1193323Sed//===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===//
2193323Sed//
3353358Sdim// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4353358Sdim// See https://llvm.org/LICENSE.txt for license information.
5353358Sdim// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6193323Sed//
7193323Sed//===----------------------------------------------------------------------===//
8193323Sed//
9193323Sed// This file implements the LatencyPriorityQueue class, which is a
10193323Sed// SchedulingPriorityQueue that schedules using latency information to
11193323Sed// reduce the length of the critical path through the basic block.
12193323Sed//
13193323Sed//===----------------------------------------------------------------------===//
14193323Sed
15193323Sed#include "llvm/CodeGen/LatencyPriorityQueue.h"
16341825Sdim#include "llvm/Config/llvm-config.h"
17193323Sed#include "llvm/Support/Debug.h"
18218893Sdim#include "llvm/Support/raw_ostream.h"
19193323Sedusing namespace llvm;
20193323Sed
21276479Sdim#define DEBUG_TYPE "scheduler"
22276479Sdim
23193323Sedbool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
24193323Sed  // The isScheduleHigh flag allows nodes with wraparound dependencies that
25193323Sed  // cannot easily be modeled as edges with latencies to be scheduled as
26193323Sed  // soon as possible in a top-down schedule.
27193323Sed  if (LHS->isScheduleHigh && !RHS->isScheduleHigh)
28193323Sed    return false;
29193323Sed  if (!LHS->isScheduleHigh && RHS->isScheduleHigh)
30193323Sed    return true;
31193323Sed
32193323Sed  unsigned LHSNum = LHS->NodeNum;
33193323Sed  unsigned RHSNum = RHS->NodeNum;
34193323Sed
35193323Sed  // The most important heuristic is scheduling the critical path.
36193323Sed  unsigned LHSLatency = PQ->getLatency(LHSNum);
37193323Sed  unsigned RHSLatency = PQ->getLatency(RHSNum);
38193323Sed  if (LHSLatency < RHSLatency) return true;
39193323Sed  if (LHSLatency > RHSLatency) return false;
40218893Sdim
41193323Sed  // After that, if two nodes have identical latencies, look to see if one will
42193323Sed  // unblock more other nodes than the other.
43193323Sed  unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
44193323Sed  unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
45193323Sed  if (LHSBlocked < RHSBlocked) return true;
46193323Sed  if (LHSBlocked > RHSBlocked) return false;
47218893Sdim
48193323Sed  // Finally, just to provide a stable ordering, use the node number as a
49193323Sed  // deciding factor.
50234353Sdim  return RHSNum < LHSNum;
51193323Sed}
52193323Sed
53193323Sed
54193323Sed/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
55193323Sed/// of SU, return it, otherwise return null.
56193323SedSUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
57276479Sdim  SUnit *OnlyAvailablePred = nullptr;
58193323Sed  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
59193323Sed       I != E; ++I) {
60193323Sed    SUnit &Pred = *I->getSUnit();
61193323Sed    if (!Pred.isScheduled) {
62193323Sed      // We found an available, but not scheduled, predecessor.  If it's the
63193323Sed      // only one we have found, keep track of it... otherwise give up.
64193323Sed      if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
65276479Sdim        return nullptr;
66193323Sed      OnlyAvailablePred = &Pred;
67193323Sed    }
68193323Sed  }
69218893Sdim
70193323Sed  return OnlyAvailablePred;
71193323Sed}
72193323Sed
73208599Srdivackyvoid LatencyPriorityQueue::push(SUnit *SU) {
74193323Sed  // Look at all of the successors of this node.  Count the number of nodes that
75193323Sed  // this node is the sole unscheduled node for.
76193323Sed  unsigned NumNodesBlocking = 0;
77193323Sed  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
78198892Srdivacky       I != E; ++I) {
79193323Sed    if (getSingleUnscheduledPred(I->getSUnit()) == SU)
80193323Sed      ++NumNodesBlocking;
81198892Srdivacky  }
82193323Sed  NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
83218893Sdim
84208599Srdivacky  Queue.push_back(SU);
85193323Sed}
86193323Sed
87193323Sed
88234353Sdim// scheduledNode - As nodes are scheduled, we look to see if there are any
89193323Sed// successor nodes that have a single unscheduled predecessor.  If so, that
90193323Sed// single predecessor has a higher priority, since scheduling it will make
91193323Sed// the node available.
92234353Sdimvoid LatencyPriorityQueue::scheduledNode(SUnit *SU) {
93193323Sed  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
94198892Srdivacky       I != E; ++I) {
95193323Sed    AdjustPriorityOfUnscheduledPreds(I->getSUnit());
96198892Srdivacky  }
97193323Sed}
98193323Sed
99193323Sed/// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
100193323Sed/// scheduled.  If SU is not itself available, then there is at least one
101193323Sed/// predecessor node that has not been scheduled yet.  If SU has exactly ONE
102193323Sed/// unscheduled predecessor, we want to increase its priority: it getting
103193323Sed/// scheduled will make this node available, so it is better than some other
104193323Sed/// node of the same priority that will not make a node available.
105193323Sedvoid LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
106193323Sed  if (SU->isAvailable) return;  // All preds scheduled.
107218893Sdim
108193323Sed  SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
109276479Sdim  if (!OnlyAvailablePred || !OnlyAvailablePred->isAvailable) return;
110218893Sdim
111193323Sed  // Okay, we found a single predecessor that is available, but not scheduled.
112193323Sed  // Since it is available, it must be in the priority queue.  First remove it.
113193323Sed  remove(OnlyAvailablePred);
114193323Sed
115193323Sed  // Reinsert the node into the priority queue, which recomputes its
116193323Sed  // NumNodesSolelyBlocking value.
117193323Sed  push(OnlyAvailablePred);
118193323Sed}
119208599Srdivacky
120208599SrdivackySUnit *LatencyPriorityQueue::pop() {
121276479Sdim  if (empty()) return nullptr;
122208599Srdivacky  std::vector<SUnit *>::iterator Best = Queue.begin();
123276479Sdim  for (std::vector<SUnit *>::iterator I = std::next(Queue.begin()),
124208599Srdivacky       E = Queue.end(); I != E; ++I)
125208599Srdivacky    if (Picker(*Best, *I))
126208599Srdivacky      Best = I;
127208599Srdivacky  SUnit *V = *Best;
128276479Sdim  if (Best != std::prev(Queue.end()))
129208599Srdivacky    std::swap(*Best, Queue.back());
130208599Srdivacky  Queue.pop_back();
131208599Srdivacky  return V;
132208599Srdivacky}
133208599Srdivacky
134208599Srdivackyvoid LatencyPriorityQueue::remove(SUnit *SU) {
135208599Srdivacky  assert(!Queue.empty() && "Queue is empty!");
136314564Sdim  std::vector<SUnit *>::iterator I = find(Queue, SU);
137327952Sdim  assert(I != Queue.end() && "Queue doesn't contain the SU being removed!");
138276479Sdim  if (I != std::prev(Queue.end()))
139208599Srdivacky    std::swap(*I, Queue.back());
140208599Srdivacky  Queue.pop_back();
141208599Srdivacky}
142341825Sdim
143341825Sdim#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
144341825SdimLLVM_DUMP_METHOD void LatencyPriorityQueue::dump(ScheduleDAG *DAG) const {
145341825Sdim  dbgs() << "Latency Priority Queue\n";
146341825Sdim  dbgs() << "  Number of Queue Entries: " << Queue.size() << "\n";
147344779Sdim  for (const SUnit *SU : Queue) {
148341825Sdim    dbgs() << "    ";
149344779Sdim    DAG->dumpNode(*SU);
150341825Sdim  }
151341825Sdim}
152341825Sdim#endif
153