MachineSink.cpp revision 309124
1//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass moves instructions into successor blocks when possible, so that
11// they aren't executed on paths where their results aren't needed.
12//
13// This pass is not intended to be a replacement or a complete alternative
14// for an LLVM-IR-level sinking pass. It is only designed to sink simple
15// constructs that are not exposed before lowering and instruction selection.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/CodeGen/Passes.h"
20#include "llvm/ADT/SetVector.h"
21#include "llvm/ADT/SmallSet.h"
22#include "llvm/ADT/SparseBitVector.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26#include "llvm/CodeGen/MachineDominators.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachinePostDominators.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Target/TargetInstrInfo.h"
35#include "llvm/Target/TargetRegisterInfo.h"
36#include "llvm/Target/TargetSubtargetInfo.h"
37using namespace llvm;
38
39#define DEBUG_TYPE "machine-sink"
40
41static cl::opt<bool>
42SplitEdges("machine-sink-split",
43           cl::desc("Split critical edges during machine sinking"),
44           cl::init(true), cl::Hidden);
45
46static cl::opt<bool>
47UseBlockFreqInfo("machine-sink-bfi",
48           cl::desc("Use block frequency info to find successors to sink"),
49           cl::init(true), cl::Hidden);
50
51
52STATISTIC(NumSunk,      "Number of machine instructions sunk");
53STATISTIC(NumSplit,     "Number of critical edges split");
54STATISTIC(NumCoalesces, "Number of copies coalesced");
55
56namespace {
57  class MachineSinking : public MachineFunctionPass {
58    const TargetInstrInfo *TII;
59    const TargetRegisterInfo *TRI;
60    MachineRegisterInfo  *MRI;     // Machine register information
61    MachineDominatorTree *DT;      // Machine dominator tree
62    MachinePostDominatorTree *PDT; // Machine post dominator tree
63    MachineLoopInfo *LI;
64    const MachineBlockFrequencyInfo *MBFI;
65    AliasAnalysis *AA;
66
67    // Remember which edges have been considered for breaking.
68    SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
69    CEBCandidates;
70    // Remember which edges we are about to split.
71    // This is different from CEBCandidates since those edges
72    // will be split.
73    SetVector<std::pair<MachineBasicBlock*,MachineBasicBlock*> > ToSplit;
74
75    SparseBitVector<> RegsToClearKillFlags;
76
77    typedef std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>
78        AllSuccsCache;
79
80  public:
81    static char ID; // Pass identification
82    MachineSinking() : MachineFunctionPass(ID) {
83      initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
84    }
85
86    bool runOnMachineFunction(MachineFunction &MF) override;
87
88    void getAnalysisUsage(AnalysisUsage &AU) const override {
89      AU.setPreservesCFG();
90      MachineFunctionPass::getAnalysisUsage(AU);
91      AU.addRequired<AAResultsWrapperPass>();
92      AU.addRequired<MachineDominatorTree>();
93      AU.addRequired<MachinePostDominatorTree>();
94      AU.addRequired<MachineLoopInfo>();
95      AU.addPreserved<MachineDominatorTree>();
96      AU.addPreserved<MachinePostDominatorTree>();
97      AU.addPreserved<MachineLoopInfo>();
98      if (UseBlockFreqInfo)
99        AU.addRequired<MachineBlockFrequencyInfo>();
100    }
101
102    void releaseMemory() override {
103      CEBCandidates.clear();
104    }
105
106  private:
107    bool ProcessBlock(MachineBasicBlock &MBB);
108    bool isWorthBreakingCriticalEdge(MachineInstr &MI,
109                                     MachineBasicBlock *From,
110                                     MachineBasicBlock *To);
111    /// \brief Postpone the splitting of the given critical
112    /// edge (\p From, \p To).
113    ///
114    /// We do not split the edges on the fly. Indeed, this invalidates
115    /// the dominance information and thus triggers a lot of updates
116    /// of that information underneath.
117    /// Instead, we postpone all the splits after each iteration of
118    /// the main loop. That way, the information is at least valid
119    /// for the lifetime of an iteration.
120    ///
121    /// \return True if the edge is marked as toSplit, false otherwise.
122    /// False can be returned if, for instance, this is not profitable.
123    bool PostponeSplitCriticalEdge(MachineInstr &MI,
124                                   MachineBasicBlock *From,
125                                   MachineBasicBlock *To,
126                                   bool BreakPHIEdge);
127    bool SinkInstruction(MachineInstr &MI, bool &SawStore,
128                         AllSuccsCache &AllSuccessors);
129    bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
130                                 MachineBasicBlock *DefMBB,
131                                 bool &BreakPHIEdge, bool &LocalUse) const;
132    MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
133               bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
134    bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
135                              MachineBasicBlock *MBB,
136                              MachineBasicBlock *SuccToSinkTo,
137                              AllSuccsCache &AllSuccessors);
138
139    bool PerformTrivialForwardCoalescing(MachineInstr &MI,
140                                         MachineBasicBlock *MBB);
141
142    SmallVector<MachineBasicBlock *, 4> &
143    GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
144                           AllSuccsCache &AllSuccessors) const;
145  };
146} // end anonymous namespace
147
148char MachineSinking::ID = 0;
149char &llvm::MachineSinkingID = MachineSinking::ID;
150INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink",
151                "Machine code sinking", false, false)
152INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
153INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
154INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
155INITIALIZE_PASS_END(MachineSinking, "machine-sink",
156                "Machine code sinking", false, false)
157
158bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
159                                                     MachineBasicBlock *MBB) {
160  if (!MI.isCopy())
161    return false;
162
163  unsigned SrcReg = MI.getOperand(1).getReg();
164  unsigned DstReg = MI.getOperand(0).getReg();
165  if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
166      !TargetRegisterInfo::isVirtualRegister(DstReg) ||
167      !MRI->hasOneNonDBGUse(SrcReg))
168    return false;
169
170  const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
171  const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
172  if (SRC != DRC)
173    return false;
174
175  MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
176  if (DefMI->isCopyLike())
177    return false;
178  DEBUG(dbgs() << "Coalescing: " << *DefMI);
179  DEBUG(dbgs() << "*** to: " << MI);
180  MRI->replaceRegWith(DstReg, SrcReg);
181  MI.eraseFromParent();
182
183  // Conservatively, clear any kill flags, since it's possible that they are no
184  // longer correct.
185  MRI->clearKillFlags(SrcReg);
186
187  ++NumCoalesces;
188  return true;
189}
190
191/// AllUsesDominatedByBlock - Return true if all uses of the specified register
192/// occur in blocks dominated by the specified block. If any use is in the
193/// definition block, then return false since it is never legal to move def
194/// after uses.
195bool
196MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
197                                        MachineBasicBlock *MBB,
198                                        MachineBasicBlock *DefMBB,
199                                        bool &BreakPHIEdge,
200                                        bool &LocalUse) const {
201  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
202         "Only makes sense for vregs");
203
204  // Ignore debug uses because debug info doesn't affect the code.
205  if (MRI->use_nodbg_empty(Reg))
206    return true;
207
208  // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
209  // into and they are all PHI nodes. In this case, machine-sink must break
210  // the critical edge first. e.g.
211  //
212  // BB#1: derived from LLVM BB %bb4.preheader
213  //   Predecessors according to CFG: BB#0
214  //     ...
215  //     %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
216  //     ...
217  //     JE_4 <BB#37>, %EFLAGS<imp-use>
218  //   Successors according to CFG: BB#37 BB#2
219  //
220  // BB#2: derived from LLVM BB %bb.nph
221  //   Predecessors according to CFG: BB#0 BB#1
222  //     %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
223  BreakPHIEdge = true;
224  for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
225    MachineInstr *UseInst = MO.getParent();
226    unsigned OpNo = &MO - &UseInst->getOperand(0);
227    MachineBasicBlock *UseBlock = UseInst->getParent();
228    if (!(UseBlock == MBB && UseInst->isPHI() &&
229          UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
230      BreakPHIEdge = false;
231      break;
232    }
233  }
234  if (BreakPHIEdge)
235    return true;
236
237  for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
238    // Determine the block of the use.
239    MachineInstr *UseInst = MO.getParent();
240    unsigned OpNo = &MO - &UseInst->getOperand(0);
241    MachineBasicBlock *UseBlock = UseInst->getParent();
242    if (UseInst->isPHI()) {
243      // PHI nodes use the operand in the predecessor block, not the block with
244      // the PHI.
245      UseBlock = UseInst->getOperand(OpNo+1).getMBB();
246    } else if (UseBlock == DefMBB) {
247      LocalUse = true;
248      return false;
249    }
250
251    // Check that it dominates.
252    if (!DT->dominates(MBB, UseBlock))
253      return false;
254  }
255
256  return true;
257}
258
259bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
260  if (skipFunction(*MF.getFunction()))
261    return false;
262
263  DEBUG(dbgs() << "******** Machine Sinking ********\n");
264
265  TII = MF.getSubtarget().getInstrInfo();
266  TRI = MF.getSubtarget().getRegisterInfo();
267  MRI = &MF.getRegInfo();
268  DT = &getAnalysis<MachineDominatorTree>();
269  PDT = &getAnalysis<MachinePostDominatorTree>();
270  LI = &getAnalysis<MachineLoopInfo>();
271  MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
272  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
273
274  bool EverMadeChange = false;
275
276  while (1) {
277    bool MadeChange = false;
278
279    // Process all basic blocks.
280    CEBCandidates.clear();
281    ToSplit.clear();
282    for (auto &MBB: MF)
283      MadeChange |= ProcessBlock(MBB);
284
285    // If we have anything we marked as toSplit, split it now.
286    for (auto &Pair : ToSplit) {
287      auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
288      if (NewSucc != nullptr) {
289        DEBUG(dbgs() << " *** Splitting critical edge:"
290              " BB#" << Pair.first->getNumber()
291              << " -- BB#" << NewSucc->getNumber()
292              << " -- BB#" << Pair.second->getNumber() << '\n');
293        MadeChange = true;
294        ++NumSplit;
295      } else
296        DEBUG(dbgs() << " *** Not legal to break critical edge\n");
297    }
298    // If this iteration over the code changed anything, keep iterating.
299    if (!MadeChange) break;
300    EverMadeChange = true;
301  }
302
303  // Now clear any kill flags for recorded registers.
304  for (auto I : RegsToClearKillFlags)
305    MRI->clearKillFlags(I);
306  RegsToClearKillFlags.clear();
307
308  return EverMadeChange;
309}
310
311bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
312  // Can't sink anything out of a block that has less than two successors.
313  if (MBB.succ_size() <= 1 || MBB.empty()) return false;
314
315  // Don't bother sinking code out of unreachable blocks. In addition to being
316  // unprofitable, it can also lead to infinite looping, because in an
317  // unreachable loop there may be nowhere to stop.
318  if (!DT->isReachableFromEntry(&MBB)) return false;
319
320  bool MadeChange = false;
321
322  // Cache all successors, sorted by frequency info and loop depth.
323  AllSuccsCache AllSuccessors;
324
325  // Walk the basic block bottom-up.  Remember if we saw a store.
326  MachineBasicBlock::iterator I = MBB.end();
327  --I;
328  bool ProcessedBegin, SawStore = false;
329  do {
330    MachineInstr &MI = *I;  // The instruction to sink.
331
332    // Predecrement I (if it's not begin) so that it isn't invalidated by
333    // sinking.
334    ProcessedBegin = I == MBB.begin();
335    if (!ProcessedBegin)
336      --I;
337
338    if (MI.isDebugValue())
339      continue;
340
341    bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
342    if (Joined) {
343      MadeChange = true;
344      continue;
345    }
346
347    if (SinkInstruction(MI, SawStore, AllSuccessors)) {
348      ++NumSunk;
349      MadeChange = true;
350    }
351
352    // If we just processed the first instruction in the block, we're done.
353  } while (!ProcessedBegin);
354
355  return MadeChange;
356}
357
358bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
359                                                 MachineBasicBlock *From,
360                                                 MachineBasicBlock *To) {
361  // FIXME: Need much better heuristics.
362
363  // If the pass has already considered breaking this edge (during this pass
364  // through the function), then let's go ahead and break it. This means
365  // sinking multiple "cheap" instructions into the same block.
366  if (!CEBCandidates.insert(std::make_pair(From, To)).second)
367    return true;
368
369  if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
370    return true;
371
372  // MI is cheap, we probably don't want to break the critical edge for it.
373  // However, if this would allow some definitions of its source operands
374  // to be sunk then it's probably worth it.
375  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
376    const MachineOperand &MO = MI.getOperand(i);
377    if (!MO.isReg() || !MO.isUse())
378      continue;
379    unsigned Reg = MO.getReg();
380    if (Reg == 0)
381      continue;
382
383    // We don't move live definitions of physical registers,
384    // so sinking their uses won't enable any opportunities.
385    if (TargetRegisterInfo::isPhysicalRegister(Reg))
386      continue;
387
388    // If this instruction is the only user of a virtual register,
389    // check if breaking the edge will enable sinking
390    // both this instruction and the defining instruction.
391    if (MRI->hasOneNonDBGUse(Reg)) {
392      // If the definition resides in same MBB,
393      // claim it's likely we can sink these together.
394      // If definition resides elsewhere, we aren't
395      // blocking it from being sunk so don't break the edge.
396      MachineInstr *DefMI = MRI->getVRegDef(Reg);
397      if (DefMI->getParent() == MI.getParent())
398        return true;
399    }
400  }
401
402  return false;
403}
404
405bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
406                                               MachineBasicBlock *FromBB,
407                                               MachineBasicBlock *ToBB,
408                                               bool BreakPHIEdge) {
409  if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
410    return false;
411
412  // Avoid breaking back edge. From == To means backedge for single BB loop.
413  if (!SplitEdges || FromBB == ToBB)
414    return false;
415
416  // Check for backedges of more "complex" loops.
417  if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
418      LI->isLoopHeader(ToBB))
419    return false;
420
421  // It's not always legal to break critical edges and sink the computation
422  // to the edge.
423  //
424  // BB#1:
425  // v1024
426  // Beq BB#3
427  // <fallthrough>
428  // BB#2:
429  // ... no uses of v1024
430  // <fallthrough>
431  // BB#3:
432  // ...
433  //       = v1024
434  //
435  // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
436  //
437  // BB#1:
438  // ...
439  // Bne BB#2
440  // BB#4:
441  // v1024 =
442  // B BB#3
443  // BB#2:
444  // ... no uses of v1024
445  // <fallthrough>
446  // BB#3:
447  // ...
448  //       = v1024
449  //
450  // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
451  // flow. We need to ensure the new basic block where the computation is
452  // sunk to dominates all the uses.
453  // It's only legal to break critical edge and sink the computation to the
454  // new block if all the predecessors of "To", except for "From", are
455  // not dominated by "From". Given SSA property, this means these
456  // predecessors are dominated by "To".
457  //
458  // There is no need to do this check if all the uses are PHI nodes. PHI
459  // sources are only defined on the specific predecessor edges.
460  if (!BreakPHIEdge) {
461    for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
462           E = ToBB->pred_end(); PI != E; ++PI) {
463      if (*PI == FromBB)
464        continue;
465      if (!DT->dominates(ToBB, *PI))
466        return false;
467    }
468  }
469
470  ToSplit.insert(std::make_pair(FromBB, ToBB));
471
472  return true;
473}
474
475/// collectDebgValues - Scan instructions following MI and collect any
476/// matching DBG_VALUEs.
477static void collectDebugValues(MachineInstr &MI,
478                               SmallVectorImpl<MachineInstr *> &DbgValues) {
479  DbgValues.clear();
480  if (!MI.getOperand(0).isReg())
481    return;
482
483  MachineBasicBlock::iterator DI = MI; ++DI;
484  for (MachineBasicBlock::iterator DE = MI.getParent()->end();
485       DI != DE; ++DI) {
486    if (!DI->isDebugValue())
487      return;
488    if (DI->getOperand(0).isReg() &&
489        DI->getOperand(0).getReg() == MI.getOperand(0).getReg())
490      DbgValues.push_back(&*DI);
491  }
492}
493
494/// isProfitableToSinkTo - Return true if it is profitable to sink MI.
495bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
496                                          MachineBasicBlock *MBB,
497                                          MachineBasicBlock *SuccToSinkTo,
498                                          AllSuccsCache &AllSuccessors) {
499  assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
500
501  if (MBB == SuccToSinkTo)
502    return false;
503
504  // It is profitable if SuccToSinkTo does not post dominate current block.
505  if (!PDT->dominates(SuccToSinkTo, MBB))
506    return true;
507
508  // It is profitable to sink an instruction from a deeper loop to a shallower
509  // loop, even if the latter post-dominates the former (PR21115).
510  if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
511    return true;
512
513  // Check if only use in post dominated block is PHI instruction.
514  bool NonPHIUse = false;
515  for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
516    MachineBasicBlock *UseBlock = UseInst.getParent();
517    if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
518      NonPHIUse = true;
519  }
520  if (!NonPHIUse)
521    return true;
522
523  // If SuccToSinkTo post dominates then also it may be profitable if MI
524  // can further profitably sinked into another block in next round.
525  bool BreakPHIEdge = false;
526  // FIXME - If finding successor is compile time expensive then cache results.
527  if (MachineBasicBlock *MBB2 =
528          FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
529    return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
530
531  // If SuccToSinkTo is final destination and it is a post dominator of current
532  // block then it is not profitable to sink MI into SuccToSinkTo block.
533  return false;
534}
535
536/// Get the sorted sequence of successors for this MachineBasicBlock, possibly
537/// computing it if it was not already cached.
538SmallVector<MachineBasicBlock *, 4> &
539MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
540                                       AllSuccsCache &AllSuccessors) const {
541
542  // Do we have the sorted successors in cache ?
543  auto Succs = AllSuccessors.find(MBB);
544  if (Succs != AllSuccessors.end())
545    return Succs->second;
546
547  SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
548                                               MBB->succ_end());
549
550  // Handle cases where sinking can happen but where the sink point isn't a
551  // successor. For example:
552  //
553  //   x = computation
554  //   if () {} else {}
555  //   use x
556  //
557  const std::vector<MachineDomTreeNode *> &Children =
558    DT->getNode(MBB)->getChildren();
559  for (const auto &DTChild : Children)
560    // DomTree children of MBB that have MBB as immediate dominator are added.
561    if (DTChild->getIDom()->getBlock() == MI.getParent() &&
562        // Skip MBBs already added to the AllSuccs vector above.
563        !MBB->isSuccessor(DTChild->getBlock()))
564      AllSuccs.push_back(DTChild->getBlock());
565
566  // Sort Successors according to their loop depth or block frequency info.
567  std::stable_sort(
568      AllSuccs.begin(), AllSuccs.end(),
569      [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
570        uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
571        uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
572        bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
573        return HasBlockFreq ? LHSFreq < RHSFreq
574                            : LI->getLoopDepth(L) < LI->getLoopDepth(R);
575      });
576
577  auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
578
579  return it.first->second;
580}
581
582/// FindSuccToSinkTo - Find a successor to sink this instruction to.
583MachineBasicBlock *
584MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
585                                 bool &BreakPHIEdge,
586                                 AllSuccsCache &AllSuccessors) {
587  assert (MBB && "Invalid MachineBasicBlock!");
588
589  // Loop over all the operands of the specified instruction.  If there is
590  // anything we can't handle, bail out.
591
592  // SuccToSinkTo - This is the successor to sink this instruction to, once we
593  // decide.
594  MachineBasicBlock *SuccToSinkTo = nullptr;
595  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
596    const MachineOperand &MO = MI.getOperand(i);
597    if (!MO.isReg()) continue;  // Ignore non-register operands.
598
599    unsigned Reg = MO.getReg();
600    if (Reg == 0) continue;
601
602    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
603      if (MO.isUse()) {
604        // If the physreg has no defs anywhere, it's just an ambient register
605        // and we can freely move its uses. Alternatively, if it's allocatable,
606        // it could get allocated to something with a def during allocation.
607        if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
608          return nullptr;
609      } else if (!MO.isDead()) {
610        // A def that isn't dead. We can't move it.
611        return nullptr;
612      }
613    } else {
614      // Virtual register uses are always safe to sink.
615      if (MO.isUse()) continue;
616
617      // If it's not safe to move defs of the register class, then abort.
618      if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
619        return nullptr;
620
621      // Virtual register defs can only be sunk if all their uses are in blocks
622      // dominated by one of the successors.
623      if (SuccToSinkTo) {
624        // If a previous operand picked a block to sink to, then this operand
625        // must be sinkable to the same block.
626        bool LocalUse = false;
627        if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
628                                     BreakPHIEdge, LocalUse))
629          return nullptr;
630
631        continue;
632      }
633
634      // Otherwise, we should look at all the successors and decide which one
635      // we should sink to. If we have reliable block frequency information
636      // (frequency != 0) available, give successors with smaller frequencies
637      // higher priority, otherwise prioritize smaller loop depths.
638      for (MachineBasicBlock *SuccBlock :
639           GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
640        bool LocalUse = false;
641        if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
642                                    BreakPHIEdge, LocalUse)) {
643          SuccToSinkTo = SuccBlock;
644          break;
645        }
646        if (LocalUse)
647          // Def is used locally, it's never safe to move this def.
648          return nullptr;
649      }
650
651      // If we couldn't find a block to sink to, ignore this instruction.
652      if (!SuccToSinkTo)
653        return nullptr;
654      if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
655        return nullptr;
656    }
657  }
658
659  // It is not possible to sink an instruction into its own block.  This can
660  // happen with loops.
661  if (MBB == SuccToSinkTo)
662    return nullptr;
663
664  // It's not safe to sink instructions to EH landing pad. Control flow into
665  // landing pad is implicitly defined.
666  if (SuccToSinkTo && SuccToSinkTo->isEHPad())
667    return nullptr;
668
669  return SuccToSinkTo;
670}
671
672/// \brief Return true if MI is likely to be usable as a memory operation by the
673/// implicit null check optimization.
674///
675/// This is a "best effort" heuristic, and should not be relied upon for
676/// correctness.  This returning true does not guarantee that the implicit null
677/// check optimization is legal over MI, and this returning false does not
678/// guarantee MI cannot possibly be used to do a null check.
679static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
680                                             const TargetInstrInfo *TII,
681                                             const TargetRegisterInfo *TRI) {
682  typedef TargetInstrInfo::MachineBranchPredicate MachineBranchPredicate;
683
684  auto *MBB = MI.getParent();
685  if (MBB->pred_size() != 1)
686    return false;
687
688  auto *PredMBB = *MBB->pred_begin();
689  auto *PredBB = PredMBB->getBasicBlock();
690
691  // Frontends that don't use implicit null checks have no reason to emit
692  // branches with make.implicit metadata, and this function should always
693  // return false for them.
694  if (!PredBB ||
695      !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
696    return false;
697
698  unsigned BaseReg;
699  int64_t Offset;
700  if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
701    return false;
702
703  if (!(MI.mayLoad() && !MI.isPredicable()))
704    return false;
705
706  MachineBranchPredicate MBP;
707  if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
708    return false;
709
710  return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
711         (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
712          MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
713         MBP.LHS.getReg() == BaseReg;
714}
715
716/// SinkInstruction - Determine whether it is safe to sink the specified machine
717/// instruction out of its current block into a successor.
718bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
719                                     AllSuccsCache &AllSuccessors) {
720  // Don't sink instructions that the target prefers not to sink.
721  if (!TII->shouldSink(MI))
722    return false;
723
724  // Check if it's safe to move the instruction.
725  if (!MI.isSafeToMove(AA, SawStore))
726    return false;
727
728  // Convergent operations may not be made control-dependent on additional
729  // values.
730  if (MI.isConvergent())
731    return false;
732
733  // Don't break implicit null checks.  This is a performance heuristic, and not
734  // required for correctness.
735  if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
736    return false;
737
738  // FIXME: This should include support for sinking instructions within the
739  // block they are currently in to shorten the live ranges.  We often get
740  // instructions sunk into the top of a large block, but it would be better to
741  // also sink them down before their first use in the block.  This xform has to
742  // be careful not to *increase* register pressure though, e.g. sinking
743  // "x = y + z" down if it kills y and z would increase the live ranges of y
744  // and z and only shrink the live range of x.
745
746  bool BreakPHIEdge = false;
747  MachineBasicBlock *ParentBlock = MI.getParent();
748  MachineBasicBlock *SuccToSinkTo =
749      FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
750
751  // If there are no outputs, it must have side-effects.
752  if (!SuccToSinkTo)
753    return false;
754
755
756  // If the instruction to move defines a dead physical register which is live
757  // when leaving the basic block, don't move it because it could turn into a
758  // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
759  for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
760    const MachineOperand &MO = MI.getOperand(I);
761    if (!MO.isReg()) continue;
762    unsigned Reg = MO.getReg();
763    if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
764    if (SuccToSinkTo->isLiveIn(Reg))
765      return false;
766  }
767
768  DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
769
770  // If the block has multiple predecessors, this is a critical edge.
771  // Decide if we can sink along it or need to break the edge.
772  if (SuccToSinkTo->pred_size() > 1) {
773    // We cannot sink a load across a critical edge - there may be stores in
774    // other code paths.
775    bool TryBreak = false;
776    bool store = true;
777    if (!MI.isSafeToMove(AA, store)) {
778      DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
779      TryBreak = true;
780    }
781
782    // We don't want to sink across a critical edge if we don't dominate the
783    // successor. We could be introducing calculations to new code paths.
784    if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
785      DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
786      TryBreak = true;
787    }
788
789    // Don't sink instructions into a loop.
790    if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
791      DEBUG(dbgs() << " *** NOTE: Loop header found\n");
792      TryBreak = true;
793    }
794
795    // Otherwise we are OK with sinking along a critical edge.
796    if (!TryBreak)
797      DEBUG(dbgs() << "Sinking along critical edge.\n");
798    else {
799      // Mark this edge as to be split.
800      // If the edge can actually be split, the next iteration of the main loop
801      // will sink MI in the newly created block.
802      bool Status =
803        PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
804      if (!Status)
805        DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
806              "break critical edge\n");
807      // The instruction will not be sunk this time.
808      return false;
809    }
810  }
811
812  if (BreakPHIEdge) {
813    // BreakPHIEdge is true if all the uses are in the successor MBB being
814    // sunken into and they are all PHI nodes. In this case, machine-sink must
815    // break the critical edge first.
816    bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
817                                            SuccToSinkTo, BreakPHIEdge);
818    if (!Status)
819      DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
820            "break critical edge\n");
821    // The instruction will not be sunk this time.
822    return false;
823  }
824
825  // Determine where to insert into. Skip phi nodes.
826  MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
827  while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
828    ++InsertPos;
829
830  // collect matching debug values.
831  SmallVector<MachineInstr *, 2> DbgValuesToSink;
832  collectDebugValues(MI, DbgValuesToSink);
833
834  // Move the instruction.
835  SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
836                       ++MachineBasicBlock::iterator(MI));
837
838  // Move debug values.
839  for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
840         DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) {
841    MachineInstr *DbgMI = *DBI;
842    SuccToSinkTo->splice(InsertPos, ParentBlock,  DbgMI,
843                         ++MachineBasicBlock::iterator(DbgMI));
844  }
845
846  // Conservatively, clear any kill flags, since it's possible that they are no
847  // longer correct.
848  // Note that we have to clear the kill flags for any register this instruction
849  // uses as we may sink over another instruction which currently kills the
850  // used registers.
851  for (MachineOperand &MO : MI.operands()) {
852    if (MO.isReg() && MO.isUse())
853      RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
854  }
855
856  return true;
857}
858