LiveIntervals.cpp revision 360784
1//===- LiveIntervals.cpp - Live Interval Analysis -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file This file implements the LiveInterval analysis pass which is used
10/// by the Linear Scan Register allocator. This pass linearizes the
11/// basic blocks of the function in DFS order and computes live intervals for
12/// each virtual and physical register.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/CodeGen/LiveIntervals.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/DepthFirstIterator.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/iterator_range.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/CodeGen/LiveInterval.h"
24#include "llvm/CodeGen/LiveRangeCalc.h"
25#include "llvm/CodeGen/LiveVariables.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28#include "llvm/CodeGen/MachineDominators.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineInstrBundle.h"
32#include "llvm/CodeGen/MachineOperand.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/Passes.h"
35#include "llvm/CodeGen/SlotIndexes.h"
36#include "llvm/CodeGen/TargetRegisterInfo.h"
37#include "llvm/CodeGen/TargetSubtargetInfo.h"
38#include "llvm/CodeGen/VirtRegMap.h"
39#include "llvm/Config/llvm-config.h"
40#include "llvm/MC/LaneBitmask.h"
41#include "llvm/MC/MCRegisterInfo.h"
42#include "llvm/Pass.h"
43#include "llvm/Support/BlockFrequency.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/raw_ostream.h"
49#include <algorithm>
50#include <cassert>
51#include <cstdint>
52#include <iterator>
53#include <tuple>
54#include <utility>
55
56using namespace llvm;
57
58#define DEBUG_TYPE "regalloc"
59
60char LiveIntervals::ID = 0;
61char &llvm::LiveIntervalsID = LiveIntervals::ID;
62INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
63                "Live Interval Analysis", false, false)
64INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
65INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
66INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
67INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
68                "Live Interval Analysis", false, false)
69
70#ifndef NDEBUG
71static cl::opt<bool> EnablePrecomputePhysRegs(
72  "precompute-phys-liveness", cl::Hidden,
73  cl::desc("Eagerly compute live intervals for all physreg units."));
74#else
75static bool EnablePrecomputePhysRegs = false;
76#endif // NDEBUG
77
78namespace llvm {
79
80cl::opt<bool> UseSegmentSetForPhysRegs(
81    "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
82    cl::desc(
83        "Use segment set for the computation of the live ranges of physregs."));
84
85} // end namespace llvm
86
87void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
88  AU.setPreservesCFG();
89  AU.addRequired<AAResultsWrapperPass>();
90  AU.addPreserved<AAResultsWrapperPass>();
91  AU.addPreserved<LiveVariables>();
92  AU.addPreservedID(MachineLoopInfoID);
93  AU.addRequiredTransitiveID(MachineDominatorsID);
94  AU.addPreservedID(MachineDominatorsID);
95  AU.addPreserved<SlotIndexes>();
96  AU.addRequiredTransitive<SlotIndexes>();
97  MachineFunctionPass::getAnalysisUsage(AU);
98}
99
100LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) {
101  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
102}
103
104LiveIntervals::~LiveIntervals() {
105  delete LRCalc;
106}
107
108void LiveIntervals::releaseMemory() {
109  // Free the live intervals themselves.
110  for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
111    delete VirtRegIntervals[Register::index2VirtReg(i)];
112  VirtRegIntervals.clear();
113  RegMaskSlots.clear();
114  RegMaskBits.clear();
115  RegMaskBlocks.clear();
116
117  for (LiveRange *LR : RegUnitRanges)
118    delete LR;
119  RegUnitRanges.clear();
120
121  // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
122  VNInfoAllocator.Reset();
123}
124
125bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
126  MF = &fn;
127  MRI = &MF->getRegInfo();
128  TRI = MF->getSubtarget().getRegisterInfo();
129  TII = MF->getSubtarget().getInstrInfo();
130  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
131  Indexes = &getAnalysis<SlotIndexes>();
132  DomTree = &getAnalysis<MachineDominatorTree>();
133
134  if (!LRCalc)
135    LRCalc = new LiveRangeCalc();
136
137  // Allocate space for all virtual registers.
138  VirtRegIntervals.resize(MRI->getNumVirtRegs());
139
140  computeVirtRegs();
141  computeRegMasks();
142  computeLiveInRegUnits();
143
144  if (EnablePrecomputePhysRegs) {
145    // For stress testing, precompute live ranges of all physical register
146    // units, including reserved registers.
147    for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
148      getRegUnit(i);
149  }
150  LLVM_DEBUG(dump());
151  return true;
152}
153
154void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
155  OS << "********** INTERVALS **********\n";
156
157  // Dump the regunits.
158  for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit)
159    if (LiveRange *LR = RegUnitRanges[Unit])
160      OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n';
161
162  // Dump the virtregs.
163  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
164    unsigned Reg = Register::index2VirtReg(i);
165    if (hasInterval(Reg))
166      OS << getInterval(Reg) << '\n';
167  }
168
169  OS << "RegMasks:";
170  for (SlotIndex Idx : RegMaskSlots)
171    OS << ' ' << Idx;
172  OS << '\n';
173
174  printInstrs(OS);
175}
176
177void LiveIntervals::printInstrs(raw_ostream &OS) const {
178  OS << "********** MACHINEINSTRS **********\n";
179  MF->print(OS, Indexes);
180}
181
182#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
183LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const {
184  printInstrs(dbgs());
185}
186#endif
187
188LiveInterval* LiveIntervals::createInterval(unsigned reg) {
189  float Weight = Register::isPhysicalRegister(reg) ? huge_valf : 0.0F;
190  return new LiveInterval(reg, Weight);
191}
192
193/// Compute the live interval of a virtual register, based on defs and uses.
194bool LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
195  assert(LRCalc && "LRCalc not initialized.");
196  assert(LI.empty() && "Should only compute empty intervals.");
197  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
198  LRCalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg));
199  return computeDeadValues(LI, nullptr);
200}
201
202void LiveIntervals::computeVirtRegs() {
203  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
204    unsigned Reg = Register::index2VirtReg(i);
205    if (MRI->reg_nodbg_empty(Reg))
206      continue;
207    LiveInterval &LI = createEmptyInterval(Reg);
208    bool NeedSplit = computeVirtRegInterval(LI);
209    if (NeedSplit) {
210      SmallVector<LiveInterval*, 8> SplitLIs;
211      splitSeparateComponents(LI, SplitLIs);
212    }
213  }
214}
215
216void LiveIntervals::computeRegMasks() {
217  RegMaskBlocks.resize(MF->getNumBlockIDs());
218
219  // Find all instructions with regmask operands.
220  for (const MachineBasicBlock &MBB : *MF) {
221    std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
222    RMB.first = RegMaskSlots.size();
223
224    // Some block starts, such as EH funclets, create masks.
225    if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
226      RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
227      RegMaskBits.push_back(Mask);
228    }
229
230    for (const MachineInstr &MI : MBB) {
231      for (const MachineOperand &MO : MI.operands()) {
232        if (!MO.isRegMask())
233          continue;
234        RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
235        RegMaskBits.push_back(MO.getRegMask());
236      }
237    }
238
239    // Some block ends, such as funclet returns, create masks. Put the mask on
240    // the last instruction of the block, because MBB slot index intervals are
241    // half-open.
242    if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
243      assert(!MBB.empty() && "empty return block?");
244      RegMaskSlots.push_back(
245          Indexes->getInstructionIndex(MBB.back()).getRegSlot());
246      RegMaskBits.push_back(Mask);
247    }
248
249    // Compute the number of register mask instructions in this block.
250    RMB.second = RegMaskSlots.size() - RMB.first;
251  }
252}
253
254//===----------------------------------------------------------------------===//
255//                           Register Unit Liveness
256//===----------------------------------------------------------------------===//
257//
258// Fixed interference typically comes from ABI boundaries: Function arguments
259// and return values are passed in fixed registers, and so are exception
260// pointers entering landing pads. Certain instructions require values to be
261// present in specific registers. That is also represented through fixed
262// interference.
263//
264
265/// Compute the live range of a register unit, based on the uses and defs of
266/// aliasing registers.  The range should be empty, or contain only dead
267/// phi-defs from ABI blocks.
268void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
269  assert(LRCalc && "LRCalc not initialized.");
270  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
271
272  // The physregs aliasing Unit are the roots and their super-registers.
273  // Create all values as dead defs before extending to uses. Note that roots
274  // may share super-registers. That's OK because createDeadDefs() is
275  // idempotent. It is very rare for a register unit to have multiple roots, so
276  // uniquing super-registers is probably not worthwhile.
277  bool IsReserved = false;
278  for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
279    bool IsRootReserved = true;
280    for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
281         Super.isValid(); ++Super) {
282      unsigned Reg = *Super;
283      if (!MRI->reg_empty(Reg))
284        LRCalc->createDeadDefs(LR, Reg);
285      // A register unit is considered reserved if all its roots and all their
286      // super registers are reserved.
287      if (!MRI->isReserved(Reg))
288        IsRootReserved = false;
289    }
290    IsReserved |= IsRootReserved;
291  }
292  assert(IsReserved == MRI->isReservedRegUnit(Unit) &&
293         "reserved computation mismatch");
294
295  // Now extend LR to reach all uses.
296  // Ignore uses of reserved registers. We only track defs of those.
297  if (!IsReserved) {
298    for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
299      for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
300           Super.isValid(); ++Super) {
301        unsigned Reg = *Super;
302        if (!MRI->reg_empty(Reg))
303          LRCalc->extendToUses(LR, Reg);
304      }
305    }
306  }
307
308  // Flush the segment set to the segment vector.
309  if (UseSegmentSetForPhysRegs)
310    LR.flushSegmentSet();
311}
312
313/// Precompute the live ranges of any register units that are live-in to an ABI
314/// block somewhere. Register values can appear without a corresponding def when
315/// entering the entry block or a landing pad.
316void LiveIntervals::computeLiveInRegUnits() {
317  RegUnitRanges.resize(TRI->getNumRegUnits());
318  LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
319
320  // Keep track of the live range sets allocated.
321  SmallVector<unsigned, 8> NewRanges;
322
323  // Check all basic blocks for live-ins.
324  for (const MachineBasicBlock &MBB : *MF) {
325    // We only care about ABI blocks: Entry + landing pads.
326    if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty())
327      continue;
328
329    // Create phi-defs at Begin for all live-in registers.
330    SlotIndex Begin = Indexes->getMBBStartIdx(&MBB);
331    LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB));
332    for (const auto &LI : MBB.liveins()) {
333      for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) {
334        unsigned Unit = *Units;
335        LiveRange *LR = RegUnitRanges[Unit];
336        if (!LR) {
337          // Use segment set to speed-up initial computation of the live range.
338          LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
339          NewRanges.push_back(Unit);
340        }
341        VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
342        (void)VNI;
343        LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id);
344      }
345    }
346    LLVM_DEBUG(dbgs() << '\n');
347  }
348  LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
349
350  // Compute the 'normal' part of the ranges.
351  for (unsigned Unit : NewRanges)
352    computeRegUnitRange(*RegUnitRanges[Unit], Unit);
353}
354
355static void createSegmentsForValues(LiveRange &LR,
356    iterator_range<LiveInterval::vni_iterator> VNIs) {
357  for (VNInfo *VNI : VNIs) {
358    if (VNI->isUnused())
359      continue;
360    SlotIndex Def = VNI->def;
361    LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
362  }
363}
364
365void LiveIntervals::extendSegmentsToUses(LiveRange &Segments,
366                                         ShrinkToUsesWorkList &WorkList,
367                                         unsigned Reg, LaneBitmask LaneMask) {
368  // Keep track of the PHIs that are in use.
369  SmallPtrSet<VNInfo*, 8> UsedPHIs;
370  // Blocks that have already been added to WorkList as live-out.
371  SmallPtrSet<const MachineBasicBlock*, 16> LiveOut;
372
373  auto getSubRange = [](const LiveInterval &I, LaneBitmask M)
374        -> const LiveRange& {
375    if (M.none())
376      return I;
377    for (const LiveInterval::SubRange &SR : I.subranges()) {
378      if ((SR.LaneMask & M).any()) {
379        assert(SR.LaneMask == M && "Expecting lane masks to match exactly");
380        return SR;
381      }
382    }
383    llvm_unreachable("Subrange for mask not found");
384  };
385
386  const LiveInterval &LI = getInterval(Reg);
387  const LiveRange &OldRange = getSubRange(LI, LaneMask);
388
389  // Extend intervals to reach all uses in WorkList.
390  while (!WorkList.empty()) {
391    SlotIndex Idx = WorkList.back().first;
392    VNInfo *VNI = WorkList.back().second;
393    WorkList.pop_back();
394    const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot());
395    SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB);
396
397    // Extend the live range for VNI to be live at Idx.
398    if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) {
399      assert(ExtVNI == VNI && "Unexpected existing value number");
400      (void)ExtVNI;
401      // Is this a PHIDef we haven't seen before?
402      if (!VNI->isPHIDef() || VNI->def != BlockStart ||
403          !UsedPHIs.insert(VNI).second)
404        continue;
405      // The PHI is live, make sure the predecessors are live-out.
406      for (const MachineBasicBlock *Pred : MBB->predecessors()) {
407        if (!LiveOut.insert(Pred).second)
408          continue;
409        SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
410        // A predecessor is not required to have a live-out value for a PHI.
411        if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
412          WorkList.push_back(std::make_pair(Stop, PVNI));
413      }
414      continue;
415    }
416
417    // VNI is live-in to MBB.
418    LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
419    Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
420
421    // Make sure VNI is live-out from the predecessors.
422    for (const MachineBasicBlock *Pred : MBB->predecessors()) {
423      if (!LiveOut.insert(Pred).second)
424        continue;
425      SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
426      if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) {
427        assert(OldVNI == VNI && "Wrong value out of predecessor");
428        (void)OldVNI;
429        WorkList.push_back(std::make_pair(Stop, VNI));
430      } else {
431#ifndef NDEBUG
432        // There was no old VNI. Verify that Stop is jointly dominated
433        // by <undef>s for this live range.
434        assert(LaneMask.any() &&
435               "Missing value out of predecessor for main range");
436        SmallVector<SlotIndex,8> Undefs;
437        LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
438        assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) &&
439               "Missing value out of predecessor for subrange");
440#endif
441      }
442    }
443  }
444}
445
446bool LiveIntervals::shrinkToUses(LiveInterval *li,
447                                 SmallVectorImpl<MachineInstr*> *dead) {
448  LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n');
449  assert(Register::isVirtualRegister(li->reg) &&
450         "Can only shrink virtual registers");
451
452  // Shrink subregister live ranges.
453  bool NeedsCleanup = false;
454  for (LiveInterval::SubRange &S : li->subranges()) {
455    shrinkToUses(S, li->reg);
456    if (S.empty())
457      NeedsCleanup = true;
458  }
459  if (NeedsCleanup)
460    li->removeEmptySubRanges();
461
462  // Find all the values used, including PHI kills.
463  ShrinkToUsesWorkList WorkList;
464
465  // Visit all instructions reading li->reg.
466  unsigned Reg = li->reg;
467  for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) {
468    if (UseMI.isDebugValue() || !UseMI.readsVirtualRegister(Reg))
469      continue;
470    SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
471    LiveQueryResult LRQ = li->Query(Idx);
472    VNInfo *VNI = LRQ.valueIn();
473    if (!VNI) {
474      // This shouldn't happen: readsVirtualRegister returns true, but there is
475      // no live value. It is likely caused by a target getting <undef> flags
476      // wrong.
477      LLVM_DEBUG(
478          dbgs() << Idx << '\t' << UseMI
479                 << "Warning: Instr claims to read non-existent value in "
480                 << *li << '\n');
481      continue;
482    }
483    // Special case: An early-clobber tied operand reads and writes the
484    // register one slot early.
485    if (VNInfo *DefVNI = LRQ.valueDefined())
486      Idx = DefVNI->def;
487
488    WorkList.push_back(std::make_pair(Idx, VNI));
489  }
490
491  // Create new live ranges with only minimal live segments per def.
492  LiveRange NewLR;
493  createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end()));
494  extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone());
495
496  // Move the trimmed segments back.
497  li->segments.swap(NewLR.segments);
498
499  // Handle dead values.
500  bool CanSeparate = computeDeadValues(*li, dead);
501  LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n');
502  return CanSeparate;
503}
504
505bool LiveIntervals::computeDeadValues(LiveInterval &LI,
506                                      SmallVectorImpl<MachineInstr*> *dead) {
507  bool MayHaveSplitComponents = false;
508  bool HaveDeadDef = false;
509
510  for (VNInfo *VNI : LI.valnos) {
511    if (VNI->isUnused())
512      continue;
513    SlotIndex Def = VNI->def;
514    LiveRange::iterator I = LI.FindSegmentContaining(Def);
515    assert(I != LI.end() && "Missing segment for VNI");
516
517    // Is the register live before? Otherwise we may have to add a read-undef
518    // flag for subregister defs.
519    unsigned VReg = LI.reg;
520    if (MRI->shouldTrackSubRegLiveness(VReg)) {
521      if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
522        MachineInstr *MI = getInstructionFromIndex(Def);
523        MI->setRegisterDefReadUndef(VReg);
524      }
525    }
526
527    if (I->end != Def.getDeadSlot())
528      continue;
529    if (VNI->isPHIDef()) {
530      // This is a dead PHI. Remove it.
531      VNI->markUnused();
532      LI.removeSegment(I);
533      LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
534      MayHaveSplitComponents = true;
535    } else {
536      // This is a dead def. Make sure the instruction knows.
537      MachineInstr *MI = getInstructionFromIndex(Def);
538      assert(MI && "No instruction defining live value");
539      MI->addRegisterDead(LI.reg, TRI);
540      if (HaveDeadDef)
541        MayHaveSplitComponents = true;
542      HaveDeadDef = true;
543
544      if (dead && MI->allDefsAreDead()) {
545        LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
546        dead->push_back(MI);
547      }
548    }
549  }
550  return MayHaveSplitComponents;
551}
552
553void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg) {
554  LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n');
555  assert(Register::isVirtualRegister(Reg) &&
556         "Can only shrink virtual registers");
557  // Find all the values used, including PHI kills.
558  ShrinkToUsesWorkList WorkList;
559
560  // Visit all instructions reading Reg.
561  SlotIndex LastIdx;
562  for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
563    // Skip "undef" uses.
564    if (!MO.readsReg())
565      continue;
566    // Maybe the operand is for a subregister we don't care about.
567    unsigned SubReg = MO.getSubReg();
568    if (SubReg != 0) {
569      LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
570      if ((LaneMask & SR.LaneMask).none())
571        continue;
572    }
573    // We only need to visit each instruction once.
574    MachineInstr *UseMI = MO.getParent();
575    SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
576    if (Idx == LastIdx)
577      continue;
578    LastIdx = Idx;
579
580    LiveQueryResult LRQ = SR.Query(Idx);
581    VNInfo *VNI = LRQ.valueIn();
582    // For Subranges it is possible that only undef values are left in that
583    // part of the subregister, so there is no real liverange at the use
584    if (!VNI)
585      continue;
586
587    // Special case: An early-clobber tied operand reads and writes the
588    // register one slot early.
589    if (VNInfo *DefVNI = LRQ.valueDefined())
590      Idx = DefVNI->def;
591
592    WorkList.push_back(std::make_pair(Idx, VNI));
593  }
594
595  // Create a new live ranges with only minimal live segments per def.
596  LiveRange NewLR;
597  createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end()));
598  extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask);
599
600  // Move the trimmed ranges back.
601  SR.segments.swap(NewLR.segments);
602
603  // Remove dead PHI value numbers
604  for (VNInfo *VNI : SR.valnos) {
605    if (VNI->isUnused())
606      continue;
607    const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
608    assert(Segment != nullptr && "Missing segment for VNI");
609    if (Segment->end != VNI->def.getDeadSlot())
610      continue;
611    if (VNI->isPHIDef()) {
612      // This is a dead PHI. Remove it.
613      LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def
614                        << " may separate interval\n");
615      VNI->markUnused();
616      SR.removeSegment(*Segment);
617    }
618  }
619
620  LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n');
621}
622
623void LiveIntervals::extendToIndices(LiveRange &LR,
624                                    ArrayRef<SlotIndex> Indices,
625                                    ArrayRef<SlotIndex> Undefs) {
626  assert(LRCalc && "LRCalc not initialized.");
627  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
628  for (SlotIndex Idx : Indices)
629    LRCalc->extend(LR, Idx, /*PhysReg=*/0, Undefs);
630}
631
632void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
633                               SmallVectorImpl<SlotIndex> *EndPoints) {
634  LiveQueryResult LRQ = LR.Query(Kill);
635  VNInfo *VNI = LRQ.valueOutOrDead();
636  if (!VNI)
637    return;
638
639  MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
640  SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
641
642  // If VNI isn't live out from KillMBB, the value is trivially pruned.
643  if (LRQ.endPoint() < MBBEnd) {
644    LR.removeSegment(Kill, LRQ.endPoint());
645    if (EndPoints) EndPoints->push_back(LRQ.endPoint());
646    return;
647  }
648
649  // VNI is live out of KillMBB.
650  LR.removeSegment(Kill, MBBEnd);
651  if (EndPoints) EndPoints->push_back(MBBEnd);
652
653  // Find all blocks that are reachable from KillMBB without leaving VNI's live
654  // range. It is possible that KillMBB itself is reachable, so start a DFS
655  // from each successor.
656  using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>;
657  VisitedTy Visited;
658  for (MachineBasicBlock *Succ : KillMBB->successors()) {
659    for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
660         I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited);
661         I != E;) {
662      MachineBasicBlock *MBB = *I;
663
664      // Check if VNI is live in to MBB.
665      SlotIndex MBBStart, MBBEnd;
666      std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
667      LiveQueryResult LRQ = LR.Query(MBBStart);
668      if (LRQ.valueIn() != VNI) {
669        // This block isn't part of the VNI segment. Prune the search.
670        I.skipChildren();
671        continue;
672      }
673
674      // Prune the search if VNI is killed in MBB.
675      if (LRQ.endPoint() < MBBEnd) {
676        LR.removeSegment(MBBStart, LRQ.endPoint());
677        if (EndPoints) EndPoints->push_back(LRQ.endPoint());
678        I.skipChildren();
679        continue;
680      }
681
682      // VNI is live through MBB.
683      LR.removeSegment(MBBStart, MBBEnd);
684      if (EndPoints) EndPoints->push_back(MBBEnd);
685      ++I;
686    }
687  }
688}
689
690//===----------------------------------------------------------------------===//
691// Register allocator hooks.
692//
693
694void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
695  // Keep track of regunit ranges.
696  SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
697  // Keep track of subregister ranges.
698  SmallVector<std::pair<const LiveInterval::SubRange*,
699                        LiveRange::const_iterator>, 4> SRs;
700
701  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
702    unsigned Reg = Register::index2VirtReg(i);
703    if (MRI->reg_nodbg_empty(Reg))
704      continue;
705    const LiveInterval &LI = getInterval(Reg);
706    if (LI.empty())
707      continue;
708
709    // Find the regunit intervals for the assigned register. They may overlap
710    // the virtual register live range, cancelling any kills.
711    RU.clear();
712    for (MCRegUnitIterator Unit(VRM->getPhys(Reg), TRI); Unit.isValid();
713         ++Unit) {
714      const LiveRange &RURange = getRegUnit(*Unit);
715      if (RURange.empty())
716        continue;
717      RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
718    }
719
720    if (MRI->subRegLivenessEnabled()) {
721      SRs.clear();
722      for (const LiveInterval::SubRange &SR : LI.subranges()) {
723        SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end)));
724      }
725    }
726
727    // Every instruction that kills Reg corresponds to a segment range end
728    // point.
729    for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
730         ++RI) {
731      // A block index indicates an MBB edge.
732      if (RI->end.isBlock())
733        continue;
734      MachineInstr *MI = getInstructionFromIndex(RI->end);
735      if (!MI)
736        continue;
737
738      // Check if any of the regunits are live beyond the end of RI. That could
739      // happen when a physreg is defined as a copy of a virtreg:
740      //
741      //   %eax = COPY %5
742      //   FOO %5             <--- MI, cancel kill because %eax is live.
743      //   BAR killed %eax
744      //
745      // There should be no kill flag on FOO when %5 is rewritten as %eax.
746      for (auto &RUP : RU) {
747        const LiveRange &RURange = *RUP.first;
748        LiveRange::const_iterator &I = RUP.second;
749        if (I == RURange.end())
750          continue;
751        I = RURange.advanceTo(I, RI->end);
752        if (I == RURange.end() || I->start >= RI->end)
753          continue;
754        // I is overlapping RI.
755        goto CancelKill;
756      }
757
758      if (MRI->subRegLivenessEnabled()) {
759        // When reading a partial undefined value we must not add a kill flag.
760        // The regalloc might have used the undef lane for something else.
761        // Example:
762        //     %1 = ...                  ; R32: %1
763        //     %2:high16 = ...           ; R64: %2
764        //        = read killed %2        ; R64: %2
765        //        = read %1              ; R32: %1
766        // The <kill> flag is correct for %2, but the register allocator may
767        // assign R0L to %1, and R0 to %2 because the low 32bits of R0
768        // are actually never written by %2. After assignment the <kill>
769        // flag at the read instruction is invalid.
770        LaneBitmask DefinedLanesMask;
771        if (!SRs.empty()) {
772          // Compute a mask of lanes that are defined.
773          DefinedLanesMask = LaneBitmask::getNone();
774          for (auto &SRP : SRs) {
775            const LiveInterval::SubRange &SR = *SRP.first;
776            LiveRange::const_iterator &I = SRP.second;
777            if (I == SR.end())
778              continue;
779            I = SR.advanceTo(I, RI->end);
780            if (I == SR.end() || I->start >= RI->end)
781              continue;
782            // I is overlapping RI
783            DefinedLanesMask |= SR.LaneMask;
784          }
785        } else
786          DefinedLanesMask = LaneBitmask::getAll();
787
788        bool IsFullWrite = false;
789        for (const MachineOperand &MO : MI->operands()) {
790          if (!MO.isReg() || MO.getReg() != Reg)
791            continue;
792          if (MO.isUse()) {
793            // Reading any undefined lanes?
794            LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
795            if ((UseMask & ~DefinedLanesMask).any())
796              goto CancelKill;
797          } else if (MO.getSubReg() == 0) {
798            // Writing to the full register?
799            assert(MO.isDef());
800            IsFullWrite = true;
801          }
802        }
803
804        // If an instruction writes to a subregister, a new segment starts in
805        // the LiveInterval. But as this is only overriding part of the register
806        // adding kill-flags is not correct here after registers have been
807        // assigned.
808        if (!IsFullWrite) {
809          // Next segment has to be adjacent in the subregister write case.
810          LiveRange::const_iterator N = std::next(RI);
811          if (N != LI.end() && N->start == RI->end)
812            goto CancelKill;
813        }
814      }
815
816      MI->addRegisterKilled(Reg, nullptr);
817      continue;
818CancelKill:
819      MI->clearRegisterKills(Reg, nullptr);
820    }
821  }
822}
823
824MachineBasicBlock*
825LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
826  // A local live range must be fully contained inside the block, meaning it is
827  // defined and killed at instructions, not at block boundaries. It is not
828  // live in or out of any block.
829  //
830  // It is technically possible to have a PHI-defined live range identical to a
831  // single block, but we are going to return false in that case.
832
833  SlotIndex Start = LI.beginIndex();
834  if (Start.isBlock())
835    return nullptr;
836
837  SlotIndex Stop = LI.endIndex();
838  if (Stop.isBlock())
839    return nullptr;
840
841  // getMBBFromIndex doesn't need to search the MBB table when both indexes
842  // belong to proper instructions.
843  MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
844  MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
845  return MBB1 == MBB2 ? MBB1 : nullptr;
846}
847
848bool
849LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
850  for (const VNInfo *PHI : LI.valnos) {
851    if (PHI->isUnused() || !PHI->isPHIDef())
852      continue;
853    const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
854    // Conservatively return true instead of scanning huge predecessor lists.
855    if (PHIMBB->pred_size() > 100)
856      return true;
857    for (const MachineBasicBlock *Pred : PHIMBB->predecessors())
858      if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred)))
859        return true;
860  }
861  return false;
862}
863
864float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
865                                    const MachineBlockFrequencyInfo *MBFI,
866                                    const MachineInstr &MI) {
867  return getSpillWeight(isDef, isUse, MBFI, MI.getParent());
868}
869
870float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
871                                    const MachineBlockFrequencyInfo *MBFI,
872                                    const MachineBasicBlock *MBB) {
873  BlockFrequency Freq = MBFI->getBlockFreq(MBB);
874  const float Scale = 1.0f / MBFI->getEntryFreq();
875  return (isDef + isUse) * (Freq.getFrequency() * Scale);
876}
877
878LiveRange::Segment
879LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr &startInst) {
880  LiveInterval& Interval = createEmptyInterval(reg);
881  VNInfo *VN = Interval.getNextValue(
882      SlotIndex(getInstructionIndex(startInst).getRegSlot()),
883      getVNInfoAllocator());
884  LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()),
885                       getMBBEndIdx(startInst.getParent()), VN);
886  Interval.addSegment(S);
887
888  return S;
889}
890
891//===----------------------------------------------------------------------===//
892//                          Register mask functions
893//===----------------------------------------------------------------------===//
894
895bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
896                                             BitVector &UsableRegs) {
897  if (LI.empty())
898    return false;
899  LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
900
901  // Use a smaller arrays for local live ranges.
902  ArrayRef<SlotIndex> Slots;
903  ArrayRef<const uint32_t*> Bits;
904  if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
905    Slots = getRegMaskSlotsInBlock(MBB->getNumber());
906    Bits = getRegMaskBitsInBlock(MBB->getNumber());
907  } else {
908    Slots = getRegMaskSlots();
909    Bits = getRegMaskBits();
910  }
911
912  // We are going to enumerate all the register mask slots contained in LI.
913  // Start with a binary search of RegMaskSlots to find a starting point.
914  ArrayRef<SlotIndex>::iterator SlotI = llvm::lower_bound(Slots, LiveI->start);
915  ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
916
917  // No slots in range, LI begins after the last call.
918  if (SlotI == SlotE)
919    return false;
920
921  bool Found = false;
922  while (true) {
923    assert(*SlotI >= LiveI->start);
924    // Loop over all slots overlapping this segment.
925    while (*SlotI < LiveI->end) {
926      // *SlotI overlaps LI. Collect mask bits.
927      if (!Found) {
928        // This is the first overlap. Initialize UsableRegs to all ones.
929        UsableRegs.clear();
930        UsableRegs.resize(TRI->getNumRegs(), true);
931        Found = true;
932      }
933      // Remove usable registers clobbered by this mask.
934      UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
935      if (++SlotI == SlotE)
936        return Found;
937    }
938    // *SlotI is beyond the current LI segment.
939    LiveI = LI.advanceTo(LiveI, *SlotI);
940    if (LiveI == LiveE)
941      return Found;
942    // Advance SlotI until it overlaps.
943    while (*SlotI < LiveI->start)
944      if (++SlotI == SlotE)
945        return Found;
946  }
947}
948
949//===----------------------------------------------------------------------===//
950//                         IntervalUpdate class.
951//===----------------------------------------------------------------------===//
952
953/// Toolkit used by handleMove to trim or extend live intervals.
954class LiveIntervals::HMEditor {
955private:
956  LiveIntervals& LIS;
957  const MachineRegisterInfo& MRI;
958  const TargetRegisterInfo& TRI;
959  SlotIndex OldIdx;
960  SlotIndex NewIdx;
961  SmallPtrSet<LiveRange*, 8> Updated;
962  bool UpdateFlags;
963
964public:
965  HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
966           const TargetRegisterInfo& TRI,
967           SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
968    : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
969      UpdateFlags(UpdateFlags) {}
970
971  // FIXME: UpdateFlags is a workaround that creates live intervals for all
972  // physregs, even those that aren't needed for regalloc, in order to update
973  // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
974  // flags, and postRA passes will use a live register utility instead.
975  LiveRange *getRegUnitLI(unsigned Unit) {
976    if (UpdateFlags && !MRI.isReservedRegUnit(Unit))
977      return &LIS.getRegUnit(Unit);
978    return LIS.getCachedRegUnit(Unit);
979  }
980
981  /// Update all live ranges touched by MI, assuming a move from OldIdx to
982  /// NewIdx.
983  void updateAllRanges(MachineInstr *MI) {
984    LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": "
985                      << *MI);
986    bool hasRegMask = false;
987    for (MachineOperand &MO : MI->operands()) {
988      if (MO.isRegMask())
989        hasRegMask = true;
990      if (!MO.isReg())
991        continue;
992      if (MO.isUse()) {
993        if (!MO.readsReg())
994          continue;
995        // Aggressively clear all kill flags.
996        // They are reinserted by VirtRegRewriter.
997        MO.setIsKill(false);
998      }
999
1000      Register Reg = MO.getReg();
1001      if (!Reg)
1002        continue;
1003      if (Register::isVirtualRegister(Reg)) {
1004        LiveInterval &LI = LIS.getInterval(Reg);
1005        if (LI.hasSubRanges()) {
1006          unsigned SubReg = MO.getSubReg();
1007          LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
1008                                        : MRI.getMaxLaneMaskForVReg(Reg);
1009          for (LiveInterval::SubRange &S : LI.subranges()) {
1010            if ((S.LaneMask & LaneMask).none())
1011              continue;
1012            updateRange(S, Reg, S.LaneMask);
1013          }
1014        }
1015        updateRange(LI, Reg, LaneBitmask::getNone());
1016        continue;
1017      }
1018
1019      // For physregs, only update the regunits that actually have a
1020      // precomputed live range.
1021      for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
1022        if (LiveRange *LR = getRegUnitLI(*Units))
1023          updateRange(*LR, *Units, LaneBitmask::getNone());
1024    }
1025    if (hasRegMask)
1026      updateRegMaskSlots();
1027  }
1028
1029private:
1030  /// Update a single live range, assuming an instruction has been moved from
1031  /// OldIdx to NewIdx.
1032  void updateRange(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
1033    if (!Updated.insert(&LR).second)
1034      return;
1035    LLVM_DEBUG({
1036      dbgs() << "     ";
1037      if (Register::isVirtualRegister(Reg)) {
1038        dbgs() << printReg(Reg);
1039        if (LaneMask.any())
1040          dbgs() << " L" << PrintLaneMask(LaneMask);
1041      } else {
1042        dbgs() << printRegUnit(Reg, &TRI);
1043      }
1044      dbgs() << ":\t" << LR << '\n';
1045    });
1046    if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
1047      handleMoveDown(LR);
1048    else
1049      handleMoveUp(LR, Reg, LaneMask);
1050    LLVM_DEBUG(dbgs() << "        -->\t" << LR << '\n');
1051    LR.verify();
1052  }
1053
1054  /// Update LR to reflect an instruction has been moved downwards from OldIdx
1055  /// to NewIdx (OldIdx < NewIdx).
1056  void handleMoveDown(LiveRange &LR) {
1057    LiveRange::iterator E = LR.end();
1058    // Segment going into OldIdx.
1059    LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1060
1061    // No value live before or after OldIdx? Nothing to do.
1062    if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1063      return;
1064
1065    LiveRange::iterator OldIdxOut;
1066    // Do we have a value live-in to OldIdx?
1067    if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1068      // If the live-in value already extends to NewIdx, there is nothing to do.
1069      if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end))
1070        return;
1071      // Aggressively remove all kill flags from the old kill point.
1072      // Kill flags shouldn't be used while live intervals exist, they will be
1073      // reinserted by VirtRegRewriter.
1074      if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end))
1075        for (MachineOperand &MOP : mi_bundle_ops(*KillMI))
1076          if (MOP.isReg() && MOP.isUse())
1077            MOP.setIsKill(false);
1078
1079      // Is there a def before NewIdx which is not OldIdx?
1080      LiveRange::iterator Next = std::next(OldIdxIn);
1081      if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) &&
1082          SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1083        // If we are here then OldIdx was just a use but not a def. We only have
1084        // to ensure liveness extends to NewIdx.
1085        LiveRange::iterator NewIdxIn =
1086          LR.advanceTo(Next, NewIdx.getBaseIndex());
1087        // Extend the segment before NewIdx if necessary.
1088        if (NewIdxIn == E ||
1089            !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) {
1090          LiveRange::iterator Prev = std::prev(NewIdxIn);
1091          Prev->end = NewIdx.getRegSlot();
1092        }
1093        // Extend OldIdxIn.
1094        OldIdxIn->end = Next->start;
1095        return;
1096      }
1097
1098      // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
1099      // invalid by overlapping ranges.
1100      bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1101      OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber());
1102      // If this was not a kill, then there was no def and we're done.
1103      if (!isKill)
1104        return;
1105
1106      // Did we have a Def at OldIdx?
1107      OldIdxOut = Next;
1108      if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1109        return;
1110    } else {
1111      OldIdxOut = OldIdxIn;
1112    }
1113
1114    // If we are here then there is a Definition at OldIdx. OldIdxOut points
1115    // to the segment starting there.
1116    assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1117           "No def?");
1118    VNInfo *OldIdxVNI = OldIdxOut->valno;
1119    assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1120
1121    // If the defined value extends beyond NewIdx, just move the beginning
1122    // of the segment to NewIdx.
1123    SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1124    if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) {
1125      OldIdxVNI->def = NewIdxDef;
1126      OldIdxOut->start = OldIdxVNI->def;
1127      return;
1128    }
1129
1130    // If we are here then we have a Definition at OldIdx which ends before
1131    // NewIdx.
1132
1133    // Is there an existing Def at NewIdx?
1134    LiveRange::iterator AfterNewIdx
1135      = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot());
1136    bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1137    if (!OldIdxDefIsDead &&
1138        SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) {
1139      // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
1140      VNInfo *DefVNI;
1141      if (OldIdxOut != LR.begin() &&
1142          !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end,
1143                                     OldIdxOut->start)) {
1144        // There is no gap between OldIdxOut and its predecessor anymore,
1145        // merge them.
1146        LiveRange::iterator IPrev = std::prev(OldIdxOut);
1147        DefVNI = OldIdxVNI;
1148        IPrev->end = OldIdxOut->end;
1149      } else {
1150        // The value is live in to OldIdx
1151        LiveRange::iterator INext = std::next(OldIdxOut);
1152        assert(INext != E && "Must have following segment");
1153        // We merge OldIdxOut and its successor. As we're dealing with subreg
1154        // reordering, there is always a successor to OldIdxOut in the same BB
1155        // We don't need INext->valno anymore and will reuse for the new segment
1156        // we create later.
1157        DefVNI = OldIdxVNI;
1158        INext->start = OldIdxOut->end;
1159        INext->valno->def = INext->start;
1160      }
1161      // If NewIdx is behind the last segment, extend that and append a new one.
1162      if (AfterNewIdx == E) {
1163        // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1164        // one position.
1165        //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
1166        // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
1167        std::copy(std::next(OldIdxOut), E, OldIdxOut);
1168        // The last segment is undefined now, reuse it for a dead def.
1169        LiveRange::iterator NewSegment = std::prev(E);
1170        *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1171                                         DefVNI);
1172        DefVNI->def = NewIdxDef;
1173
1174        LiveRange::iterator Prev = std::prev(NewSegment);
1175        Prev->end = NewIdxDef;
1176      } else {
1177        // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1178        // one position.
1179        //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
1180        // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
1181        std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut);
1182        LiveRange::iterator Prev = std::prev(AfterNewIdx);
1183        // We have two cases:
1184        if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) {
1185          // Case 1: NewIdx is inside a liverange. Split this liverange at
1186          // NewIdxDef into the segment "Prev" followed by "NewSegment".
1187          LiveRange::iterator NewSegment = AfterNewIdx;
1188          *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno);
1189          Prev->valno->def = NewIdxDef;
1190
1191          *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI);
1192          DefVNI->def = Prev->start;
1193        } else {
1194          // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
1195          // turn Prev into a segment from NewIdx to AfterNewIdx->start.
1196          *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI);
1197          DefVNI->def = NewIdxDef;
1198          assert(DefVNI != AfterNewIdx->valno);
1199        }
1200      }
1201      return;
1202    }
1203
1204    if (AfterNewIdx != E &&
1205        SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) {
1206      // There is an existing def at NewIdx. The def at OldIdx is coalesced into
1207      // that value.
1208      assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?");
1209      LR.removeValNo(OldIdxVNI);
1210    } else {
1211      // There was no existing def at NewIdx. We need to create a dead def
1212      // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
1213      // a new segment at the place where we want to construct the dead def.
1214      //    |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
1215      // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
1216      assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators");
1217      std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut);
1218      // We can reuse OldIdxVNI now.
1219      LiveRange::iterator NewSegment = std::prev(AfterNewIdx);
1220      VNInfo *NewSegmentVNI = OldIdxVNI;
1221      NewSegmentVNI->def = NewIdxDef;
1222      *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1223                                       NewSegmentVNI);
1224    }
1225  }
1226
1227  /// Update LR to reflect an instruction has been moved upwards from OldIdx
1228  /// to NewIdx (NewIdx < OldIdx).
1229  void handleMoveUp(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
1230    LiveRange::iterator E = LR.end();
1231    // Segment going into OldIdx.
1232    LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1233
1234    // No value live before or after OldIdx? Nothing to do.
1235    if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1236      return;
1237
1238    LiveRange::iterator OldIdxOut;
1239    // Do we have a value live-in to OldIdx?
1240    if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1241      // If the live-in value isn't killed here, then we have no Def at
1242      // OldIdx, moreover the value must be live at NewIdx so there is nothing
1243      // to do.
1244      bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1245      if (!isKill)
1246        return;
1247
1248      // At this point we have to move OldIdxIn->end back to the nearest
1249      // previous use or (dead-)def but no further than NewIdx.
1250      SlotIndex DefBeforeOldIdx
1251        = std::max(OldIdxIn->start.getDeadSlot(),
1252                   NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()));
1253      OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask);
1254
1255      // Did we have a Def at OldIdx? If not we are done now.
1256      OldIdxOut = std::next(OldIdxIn);
1257      if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1258        return;
1259    } else {
1260      OldIdxOut = OldIdxIn;
1261      OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E;
1262    }
1263
1264    // If we are here then there is a Definition at OldIdx. OldIdxOut points
1265    // to the segment starting there.
1266    assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1267           "No def?");
1268    VNInfo *OldIdxVNI = OldIdxOut->valno;
1269    assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1270    bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1271
1272    // Is there an existing def at NewIdx?
1273    SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1274    LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot());
1275    if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) {
1276      assert(NewIdxOut->valno != OldIdxVNI &&
1277             "Same value defined more than once?");
1278      // If OldIdx was a dead def remove it.
1279      if (!OldIdxDefIsDead) {
1280        // Remove segment starting at NewIdx and move begin of OldIdxOut to
1281        // NewIdx so it can take its place.
1282        OldIdxVNI->def = NewIdxDef;
1283        OldIdxOut->start = NewIdxDef;
1284        LR.removeValNo(NewIdxOut->valno);
1285      } else {
1286        // Simply remove the dead def at OldIdx.
1287        LR.removeValNo(OldIdxVNI);
1288      }
1289    } else {
1290      // Previously nothing was live after NewIdx, so all we have to do now is
1291      // move the begin of OldIdxOut to NewIdx.
1292      if (!OldIdxDefIsDead) {
1293        // Do we have any intermediate Defs between OldIdx and NewIdx?
1294        if (OldIdxIn != E &&
1295            SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) {
1296          // OldIdx is not a dead def and NewIdx is before predecessor start.
1297          LiveRange::iterator NewIdxIn = NewIdxOut;
1298          assert(NewIdxIn == LR.find(NewIdx.getBaseIndex()));
1299          const SlotIndex SplitPos = NewIdxDef;
1300          OldIdxVNI = OldIdxIn->valno;
1301
1302          SlotIndex NewDefEndPoint = std::next(NewIdxIn)->end;
1303          LiveRange::iterator Prev = std::prev(OldIdxIn);
1304          if (OldIdxIn != LR.begin() &&
1305              SlotIndex::isEarlierInstr(NewIdx, Prev->end)) {
1306            // If the segment before OldIdx read a value defined earlier than
1307            // NewIdx, the moved instruction also reads and forwards that
1308            // value. Extend the lifetime of the new def point.
1309
1310            // Extend to where the previous range started, unless there is
1311            // another redef first.
1312            NewDefEndPoint = std::min(OldIdxIn->start,
1313                                      std::next(NewIdxOut)->start);
1314          }
1315
1316          // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
1317          OldIdxOut->valno->def = OldIdxIn->start;
1318          *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end,
1319                                          OldIdxOut->valno);
1320          // OldIdxIn and OldIdxVNI are now undef and can be overridden.
1321          // We Slide [NewIdxIn, OldIdxIn) down one position.
1322          //    |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
1323          // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
1324          std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut);
1325          // NewIdxIn is now considered undef so we can reuse it for the moved
1326          // value.
1327          LiveRange::iterator NewSegment = NewIdxIn;
1328          LiveRange::iterator Next = std::next(NewSegment);
1329          if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1330            // There is no gap between NewSegment and its predecessor.
1331            *NewSegment = LiveRange::Segment(Next->start, SplitPos,
1332                                             Next->valno);
1333
1334            *Next = LiveRange::Segment(SplitPos, NewDefEndPoint, OldIdxVNI);
1335            Next->valno->def = SplitPos;
1336          } else {
1337            // There is a gap between NewSegment and its predecessor
1338            // Value becomes live in.
1339            *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI);
1340            NewSegment->valno->def = SplitPos;
1341          }
1342        } else {
1343          // Leave the end point of a live def.
1344          OldIdxOut->start = NewIdxDef;
1345          OldIdxVNI->def = NewIdxDef;
1346          if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end))
1347            OldIdxIn->end = NewIdx.getRegSlot();
1348        }
1349      } else if (OldIdxIn != E
1350          && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx)
1351          && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) {
1352        // OldIdxVNI is a dead def that has been moved into the middle of
1353        // another value in LR. That can happen when LR is a whole register,
1354        // but the dead def is a write to a subreg that is dead at NewIdx.
1355        // The dead def may have been moved across other values
1356        // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1357        // down one position.
1358        //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1359        // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1360        std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1361        // Modify the segment at NewIdxOut and the following segment to meet at
1362        // the point of the dead def, with the following segment getting
1363        // OldIdxVNI as its value number.
1364        *NewIdxOut = LiveRange::Segment(
1365            NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno);
1366        *(NewIdxOut + 1) = LiveRange::Segment(
1367            NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI);
1368        OldIdxVNI->def = NewIdxDef;
1369        // Modify subsequent segments to be defined by the moved def OldIdxVNI.
1370        for (auto Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx)
1371          Idx->valno = OldIdxVNI;
1372        // Aggressively remove all dead flags from the former dead definition.
1373        // Kill/dead flags shouldn't be used while live intervals exist; they
1374        // will be reinserted by VirtRegRewriter.
1375        if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx))
1376          for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
1377            if (MO->isReg() && !MO->isUse())
1378              MO->setIsDead(false);
1379      } else {
1380        // OldIdxVNI is a dead def. It may have been moved across other values
1381        // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1382        // down one position.
1383        //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1384        // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1385        std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1386        // OldIdxVNI can be reused now to build a new dead def segment.
1387        LiveRange::iterator NewSegment = NewIdxOut;
1388        VNInfo *NewSegmentVNI = OldIdxVNI;
1389        *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1390                                         NewSegmentVNI);
1391        NewSegmentVNI->def = NewIdxDef;
1392      }
1393    }
1394  }
1395
1396  void updateRegMaskSlots() {
1397    SmallVectorImpl<SlotIndex>::iterator RI =
1398        llvm::lower_bound(LIS.RegMaskSlots, OldIdx);
1399    assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
1400           "No RegMask at OldIdx.");
1401    *RI = NewIdx.getRegSlot();
1402    assert((RI == LIS.RegMaskSlots.begin() ||
1403            SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
1404           "Cannot move regmask instruction above another call");
1405    assert((std::next(RI) == LIS.RegMaskSlots.end() ||
1406            SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
1407           "Cannot move regmask instruction below another call");
1408  }
1409
1410  // Return the last use of reg between NewIdx and OldIdx.
1411  SlotIndex findLastUseBefore(SlotIndex Before, unsigned Reg,
1412                              LaneBitmask LaneMask) {
1413    if (Register::isVirtualRegister(Reg)) {
1414      SlotIndex LastUse = Before;
1415      for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
1416        if (MO.isUndef())
1417          continue;
1418        unsigned SubReg = MO.getSubReg();
1419        if (SubReg != 0 && LaneMask.any()
1420            && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none())
1421          continue;
1422
1423        const MachineInstr &MI = *MO.getParent();
1424        SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1425        if (InstSlot > LastUse && InstSlot < OldIdx)
1426          LastUse = InstSlot.getRegSlot();
1427      }
1428      return LastUse;
1429    }
1430
1431    // This is a regunit interval, so scanning the use list could be very
1432    // expensive. Scan upwards from OldIdx instead.
1433    assert(Before < OldIdx && "Expected upwards move");
1434    SlotIndexes *Indexes = LIS.getSlotIndexes();
1435    MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before);
1436
1437    // OldIdx may not correspond to an instruction any longer, so set MII to
1438    // point to the next instruction after OldIdx, or MBB->end().
1439    MachineBasicBlock::iterator MII = MBB->end();
1440    if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1441                           Indexes->getNextNonNullIndex(OldIdx)))
1442      if (MI->getParent() == MBB)
1443        MII = MI;
1444
1445    MachineBasicBlock::iterator Begin = MBB->begin();
1446    while (MII != Begin) {
1447      if ((--MII)->isDebugInstr())
1448        continue;
1449      SlotIndex Idx = Indexes->getInstructionIndex(*MII);
1450
1451      // Stop searching when Before is reached.
1452      if (!SlotIndex::isEarlierInstr(Before, Idx))
1453        return Before;
1454
1455      // Check if MII uses Reg.
1456      for (MIBundleOperands MO(*MII); MO.isValid(); ++MO)
1457        if (MO->isReg() && !MO->isUndef() &&
1458            Register::isPhysicalRegister(MO->getReg()) &&
1459            TRI.hasRegUnit(MO->getReg(), Reg))
1460          return Idx.getRegSlot();
1461    }
1462    // Didn't reach Before. It must be the first instruction in the block.
1463    return Before;
1464  }
1465};
1466
1467void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) {
1468  // It is fine to move a bundle as a whole, but not an individual instruction
1469  // inside it.
1470  assert((!MI.isBundled() || MI.getOpcode() == TargetOpcode::BUNDLE) &&
1471         "Cannot move instruction in bundle");
1472  SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1473  Indexes->removeMachineInstrFromMaps(MI);
1474  SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1475  assert(getMBBStartIdx(MI.getParent()) <= OldIndex &&
1476         OldIndex < getMBBEndIdx(MI.getParent()) &&
1477         "Cannot handle moves across basic block boundaries.");
1478
1479  HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1480  HME.updateAllRanges(&MI);
1481}
1482
1483void LiveIntervals::handleMoveIntoBundle(MachineInstr &MI,
1484                                         MachineInstr &BundleStart,
1485                                         bool UpdateFlags) {
1486  SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1487  SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
1488  HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1489  HME.updateAllRanges(&MI);
1490}
1491
1492void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
1493                                        const MachineBasicBlock::iterator End,
1494                                        const SlotIndex endIdx,
1495                                        LiveRange &LR, const unsigned Reg,
1496                                        LaneBitmask LaneMask) {
1497  LiveInterval::iterator LII = LR.find(endIdx);
1498  SlotIndex lastUseIdx;
1499  if (LII == LR.begin()) {
1500    // This happens when the function is called for a subregister that only
1501    // occurs _after_ the range that is to be repaired.
1502    return;
1503  }
1504  if (LII != LR.end() && LII->start < endIdx)
1505    lastUseIdx = LII->end;
1506  else
1507    --LII;
1508
1509  for (MachineBasicBlock::iterator I = End; I != Begin;) {
1510    --I;
1511    MachineInstr &MI = *I;
1512    if (MI.isDebugInstr())
1513      continue;
1514
1515    SlotIndex instrIdx = getInstructionIndex(MI);
1516    bool isStartValid = getInstructionFromIndex(LII->start);
1517    bool isEndValid = getInstructionFromIndex(LII->end);
1518
1519    // FIXME: This doesn't currently handle early-clobber or multiple removed
1520    // defs inside of the region to repair.
1521    for (MachineInstr::mop_iterator OI = MI.operands_begin(),
1522                                    OE = MI.operands_end();
1523         OI != OE; ++OI) {
1524      const MachineOperand &MO = *OI;
1525      if (!MO.isReg() || MO.getReg() != Reg)
1526        continue;
1527
1528      unsigned SubReg = MO.getSubReg();
1529      LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
1530      if ((Mask & LaneMask).none())
1531        continue;
1532
1533      if (MO.isDef()) {
1534        if (!isStartValid) {
1535          if (LII->end.isDead()) {
1536            SlotIndex prevStart;
1537            if (LII != LR.begin())
1538              prevStart = std::prev(LII)->start;
1539
1540            // FIXME: This could be more efficient if there was a
1541            // removeSegment method that returned an iterator.
1542            LR.removeSegment(*LII, true);
1543            if (prevStart.isValid())
1544              LII = LR.find(prevStart);
1545            else
1546              LII = LR.begin();
1547          } else {
1548            LII->start = instrIdx.getRegSlot();
1549            LII->valno->def = instrIdx.getRegSlot();
1550            if (MO.getSubReg() && !MO.isUndef())
1551              lastUseIdx = instrIdx.getRegSlot();
1552            else
1553              lastUseIdx = SlotIndex();
1554            continue;
1555          }
1556        }
1557
1558        if (!lastUseIdx.isValid()) {
1559          VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1560          LiveRange::Segment S(instrIdx.getRegSlot(),
1561                               instrIdx.getDeadSlot(), VNI);
1562          LII = LR.addSegment(S);
1563        } else if (LII->start != instrIdx.getRegSlot()) {
1564          VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1565          LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1566          LII = LR.addSegment(S);
1567        }
1568
1569        if (MO.getSubReg() && !MO.isUndef())
1570          lastUseIdx = instrIdx.getRegSlot();
1571        else
1572          lastUseIdx = SlotIndex();
1573      } else if (MO.isUse()) {
1574        // FIXME: This should probably be handled outside of this branch,
1575        // either as part of the def case (for defs inside of the region) or
1576        // after the loop over the region.
1577        if (!isEndValid && !LII->end.isBlock())
1578          LII->end = instrIdx.getRegSlot();
1579        if (!lastUseIdx.isValid())
1580          lastUseIdx = instrIdx.getRegSlot();
1581      }
1582    }
1583  }
1584}
1585
1586void
1587LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1588                                      MachineBasicBlock::iterator Begin,
1589                                      MachineBasicBlock::iterator End,
1590                                      ArrayRef<unsigned> OrigRegs) {
1591  // Find anchor points, which are at the beginning/end of blocks or at
1592  // instructions that already have indexes.
1593  while (Begin != MBB->begin() && !Indexes->hasIndex(*Begin))
1594    --Begin;
1595  while (End != MBB->end() && !Indexes->hasIndex(*End))
1596    ++End;
1597
1598  SlotIndex endIdx;
1599  if (End == MBB->end())
1600    endIdx = getMBBEndIdx(MBB).getPrevSlot();
1601  else
1602    endIdx = getInstructionIndex(*End);
1603
1604  Indexes->repairIndexesInRange(MBB, Begin, End);
1605
1606  for (MachineBasicBlock::iterator I = End; I != Begin;) {
1607    --I;
1608    MachineInstr &MI = *I;
1609    if (MI.isDebugInstr())
1610      continue;
1611    for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
1612                                          MOE = MI.operands_end();
1613         MOI != MOE; ++MOI) {
1614      if (MOI->isReg() && Register::isVirtualRegister(MOI->getReg()) &&
1615          !hasInterval(MOI->getReg())) {
1616        createAndComputeVirtRegInterval(MOI->getReg());
1617      }
1618    }
1619  }
1620
1621  for (unsigned Reg : OrigRegs) {
1622    if (!Register::isVirtualRegister(Reg))
1623      continue;
1624
1625    LiveInterval &LI = getInterval(Reg);
1626    // FIXME: Should we support undefs that gain defs?
1627    if (!LI.hasAtLeastOneValue())
1628      continue;
1629
1630    for (LiveInterval::SubRange &S : LI.subranges())
1631      repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask);
1632
1633    repairOldRegInRange(Begin, End, endIdx, LI, Reg);
1634  }
1635}
1636
1637void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) {
1638  for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) {
1639    if (LiveRange *LR = getCachedRegUnit(*Unit))
1640      if (VNInfo *VNI = LR->getVNInfoAt(Pos))
1641        LR->removeValNo(VNI);
1642  }
1643}
1644
1645void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
1646  // LI may not have the main range computed yet, but its subranges may
1647  // be present.
1648  VNInfo *VNI = LI.getVNInfoAt(Pos);
1649  if (VNI != nullptr) {
1650    assert(VNI->def.getBaseIndex() == Pos.getBaseIndex());
1651    LI.removeValNo(VNI);
1652  }
1653
1654  // Also remove the value defined in subranges.
1655  for (LiveInterval::SubRange &S : LI.subranges()) {
1656    if (VNInfo *SVNI = S.getVNInfoAt(Pos))
1657      if (SVNI->def.getBaseIndex() == Pos.getBaseIndex())
1658        S.removeValNo(SVNI);
1659  }
1660  LI.removeEmptySubRanges();
1661}
1662
1663void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
1664    SmallVectorImpl<LiveInterval*> &SplitLIs) {
1665  ConnectedVNInfoEqClasses ConEQ(*this);
1666  unsigned NumComp = ConEQ.Classify(LI);
1667  if (NumComp <= 1)
1668    return;
1669  LLVM_DEBUG(dbgs() << "  Split " << NumComp << " components: " << LI << '\n');
1670  unsigned Reg = LI.reg;
1671  const TargetRegisterClass *RegClass = MRI->getRegClass(Reg);
1672  for (unsigned I = 1; I < NumComp; ++I) {
1673    Register NewVReg = MRI->createVirtualRegister(RegClass);
1674    LiveInterval &NewLI = createEmptyInterval(NewVReg);
1675    SplitLIs.push_back(&NewLI);
1676  }
1677  ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
1678}
1679
1680void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) {
1681  assert(LRCalc && "LRCalc not initialized.");
1682  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
1683  LRCalc->constructMainRangeFromSubranges(LI);
1684}
1685