InterleavedLoadCombinePass.cpp revision 360660
1//===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// \file
10//
11// This file defines the interleaved-load-combine pass. The pass searches for
12// ShuffleVectorInstruction that execute interleaving loads. If a matching
13// pattern is found, it adds a combined load and further instructions in a
14// pattern that is detectable by InterleavedAccesPass. The old instructions are
15// left dead to be removed later. The pass is specifically designed to be
16// executed just before InterleavedAccesPass to find any left-over instances
17// that are not detected within former passes.
18//
19//===----------------------------------------------------------------------===//
20
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/MemoryLocation.h"
23#include "llvm/Analysis/MemorySSA.h"
24#include "llvm/Analysis/MemorySSAUpdater.h"
25#include "llvm/Analysis/OptimizationRemarkEmitter.h"
26#include "llvm/Analysis/TargetTransformInfo.h"
27#include "llvm/CodeGen/Passes.h"
28#include "llvm/CodeGen/TargetLowering.h"
29#include "llvm/CodeGen/TargetPassConfig.h"
30#include "llvm/CodeGen/TargetSubtargetInfo.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/Dominators.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/LegacyPassManager.h"
36#include "llvm/IR/Module.h"
37#include "llvm/Pass.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Support/raw_ostream.h"
41#include "llvm/Target/TargetMachine.h"
42
43#include <algorithm>
44#include <cassert>
45#include <list>
46
47using namespace llvm;
48
49#define DEBUG_TYPE "interleaved-load-combine"
50
51namespace {
52
53/// Statistic counter
54STATISTIC(NumInterleavedLoadCombine, "Number of combined loads");
55
56/// Option to disable the pass
57static cl::opt<bool> DisableInterleavedLoadCombine(
58    "disable-" DEBUG_TYPE, cl::init(false), cl::Hidden,
59    cl::desc("Disable combining of interleaved loads"));
60
61struct VectorInfo;
62
63struct InterleavedLoadCombineImpl {
64public:
65  InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA,
66                             TargetMachine &TM)
67      : F(F), DT(DT), MSSA(MSSA),
68        TLI(*TM.getSubtargetImpl(F)->getTargetLowering()),
69        TTI(TM.getTargetTransformInfo(F)) {}
70
71  /// Scan the function for interleaved load candidates and execute the
72  /// replacement if applicable.
73  bool run();
74
75private:
76  /// Function this pass is working on
77  Function &F;
78
79  /// Dominator Tree Analysis
80  DominatorTree &DT;
81
82  /// Memory Alias Analyses
83  MemorySSA &MSSA;
84
85  /// Target Lowering Information
86  const TargetLowering &TLI;
87
88  /// Target Transform Information
89  const TargetTransformInfo TTI;
90
91  /// Find the instruction in sets LIs that dominates all others, return nullptr
92  /// if there is none.
93  LoadInst *findFirstLoad(const std::set<LoadInst *> &LIs);
94
95  /// Replace interleaved load candidates. It does additional
96  /// analyses if this makes sense. Returns true on success and false
97  /// of nothing has been changed.
98  bool combine(std::list<VectorInfo> &InterleavedLoad,
99               OptimizationRemarkEmitter &ORE);
100
101  /// Given a set of VectorInfo containing candidates for a given interleave
102  /// factor, find a set that represents a 'factor' interleaved load.
103  bool findPattern(std::list<VectorInfo> &Candidates,
104                   std::list<VectorInfo> &InterleavedLoad, unsigned Factor,
105                   const DataLayout &DL);
106}; // InterleavedLoadCombine
107
108/// First Order Polynomial on an n-Bit Integer Value
109///
110/// Polynomial(Value) = Value * B + A + E*2^(n-e)
111///
112/// A and B are the coefficients. E*2^(n-e) is an error within 'e' most
113/// significant bits. It is introduced if an exact computation cannot be proven
114/// (e.q. division by 2).
115///
116/// As part of this optimization multiple loads will be combined. It necessary
117/// to prove that loads are within some relative offset to each other. This
118/// class is used to prove relative offsets of values loaded from memory.
119///
120/// Representing an integer in this form is sound since addition in two's
121/// complement is associative (trivial) and multiplication distributes over the
122/// addition (see Proof(1) in Polynomial::mul). Further, both operations
123/// commute.
124//
125// Example:
126// declare @fn(i64 %IDX, <4 x float>* %PTR) {
127//   %Pa1 = add i64 %IDX, 2
128//   %Pa2 = lshr i64 %Pa1, 1
129//   %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2
130//   %Va = load <4 x float>, <4 x float>* %Pa3
131//
132//   %Pb1 = add i64 %IDX, 4
133//   %Pb2 = lshr i64 %Pb1, 1
134//   %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2
135//   %Vb = load <4 x float>, <4 x float>* %Pb3
136// ... }
137//
138// The goal is to prove that two loads load consecutive addresses.
139//
140// In this case the polynomials are constructed by the following
141// steps.
142//
143// The number tag #e specifies the error bits.
144//
145// Pa_0 = %IDX              #0
146// Pa_1 = %IDX + 2          #0 | add 2
147// Pa_2 = %IDX/2 + 1        #1 | lshr 1
148// Pa_3 = %IDX/2 + 1        #1 | GEP, step signext to i64
149// Pa_4 = (%IDX/2)*16 + 16  #0 | GEP, multiply index by sizeof(4) for floats
150// Pa_5 = (%IDX/2)*16 + 16  #0 | GEP, add offset of leading components
151//
152// Pb_0 = %IDX              #0
153// Pb_1 = %IDX + 4          #0 | add 2
154// Pb_2 = %IDX/2 + 2        #1 | lshr 1
155// Pb_3 = %IDX/2 + 2        #1 | GEP, step signext to i64
156// Pb_4 = (%IDX/2)*16 + 32  #0 | GEP, multiply index by sizeof(4) for floats
157// Pb_5 = (%IDX/2)*16 + 16  #0 | GEP, add offset of leading components
158//
159// Pb_5 - Pa_5 = 16         #0 | subtract to get the offset
160//
161// Remark: %PTR is not maintained within this class. So in this instance the
162// offset of 16 can only be assumed if the pointers are equal.
163//
164class Polynomial {
165  /// Operations on B
166  enum BOps {
167    LShr,
168    Mul,
169    SExt,
170    Trunc,
171  };
172
173  /// Number of Error Bits e
174  unsigned ErrorMSBs;
175
176  /// Value
177  Value *V;
178
179  /// Coefficient B
180  SmallVector<std::pair<BOps, APInt>, 4> B;
181
182  /// Coefficient A
183  APInt A;
184
185public:
186  Polynomial(Value *V) : ErrorMSBs((unsigned)-1), V(V), B(), A() {
187    IntegerType *Ty = dyn_cast<IntegerType>(V->getType());
188    if (Ty) {
189      ErrorMSBs = 0;
190      this->V = V;
191      A = APInt(Ty->getBitWidth(), 0);
192    }
193  }
194
195  Polynomial(const APInt &A, unsigned ErrorMSBs = 0)
196      : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(A) {}
197
198  Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0)
199      : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(BitWidth, A) {}
200
201  Polynomial() : ErrorMSBs((unsigned)-1), V(NULL), B(), A() {}
202
203  /// Increment and clamp the number of undefined bits.
204  void incErrorMSBs(unsigned amt) {
205    if (ErrorMSBs == (unsigned)-1)
206      return;
207
208    ErrorMSBs += amt;
209    if (ErrorMSBs > A.getBitWidth())
210      ErrorMSBs = A.getBitWidth();
211  }
212
213  /// Decrement and clamp the number of undefined bits.
214  void decErrorMSBs(unsigned amt) {
215    if (ErrorMSBs == (unsigned)-1)
216      return;
217
218    if (ErrorMSBs > amt)
219      ErrorMSBs -= amt;
220    else
221      ErrorMSBs = 0;
222  }
223
224  /// Apply an add on the polynomial
225  Polynomial &add(const APInt &C) {
226    // Note: Addition is associative in two's complement even when in case of
227    // signed overflow.
228    //
229    // Error bits can only propagate into higher significant bits. As these are
230    // already regarded as undefined, there is no change.
231    //
232    // Theorem: Adding a constant to a polynomial does not change the error
233    // term.
234    //
235    // Proof:
236    //
237    //   Since the addition is associative and commutes:
238    //
239    //   (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e)
240    // [qed]
241
242    if (C.getBitWidth() != A.getBitWidth()) {
243      ErrorMSBs = (unsigned)-1;
244      return *this;
245    }
246
247    A += C;
248    return *this;
249  }
250
251  /// Apply a multiplication onto the polynomial.
252  Polynomial &mul(const APInt &C) {
253    // Note: Multiplication distributes over the addition
254    //
255    // Theorem: Multiplication distributes over the addition
256    //
257    // Proof(1):
258    //
259    //   (B+A)*C =-
260    //        = (B + A) + (B + A) + .. {C Times}
261    //         addition is associative and commutes, hence
262    //        = B + B + .. {C Times} .. + A + A + .. {C times}
263    //        = B*C + A*C
264    //   (see (function add) for signed values and overflows)
265    // [qed]
266    //
267    // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out
268    // to the left.
269    //
270    // Proof(2):
271    //
272    //   Let B' and A' be the n-Bit inputs with some unknown errors EA,
273    //   EB at e leading bits. B' and A' can be written down as:
274    //
275    //     B' = B + 2^(n-e)*EB
276    //     A' = A + 2^(n-e)*EA
277    //
278    //   Let C' be an input with c trailing zero bits. C' can be written as
279    //
280    //     C' = C*2^c
281    //
282    //   Therefore we can compute the result by using distributivity and
283    //   commutativity.
284    //
285    //     (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' =
286    //                     = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
287    //                     = (B'+A') * C' =
288    //                     = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
289    //                     = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' =
290    //                     = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' =
291    //                     = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c =
292    //                     = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c =
293    //
294    //   Let EC be the final error with EC = C*(EB + EA)
295    //
296    //                     = (B + A)*C' + EC*2^(n-e)*2^c =
297    //                     = (B + A)*C' + EC*2^(n-(e-c))
298    //
299    //   Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c
300    //   less error bits than the input. c bits are shifted out to the left.
301    // [qed]
302
303    if (C.getBitWidth() != A.getBitWidth()) {
304      ErrorMSBs = (unsigned)-1;
305      return *this;
306    }
307
308    // Multiplying by one is a no-op.
309    if (C.isOneValue()) {
310      return *this;
311    }
312
313    // Multiplying by zero removes the coefficient B and defines all bits.
314    if (C.isNullValue()) {
315      ErrorMSBs = 0;
316      deleteB();
317    }
318
319    // See Proof(2): Trailing zero bits indicate a left shift. This removes
320    // leading bits from the result even if they are undefined.
321    decErrorMSBs(C.countTrailingZeros());
322
323    A *= C;
324    pushBOperation(Mul, C);
325    return *this;
326  }
327
328  /// Apply a logical shift right on the polynomial
329  Polynomial &lshr(const APInt &C) {
330    // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e')
331    //          where
332    //             e' = e + 1,
333    //             E is a e-bit number,
334    //             E' is a e'-bit number,
335    //   holds under the following precondition:
336    //          pre(1): A % 2 = 0
337    //          pre(2): e < n, (see Theorem(2) for the trivial case with e=n)
338    //   where >> expresses a logical shift to the right, with adding zeros.
339    //
340    //  We need to show that for every, E there is a E'
341    //
342    //  B = b_h * 2^(n-1) + b_m * 2 + b_l
343    //  A = a_h * 2^(n-1) + a_m * 2         (pre(1))
344    //
345    //  where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers
346    //
347    //  Let X = (B + A + E*2^(n-e)) >> 1
348    //  Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1
349    //
350    //    X = [B + A + E*2^(n-e)] >> 1 =
351    //      = [  b_h * 2^(n-1) + b_m * 2 + b_l +
352    //         + a_h * 2^(n-1) + a_m * 2 +
353    //         + E * 2^(n-e) ] >> 1 =
354    //
355    //    The sum is built by putting the overflow of [a_m + b+n] into the term
356    //    2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within
357    //    this bit is discarded. This is expressed by % 2.
358    //
359    //    The bit in position 0 cannot overflow into the term (b_m + a_m).
360    //
361    //      = [  ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) +
362    //         + ((b_m + a_m) % 2^(n-2)) * 2 +
363    //         + b_l + E * 2^(n-e) ] >> 1 =
364    //
365    //    The shift is computed by dividing the terms by 2 and by cutting off
366    //    b_l.
367    //
368    //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
369    //         + ((b_m + a_m) % 2^(n-2)) +
370    //         + E * 2^(n-(e+1)) =
371    //
372    //    by the definition in the Theorem e+1 = e'
373    //
374    //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
375    //         + ((b_m + a_m) % 2^(n-2)) +
376    //         + E * 2^(n-e') =
377    //
378    //    Compute Y by applying distributivity first
379    //
380    //    Y =  (B >> 1) + (A >> 1) + E*2^(n-e') =
381    //      =    (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 +
382    //         + (a_h * 2^(n-1) + a_m * 2) >> 1 +
383    //         + E * 2^(n-e) >> 1 =
384    //
385    //    Again, the shift is computed by dividing the terms by 2 and by cutting
386    //    off b_l.
387    //
388    //      =     b_h * 2^(n-2) + b_m +
389    //         +  a_h * 2^(n-2) + a_m +
390    //         +  E * 2^(n-(e+1)) =
391    //
392    //    Again, the sum is built by putting the overflow of [a_m + b+n] into
393    //    the term 2^(n-1). But this time there is room for a second bit in the
394    //    term 2^(n-2) we add this bit to a new term and denote it o_h in a
395    //    second step.
396    //
397    //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) +
398    //         + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
399    //         + ((b_m + a_m) % 2^(n-2)) +
400    //         + E * 2^(n-(e+1)) =
401    //
402    //    Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1
403    //    Further replace e+1 by e'.
404    //
405    //      =    o_h * 2^(n-1) +
406    //         + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
407    //         + ((b_m + a_m) % 2^(n-2)) +
408    //         + E * 2^(n-e') =
409    //
410    //    Move o_h into the error term and construct E'. To ensure that there is
411    //    no 2^x with negative x, this step requires pre(2) (e < n).
412    //
413    //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
414    //         + ((b_m + a_m) % 2^(n-2)) +
415    //         + o_h * 2^(e'-1) * 2^(n-e') +               | pre(2), move 2^(e'-1)
416    //                                                     | out of the old exponent
417    //         + E * 2^(n-e') =
418    //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
419    //         + ((b_m + a_m) % 2^(n-2)) +
420    //         + [o_h * 2^(e'-1) + E] * 2^(n-e') +         | move 2^(e'-1) out of
421    //                                                     | the old exponent
422    //
423    //    Let E' = o_h * 2^(e'-1) + E
424    //
425    //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
426    //         + ((b_m + a_m) % 2^(n-2)) +
427    //         + E' * 2^(n-e')
428    //
429    //    Because X and Y are distinct only in there error terms and E' can be
430    //    constructed as shown the theorem holds.
431    // [qed]
432    //
433    // For completeness in case of the case e=n it is also required to show that
434    // distributivity can be applied.
435    //
436    // In this case Theorem(1) transforms to (the pre-condition on A can also be
437    // dropped)
438    //
439    // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E'
440    //          where
441    //             A, B, E, E' are two's complement numbers with the same bit
442    //             width
443    //
444    //   Let A + B + E = X
445    //   Let (B >> 1) + (A >> 1) = Y
446    //
447    //   Therefore we need to show that for every X and Y there is an E' which
448    //   makes the equation
449    //
450    //     X = Y + E'
451    //
452    //   hold. This is trivially the case for E' = X - Y.
453    //
454    // [qed]
455    //
456    // Remark: Distributing lshr with and arbitrary number n can be expressed as
457    //   ((((B + A) lshr 1) lshr 1) ... ) {n times}.
458    // This construction induces n additional error bits at the left.
459
460    if (C.getBitWidth() != A.getBitWidth()) {
461      ErrorMSBs = (unsigned)-1;
462      return *this;
463    }
464
465    if (C.isNullValue())
466      return *this;
467
468    // Test if the result will be zero
469    unsigned shiftAmt = C.getZExtValue();
470    if (shiftAmt >= C.getBitWidth())
471      return mul(APInt(C.getBitWidth(), 0));
472
473    // The proof that shiftAmt LSBs are zero for at least one summand is only
474    // possible for the constant number.
475    //
476    // If this can be proven add shiftAmt to the error counter
477    // `ErrorMSBs`. Otherwise set all bits as undefined.
478    if (A.countTrailingZeros() < shiftAmt)
479      ErrorMSBs = A.getBitWidth();
480    else
481      incErrorMSBs(shiftAmt);
482
483    // Apply the operation.
484    pushBOperation(LShr, C);
485    A = A.lshr(shiftAmt);
486
487    return *this;
488  }
489
490  /// Apply a sign-extend or truncate operation on the polynomial.
491  Polynomial &sextOrTrunc(unsigned n) {
492    if (n < A.getBitWidth()) {
493      // Truncate: Clearly undefined Bits on the MSB side are removed
494      // if there are any.
495      decErrorMSBs(A.getBitWidth() - n);
496      A = A.trunc(n);
497      pushBOperation(Trunc, APInt(sizeof(n) * 8, n));
498    }
499    if (n > A.getBitWidth()) {
500      // Extend: Clearly extending first and adding later is different
501      // to adding first and extending later in all extended bits.
502      incErrorMSBs(n - A.getBitWidth());
503      A = A.sext(n);
504      pushBOperation(SExt, APInt(sizeof(n) * 8, n));
505    }
506
507    return *this;
508  }
509
510  /// Test if there is a coefficient B.
511  bool isFirstOrder() const { return V != nullptr; }
512
513  /// Test coefficient B of two Polynomials are equal.
514  bool isCompatibleTo(const Polynomial &o) const {
515    // The polynomial use different bit width.
516    if (A.getBitWidth() != o.A.getBitWidth())
517      return false;
518
519    // If neither Polynomial has the Coefficient B.
520    if (!isFirstOrder() && !o.isFirstOrder())
521      return true;
522
523    // The index variable is different.
524    if (V != o.V)
525      return false;
526
527    // Check the operations.
528    if (B.size() != o.B.size())
529      return false;
530
531    auto ob = o.B.begin();
532    for (auto &b : B) {
533      if (b != *ob)
534        return false;
535      ob++;
536    }
537
538    return true;
539  }
540
541  /// Subtract two polynomials, return an undefined polynomial if
542  /// subtraction is not possible.
543  Polynomial operator-(const Polynomial &o) const {
544    // Return an undefined polynomial if incompatible.
545    if (!isCompatibleTo(o))
546      return Polynomial();
547
548    // If the polynomials are compatible (meaning they have the same
549    // coefficient on B), B is eliminated. Thus a polynomial solely
550    // containing A is returned
551    return Polynomial(A - o.A, std::max(ErrorMSBs, o.ErrorMSBs));
552  }
553
554  /// Subtract a constant from a polynomial,
555  Polynomial operator-(uint64_t C) const {
556    Polynomial Result(*this);
557    Result.A -= C;
558    return Result;
559  }
560
561  /// Add a constant to a polynomial,
562  Polynomial operator+(uint64_t C) const {
563    Polynomial Result(*this);
564    Result.A += C;
565    return Result;
566  }
567
568  /// Returns true if it can be proven that two Polynomials are equal.
569  bool isProvenEqualTo(const Polynomial &o) {
570    // Subtract both polynomials and test if it is fully defined and zero.
571    Polynomial r = *this - o;
572    return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isNullValue());
573  }
574
575  /// Print the polynomial into a stream.
576  void print(raw_ostream &OS) const {
577    OS << "[{#ErrBits:" << ErrorMSBs << "} ";
578
579    if (V) {
580      for (auto b : B)
581        OS << "(";
582      OS << "(" << *V << ") ";
583
584      for (auto b : B) {
585        switch (b.first) {
586        case LShr:
587          OS << "LShr ";
588          break;
589        case Mul:
590          OS << "Mul ";
591          break;
592        case SExt:
593          OS << "SExt ";
594          break;
595        case Trunc:
596          OS << "Trunc ";
597          break;
598        }
599
600        OS << b.second << ") ";
601      }
602    }
603
604    OS << "+ " << A << "]";
605  }
606
607private:
608  void deleteB() {
609    V = nullptr;
610    B.clear();
611  }
612
613  void pushBOperation(const BOps Op, const APInt &C) {
614    if (isFirstOrder()) {
615      B.push_back(std::make_pair(Op, C));
616      return;
617    }
618  }
619};
620
621#ifndef NDEBUG
622static raw_ostream &operator<<(raw_ostream &OS, const Polynomial &S) {
623  S.print(OS);
624  return OS;
625}
626#endif
627
628/// VectorInfo stores abstract the following information for each vector
629/// element:
630///
631/// 1) The the memory address loaded into the element as Polynomial
632/// 2) a set of load instruction necessary to construct the vector,
633/// 3) a set of all other instructions that are necessary to create the vector and
634/// 4) a pointer value that can be used as relative base for all elements.
635struct VectorInfo {
636private:
637  VectorInfo(const VectorInfo &c) : VTy(c.VTy) {
638    llvm_unreachable(
639        "Copying VectorInfo is neither implemented nor necessary,");
640  }
641
642public:
643  /// Information of a Vector Element
644  struct ElementInfo {
645    /// Offset Polynomial.
646    Polynomial Ofs;
647
648    /// The Load Instruction used to Load the entry. LI is null if the pointer
649    /// of the load instruction does not point on to the entry
650    LoadInst *LI;
651
652    ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr)
653        : Ofs(Offset), LI(LI) {}
654  };
655
656  /// Basic-block the load instructions are within
657  BasicBlock *BB;
658
659  /// Pointer value of all participation load instructions
660  Value *PV;
661
662  /// Participating load instructions
663  std::set<LoadInst *> LIs;
664
665  /// Participating instructions
666  std::set<Instruction *> Is;
667
668  /// Final shuffle-vector instruction
669  ShuffleVectorInst *SVI;
670
671  /// Information of the offset for each vector element
672  ElementInfo *EI;
673
674  /// Vector Type
675  VectorType *const VTy;
676
677  VectorInfo(VectorType *VTy)
678      : BB(nullptr), PV(nullptr), LIs(), Is(), SVI(nullptr), VTy(VTy) {
679    EI = new ElementInfo[VTy->getNumElements()];
680  }
681
682  virtual ~VectorInfo() { delete[] EI; }
683
684  unsigned getDimension() const { return VTy->getNumElements(); }
685
686  /// Test if the VectorInfo can be part of an interleaved load with the
687  /// specified factor.
688  ///
689  /// \param Factor of the interleave
690  /// \param DL Targets Datalayout
691  ///
692  /// \returns true if this is possible and false if not
693  bool isInterleaved(unsigned Factor, const DataLayout &DL) const {
694    unsigned Size = DL.getTypeAllocSize(VTy->getElementType());
695    for (unsigned i = 1; i < getDimension(); i++) {
696      if (!EI[i].Ofs.isProvenEqualTo(EI[0].Ofs + i * Factor * Size)) {
697        return false;
698      }
699    }
700    return true;
701  }
702
703  /// Recursively computes the vector information stored in V.
704  ///
705  /// This function delegates the work to specialized implementations
706  ///
707  /// \param V Value to operate on
708  /// \param Result Result of the computation
709  ///
710  /// \returns false if no sensible information can be gathered.
711  static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) {
712    ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
713    if (SVI)
714      return computeFromSVI(SVI, Result, DL);
715    LoadInst *LI = dyn_cast<LoadInst>(V);
716    if (LI)
717      return computeFromLI(LI, Result, DL);
718    BitCastInst *BCI = dyn_cast<BitCastInst>(V);
719    if (BCI)
720      return computeFromBCI(BCI, Result, DL);
721    return false;
722  }
723
724  /// BitCastInst specialization to compute the vector information.
725  ///
726  /// \param BCI BitCastInst to operate on
727  /// \param Result Result of the computation
728  ///
729  /// \returns false if no sensible information can be gathered.
730  static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result,
731                             const DataLayout &DL) {
732    Instruction *Op = dyn_cast<Instruction>(BCI->getOperand(0));
733
734    if (!Op)
735      return false;
736
737    VectorType *VTy = dyn_cast<VectorType>(Op->getType());
738    if (!VTy)
739      return false;
740
741    // We can only cast from large to smaller vectors
742    if (Result.VTy->getNumElements() % VTy->getNumElements())
743      return false;
744
745    unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements();
746    unsigned NewSize = DL.getTypeAllocSize(Result.VTy->getElementType());
747    unsigned OldSize = DL.getTypeAllocSize(VTy->getElementType());
748
749    if (NewSize * Factor != OldSize)
750      return false;
751
752    VectorInfo Old(VTy);
753    if (!compute(Op, Old, DL))
754      return false;
755
756    for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) {
757      for (unsigned j = 0; j < Factor; j++) {
758        Result.EI[i + j] =
759            ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize,
760                        j == 0 ? Old.EI[i / Factor].LI : nullptr);
761      }
762    }
763
764    Result.BB = Old.BB;
765    Result.PV = Old.PV;
766    Result.LIs.insert(Old.LIs.begin(), Old.LIs.end());
767    Result.Is.insert(Old.Is.begin(), Old.Is.end());
768    Result.Is.insert(BCI);
769    Result.SVI = nullptr;
770
771    return true;
772  }
773
774  /// ShuffleVectorInst specialization to compute vector information.
775  ///
776  /// \param SVI ShuffleVectorInst to operate on
777  /// \param Result Result of the computation
778  ///
779  /// Compute the left and the right side vector information and merge them by
780  /// applying the shuffle operation. This function also ensures that the left
781  /// and right side have compatible loads. This means that all loads are with
782  /// in the same basic block and are based on the same pointer.
783  ///
784  /// \returns false if no sensible information can be gathered.
785  static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result,
786                             const DataLayout &DL) {
787    VectorType *ArgTy = dyn_cast<VectorType>(SVI->getOperand(0)->getType());
788    assert(ArgTy && "ShuffleVector Operand is not a VectorType");
789
790    // Compute the left hand vector information.
791    VectorInfo LHS(ArgTy);
792    if (!compute(SVI->getOperand(0), LHS, DL))
793      LHS.BB = nullptr;
794
795    // Compute the right hand vector information.
796    VectorInfo RHS(ArgTy);
797    if (!compute(SVI->getOperand(1), RHS, DL))
798      RHS.BB = nullptr;
799
800    // Neither operand produced sensible results?
801    if (!LHS.BB && !RHS.BB)
802      return false;
803    // Only RHS produced sensible results?
804    else if (!LHS.BB) {
805      Result.BB = RHS.BB;
806      Result.PV = RHS.PV;
807    }
808    // Only LHS produced sensible results?
809    else if (!RHS.BB) {
810      Result.BB = LHS.BB;
811      Result.PV = LHS.PV;
812    }
813    // Both operands produced sensible results?
814    else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) {
815      Result.BB = LHS.BB;
816      Result.PV = LHS.PV;
817    }
818    // Both operands produced sensible results but they are incompatible.
819    else {
820      return false;
821    }
822
823    // Merge and apply the operation on the offset information.
824    if (LHS.BB) {
825      Result.LIs.insert(LHS.LIs.begin(), LHS.LIs.end());
826      Result.Is.insert(LHS.Is.begin(), LHS.Is.end());
827    }
828    if (RHS.BB) {
829      Result.LIs.insert(RHS.LIs.begin(), RHS.LIs.end());
830      Result.Is.insert(RHS.Is.begin(), RHS.Is.end());
831    }
832    Result.Is.insert(SVI);
833    Result.SVI = SVI;
834
835    int j = 0;
836    for (int i : SVI->getShuffleMask()) {
837      assert((i < 2 * (signed)ArgTy->getNumElements()) &&
838             "Invalid ShuffleVectorInst (index out of bounds)");
839
840      if (i < 0)
841        Result.EI[j] = ElementInfo();
842      else if (i < (signed)ArgTy->getNumElements()) {
843        if (LHS.BB)
844          Result.EI[j] = LHS.EI[i];
845        else
846          Result.EI[j] = ElementInfo();
847      } else {
848        if (RHS.BB)
849          Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()];
850        else
851          Result.EI[j] = ElementInfo();
852      }
853      j++;
854    }
855
856    return true;
857  }
858
859  /// LoadInst specialization to compute vector information.
860  ///
861  /// This function also acts as abort condition to the recursion.
862  ///
863  /// \param LI LoadInst to operate on
864  /// \param Result Result of the computation
865  ///
866  /// \returns false if no sensible information can be gathered.
867  static bool computeFromLI(LoadInst *LI, VectorInfo &Result,
868                            const DataLayout &DL) {
869    Value *BasePtr;
870    Polynomial Offset;
871
872    if (LI->isVolatile())
873      return false;
874
875    if (LI->isAtomic())
876      return false;
877
878    // Get the base polynomial
879    computePolynomialFromPointer(*LI->getPointerOperand(), Offset, BasePtr, DL);
880
881    Result.BB = LI->getParent();
882    Result.PV = BasePtr;
883    Result.LIs.insert(LI);
884    Result.Is.insert(LI);
885
886    for (unsigned i = 0; i < Result.getDimension(); i++) {
887      Value *Idx[2] = {
888          ConstantInt::get(Type::getInt32Ty(LI->getContext()), 0),
889          ConstantInt::get(Type::getInt32Ty(LI->getContext()), i),
890      };
891      int64_t Ofs = DL.getIndexedOffsetInType(Result.VTy, makeArrayRef(Idx, 2));
892      Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr);
893    }
894
895    return true;
896  }
897
898  /// Recursively compute polynomial of a value.
899  ///
900  /// \param BO Input binary operation
901  /// \param Result Result polynomial
902  static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) {
903    Value *LHS = BO.getOperand(0);
904    Value *RHS = BO.getOperand(1);
905
906    // Find the RHS Constant if any
907    ConstantInt *C = dyn_cast<ConstantInt>(RHS);
908    if ((!C) && BO.isCommutative()) {
909      C = dyn_cast<ConstantInt>(LHS);
910      if (C)
911        std::swap(LHS, RHS);
912    }
913
914    switch (BO.getOpcode()) {
915    case Instruction::Add:
916      if (!C)
917        break;
918
919      computePolynomial(*LHS, Result);
920      Result.add(C->getValue());
921      return;
922
923    case Instruction::LShr:
924      if (!C)
925        break;
926
927      computePolynomial(*LHS, Result);
928      Result.lshr(C->getValue());
929      return;
930
931    default:
932      break;
933    }
934
935    Result = Polynomial(&BO);
936  }
937
938  /// Recursively compute polynomial of a value
939  ///
940  /// \param V input value
941  /// \param Result result polynomial
942  static void computePolynomial(Value &V, Polynomial &Result) {
943    if (isa<BinaryOperator>(&V))
944      computePolynomialBinOp(*dyn_cast<BinaryOperator>(&V), Result);
945    else
946      Result = Polynomial(&V);
947  }
948
949  /// Compute the Polynomial representation of a Pointer type.
950  ///
951  /// \param Ptr input pointer value
952  /// \param Result result polynomial
953  /// \param BasePtr pointer the polynomial is based on
954  /// \param DL Datalayout of the target machine
955  static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result,
956                                           Value *&BasePtr,
957                                           const DataLayout &DL) {
958    // Not a pointer type? Return an undefined polynomial
959    PointerType *PtrTy = dyn_cast<PointerType>(Ptr.getType());
960    if (!PtrTy) {
961      Result = Polynomial();
962      BasePtr = nullptr;
963      return;
964    }
965    unsigned PointerBits =
966        DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace());
967
968    /// Skip pointer casts. Return Zero polynomial otherwise
969    if (isa<CastInst>(&Ptr)) {
970      CastInst &CI = *cast<CastInst>(&Ptr);
971      switch (CI.getOpcode()) {
972      case Instruction::BitCast:
973        computePolynomialFromPointer(*CI.getOperand(0), Result, BasePtr, DL);
974        break;
975      default:
976        BasePtr = &Ptr;
977        Polynomial(PointerBits, 0);
978        break;
979      }
980    }
981    /// Resolve GetElementPtrInst.
982    else if (isa<GetElementPtrInst>(&Ptr)) {
983      GetElementPtrInst &GEP = *cast<GetElementPtrInst>(&Ptr);
984
985      APInt BaseOffset(PointerBits, 0);
986
987      // Check if we can compute the Offset with accumulateConstantOffset
988      if (GEP.accumulateConstantOffset(DL, BaseOffset)) {
989        Result = Polynomial(BaseOffset);
990        BasePtr = GEP.getPointerOperand();
991        return;
992      } else {
993        // Otherwise we allow that the last index operand of the GEP is
994        // non-constant.
995        unsigned idxOperand, e;
996        SmallVector<Value *, 4> Indices;
997        for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e;
998             idxOperand++) {
999          ConstantInt *IDX = dyn_cast<ConstantInt>(GEP.getOperand(idxOperand));
1000          if (!IDX)
1001            break;
1002          Indices.push_back(IDX);
1003        }
1004
1005        // It must also be the last operand.
1006        if (idxOperand + 1 != e) {
1007          Result = Polynomial();
1008          BasePtr = nullptr;
1009          return;
1010        }
1011
1012        // Compute the polynomial of the index operand.
1013        computePolynomial(*GEP.getOperand(idxOperand), Result);
1014
1015        // Compute base offset from zero based index, excluding the last
1016        // variable operand.
1017        BaseOffset =
1018            DL.getIndexedOffsetInType(GEP.getSourceElementType(), Indices);
1019
1020        // Apply the operations of GEP to the polynomial.
1021        unsigned ResultSize = DL.getTypeAllocSize(GEP.getResultElementType());
1022        Result.sextOrTrunc(PointerBits);
1023        Result.mul(APInt(PointerBits, ResultSize));
1024        Result.add(BaseOffset);
1025        BasePtr = GEP.getPointerOperand();
1026      }
1027    }
1028    // All other instructions are handled by using the value as base pointer and
1029    // a zero polynomial.
1030    else {
1031      BasePtr = &Ptr;
1032      Polynomial(DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()), 0);
1033    }
1034  }
1035
1036#ifndef NDEBUG
1037  void print(raw_ostream &OS) const {
1038    if (PV)
1039      OS << *PV;
1040    else
1041      OS << "(none)";
1042    OS << " + ";
1043    for (unsigned i = 0; i < getDimension(); i++)
1044      OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs;
1045    OS << "]";
1046  }
1047#endif
1048};
1049
1050} // anonymous namespace
1051
1052bool InterleavedLoadCombineImpl::findPattern(
1053    std::list<VectorInfo> &Candidates, std::list<VectorInfo> &InterleavedLoad,
1054    unsigned Factor, const DataLayout &DL) {
1055  for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) {
1056    unsigned i;
1057    // Try to find an interleaved load using the front of Worklist as first line
1058    unsigned Size = DL.getTypeAllocSize(C0->VTy->getElementType());
1059
1060    // List containing iterators pointing to the VectorInfos of the candidates
1061    std::vector<std::list<VectorInfo>::iterator> Res(Factor, Candidates.end());
1062
1063    for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) {
1064      if (C->VTy != C0->VTy)
1065        continue;
1066      if (C->BB != C0->BB)
1067        continue;
1068      if (C->PV != C0->PV)
1069        continue;
1070
1071      // Check the current value matches any of factor - 1 remaining lines
1072      for (i = 1; i < Factor; i++) {
1073        if (C->EI[0].Ofs.isProvenEqualTo(C0->EI[0].Ofs + i * Size)) {
1074          Res[i] = C;
1075        }
1076      }
1077
1078      for (i = 1; i < Factor; i++) {
1079        if (Res[i] == Candidates.end())
1080          break;
1081      }
1082      if (i == Factor) {
1083        Res[0] = C0;
1084        break;
1085      }
1086    }
1087
1088    if (Res[0] != Candidates.end()) {
1089      // Move the result into the output
1090      for (unsigned i = 0; i < Factor; i++) {
1091        InterleavedLoad.splice(InterleavedLoad.end(), Candidates, Res[i]);
1092      }
1093
1094      return true;
1095    }
1096  }
1097  return false;
1098}
1099
1100LoadInst *
1101InterleavedLoadCombineImpl::findFirstLoad(const std::set<LoadInst *> &LIs) {
1102  assert(!LIs.empty() && "No load instructions given.");
1103
1104  // All LIs are within the same BB. Select the first for a reference.
1105  BasicBlock *BB = (*LIs.begin())->getParent();
1106  BasicBlock::iterator FLI =
1107      std::find_if(BB->begin(), BB->end(), [&LIs](Instruction &I) -> bool {
1108        return is_contained(LIs, &I);
1109      });
1110  assert(FLI != BB->end());
1111
1112  return cast<LoadInst>(FLI);
1113}
1114
1115bool InterleavedLoadCombineImpl::combine(std::list<VectorInfo> &InterleavedLoad,
1116                                         OptimizationRemarkEmitter &ORE) {
1117  LLVM_DEBUG(dbgs() << "Checking interleaved load\n");
1118
1119  // The insertion point is the LoadInst which loads the first values. The
1120  // following tests are used to proof that the combined load can be inserted
1121  // just before InsertionPoint.
1122  LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI;
1123
1124  // Test if the offset is computed
1125  if (!InsertionPoint)
1126    return false;
1127
1128  std::set<LoadInst *> LIs;
1129  std::set<Instruction *> Is;
1130  std::set<Instruction *> SVIs;
1131
1132  unsigned InterleavedCost;
1133  unsigned InstructionCost = 0;
1134
1135  // Get the interleave factor
1136  unsigned Factor = InterleavedLoad.size();
1137
1138  // Merge all input sets used in analysis
1139  for (auto &VI : InterleavedLoad) {
1140    // Generate a set of all load instructions to be combined
1141    LIs.insert(VI.LIs.begin(), VI.LIs.end());
1142
1143    // Generate a set of all instructions taking part in load
1144    // interleaved. This list excludes the instructions necessary for the
1145    // polynomial construction.
1146    Is.insert(VI.Is.begin(), VI.Is.end());
1147
1148    // Generate the set of the final ShuffleVectorInst.
1149    SVIs.insert(VI.SVI);
1150  }
1151
1152  // There is nothing to combine.
1153  if (LIs.size() < 2)
1154    return false;
1155
1156  // Test if all participating instruction will be dead after the
1157  // transformation. If intermediate results are used, no performance gain can
1158  // be expected. Also sum the cost of the Instructions beeing left dead.
1159  for (auto &I : Is) {
1160    // Compute the old cost
1161    InstructionCost +=
1162        TTI.getInstructionCost(I, TargetTransformInfo::TCK_Latency);
1163
1164    // The final SVIs are allowed not to be dead, all uses will be replaced
1165    if (SVIs.find(I) != SVIs.end())
1166      continue;
1167
1168    // If there are users outside the set to be eliminated, we abort the
1169    // transformation. No gain can be expected.
1170    for (const auto &U : I->users()) {
1171      if (Is.find(dyn_cast<Instruction>(U)) == Is.end())
1172        return false;
1173    }
1174  }
1175
1176  // We know that all LoadInst are within the same BB. This guarantees that
1177  // either everything or nothing is loaded.
1178  LoadInst *First = findFirstLoad(LIs);
1179
1180  // To be safe that the loads can be combined, iterate over all loads and test
1181  // that the corresponding defining access dominates first LI. This guarantees
1182  // that there are no aliasing stores in between the loads.
1183  auto FMA = MSSA.getMemoryAccess(First);
1184  for (auto LI : LIs) {
1185    auto MADef = MSSA.getMemoryAccess(LI)->getDefiningAccess();
1186    if (!MSSA.dominates(MADef, FMA))
1187      return false;
1188  }
1189  assert(!LIs.empty() && "There are no LoadInst to combine");
1190
1191  // It is necessary that insertion point dominates all final ShuffleVectorInst.
1192  for (auto &VI : InterleavedLoad) {
1193    if (!DT.dominates(InsertionPoint, VI.SVI))
1194      return false;
1195  }
1196
1197  // All checks are done. Add instructions detectable by InterleavedAccessPass
1198  // The old instruction will are left dead.
1199  IRBuilder<> Builder(InsertionPoint);
1200  Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType();
1201  unsigned ElementsPerSVI =
1202      InterleavedLoad.front().SVI->getType()->getNumElements();
1203  VectorType *ILTy = VectorType::get(ETy, Factor * ElementsPerSVI);
1204
1205  SmallVector<unsigned, 4> Indices;
1206  for (unsigned i = 0; i < Factor; i++)
1207    Indices.push_back(i);
1208  InterleavedCost = TTI.getInterleavedMemoryOpCost(
1209      Instruction::Load, ILTy, Factor, Indices, InsertionPoint->getAlignment(),
1210      InsertionPoint->getPointerAddressSpace());
1211
1212  if (InterleavedCost >= InstructionCost) {
1213    return false;
1214  }
1215
1216  // Create a pointer cast for the wide load.
1217  auto CI = Builder.CreatePointerCast(InsertionPoint->getOperand(0),
1218                                      ILTy->getPointerTo(),
1219                                      "interleaved.wide.ptrcast");
1220
1221  // Create the wide load and update the MemorySSA.
1222  auto LI = Builder.CreateAlignedLoad(ILTy, CI, InsertionPoint->getAlignment(),
1223                                      "interleaved.wide.load");
1224  auto MSSAU = MemorySSAUpdater(&MSSA);
1225  MemoryUse *MSSALoad = cast<MemoryUse>(MSSAU.createMemoryAccessBefore(
1226      LI, nullptr, MSSA.getMemoryAccess(InsertionPoint)));
1227  MSSAU.insertUse(MSSALoad);
1228
1229  // Create the final SVIs and replace all uses.
1230  int i = 0;
1231  for (auto &VI : InterleavedLoad) {
1232    SmallVector<uint32_t, 4> Mask;
1233    for (unsigned j = 0; j < ElementsPerSVI; j++)
1234      Mask.push_back(i + j * Factor);
1235
1236    Builder.SetInsertPoint(VI.SVI);
1237    auto SVI = Builder.CreateShuffleVector(LI, UndefValue::get(LI->getType()),
1238                                           Mask, "interleaved.shuffle");
1239    VI.SVI->replaceAllUsesWith(SVI);
1240    i++;
1241  }
1242
1243  NumInterleavedLoadCombine++;
1244  ORE.emit([&]() {
1245    return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI)
1246           << "Load interleaved combined with factor "
1247           << ore::NV("Factor", Factor);
1248  });
1249
1250  return true;
1251}
1252
1253bool InterleavedLoadCombineImpl::run() {
1254  OptimizationRemarkEmitter ORE(&F);
1255  bool changed = false;
1256  unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor();
1257
1258  auto &DL = F.getParent()->getDataLayout();
1259
1260  // Start with the highest factor to avoid combining and recombining.
1261  for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) {
1262    std::list<VectorInfo> Candidates;
1263
1264    for (BasicBlock &BB : F) {
1265      for (Instruction &I : BB) {
1266        if (auto SVI = dyn_cast<ShuffleVectorInst>(&I)) {
1267
1268          Candidates.emplace_back(SVI->getType());
1269
1270          if (!VectorInfo::computeFromSVI(SVI, Candidates.back(), DL)) {
1271            Candidates.pop_back();
1272            continue;
1273          }
1274
1275          if (!Candidates.back().isInterleaved(Factor, DL)) {
1276            Candidates.pop_back();
1277          }
1278        }
1279      }
1280    }
1281
1282    std::list<VectorInfo> InterleavedLoad;
1283    while (findPattern(Candidates, InterleavedLoad, Factor, DL)) {
1284      if (combine(InterleavedLoad, ORE)) {
1285        changed = true;
1286      } else {
1287        // Remove the first element of the Interleaved Load but put the others
1288        // back on the list and continue searching
1289        Candidates.splice(Candidates.begin(), InterleavedLoad,
1290                          std::next(InterleavedLoad.begin()),
1291                          InterleavedLoad.end());
1292      }
1293      InterleavedLoad.clear();
1294    }
1295  }
1296
1297  return changed;
1298}
1299
1300namespace {
1301/// This pass combines interleaved loads into a pattern detectable by
1302/// InterleavedAccessPass.
1303struct InterleavedLoadCombine : public FunctionPass {
1304  static char ID;
1305
1306  InterleavedLoadCombine() : FunctionPass(ID) {
1307    initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry());
1308  }
1309
1310  StringRef getPassName() const override {
1311    return "Interleaved Load Combine Pass";
1312  }
1313
1314  bool runOnFunction(Function &F) override {
1315    if (DisableInterleavedLoadCombine)
1316      return false;
1317
1318    auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1319    if (!TPC)
1320      return false;
1321
1322    LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName()
1323                      << "\n");
1324
1325    return InterleavedLoadCombineImpl(
1326               F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
1327               getAnalysis<MemorySSAWrapperPass>().getMSSA(),
1328               TPC->getTM<TargetMachine>())
1329        .run();
1330  }
1331
1332  void getAnalysisUsage(AnalysisUsage &AU) const override {
1333    AU.addRequired<MemorySSAWrapperPass>();
1334    AU.addRequired<DominatorTreeWrapperPass>();
1335    FunctionPass::getAnalysisUsage(AU);
1336  }
1337
1338private:
1339};
1340} // anonymous namespace
1341
1342char InterleavedLoadCombine::ID = 0;
1343
1344INITIALIZE_PASS_BEGIN(
1345    InterleavedLoadCombine, DEBUG_TYPE,
1346    "Combine interleaved loads into wide loads and shufflevector instructions",
1347    false, false)
1348INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1349INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1350INITIALIZE_PASS_END(
1351    InterleavedLoadCombine, DEBUG_TYPE,
1352    "Combine interleaved loads into wide loads and shufflevector instructions",
1353    false, false)
1354
1355FunctionPass *
1356llvm::createInterleavedLoadCombinePass() {
1357  auto P = new InterleavedLoadCombine();
1358  return P;
1359}
1360