister(MO.getReg())) {
1134        // Bail if we can already tell the sink would be rejected, rather
1135        // than needlessly accumulating lots of DBG_VALUEs.
1136        if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1137                                  ModifiedRegUnits, UsedRegUnits))
1138          continue;
1139
1140        // Record debug use of this register.
1141        SeenDbgInstrs[MO.getReg()].push_back(MI);
1142      }
1143      continue;
1144    }
1145
1146    if (MI->isDebugInstr())
1147      continue;
1148
1149    // Do not move any instruction across function call.
1150    if (MI->isCall())
1151      return false;
1152
1153    if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
1154      LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1155                                        TRI);
1156      continue;
1157    }
1158
1159    // Don't sink the COPY if it would violate a register dependency.
1160    if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1161                              ModifiedRegUnits, UsedRegUnits)) {
1162      LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1163                                        TRI);
1164      continue;
1165    }
1166    assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
1167           "Unexpect SrcReg or DefReg");
1168    MachineBasicBlock *SuccBB =
1169        getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
1170    // Don't sink if we cannot find a single sinkable successor in which Reg
1171    // is live-in.
1172    if (!SuccBB) {
1173      LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1174                                        TRI);
1175      continue;
1176    }
1177    assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
1178           "Unexpected predecessor");
1179
1180    // Collect DBG_VALUEs that must sink with this copy.
1181    SmallVector<MachineInstr *, 4> DbgValsToSink;
1182    for (auto &MO : MI->operands()) {
1183      if (!MO.isReg() || !MO.isDef())
1184        continue;
1185      unsigned reg = MO.getReg();
1186      for (auto *MI : SeenDbgInstrs.lookup(reg))
1187        DbgValsToSink.push_back(MI);
1188    }
1189
1190    // Clear the kill flag if SrcReg is killed between MI and the end of the
1191    // block.
1192    clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
1193    MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
1194    performSink(*MI, *SuccBB, InsertPos, &DbgValsToSink);
1195    updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
1196
1197    Changed = true;
1198    ++NumPostRACopySink;
1199  }
1200  return Changed;
1201}
1202
1203bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1204  if (skipFunction(MF.getFunction()))
1205    return false;
1206
1207  bool Changed = false;
1208  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1209  const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1210
1211  ModifiedRegUnits.init(*TRI);
1212  UsedRegUnits.init(*TRI);
1213  for (auto &BB : MF)
1214    Changed |= tryToSinkCopy(BB, MF, TRI, TII);
1215
1216  return Changed;
1217}
1218