MachineLICM.cpp revision 208954
1//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion on machine instructions. We
11// attempt to remove as much code from the body of a loop as possible.
12//
13// This pass does not attempt to throttle itself to limit register pressure.
14// The register allocation phases are expected to perform rematerialization
15// to recover when register pressure is high.
16//
17// This pass is not intended to be a replacement or a complete alternative
18// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
19// constructs that are not exposed before lowering and instruction selection.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "machine-licm"
24#include "llvm/CodeGen/Passes.h"
25#include "llvm/CodeGen/MachineDominators.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineMemOperand.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Analysis/AliasAnalysis.h"
35#include "llvm/ADT/DenseMap.h"
36#include "llvm/ADT/SmallSet.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/raw_ostream.h"
40
41using namespace llvm;
42
43STATISTIC(NumHoisted, "Number of machine instructions hoisted out of loops");
44STATISTIC(NumCSEed,   "Number of hoisted machine instructions CSEed");
45STATISTIC(NumPostRAHoisted,
46          "Number of machine instructions hoisted out of loops post regalloc");
47
48namespace {
49  class MachineLICM : public MachineFunctionPass {
50    bool PreRegAlloc;
51
52    const TargetMachine   *TM;
53    const TargetInstrInfo *TII;
54    const TargetRegisterInfo *TRI;
55    const MachineFrameInfo *MFI;
56    MachineRegisterInfo *RegInfo;
57
58    // Various analyses that we use...
59    AliasAnalysis        *AA;      // Alias analysis info.
60    MachineLoopInfo      *MLI;     // Current MachineLoopInfo
61    MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
62
63    // State that is updated as we process loops
64    bool         Changed;          // True if a loop is changed.
65    MachineLoop *CurLoop;          // The current loop we are working on.
66    MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
67
68    BitVector AllocatableSet;
69
70    // For each opcode, keep a list of potentail CSE instructions.
71    DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
72
73  public:
74    static char ID; // Pass identification, replacement for typeid
75    MachineLICM() :
76      MachineFunctionPass(&ID), PreRegAlloc(true) {}
77
78    explicit MachineLICM(bool PreRA) :
79      MachineFunctionPass(&ID), PreRegAlloc(PreRA) {}
80
81    virtual bool runOnMachineFunction(MachineFunction &MF);
82
83    const char *getPassName() const { return "Machine Instruction LICM"; }
84
85    // FIXME: Loop preheaders?
86    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
87      AU.setPreservesCFG();
88      AU.addRequired<MachineLoopInfo>();
89      AU.addRequired<MachineDominatorTree>();
90      AU.addRequired<AliasAnalysis>();
91      AU.addPreserved<MachineLoopInfo>();
92      AU.addPreserved<MachineDominatorTree>();
93      MachineFunctionPass::getAnalysisUsage(AU);
94    }
95
96    virtual void releaseMemory() {
97      CSEMap.clear();
98    }
99
100  private:
101    /// CandidateInfo - Keep track of information about hoisting candidates.
102    struct CandidateInfo {
103      MachineInstr *MI;
104      unsigned      Def;
105      int           FI;
106      CandidateInfo(MachineInstr *mi, unsigned def, int fi)
107        : MI(mi), Def(def), FI(fi) {}
108    };
109
110    /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
111    /// invariants out to the preheader.
112    void HoistRegionPostRA();
113
114    /// HoistPostRA - When an instruction is found to only use loop invariant
115    /// operands that is safe to hoist, this instruction is called to do the
116    /// dirty work.
117    void HoistPostRA(MachineInstr *MI, unsigned Def);
118
119    /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
120    /// gather register def and frame object update information.
121    void ProcessMI(MachineInstr *MI, unsigned *PhysRegDefs,
122                   SmallSet<int, 32> &StoredFIs,
123                   SmallVector<CandidateInfo, 32> &Candidates);
124
125    /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
126    /// current loop.
127    void AddToLiveIns(unsigned Reg);
128
129    /// IsLICMCandidate - Returns true if the instruction may be a suitable
130    /// candidate for LICM. e.g. If the instruction is a call, then it's obviously
131    /// not safe to hoist it.
132    bool IsLICMCandidate(MachineInstr &I);
133
134    /// IsLoopInvariantInst - Returns true if the instruction is loop
135    /// invariant. I.e., all virtual register operands are defined outside of
136    /// the loop, physical registers aren't accessed (explicitly or implicitly),
137    /// and the instruction is hoistable.
138    ///
139    bool IsLoopInvariantInst(MachineInstr &I);
140
141    /// IsProfitableToHoist - Return true if it is potentially profitable to
142    /// hoist the given loop invariant.
143    bool IsProfitableToHoist(MachineInstr &MI);
144
145    /// HoistRegion - Walk the specified region of the CFG (defined by all
146    /// blocks dominated by the specified block, and that are in the current
147    /// loop) in depth first order w.r.t the DominatorTree. This allows us to
148    /// visit definitions before uses, allowing us to hoist a loop body in one
149    /// pass without iteration.
150    ///
151    void HoistRegion(MachineDomTreeNode *N);
152
153    /// isLoadFromConstantMemory - Return true if the given instruction is a
154    /// load from constant memory.
155    bool isLoadFromConstantMemory(MachineInstr *MI);
156
157    /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
158    /// the load itself could be hoisted. Return the unfolded and hoistable
159    /// load, or null if the load couldn't be unfolded or if it wouldn't
160    /// be hoistable.
161    MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
162
163    /// LookForDuplicate - Find an instruction amount PrevMIs that is a
164    /// duplicate of MI. Return this instruction if it's found.
165    const MachineInstr *LookForDuplicate(const MachineInstr *MI,
166                                     std::vector<const MachineInstr*> &PrevMIs);
167
168    /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
169    /// the preheader that compute the same value. If it's found, do a RAU on
170    /// with the definition of the existing instruction rather than hoisting
171    /// the instruction to the preheader.
172    bool EliminateCSE(MachineInstr *MI,
173           DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
174
175    /// Hoist - When an instruction is found to only use loop invariant operands
176    /// that is safe to hoist, this instruction is called to do the dirty work.
177    ///
178    void Hoist(MachineInstr *MI);
179
180    /// InitCSEMap - Initialize the CSE map with instructions that are in the
181    /// current loop preheader that may become duplicates of instructions that
182    /// are hoisted out of the loop.
183    void InitCSEMap(MachineBasicBlock *BB);
184  };
185} // end anonymous namespace
186
187char MachineLICM::ID = 0;
188static RegisterPass<MachineLICM>
189X("machinelicm", "Machine Loop Invariant Code Motion");
190
191FunctionPass *llvm::createMachineLICMPass(bool PreRegAlloc) {
192  return new MachineLICM(PreRegAlloc);
193}
194
195/// LoopIsOuterMostWithPreheader - Test if the given loop is the outer-most
196/// loop that has a preheader.
197static bool LoopIsOuterMostWithPreheader(MachineLoop *CurLoop) {
198  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
199    if (L->getLoopPreheader())
200      return false;
201  return true;
202}
203
204bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
205  if (PreRegAlloc)
206    DEBUG(dbgs() << "******** Pre-regalloc Machine LICM ********\n");
207  else
208    DEBUG(dbgs() << "******** Post-regalloc Machine LICM ********\n");
209
210  Changed = false;
211  TM = &MF.getTarget();
212  TII = TM->getInstrInfo();
213  TRI = TM->getRegisterInfo();
214  MFI = MF.getFrameInfo();
215  RegInfo = &MF.getRegInfo();
216  AllocatableSet = TRI->getAllocatableSet(MF);
217
218  // Get our Loop information...
219  MLI = &getAnalysis<MachineLoopInfo>();
220  DT  = &getAnalysis<MachineDominatorTree>();
221  AA  = &getAnalysis<AliasAnalysis>();
222
223  for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I){
224    CurLoop = *I;
225
226    // If this is done before regalloc, only visit outer-most preheader-sporting
227    // loops.
228    if (PreRegAlloc && !LoopIsOuterMostWithPreheader(CurLoop))
229      continue;
230
231    // Determine the block to which to hoist instructions. If we can't find a
232    // suitable loop preheader, we can't do any hoisting.
233    //
234    // FIXME: We are only hoisting if the basic block coming into this loop
235    // has only one successor. This isn't the case in general because we haven't
236    // broken critical edges or added preheaders.
237    CurPreheader = CurLoop->getLoopPreheader();
238    if (!CurPreheader)
239      continue;
240
241    if (!PreRegAlloc)
242      HoistRegionPostRA();
243    else {
244      // CSEMap is initialized for loop header when the first instruction is
245      // being hoisted.
246      MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
247      HoistRegion(N);
248      CSEMap.clear();
249    }
250  }
251
252  return Changed;
253}
254
255/// InstructionStoresToFI - Return true if instruction stores to the
256/// specified frame.
257static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
258  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
259         oe = MI->memoperands_end(); o != oe; ++o) {
260    if (!(*o)->isStore() || !(*o)->getValue())
261      continue;
262    if (const FixedStackPseudoSourceValue *Value =
263        dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
264      if (Value->getFrameIndex() == FI)
265        return true;
266    }
267  }
268  return false;
269}
270
271/// ProcessMI - Examine the instruction for potentai LICM candidate. Also
272/// gather register def and frame object update information.
273void MachineLICM::ProcessMI(MachineInstr *MI,
274                            unsigned *PhysRegDefs,
275                            SmallSet<int, 32> &StoredFIs,
276                            SmallVector<CandidateInfo, 32> &Candidates) {
277  bool RuledOut = false;
278  bool HasNonInvariantUse = false;
279  unsigned Def = 0;
280  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
281    const MachineOperand &MO = MI->getOperand(i);
282    if (MO.isFI()) {
283      // Remember if the instruction stores to the frame index.
284      int FI = MO.getIndex();
285      if (!StoredFIs.count(FI) &&
286          MFI->isSpillSlotObjectIndex(FI) &&
287          InstructionStoresToFI(MI, FI))
288        StoredFIs.insert(FI);
289      HasNonInvariantUse = true;
290      continue;
291    }
292
293    if (!MO.isReg())
294      continue;
295    unsigned Reg = MO.getReg();
296    if (!Reg)
297      continue;
298    assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
299           "Not expecting virtual register!");
300
301    if (!MO.isDef()) {
302      if (Reg && PhysRegDefs[Reg])
303        // If it's using a non-loop-invariant register, then it's obviously not
304        // safe to hoist.
305        HasNonInvariantUse = true;
306      continue;
307    }
308
309    if (MO.isImplicit()) {
310      ++PhysRegDefs[Reg];
311      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
312        ++PhysRegDefs[*AS];
313      if (!MO.isDead())
314        // Non-dead implicit def? This cannot be hoisted.
315        RuledOut = true;
316      // No need to check if a dead implicit def is also defined by
317      // another instruction.
318      continue;
319    }
320
321    // FIXME: For now, avoid instructions with multiple defs, unless
322    // it's a dead implicit def.
323    if (Def)
324      RuledOut = true;
325    else
326      Def = Reg;
327
328    // If we have already seen another instruction that defines the same
329    // register, then this is not safe.
330    if (++PhysRegDefs[Reg] > 1)
331      // MI defined register is seen defined by another instruction in
332      // the loop, it cannot be a LICM candidate.
333      RuledOut = true;
334    for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
335      if (++PhysRegDefs[*AS] > 1)
336        RuledOut = true;
337  }
338
339  // Only consider reloads for now and remats which do not have register
340  // operands. FIXME: Consider unfold load folding instructions.
341  if (Def && !RuledOut) {
342    int FI = INT_MIN;
343    if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
344        (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
345      Candidates.push_back(CandidateInfo(MI, Def, FI));
346  }
347}
348
349/// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
350/// invariants out to the preheader.
351void MachineLICM::HoistRegionPostRA() {
352  unsigned NumRegs = TRI->getNumRegs();
353  unsigned *PhysRegDefs = new unsigned[NumRegs];
354  std::fill(PhysRegDefs, PhysRegDefs + NumRegs, 0);
355
356  SmallVector<CandidateInfo, 32> Candidates;
357  SmallSet<int, 32> StoredFIs;
358
359  // Walk the entire region, count number of defs for each register, and
360  // collect potential LICM candidates.
361  const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
362  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
363    MachineBasicBlock *BB = Blocks[i];
364    // Conservatively treat live-in's as an external def.
365    // FIXME: That means a reload that're reused in successor block(s) will not
366    // be LICM'ed.
367    for (MachineBasicBlock::livein_iterator I = BB->livein_begin(),
368           E = BB->livein_end(); I != E; ++I) {
369      unsigned Reg = *I;
370      ++PhysRegDefs[Reg];
371      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
372        ++PhysRegDefs[*AS];
373    }
374
375    for (MachineBasicBlock::iterator
376           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
377      MachineInstr *MI = &*MII;
378      ProcessMI(MI, PhysRegDefs, StoredFIs, Candidates);
379    }
380  }
381
382  // Now evaluate whether the potential candidates qualify.
383  // 1. Check if the candidate defined register is defined by another
384  //    instruction in the loop.
385  // 2. If the candidate is a load from stack slot (always true for now),
386  //    check if the slot is stored anywhere in the loop.
387  for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
388    if (Candidates[i].FI != INT_MIN &&
389        StoredFIs.count(Candidates[i].FI))
390      continue;
391
392    if (PhysRegDefs[Candidates[i].Def] == 1) {
393      bool Safe = true;
394      MachineInstr *MI = Candidates[i].MI;
395      for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
396        const MachineOperand &MO = MI->getOperand(j);
397        if (!MO.isReg() || MO.isDef() || !MO.getReg())
398          continue;
399        if (PhysRegDefs[MO.getReg()]) {
400          // If it's using a non-loop-invariant register, then it's obviously
401          // not safe to hoist.
402          Safe = false;
403          break;
404        }
405      }
406      if (Safe)
407        HoistPostRA(MI, Candidates[i].Def);
408    }
409  }
410
411  delete[] PhysRegDefs;
412}
413
414/// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current
415/// loop, and make sure it is not killed by any instructions in the loop.
416void MachineLICM::AddToLiveIns(unsigned Reg) {
417  const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
418  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
419    MachineBasicBlock *BB = Blocks[i];
420    if (!BB->isLiveIn(Reg))
421      BB->addLiveIn(Reg);
422    for (MachineBasicBlock::iterator
423           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
424      MachineInstr *MI = &*MII;
425      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
426        MachineOperand &MO = MI->getOperand(i);
427        if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
428        if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
429          MO.setIsKill(false);
430      }
431    }
432  }
433}
434
435/// HoistPostRA - When an instruction is found to only use loop invariant
436/// operands that is safe to hoist, this instruction is called to do the
437/// dirty work.
438void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
439  // Now move the instructions to the predecessor, inserting it before any
440  // terminator instructions.
441  DEBUG({
442      dbgs() << "Hoisting " << *MI;
443      if (CurPreheader->getBasicBlock())
444        dbgs() << " to MachineBasicBlock "
445               << CurPreheader->getName();
446      if (MI->getParent()->getBasicBlock())
447        dbgs() << " from MachineBasicBlock "
448               << MI->getParent()->getName();
449      dbgs() << "\n";
450    });
451
452  // Splice the instruction to the preheader.
453  MachineBasicBlock *MBB = MI->getParent();
454  CurPreheader->splice(CurPreheader->getFirstTerminator(), MBB, MI);
455
456  // Add register to livein list to all the BBs in the current loop since a
457  // loop invariant must be kept live throughout the whole loop. This is
458  // important to ensure later passes do not scavenge the def register.
459  AddToLiveIns(Def);
460
461  ++NumPostRAHoisted;
462  Changed = true;
463}
464
465/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
466/// dominated by the specified block, and that are in the current loop) in depth
467/// first order w.r.t the DominatorTree. This allows us to visit definitions
468/// before uses, allowing us to hoist a loop body in one pass without iteration.
469///
470void MachineLICM::HoistRegion(MachineDomTreeNode *N) {
471  assert(N != 0 && "Null dominator tree node?");
472  MachineBasicBlock *BB = N->getBlock();
473
474  // If this subregion is not in the top level loop at all, exit.
475  if (!CurLoop->contains(BB)) return;
476
477  for (MachineBasicBlock::iterator
478         MII = BB->begin(), E = BB->end(); MII != E; ) {
479    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
480    Hoist(&*MII);
481    MII = NextMII;
482  }
483
484  const std::vector<MachineDomTreeNode*> &Children = N->getChildren();
485  for (unsigned I = 0, E = Children.size(); I != E; ++I)
486    HoistRegion(Children[I]);
487}
488
489/// IsLICMCandidate - Returns true if the instruction may be a suitable
490/// candidate for LICM. e.g. If the instruction is a call, then it's obviously
491/// not safe to hoist it.
492bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
493  if (I.isImplicitDef())
494    return false;
495
496  const TargetInstrDesc &TID = I.getDesc();
497
498  // Ignore stuff that we obviously can't hoist.
499  if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
500      TID.hasUnmodeledSideEffects())
501    return false;
502
503  if (TID.mayLoad()) {
504    // Okay, this instruction does a load. As a refinement, we allow the target
505    // to decide whether the loaded value is actually a constant. If so, we can
506    // actually use it as a load.
507    if (!I.isInvariantLoad(AA))
508      // FIXME: we should be able to hoist loads with no other side effects if
509      // there are no other instructions which can change memory in this loop.
510      // This is a trivial form of alias analysis.
511      return false;
512  }
513  return true;
514}
515
516/// IsLoopInvariantInst - Returns true if the instruction is loop
517/// invariant. I.e., all virtual register operands are defined outside of the
518/// loop, physical registers aren't accessed explicitly, and there are no side
519/// effects that aren't captured by the operands or other flags.
520///
521bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
522  if (!IsLICMCandidate(I))
523    return false;
524
525  // The instruction is loop invariant if all of its operands are.
526  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
527    const MachineOperand &MO = I.getOperand(i);
528
529    if (!MO.isReg())
530      continue;
531
532    unsigned Reg = MO.getReg();
533    if (Reg == 0) continue;
534
535    // Don't hoist an instruction that uses or defines a physical register.
536    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
537      if (MO.isUse()) {
538        // If the physreg has no defs anywhere, it's just an ambient register
539        // and we can freely move its uses. Alternatively, if it's allocatable,
540        // it could get allocated to something with a def during allocation.
541        if (!RegInfo->def_empty(Reg))
542          return false;
543        if (AllocatableSet.test(Reg))
544          return false;
545        // Check for a def among the register's aliases too.
546        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
547          unsigned AliasReg = *Alias;
548          if (!RegInfo->def_empty(AliasReg))
549            return false;
550          if (AllocatableSet.test(AliasReg))
551            return false;
552        }
553        // Otherwise it's safe to move.
554        continue;
555      } else if (!MO.isDead()) {
556        // A def that isn't dead. We can't move it.
557        return false;
558      } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
559        // If the reg is live into the loop, we can't hoist an instruction
560        // which would clobber it.
561        return false;
562      }
563    }
564
565    if (!MO.isUse())
566      continue;
567
568    assert(RegInfo->getVRegDef(Reg) &&
569           "Machine instr not mapped for this vreg?!");
570
571    // If the loop contains the definition of an operand, then the instruction
572    // isn't loop invariant.
573    if (CurLoop->contains(RegInfo->getVRegDef(Reg)))
574      return false;
575  }
576
577  // If we got this far, the instruction is loop invariant!
578  return true;
579}
580
581
582/// HasPHIUses - Return true if the specified register has any PHI use.
583static bool HasPHIUses(unsigned Reg, MachineRegisterInfo *RegInfo) {
584  for (MachineRegisterInfo::use_iterator UI = RegInfo->use_begin(Reg),
585         UE = RegInfo->use_end(); UI != UE; ++UI) {
586    MachineInstr *UseMI = &*UI;
587    if (UseMI->isPHI())
588      return true;
589  }
590  return false;
591}
592
593/// isLoadFromConstantMemory - Return true if the given instruction is a
594/// load from constant memory. Machine LICM will hoist these even if they are
595/// not re-materializable.
596bool MachineLICM::isLoadFromConstantMemory(MachineInstr *MI) {
597  if (!MI->getDesc().mayLoad()) return false;
598  if (!MI->hasOneMemOperand()) return false;
599  MachineMemOperand *MMO = *MI->memoperands_begin();
600  if (MMO->isVolatile()) return false;
601  if (!MMO->getValue()) return false;
602  const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(MMO->getValue());
603  if (PSV) {
604    MachineFunction &MF = *MI->getParent()->getParent();
605    return PSV->isConstant(MF.getFrameInfo());
606  } else {
607    return AA->pointsToConstantMemory(MMO->getValue());
608  }
609}
610
611/// IsProfitableToHoist - Return true if it is potentially profitable to hoist
612/// the given loop invariant.
613bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
614  // FIXME: For now, only hoist re-materilizable instructions. LICM will
615  // increase register pressure. We want to make sure it doesn't increase
616  // spilling.
617  // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting
618  // these tend to help performance in low register pressure situation. The
619  // trade off is it may cause spill in high pressure situation. It will end up
620  // adding a store in the loop preheader. But the reload is no more expensive.
621  // The side benefit is these loads are frequently CSE'ed.
622  if (!TII->isTriviallyReMaterializable(&MI, AA)) {
623    if (!isLoadFromConstantMemory(&MI))
624      return false;
625  }
626
627  // If result(s) of this instruction is used by PHIs, then don't hoist it.
628  // The presence of joins makes it difficult for current register allocator
629  // implementation to perform remat.
630  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
631    const MachineOperand &MO = MI.getOperand(i);
632    if (!MO.isReg() || !MO.isDef())
633      continue;
634    if (HasPHIUses(MO.getReg(), RegInfo))
635      return false;
636  }
637
638  return true;
639}
640
641MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
642  // If not, we may be able to unfold a load and hoist that.
643  // First test whether the instruction is loading from an amenable
644  // memory location.
645  if (!isLoadFromConstantMemory(MI))
646    return 0;
647
648  // Next determine the register class for a temporary register.
649  unsigned LoadRegIndex;
650  unsigned NewOpc =
651    TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
652                                    /*UnfoldLoad=*/true,
653                                    /*UnfoldStore=*/false,
654                                    &LoadRegIndex);
655  if (NewOpc == 0) return 0;
656  const TargetInstrDesc &TID = TII->get(NewOpc);
657  if (TID.getNumDefs() != 1) return 0;
658  const TargetRegisterClass *RC = TID.OpInfo[LoadRegIndex].getRegClass(TRI);
659  // Ok, we're unfolding. Create a temporary register and do the unfold.
660  unsigned Reg = RegInfo->createVirtualRegister(RC);
661
662  MachineFunction &MF = *MI->getParent()->getParent();
663  SmallVector<MachineInstr *, 2> NewMIs;
664  bool Success =
665    TII->unfoldMemoryOperand(MF, MI, Reg,
666                             /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
667                             NewMIs);
668  (void)Success;
669  assert(Success &&
670         "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
671         "succeeded!");
672  assert(NewMIs.size() == 2 &&
673         "Unfolded a load into multiple instructions!");
674  MachineBasicBlock *MBB = MI->getParent();
675  MBB->insert(MI, NewMIs[0]);
676  MBB->insert(MI, NewMIs[1]);
677  // If unfolding produced a load that wasn't loop-invariant or profitable to
678  // hoist, discard the new instructions and bail.
679  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
680    NewMIs[0]->eraseFromParent();
681    NewMIs[1]->eraseFromParent();
682    return 0;
683  }
684  // Otherwise we successfully unfolded a load that we can hoist.
685  MI->eraseFromParent();
686  return NewMIs[0];
687}
688
689void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
690  for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
691    const MachineInstr *MI = &*I;
692    // FIXME: For now, only hoist re-materilizable instructions. LICM will
693    // increase register pressure. We want to make sure it doesn't increase
694    // spilling.
695    if (TII->isTriviallyReMaterializable(MI, AA)) {
696      unsigned Opcode = MI->getOpcode();
697      DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
698        CI = CSEMap.find(Opcode);
699      if (CI != CSEMap.end())
700        CI->second.push_back(MI);
701      else {
702        std::vector<const MachineInstr*> CSEMIs;
703        CSEMIs.push_back(MI);
704        CSEMap.insert(std::make_pair(Opcode, CSEMIs));
705      }
706    }
707  }
708}
709
710const MachineInstr*
711MachineLICM::LookForDuplicate(const MachineInstr *MI,
712                              std::vector<const MachineInstr*> &PrevMIs) {
713  for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
714    const MachineInstr *PrevMI = PrevMIs[i];
715    if (TII->produceSameValue(MI, PrevMI))
716      return PrevMI;
717  }
718  return 0;
719}
720
721bool MachineLICM::EliminateCSE(MachineInstr *MI,
722          DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
723  if (CI == CSEMap.end())
724    return false;
725
726  if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
727    DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
728
729    // Replace virtual registers defined by MI by their counterparts defined
730    // by Dup.
731    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
732      const MachineOperand &MO = MI->getOperand(i);
733
734      // Physical registers may not differ here.
735      assert((!MO.isReg() || MO.getReg() == 0 ||
736              !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
737              MO.getReg() == Dup->getOperand(i).getReg()) &&
738             "Instructions with different phys regs are not identical!");
739
740      if (MO.isReg() && MO.isDef() &&
741          !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
742        RegInfo->replaceRegWith(MO.getReg(), Dup->getOperand(i).getReg());
743        RegInfo->clearKillFlags(Dup->getOperand(i).getReg());
744      }
745    }
746    MI->eraseFromParent();
747    ++NumCSEed;
748    return true;
749  }
750  return false;
751}
752
753/// Hoist - When an instruction is found to use only loop invariant operands
754/// that are safe to hoist, this instruction is called to do the dirty work.
755///
756void MachineLICM::Hoist(MachineInstr *MI) {
757  // First check whether we should hoist this instruction.
758  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
759    // If not, try unfolding a hoistable load.
760    MI = ExtractHoistableLoad(MI);
761    if (!MI) return;
762  }
763
764  // Now move the instructions to the predecessor, inserting it before any
765  // terminator instructions.
766  DEBUG({
767      dbgs() << "Hoisting " << *MI;
768      if (CurPreheader->getBasicBlock())
769        dbgs() << " to MachineBasicBlock "
770               << CurPreheader->getName();
771      if (MI->getParent()->getBasicBlock())
772        dbgs() << " from MachineBasicBlock "
773               << MI->getParent()->getName();
774      dbgs() << "\n";
775    });
776
777  // If this is the first instruction being hoisted to the preheader,
778  // initialize the CSE map with potential common expressions.
779  InitCSEMap(CurPreheader);
780
781  // Look for opportunity to CSE the hoisted instruction.
782  unsigned Opcode = MI->getOpcode();
783  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
784    CI = CSEMap.find(Opcode);
785  if (!EliminateCSE(MI, CI)) {
786    // Otherwise, splice the instruction to the preheader.
787    CurPreheader->splice(CurPreheader->getFirstTerminator(),MI->getParent(),MI);
788
789    // Clear the kill flags of any register this instruction defines,
790    // since they may need to be live throughout the entire loop
791    // rather than just live for part of it.
792    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
793      MachineOperand &MO = MI->getOperand(i);
794      if (MO.isReg() && MO.isDef() && !MO.isDead())
795        RegInfo->clearKillFlags(MO.getReg());
796    }
797
798    // Add to the CSE map.
799    if (CI != CSEMap.end())
800      CI->second.push_back(MI);
801    else {
802      std::vector<const MachineInstr*> CSEMIs;
803      CSEMIs.push_back(MI);
804      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
805    }
806  }
807
808  ++NumHoisted;
809  Changed = true;
810}
811