MachineSink.cpp revision 344779
1//===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass moves instructions into successor blocks when possible, so that
11// they aren't executed on paths where their results aren't needed.
12//
13// This pass is not intended to be a replacement or a complete alternative
14// for an LLVM-IR-level sinking pass. It is only designed to sink simple
15// constructs that are not exposed before lowering and instruction selection.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/ADT/SetVector.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/SparseBitVector.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/CodeGen/MachineBasicBlock.h"
26#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
28#include "llvm/CodeGen/MachineDominators.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineFunctionPass.h"
31#include "llvm/CodeGen/MachineInstr.h"
32#include "llvm/CodeGen/MachineLoopInfo.h"
33#include "llvm/CodeGen/MachineOperand.h"
34#include "llvm/CodeGen/MachinePostDominators.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/TargetInstrInfo.h"
37#include "llvm/CodeGen/TargetRegisterInfo.h"
38#include "llvm/CodeGen/TargetSubtargetInfo.h"
39#include "llvm/IR/BasicBlock.h"
40#include "llvm/IR/LLVMContext.h"
41#include "llvm/IR/DebugInfoMetadata.h"
42#include "llvm/Pass.h"
43#include "llvm/Support/BranchProbability.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/raw_ostream.h"
47#include <algorithm>
48#include <cassert>
49#include <cstdint>
50#include <map>
51#include <utility>
52#include <vector>
53
54using namespace llvm;
55
56#define DEBUG_TYPE "machine-sink"
57
58static cl::opt<bool>
59SplitEdges("machine-sink-split",
60           cl::desc("Split critical edges during machine sinking"),
61           cl::init(true), cl::Hidden);
62
63static cl::opt<bool>
64UseBlockFreqInfo("machine-sink-bfi",
65           cl::desc("Use block frequency info to find successors to sink"),
66           cl::init(true), cl::Hidden);
67
68static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
69    "machine-sink-split-probability-threshold",
70    cl::desc(
71        "Percentage threshold for splitting single-instruction critical edge. "
72        "If the branch threshold is higher than this threshold, we allow "
73        "speculative execution of up to 1 instruction to avoid branching to "
74        "splitted critical edge"),
75    cl::init(40), cl::Hidden);
76
77STATISTIC(NumSunk,      "Number of machine instructions sunk");
78STATISTIC(NumSplit,     "Number of critical edges split");
79STATISTIC(NumCoalesces, "Number of copies coalesced");
80STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
81
82namespace {
83
84  class MachineSinking : public MachineFunctionPass {
85    const TargetInstrInfo *TII;
86    const TargetRegisterInfo *TRI;
87    MachineRegisterInfo  *MRI;     // Machine register information
88    MachineDominatorTree *DT;      // Machine dominator tree
89    MachinePostDominatorTree *PDT; // Machine post dominator tree
90    MachineLoopInfo *LI;
91    const MachineBlockFrequencyInfo *MBFI;
92    const MachineBranchProbabilityInfo *MBPI;
93    AliasAnalysis *AA;
94
95    // Remember which edges have been considered for breaking.
96    SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
97    CEBCandidates;
98    // Remember which edges we are about to split.
99    // This is different from CEBCandidates since those edges
100    // will be split.
101    SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
102
103    SparseBitVector<> RegsToClearKillFlags;
104
105    using AllSuccsCache =
106        std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
107
108  public:
109    static char ID; // Pass identification
110
111    MachineSinking() : MachineFunctionPass(ID) {
112      initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
113    }
114
115    bool runOnMachineFunction(MachineFunction &MF) override;
116
117    void getAnalysisUsage(AnalysisUsage &AU) const override {
118      AU.setPreservesCFG();
119      MachineFunctionPass::getAnalysisUsage(AU);
120      AU.addRequired<AAResultsWrapperPass>();
121      AU.addRequired<MachineDominatorTree>();
122      AU.addRequired<MachinePostDominatorTree>();
123      AU.addRequired<MachineLoopInfo>();
124      AU.addRequired<MachineBranchProbabilityInfo>();
125      AU.addPreserved<MachineDominatorTree>();
126      AU.addPreserved<MachinePostDominatorTree>();
127      AU.addPreserved<MachineLoopInfo>();
128      if (UseBlockFreqInfo)
129        AU.addRequired<MachineBlockFrequencyInfo>();
130    }
131
132    void releaseMemory() override {
133      CEBCandidates.clear();
134    }
135
136  private:
137    bool ProcessBlock(MachineBasicBlock &MBB);
138    bool isWorthBreakingCriticalEdge(MachineInstr &MI,
139                                     MachineBasicBlock *From,
140                                     MachineBasicBlock *To);
141
142    /// Postpone the splitting of the given critical
143    /// edge (\p From, \p To).
144    ///
145    /// We do not split the edges on the fly. Indeed, this invalidates
146    /// the dominance information and thus triggers a lot of updates
147    /// of that information underneath.
148    /// Instead, we postpone all the splits after each iteration of
149    /// the main loop. That way, the information is at least valid
150    /// for the lifetime of an iteration.
151    ///
152    /// \return True if the edge is marked as toSplit, false otherwise.
153    /// False can be returned if, for instance, this is not profitable.
154    bool PostponeSplitCriticalEdge(MachineInstr &MI,
155                                   MachineBasicBlock *From,
156                                   MachineBasicBlock *To,
157                                   bool BreakPHIEdge);
158    bool SinkInstruction(MachineInstr &MI, bool &SawStore,
159
160                         AllSuccsCache &AllSuccessors);
161    bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
162                                 MachineBasicBlock *DefMBB,
163                                 bool &BreakPHIEdge, bool &LocalUse) const;
164    MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
165               bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
166    bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
167                              MachineBasicBlock *MBB,
168                              MachineBasicBlock *SuccToSinkTo,
169                              AllSuccsCache &AllSuccessors);
170
171    bool PerformTrivialForwardCoalescing(MachineInstr &MI,
172                                         MachineBasicBlock *MBB);
173
174    SmallVector<MachineBasicBlock *, 4> &
175    GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
176                           AllSuccsCache &AllSuccessors) const;
177  };
178
179} // end anonymous namespace
180
181char MachineSinking::ID = 0;
182
183char &llvm::MachineSinkingID = MachineSinking::ID;
184
185INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
186                      "Machine code sinking", false, false)
187INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
188INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
189INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
190INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
191INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
192                    "Machine code sinking", false, false)
193
194bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
195                                                     MachineBasicBlock *MBB) {
196  if (!MI.isCopy())
197    return false;
198
199  unsigned SrcReg = MI.getOperand(1).getReg();
200  unsigned DstReg = MI.getOperand(0).getReg();
201  if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
202      !TargetRegisterInfo::isVirtualRegister(DstReg) ||
203      !MRI->hasOneNonDBGUse(SrcReg))
204    return false;
205
206  const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
207  const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
208  if (SRC != DRC)
209    return false;
210
211  MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
212  if (DefMI->isCopyLike())
213    return false;
214  LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
215  LLVM_DEBUG(dbgs() << "*** to: " << MI);
216  MRI->replaceRegWith(DstReg, SrcReg);
217  MI.eraseFromParent();
218
219  // Conservatively, clear any kill flags, since it's possible that they are no
220  // longer correct.
221  MRI->clearKillFlags(SrcReg);
222
223  ++NumCoalesces;
224  return true;
225}
226
227/// AllUsesDominatedByBlock - Return true if all uses of the specified register
228/// occur in blocks dominated by the specified block. If any use is in the
229/// definition block, then return false since it is never legal to move def
230/// after uses.
231bool
232MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
233                                        MachineBasicBlock *MBB,
234                                        MachineBasicBlock *DefMBB,
235                                        bool &BreakPHIEdge,
236                                        bool &LocalUse) const {
237  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
238         "Only makes sense for vregs");
239
240  // Ignore debug uses because debug info doesn't affect the code.
241  if (MRI->use_nodbg_empty(Reg))
242    return true;
243
244  // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
245  // into and they are all PHI nodes. In this case, machine-sink must break
246  // the critical edge first. e.g.
247  //
248  // %bb.1: derived from LLVM BB %bb4.preheader
249  //   Predecessors according to CFG: %bb.0
250  //     ...
251  //     %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags
252  //     ...
253  //     JE_4 <%bb.37>, implicit %eflags
254  //   Successors according to CFG: %bb.37 %bb.2
255  //
256  // %bb.2: derived from LLVM BB %bb.nph
257  //   Predecessors according to CFG: %bb.0 %bb.1
258  //     %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1
259  BreakPHIEdge = true;
260  for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
261    MachineInstr *UseInst = MO.getParent();
262    unsigned OpNo = &MO - &UseInst->getOperand(0);
263    MachineBasicBlock *UseBlock = UseInst->getParent();
264    if (!(UseBlock == MBB && UseInst->isPHI() &&
265          UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
266      BreakPHIEdge = false;
267      break;
268    }
269  }
270  if (BreakPHIEdge)
271    return true;
272
273  for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
274    // Determine the block of the use.
275    MachineInstr *UseInst = MO.getParent();
276    unsigned OpNo = &MO - &UseInst->getOperand(0);
277    MachineBasicBlock *UseBlock = UseInst->getParent();
278    if (UseInst->isPHI()) {
279      // PHI nodes use the operand in the predecessor block, not the block with
280      // the PHI.
281      UseBlock = UseInst->getOperand(OpNo+1).getMBB();
282    } else if (UseBlock == DefMBB) {
283      LocalUse = true;
284      return false;
285    }
286
287    // Check that it dominates.
288    if (!DT->dominates(MBB, UseBlock))
289      return false;
290  }
291
292  return true;
293}
294
295bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
296  if (skipFunction(MF.getFunction()))
297    return false;
298
299  LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
300
301  TII = MF.getSubtarget().getInstrInfo();
302  TRI = MF.getSubtarget().getRegisterInfo();
303  MRI = &MF.getRegInfo();
304  DT = &getAnalysis<MachineDominatorTree>();
305  PDT = &getAnalysis<MachinePostDominatorTree>();
306  LI = &getAnalysis<MachineLoopInfo>();
307  MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
308  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
309  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
310
311  bool EverMadeChange = false;
312
313  while (true) {
314    bool MadeChange = false;
315
316    // Process all basic blocks.
317    CEBCandidates.clear();
318    ToSplit.clear();
319    for (auto &MBB: MF)
320      MadeChange |= ProcessBlock(MBB);
321
322    // If we have anything we marked as toSplit, split it now.
323    for (auto &Pair : ToSplit) {
324      auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
325      if (NewSucc != nullptr) {
326        LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
327                          << printMBBReference(*Pair.first) << " -- "
328                          << printMBBReference(*NewSucc) << " -- "
329                          << printMBBReference(*Pair.second) << '\n');
330        MadeChange = true;
331        ++NumSplit;
332      } else
333        LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
334    }
335    // If this iteration over the code changed anything, keep iterating.
336    if (!MadeChange) break;
337    EverMadeChange = true;
338  }
339
340  // Now clear any kill flags for recorded registers.
341  for (auto I : RegsToClearKillFlags)
342    MRI->clearKillFlags(I);
343  RegsToClearKillFlags.clear();
344
345  return EverMadeChange;
346}
347
348bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
349  // Can't sink anything out of a block that has less than two successors.
350  if (MBB.succ_size() <= 1 || MBB.empty()) return false;
351
352  // Don't bother sinking code out of unreachable blocks. In addition to being
353  // unprofitable, it can also lead to infinite looping, because in an
354  // unreachable loop there may be nowhere to stop.
355  if (!DT->isReachableFromEntry(&MBB)) return false;
356
357  bool MadeChange = false;
358
359  // Cache all successors, sorted by frequency info and loop depth.
360  AllSuccsCache AllSuccessors;
361
362  // Walk the basic block bottom-up.  Remember if we saw a store.
363  MachineBasicBlock::iterator I = MBB.end();
364  --I;
365  bool ProcessedBegin, SawStore = false;
366  do {
367    MachineInstr &MI = *I;  // The instruction to sink.
368
369    // Predecrement I (if it's not begin) so that it isn't invalidated by
370    // sinking.
371    ProcessedBegin = I == MBB.begin();
372    if (!ProcessedBegin)
373      --I;
374
375    if (MI.isDebugInstr())
376      continue;
377
378    bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
379    if (Joined) {
380      MadeChange = true;
381      continue;
382    }
383
384    if (SinkInstruction(MI, SawStore, AllSuccessors)) {
385      ++NumSunk;
386      MadeChange = true;
387    }
388
389    // If we just processed the first instruction in the block, we're done.
390  } while (!ProcessedBegin);
391
392  return MadeChange;
393}
394
395bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
396                                                 MachineBasicBlock *From,
397                                                 MachineBasicBlock *To) {
398  // FIXME: Need much better heuristics.
399
400  // If the pass has already considered breaking this edge (during this pass
401  // through the function), then let's go ahead and break it. This means
402  // sinking multiple "cheap" instructions into the same block.
403  if (!CEBCandidates.insert(std::make_pair(From, To)).second)
404    return true;
405
406  if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
407    return true;
408
409  if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
410      BranchProbability(SplitEdgeProbabilityThreshold, 100))
411    return true;
412
413  // MI is cheap, we probably don't want to break the critical edge for it.
414  // However, if this would allow some definitions of its source operands
415  // to be sunk then it's probably worth it.
416  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
417    const MachineOperand &MO = MI.getOperand(i);
418    if (!MO.isReg() || !MO.isUse())
419      continue;
420    unsigned Reg = MO.getReg();
421    if (Reg == 0)
422      continue;
423
424    // We don't move live definitions of physical registers,
425    // so sinking their uses won't enable any opportunities.
426    if (TargetRegisterInfo::isPhysicalRegister(Reg))
427      continue;
428
429    // If this instruction is the only user of a virtual register,
430    // check if breaking the edge will enable sinking
431    // both this instruction and the defining instruction.
432    if (MRI->hasOneNonDBGUse(Reg)) {
433      // If the definition resides in same MBB,
434      // claim it's likely we can sink these together.
435      // If definition resides elsewhere, we aren't
436      // blocking it from being sunk so don't break the edge.
437      MachineInstr *DefMI = MRI->getVRegDef(Reg);
438      if (DefMI->getParent() == MI.getParent())
439        return true;
440    }
441  }
442
443  return false;
444}
445
446bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
447                                               MachineBasicBlock *FromBB,
448                                               MachineBasicBlock *ToBB,
449                                               bool BreakPHIEdge) {
450  if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
451    return false;
452
453  // Avoid breaking back edge. From == To means backedge for single BB loop.
454  if (!SplitEdges || FromBB == ToBB)
455    return false;
456
457  // Check for backedges of more "complex" loops.
458  if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
459      LI->isLoopHeader(ToBB))
460    return false;
461
462  // It's not always legal to break critical edges and sink the computation
463  // to the edge.
464  //
465  // %bb.1:
466  // v1024
467  // Beq %bb.3
468  // <fallthrough>
469  // %bb.2:
470  // ... no uses of v1024
471  // <fallthrough>
472  // %bb.3:
473  // ...
474  //       = v1024
475  //
476  // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
477  //
478  // %bb.1:
479  // ...
480  // Bne %bb.2
481  // %bb.4:
482  // v1024 =
483  // B %bb.3
484  // %bb.2:
485  // ... no uses of v1024
486  // <fallthrough>
487  // %bb.3:
488  // ...
489  //       = v1024
490  //
491  // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
492  // flow. We need to ensure the new basic block where the computation is
493  // sunk to dominates all the uses.
494  // It's only legal to break critical edge and sink the computation to the
495  // new block if all the predecessors of "To", except for "From", are
496  // not dominated by "From". Given SSA property, this means these
497  // predecessors are dominated by "To".
498  //
499  // There is no need to do this check if all the uses are PHI nodes. PHI
500  // sources are only defined on the specific predecessor edges.
501  if (!BreakPHIEdge) {
502    for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
503           E = ToBB->pred_end(); PI != E; ++PI) {
504      if (*PI == FromBB)
505        continue;
506      if (!DT->dominates(ToBB, *PI))
507        return false;
508    }
509  }
510
511  ToSplit.insert(std::make_pair(FromBB, ToBB));
512
513  return true;
514}
515
516/// isProfitableToSinkTo - Return true if it is profitable to sink MI.
517bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
518                                          MachineBasicBlock *MBB,
519                                          MachineBasicBlock *SuccToSinkTo,
520                                          AllSuccsCache &AllSuccessors) {
521  assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
522
523  if (MBB == SuccToSinkTo)
524    return false;
525
526  // It is profitable if SuccToSinkTo does not post dominate current block.
527  if (!PDT->dominates(SuccToSinkTo, MBB))
528    return true;
529
530  // It is profitable to sink an instruction from a deeper loop to a shallower
531  // loop, even if the latter post-dominates the former (PR21115).
532  if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
533    return true;
534
535  // Check if only use in post dominated block is PHI instruction.
536  bool NonPHIUse = false;
537  for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
538    MachineBasicBlock *UseBlock = UseInst.getParent();
539    if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
540      NonPHIUse = true;
541  }
542  if (!NonPHIUse)
543    return true;
544
545  // If SuccToSinkTo post dominates then also it may be profitable if MI
546  // can further profitably sinked into another block in next round.
547  bool BreakPHIEdge = false;
548  // FIXME - If finding successor is compile time expensive then cache results.
549  if (MachineBasicBlock *MBB2 =
550          FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
551    return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
552
553  // If SuccToSinkTo is final destination and it is a post dominator of current
554  // block then it is not profitable to sink MI into SuccToSinkTo block.
555  return false;
556}
557
558/// Get the sorted sequence of successors for this MachineBasicBlock, possibly
559/// computing it if it was not already cached.
560SmallVector<MachineBasicBlock *, 4> &
561MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
562                                       AllSuccsCache &AllSuccessors) const {
563  // Do we have the sorted successors in cache ?
564  auto Succs = AllSuccessors.find(MBB);
565  if (Succs != AllSuccessors.end())
566    return Succs->second;
567
568  SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
569                                               MBB->succ_end());
570
571  // Handle cases where sinking can happen but where the sink point isn't a
572  // successor. For example:
573  //
574  //   x = computation
575  //   if () {} else {}
576  //   use x
577  //
578  const std::vector<MachineDomTreeNode *> &Children =
579    DT->getNode(MBB)->getChildren();
580  for (const auto &DTChild : Children)
581    // DomTree children of MBB that have MBB as immediate dominator are added.
582    if (DTChild->getIDom()->getBlock() == MI.getParent() &&
583        // Skip MBBs already added to the AllSuccs vector above.
584        !MBB->isSuccessor(DTChild->getBlock()))
585      AllSuccs.push_back(DTChild->getBlock());
586
587  // Sort Successors according to their loop depth or block frequency info.
588  std::stable_sort(
589      AllSuccs.begin(), AllSuccs.end(),
590      [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
591        uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
592        uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
593        bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
594        return HasBlockFreq ? LHSFreq < RHSFreq
595                            : LI->getLoopDepth(L) < LI->getLoopDepth(R);
596      });
597
598  auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
599
600  return it.first->second;
601}
602
603/// FindSuccToSinkTo - Find a successor to sink this instruction to.
604MachineBasicBlock *
605MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
606                                 bool &BreakPHIEdge,
607                                 AllSuccsCache &AllSuccessors) {
608  assert (MBB && "Invalid MachineBasicBlock!");
609
610  // Loop over all the operands of the specified instruction.  If there is
611  // anything we can't handle, bail out.
612
613  // SuccToSinkTo - This is the successor to sink this instruction to, once we
614  // decide.
615  MachineBasicBlock *SuccToSinkTo = nullptr;
616  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
617    const MachineOperand &MO = MI.getOperand(i);
618    if (!MO.isReg()) continue;  // Ignore non-register operands.
619
620    unsigned Reg = MO.getReg();
621    if (Reg == 0) continue;
622
623    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
624      if (MO.isUse()) {
625        // If the physreg has no defs anywhere, it's just an ambient register
626        // and we can freely move its uses. Alternatively, if it's allocatable,
627        // it could get allocated to something with a def during allocation.
628        if (!MRI->isConstantPhysReg(Reg))
629          return nullptr;
630      } else if (!MO.isDead()) {
631        // A def that isn't dead. We can't move it.
632        return nullptr;
633      }
634    } else {
635      // Virtual register uses are always safe to sink.
636      if (MO.isUse()) continue;
637
638      // If it's not safe to move defs of the register class, then abort.
639      if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
640        return nullptr;
641
642      // Virtual register defs can only be sunk if all their uses are in blocks
643      // dominated by one of the successors.
644      if (SuccToSinkTo) {
645        // If a previous operand picked a block to sink to, then this operand
646        // must be sinkable to the same block.
647        bool LocalUse = false;
648        if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
649                                     BreakPHIEdge, LocalUse))
650          return nullptr;
651
652        continue;
653      }
654
655      // Otherwise, we should look at all the successors and decide which one
656      // we should sink to. If we have reliable block frequency information
657      // (frequency != 0) available, give successors with smaller frequencies
658      // higher priority, otherwise prioritize smaller loop depths.
659      for (MachineBasicBlock *SuccBlock :
660           GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
661        bool LocalUse = false;
662        if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
663                                    BreakPHIEdge, LocalUse)) {
664          SuccToSinkTo = SuccBlock;
665          break;
666        }
667        if (LocalUse)
668          // Def is used locally, it's never safe to move this def.
669          return nullptr;
670      }
671
672      // If we couldn't find a block to sink to, ignore this instruction.
673      if (!SuccToSinkTo)
674        return nullptr;
675      if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
676        return nullptr;
677    }
678  }
679
680  // It is not possible to sink an instruction into its own block.  This can
681  // happen with loops.
682  if (MBB == SuccToSinkTo)
683    return nullptr;
684
685  // It's not safe to sink instructions to EH landing pad. Control flow into
686  // landing pad is implicitly defined.
687  if (SuccToSinkTo && SuccToSinkTo->isEHPad())
688    return nullptr;
689
690  return SuccToSinkTo;
691}
692
693/// Return true if MI is likely to be usable as a memory operation by the
694/// implicit null check optimization.
695///
696/// This is a "best effort" heuristic, and should not be relied upon for
697/// correctness.  This returning true does not guarantee that the implicit null
698/// check optimization is legal over MI, and this returning false does not
699/// guarantee MI cannot possibly be used to do a null check.
700static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
701                                             const TargetInstrInfo *TII,
702                                             const TargetRegisterInfo *TRI) {
703  using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
704
705  auto *MBB = MI.getParent();
706  if (MBB->pred_size() != 1)
707    return false;
708
709  auto *PredMBB = *MBB->pred_begin();
710  auto *PredBB = PredMBB->getBasicBlock();
711
712  // Frontends that don't use implicit null checks have no reason to emit
713  // branches with make.implicit metadata, and this function should always
714  // return false for them.
715  if (!PredBB ||
716      !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
717    return false;
718
719  MachineOperand *BaseOp;
720  int64_t Offset;
721  if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
722    return false;
723
724  if (!BaseOp->isReg())
725    return false;
726
727  if (!(MI.mayLoad() && !MI.isPredicable()))
728    return false;
729
730  MachineBranchPredicate MBP;
731  if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
732    return false;
733
734  return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
735         (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
736          MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
737         MBP.LHS.getReg() == BaseOp->getReg();
738}
739
740/// Sink an instruction and its associated debug instructions. If the debug
741/// instructions to be sunk are already known, they can be provided in DbgVals.
742static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
743                        MachineBasicBlock::iterator InsertPos,
744                        SmallVectorImpl<MachineInstr *> *DbgVals = nullptr) {
745  // If debug values are provided use those, otherwise call collectDebugValues.
746  SmallVector<MachineInstr *, 2> DbgValuesToSink;
747  if (DbgVals)
748    DbgValuesToSink.insert(DbgValuesToSink.begin(),
749                           DbgVals->begin(), DbgVals->end());
750  else
751    MI.collectDebugValues(DbgValuesToSink);
752
753  // If we cannot find a location to use (merge with), then we erase the debug
754  // location to prevent debug-info driven tools from potentially reporting
755  // wrong location information.
756  if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
757    MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
758                                                 InsertPos->getDebugLoc()));
759  else
760    MI.setDebugLoc(DebugLoc());
761
762  // Move the instruction.
763  MachineBasicBlock *ParentBlock = MI.getParent();
764  SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
765                      ++MachineBasicBlock::iterator(MI));
766
767  // Move previously adjacent debug value instructions to the insert position.
768  for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
769                                                 DBE = DbgValuesToSink.end();
770       DBI != DBE; ++DBI) {
771    MachineInstr *DbgMI = *DBI;
772    SuccToSinkTo.splice(InsertPos, ParentBlock, DbgMI,
773                        ++MachineBasicBlock::iterator(DbgMI));
774  }
775}
776
777/// SinkInstruction - Determine whether it is safe to sink the specified machine
778/// instruction out of its current block into a successor.
779bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
780                                     AllSuccsCache &AllSuccessors) {
781  // Don't sink instructions that the target prefers not to sink.
782  if (!TII->shouldSink(MI))
783    return false;
784
785  // Check if it's safe to move the instruction.
786  if (!MI.isSafeToMove(AA, SawStore))
787    return false;
788
789  // Convergent operations may not be made control-dependent on additional
790  // values.
791  if (MI.isConvergent())
792    return false;
793
794  // Don't break implicit null checks.  This is a performance heuristic, and not
795  // required for correctness.
796  if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
797    return false;
798
799  // FIXME: This should include support for sinking instructions within the
800  // block they are currently in to shorten the live ranges.  We often get
801  // instructions sunk into the top of a large block, but it would be better to
802  // also sink them down before their first use in the block.  This xform has to
803  // be careful not to *increase* register pressure though, e.g. sinking
804  // "x = y + z" down if it kills y and z would increase the live ranges of y
805  // and z and only shrink the live range of x.
806
807  bool BreakPHIEdge = false;
808  MachineBasicBlock *ParentBlock = MI.getParent();
809  MachineBasicBlock *SuccToSinkTo =
810      FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
811
812  // If there are no outputs, it must have side-effects.
813  if (!SuccToSinkTo)
814    return false;
815
816  // If the instruction to move defines a dead physical register which is live
817  // when leaving the basic block, don't move it because it could turn into a
818  // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
819  for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
820    const MachineOperand &MO = MI.getOperand(I);
821    if (!MO.isReg()) continue;
822    unsigned Reg = MO.getReg();
823    if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
824    if (SuccToSinkTo->isLiveIn(Reg))
825      return false;
826  }
827
828  LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
829
830  // If the block has multiple predecessors, this is a critical edge.
831  // Decide if we can sink along it or need to break the edge.
832  if (SuccToSinkTo->pred_size() > 1) {
833    // We cannot sink a load across a critical edge - there may be stores in
834    // other code paths.
835    bool TryBreak = false;
836    bool store = true;
837    if (!MI.isSafeToMove(AA, store)) {
838      LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
839      TryBreak = true;
840    }
841
842    // We don't want to sink across a critical edge if we don't dominate the
843    // successor. We could be introducing calculations to new code paths.
844    if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
845      LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
846      TryBreak = true;
847    }
848
849    // Don't sink instructions into a loop.
850    if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
851      LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
852      TryBreak = true;
853    }
854
855    // Otherwise we are OK with sinking along a critical edge.
856    if (!TryBreak)
857      LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
858    else {
859      // Mark this edge as to be split.
860      // If the edge can actually be split, the next iteration of the main loop
861      // will sink MI in the newly created block.
862      bool Status =
863        PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
864      if (!Status)
865        LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
866                             "break critical edge\n");
867      // The instruction will not be sunk this time.
868      return false;
869    }
870  }
871
872  if (BreakPHIEdge) {
873    // BreakPHIEdge is true if all the uses are in the successor MBB being
874    // sunken into and they are all PHI nodes. In this case, machine-sink must
875    // break the critical edge first.
876    bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
877                                            SuccToSinkTo, BreakPHIEdge);
878    if (!Status)
879      LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
880                           "break critical edge\n");
881    // The instruction will not be sunk this time.
882    return false;
883  }
884
885  // Determine where to insert into. Skip phi nodes.
886  MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
887  while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
888    ++InsertPos;
889
890  performSink(MI, *SuccToSinkTo, InsertPos);
891
892  // Conservatively, clear any kill flags, since it's possible that they are no
893  // longer correct.
894  // Note that we have to clear the kill flags for any register this instruction
895  // uses as we may sink over another instruction which currently kills the
896  // used registers.
897  for (MachineOperand &MO : MI.operands()) {
898    if (MO.isReg() && MO.isUse())
899      RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
900  }
901
902  return true;
903}
904
905//===----------------------------------------------------------------------===//
906// This pass is not intended to be a replacement or a complete alternative
907// for the pre-ra machine sink pass. It is only designed to sink COPY
908// instructions which should be handled after RA.
909//
910// This pass sinks COPY instructions into a successor block, if the COPY is not
911// used in the current block and the COPY is live-in to a single successor
912// (i.e., doesn't require the COPY to be duplicated).  This avoids executing the
913// copy on paths where their results aren't needed.  This also exposes
914// additional opportunites for dead copy elimination and shrink wrapping.
915//
916// These copies were either not handled by or are inserted after the MachineSink
917// pass. As an example of the former case, the MachineSink pass cannot sink
918// COPY instructions with allocatable source registers; for AArch64 these type
919// of copy instructions are frequently used to move function parameters (PhyReg)
920// into virtual registers in the entry block.
921//
922// For the machine IR below, this pass will sink %w19 in the entry into its
923// successor (%bb.1) because %w19 is only live-in in %bb.1.
924// %bb.0:
925//   %wzr = SUBSWri %w1, 1
926//   %w19 = COPY %w0
927//   Bcc 11, %bb.2
928// %bb.1:
929//   Live Ins: %w19
930//   BL @fun
931//   %w0 = ADDWrr %w0, %w19
932//   RET %w0
933// %bb.2:
934//   %w0 = COPY %wzr
935//   RET %w0
936// As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
937// able to see %bb.0 as a candidate.
938//===----------------------------------------------------------------------===//
939namespace {
940
941class PostRAMachineSinking : public MachineFunctionPass {
942public:
943  bool runOnMachineFunction(MachineFunction &MF) override;
944
945  static char ID;
946  PostRAMachineSinking() : MachineFunctionPass(ID) {}
947  StringRef getPassName() const override { return "PostRA Machine Sink"; }
948
949  void getAnalysisUsage(AnalysisUsage &AU) const override {
950    AU.setPreservesCFG();
951    MachineFunctionPass::getAnalysisUsage(AU);
952  }
953
954  MachineFunctionProperties getRequiredProperties() const override {
955    return MachineFunctionProperties().set(
956        MachineFunctionProperties::Property::NoVRegs);
957  }
958
959private:
960  /// Track which register units have been modified and used.
961  LiveRegUnits ModifiedRegUnits, UsedRegUnits;
962
963  /// Track DBG_VALUEs of (unmodified) register units.
964  DenseMap<unsigned, TinyPtrVector<MachineInstr*>> SeenDbgInstrs;
965
966  /// Sink Copy instructions unused in the same block close to their uses in
967  /// successors.
968  bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
969                     const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
970};
971} // namespace
972
973char PostRAMachineSinking::ID = 0;
974char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
975
976INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
977                "PostRA Machine Sink", false, false)
978
979static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
980                                  const TargetRegisterInfo *TRI) {
981  LiveRegUnits LiveInRegUnits(*TRI);
982  LiveInRegUnits.addLiveIns(MBB);
983  return !LiveInRegUnits.available(Reg);
984}
985
986static MachineBasicBlock *
987getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
988                      const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
989                      unsigned Reg, const TargetRegisterInfo *TRI) {
990  // Try to find a single sinkable successor in which Reg is live-in.
991  MachineBasicBlock *BB = nullptr;
992  for (auto *SI : SinkableBBs) {
993    if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
994      // If BB is set here, Reg is live-in to at least two sinkable successors,
995      // so quit.
996      if (BB)
997        return nullptr;
998      BB = SI;
999    }
1000  }
1001  // Reg is not live-in to any sinkable successors.
1002  if (!BB)
1003    return nullptr;
1004
1005  // Check if any register aliased with Reg is live-in in other successors.
1006  for (auto *SI : CurBB.successors()) {
1007    if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
1008      return nullptr;
1009  }
1010  return BB;
1011}
1012
1013static MachineBasicBlock *
1014getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1015                      const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1016                      ArrayRef<unsigned> DefedRegsInCopy,
1017                      const TargetRegisterInfo *TRI) {
1018  MachineBasicBlock *SingleBB = nullptr;
1019  for (auto DefReg : DefedRegsInCopy) {
1020    MachineBasicBlock *BB =
1021        getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1022    if (!BB || (SingleBB && SingleBB != BB))
1023      return nullptr;
1024    SingleBB = BB;
1025  }
1026  return SingleBB;
1027}
1028
1029static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1030                           SmallVectorImpl<unsigned> &UsedOpsInCopy,
1031                           LiveRegUnits &UsedRegUnits,
1032                           const TargetRegisterInfo *TRI) {
1033  for (auto U : UsedOpsInCopy) {
1034    MachineOperand &MO = MI->getOperand(U);
1035    unsigned SrcReg = MO.getReg();
1036    if (!UsedRegUnits.available(SrcReg)) {
1037      MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1038      for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1039        if (UI.killsRegister(SrcReg, TRI)) {
1040          UI.clearRegisterKills(SrcReg, TRI);
1041          MO.setIsKill(true);
1042          break;
1043        }
1044      }
1045    }
1046  }
1047}
1048
1049static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1050                         SmallVectorImpl<unsigned> &UsedOpsInCopy,
1051                         SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1052  MachineFunction &MF = *SuccBB->getParent();
1053  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1054  for (unsigned DefReg : DefedRegsInCopy)
1055    for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
1056      SuccBB->removeLiveIn(*S);
1057  for (auto U : UsedOpsInCopy) {
1058    unsigned Reg = MI->getOperand(U).getReg();
1059    if (!SuccBB->isLiveIn(Reg))
1060      SuccBB->addLiveIn(Reg);
1061  }
1062}
1063
1064static bool hasRegisterDependency(MachineInstr *MI,
1065                                  SmallVectorImpl<unsigned> &UsedOpsInCopy,
1066                                  SmallVectorImpl<unsigned> &DefedRegsInCopy,
1067                                  LiveRegUnits &ModifiedRegUnits,
1068                                  LiveRegUnits &UsedRegUnits) {
1069  bool HasRegDependency = false;
1070  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1071    MachineOperand &MO = MI->getOperand(i);
1072    if (!MO.isReg())
1073      continue;
1074    unsigned Reg = MO.getReg();
1075    if (!Reg)
1076      continue;
1077    if (MO.isDef()) {
1078      if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1079        HasRegDependency = true;
1080        break;
1081      }
1082      DefedRegsInCopy.push_back(Reg);
1083
1084      // FIXME: instead of isUse(), readsReg() would be a better fix here,
1085      // For example, we can ignore modifications in reg with undef. However,
1086      // it's not perfectly clear if skipping the internal read is safe in all
1087      // other targets.
1088    } else if (MO.isUse()) {
1089      if (!ModifiedRegUnits.available(Reg)) {
1090        HasRegDependency = true;
1091        break;
1092      }
1093      UsedOpsInCopy.push_back(i);
1094    }
1095  }
1096  return HasRegDependency;
1097}
1098
1099bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1100                                         MachineFunction &MF,
1101                                         const TargetRegisterInfo *TRI,
1102                                         const TargetInstrInfo *TII) {
1103  SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1104  // FIXME: For now, we sink only to a successor which has a single predecessor
1105  // so that we can directly sink COPY instructions to the successor without
1106  // adding any new block or branch instruction.
1107  for (MachineBasicBlock *SI : CurBB.successors())
1108    if (!SI->livein_empty() && SI->pred_size() == 1)
1109      SinkableBBs.insert(SI);
1110
1111  if (SinkableBBs.empty())
1112    return false;
1113
1114  bool Changed = false;
1115
1116  // Track which registers have been modified and used between the end of the
1117  // block and the current instruction.
1118  ModifiedRegUnits.clear();
1119  UsedRegUnits.clear();
1120  SeenDbgInstrs.clear();
1121
1122  for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
1123    MachineInstr *MI = &*I;
1124    ++I;
1125
1126    // Track the operand index for use in Copy.
1127    SmallVector<unsigned, 2> UsedOpsInCopy;
1128    // Track the register number defed in Copy.
1129    SmallVector<unsigned, 2> DefedRegsInCopy;
1130
1131    // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1132    // for DBG_VALUEs later, record them when they're encountered.
1133    if (MI->isDebugValue()) {
1134      auto &MO = MI->getOperand(0);
1135      if (MO.isReg() && TRI->isPhysicalRegister(MO.getReg())) {
1136        // Bail if we can already tell the sink would be rejected, rather
1137        // than needlessly accumulating lots of DBG_VALUEs.
1138        if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1139                                  ModifiedRegUnits, UsedRegUnits))
1140          continue;
1141
1142        // Record debug use of this register.
1143        SeenDbgInstrs[MO.getReg()].push_back(MI);
1144      }
1145      continue;
1146    }
1147
1148    if (MI->isDebugInstr())
1149      continue;
1150
1151    // Do not move any instruction across function call.
1152    if (MI->isCall())
1153      return false;
1154
1155    if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
1156      LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1157                                        TRI);
1158      continue;
1159    }
1160
1161    // Don't sink the COPY if it would violate a register dependency.
1162    if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1163                              ModifiedRegUnits, UsedRegUnits)) {
1164      LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1165                                        TRI);
1166      continue;
1167    }
1168    assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
1169           "Unexpect SrcReg or DefReg");
1170    MachineBasicBlock *SuccBB =
1171        getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
1172    // Don't sink if we cannot find a single sinkable successor in which Reg
1173    // is live-in.
1174    if (!SuccBB) {
1175      LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1176                                        TRI);
1177      continue;
1178    }
1179    assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
1180           "Unexpected predecessor");
1181
1182    // Collect DBG_VALUEs that must sink with this copy.
1183    SmallVector<MachineInstr *, 4> DbgValsToSink;
1184    for (auto &MO : MI->operands()) {
1185      if (!MO.isReg() || !MO.isDef())
1186        continue;
1187      unsigned reg = MO.getReg();
1188      for (auto *MI : SeenDbgInstrs.lookup(reg))
1189        DbgValsToSink.push_back(MI);
1190    }
1191
1192    // Clear the kill flag if SrcReg is killed between MI and the end of the
1193    // block.
1194    clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
1195    MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
1196    performSink(*MI, *SuccBB, InsertPos, &DbgValsToSink);
1197    updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
1198
1199    Changed = true;
1200    ++NumPostRACopySink;
1201  }
1202  return Changed;
1203}
1204
1205bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1206  bool Changed = false;
1207  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1208  const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1209
1210  ModifiedRegUnits.init(*TRI);
1211  UsedRegUnits.init(*TRI);
1212  for (auto &BB : MF)
1213    Changed |= tryToSinkCopy(BB, MF, TRI, TII);
1214
1215  return Changed;
1216}
1217