IfConversion.cpp revision 353358
1//===- IfConversion.cpp - Machine code if conversion pass -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the machine instruction level if-conversion pass, which
10// tries to convert conditional branches into predicated instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "BranchFolding.h"
15#include "llvm/ADT/STLExtras.h"
16#include "llvm/ADT/ScopeExit.h"
17#include "llvm/ADT/SmallSet.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/SparseSet.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/ADT/iterator_range.h"
22#include "llvm/CodeGen/LivePhysRegs.h"
23#include "llvm/CodeGen/MachineBasicBlock.h"
24#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineFunctionPass.h"
28#include "llvm/CodeGen/MachineInstr.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/MachineOperand.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/TargetInstrInfo.h"
34#include "llvm/CodeGen/TargetLowering.h"
35#include "llvm/CodeGen/TargetRegisterInfo.h"
36#include "llvm/CodeGen/TargetSchedule.h"
37#include "llvm/CodeGen/TargetSubtargetInfo.h"
38#include "llvm/IR/DebugLoc.h"
39#include "llvm/MC/MCRegisterInfo.h"
40#include "llvm/Pass.h"
41#include "llvm/Support/BranchProbability.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/raw_ostream.h"
46#include <algorithm>
47#include <cassert>
48#include <functional>
49#include <iterator>
50#include <memory>
51#include <utility>
52#include <vector>
53
54using namespace llvm;
55
56#define DEBUG_TYPE "if-converter"
57
58// Hidden options for help debugging.
59static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
60static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
61static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
62static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
63                                   cl::init(false), cl::Hidden);
64static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
65                                    cl::init(false), cl::Hidden);
66static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
67                                     cl::init(false), cl::Hidden);
68static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
69                                      cl::init(false), cl::Hidden);
70static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
71                                      cl::init(false), cl::Hidden);
72static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
73                                       cl::init(false), cl::Hidden);
74static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
75                                    cl::init(false), cl::Hidden);
76static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
77                                        cl::init(false), cl::Hidden);
78static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
79                                     cl::init(true), cl::Hidden);
80
81STATISTIC(NumSimple,       "Number of simple if-conversions performed");
82STATISTIC(NumSimpleFalse,  "Number of simple (F) if-conversions performed");
83STATISTIC(NumTriangle,     "Number of triangle if-conversions performed");
84STATISTIC(NumTriangleRev,  "Number of triangle (R) if-conversions performed");
85STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
86STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
87STATISTIC(NumDiamonds,     "Number of diamond if-conversions performed");
88STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed");
89STATISTIC(NumIfConvBBs,    "Number of if-converted blocks");
90STATISTIC(NumDupBBs,       "Number of duplicated blocks");
91STATISTIC(NumUnpred,       "Number of true blocks of diamonds unpredicated");
92
93namespace {
94
95  class IfConverter : public MachineFunctionPass {
96    enum IfcvtKind {
97      ICNotClassfied,  // BB data valid, but not classified.
98      ICSimpleFalse,   // Same as ICSimple, but on the false path.
99      ICSimple,        // BB is entry of an one split, no rejoin sub-CFG.
100      ICTriangleFRev,  // Same as ICTriangleFalse, but false path rev condition.
101      ICTriangleRev,   // Same as ICTriangle, but true path rev condition.
102      ICTriangleFalse, // Same as ICTriangle, but on the false path.
103      ICTriangle,      // BB is entry of a triangle sub-CFG.
104      ICDiamond,       // BB is entry of a diamond sub-CFG.
105      ICForkedDiamond  // BB is entry of an almost diamond sub-CFG, with a
106                       // common tail that can be shared.
107    };
108
109    /// One per MachineBasicBlock, this is used to cache the result
110    /// if-conversion feasibility analysis. This includes results from
111    /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
112    /// classification, and common tail block of its successors (if it's a
113    /// diamond shape), its size, whether it's predicable, and whether any
114    /// instruction can clobber the 'would-be' predicate.
115    ///
116    /// IsDone          - True if BB is not to be considered for ifcvt.
117    /// IsBeingAnalyzed - True if BB is currently being analyzed.
118    /// IsAnalyzed      - True if BB has been analyzed (info is still valid).
119    /// IsEnqueued      - True if BB has been enqueued to be ifcvt'ed.
120    /// IsBrAnalyzable  - True if analyzeBranch() returns false.
121    /// HasFallThrough  - True if BB may fallthrough to the following BB.
122    /// IsUnpredicable  - True if BB is known to be unpredicable.
123    /// ClobbersPred    - True if BB could modify predicates (e.g. has
124    ///                   cmp, call, etc.)
125    /// NonPredSize     - Number of non-predicated instructions.
126    /// ExtraCost       - Extra cost for multi-cycle instructions.
127    /// ExtraCost2      - Some instructions are slower when predicated
128    /// BB              - Corresponding MachineBasicBlock.
129    /// TrueBB / FalseBB- See analyzeBranch().
130    /// BrCond          - Conditions for end of block conditional branches.
131    /// Predicate       - Predicate used in the BB.
132    struct BBInfo {
133      bool IsDone          : 1;
134      bool IsBeingAnalyzed : 1;
135      bool IsAnalyzed      : 1;
136      bool IsEnqueued      : 1;
137      bool IsBrAnalyzable  : 1;
138      bool IsBrReversible  : 1;
139      bool HasFallThrough  : 1;
140      bool IsUnpredicable  : 1;
141      bool CannotBeCopied  : 1;
142      bool ClobbersPred    : 1;
143      unsigned NonPredSize = 0;
144      unsigned ExtraCost = 0;
145      unsigned ExtraCost2 = 0;
146      MachineBasicBlock *BB = nullptr;
147      MachineBasicBlock *TrueBB = nullptr;
148      MachineBasicBlock *FalseBB = nullptr;
149      SmallVector<MachineOperand, 4> BrCond;
150      SmallVector<MachineOperand, 4> Predicate;
151
152      BBInfo() : IsDone(false), IsBeingAnalyzed(false),
153                 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
154                 IsBrReversible(false), HasFallThrough(false),
155                 IsUnpredicable(false), CannotBeCopied(false),
156                 ClobbersPred(false) {}
157    };
158
159    /// Record information about pending if-conversions to attempt:
160    /// BBI             - Corresponding BBInfo.
161    /// Kind            - Type of block. See IfcvtKind.
162    /// NeedSubsumption - True if the to-be-predicated BB has already been
163    ///                   predicated.
164    /// NumDups      - Number of instructions that would be duplicated due
165    ///                   to this if-conversion. (For diamonds, the number of
166    ///                   identical instructions at the beginnings of both
167    ///                   paths).
168    /// NumDups2     - For diamonds, the number of identical instructions
169    ///                   at the ends of both paths.
170    struct IfcvtToken {
171      BBInfo &BBI;
172      IfcvtKind Kind;
173      unsigned NumDups;
174      unsigned NumDups2;
175      bool NeedSubsumption : 1;
176      bool TClobbersPred : 1;
177      bool FClobbersPred : 1;
178
179      IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0,
180                 bool tc = false, bool fc = false)
181        : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s),
182          TClobbersPred(tc), FClobbersPred(fc) {}
183    };
184
185    /// Results of if-conversion feasibility analysis indexed by basic block
186    /// number.
187    std::vector<BBInfo> BBAnalysis;
188    TargetSchedModel SchedModel;
189
190    const TargetLoweringBase *TLI;
191    const TargetInstrInfo *TII;
192    const TargetRegisterInfo *TRI;
193    const MachineBranchProbabilityInfo *MBPI;
194    MachineRegisterInfo *MRI;
195
196    LivePhysRegs Redefs;
197
198    bool PreRegAlloc;
199    bool MadeChange;
200    int FnNum = -1;
201    std::function<bool(const MachineFunction &)> PredicateFtor;
202
203  public:
204    static char ID;
205
206    IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr)
207        : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
208      initializeIfConverterPass(*PassRegistry::getPassRegistry());
209    }
210
211    void getAnalysisUsage(AnalysisUsage &AU) const override {
212      AU.addRequired<MachineBlockFrequencyInfo>();
213      AU.addRequired<MachineBranchProbabilityInfo>();
214      MachineFunctionPass::getAnalysisUsage(AU);
215    }
216
217    bool runOnMachineFunction(MachineFunction &MF) override;
218
219    MachineFunctionProperties getRequiredProperties() const override {
220      return MachineFunctionProperties().set(
221          MachineFunctionProperties::Property::NoVRegs);
222    }
223
224  private:
225    bool reverseBranchCondition(BBInfo &BBI) const;
226    bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
227                     BranchProbability Prediction) const;
228    bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
229                       bool FalseBranch, unsigned &Dups,
230                       BranchProbability Prediction) const;
231    bool CountDuplicatedInstructions(
232        MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
233        MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
234        unsigned &Dups1, unsigned &Dups2,
235        MachineBasicBlock &TBB, MachineBasicBlock &FBB,
236        bool SkipUnconditionalBranches) const;
237    bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
238                      unsigned &Dups1, unsigned &Dups2,
239                      BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
240    bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
241                            unsigned &Dups1, unsigned &Dups2,
242                            BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
243    void AnalyzeBranches(BBInfo &BBI);
244    void ScanInstructions(BBInfo &BBI,
245                          MachineBasicBlock::iterator &Begin,
246                          MachineBasicBlock::iterator &End,
247                          bool BranchUnpredicable = false) const;
248    bool RescanInstructions(
249        MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
250        MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
251        BBInfo &TrueBBI, BBInfo &FalseBBI) const;
252    void AnalyzeBlock(MachineBasicBlock &MBB,
253                      std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
254    bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred,
255                             bool isTriangle = false, bool RevBranch = false,
256                             bool hasCommonTail = false);
257    void AnalyzeBlocks(MachineFunction &MF,
258                       std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
259    void InvalidatePreds(MachineBasicBlock &MBB);
260    bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
261    bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
262    bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
263                                unsigned NumDups1, unsigned NumDups2,
264                                bool TClobbersPred, bool FClobbersPred,
265                                bool RemoveBranch, bool MergeAddEdges);
266    bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
267                          unsigned NumDups1, unsigned NumDups2,
268                          bool TClobbers, bool FClobbers);
269    bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind,
270                              unsigned NumDups1, unsigned NumDups2,
271                              bool TClobbers, bool FClobbers);
272    void PredicateBlock(BBInfo &BBI,
273                        MachineBasicBlock::iterator E,
274                        SmallVectorImpl<MachineOperand> &Cond,
275                        SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr);
276    void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
277                               SmallVectorImpl<MachineOperand> &Cond,
278                               bool IgnoreBr = false);
279    void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
280
281    bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
282                            unsigned Cycle, unsigned Extra,
283                            BranchProbability Prediction) const {
284      return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
285                                                   Prediction);
286    }
287
288    bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB,
289                            unsigned TCycle, unsigned TExtra,
290                            MachineBasicBlock &FBB,
291                            unsigned FCycle, unsigned FExtra,
292                            BranchProbability Prediction) const {
293      return TCycle > 0 && FCycle > 0 &&
294        TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra,
295                                 Prediction);
296    }
297
298    /// Returns true if Block ends without a terminator.
299    bool blockAlwaysFallThrough(BBInfo &BBI) const {
300      return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
301    }
302
303    /// Used to sort if-conversion candidates.
304    static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
305                              const std::unique_ptr<IfcvtToken> &C2) {
306      int Incr1 = (C1->Kind == ICDiamond)
307        ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
308      int Incr2 = (C2->Kind == ICDiamond)
309        ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
310      if (Incr1 > Incr2)
311        return true;
312      else if (Incr1 == Incr2) {
313        // Favors subsumption.
314        if (!C1->NeedSubsumption && C2->NeedSubsumption)
315          return true;
316        else if (C1->NeedSubsumption == C2->NeedSubsumption) {
317          // Favors diamond over triangle, etc.
318          if ((unsigned)C1->Kind < (unsigned)C2->Kind)
319            return true;
320          else if (C1->Kind == C2->Kind)
321            return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
322        }
323      }
324      return false;
325    }
326  };
327
328} // end anonymous namespace
329
330char IfConverter::ID = 0;
331
332char &llvm::IfConverterID = IfConverter::ID;
333
334INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false)
335INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
336INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false)
337
338bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
339  if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF)))
340    return false;
341
342  const TargetSubtargetInfo &ST = MF.getSubtarget();
343  TLI = ST.getTargetLowering();
344  TII = ST.getInstrInfo();
345  TRI = ST.getRegisterInfo();
346  BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
347  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
348  MRI = &MF.getRegInfo();
349  SchedModel.init(&ST);
350
351  if (!TII) return false;
352
353  PreRegAlloc = MRI->isSSA();
354
355  bool BFChange = false;
356  if (!PreRegAlloc) {
357    // Tail merge tend to expose more if-conversion opportunities.
358    BranchFolder BF(true, false, MBFI, *MBPI);
359    BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(),
360                                   getAnalysisIfAvailable<MachineModuleInfo>());
361  }
362
363  LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'"
364                    << MF.getName() << "\'");
365
366  if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
367    LLVM_DEBUG(dbgs() << " skipped\n");
368    return false;
369  }
370  LLVM_DEBUG(dbgs() << "\n");
371
372  MF.RenumberBlocks();
373  BBAnalysis.resize(MF.getNumBlockIDs());
374
375  std::vector<std::unique_ptr<IfcvtToken>> Tokens;
376  MadeChange = false;
377  unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
378    NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
379  while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
380    // Do an initial analysis for each basic block and find all the potential
381    // candidates to perform if-conversion.
382    bool Change = false;
383    AnalyzeBlocks(MF, Tokens);
384    while (!Tokens.empty()) {
385      std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
386      Tokens.pop_back();
387      BBInfo &BBI = Token->BBI;
388      IfcvtKind Kind = Token->Kind;
389      unsigned NumDups = Token->NumDups;
390      unsigned NumDups2 = Token->NumDups2;
391
392      // If the block has been evicted out of the queue or it has already been
393      // marked dead (due to it being predicated), then skip it.
394      if (BBI.IsDone)
395        BBI.IsEnqueued = false;
396      if (!BBI.IsEnqueued)
397        continue;
398
399      BBI.IsEnqueued = false;
400
401      bool RetVal = false;
402      switch (Kind) {
403      default: llvm_unreachable("Unexpected!");
404      case ICSimple:
405      case ICSimpleFalse: {
406        bool isFalse = Kind == ICSimpleFalse;
407        if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
408        LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
409                          << (Kind == ICSimpleFalse ? " false" : "")
410                          << "): " << printMBBReference(*BBI.BB) << " ("
411                          << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber()
412                                                      : BBI.TrueBB->getNumber())
413                          << ") ");
414        RetVal = IfConvertSimple(BBI, Kind);
415        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
416        if (RetVal) {
417          if (isFalse) ++NumSimpleFalse;
418          else         ++NumSimple;
419        }
420       break;
421      }
422      case ICTriangle:
423      case ICTriangleRev:
424      case ICTriangleFalse:
425      case ICTriangleFRev: {
426        bool isFalse = Kind == ICTriangleFalse;
427        bool isRev   = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
428        if (DisableTriangle && !isFalse && !isRev) break;
429        if (DisableTriangleR && !isFalse && isRev) break;
430        if (DisableTriangleF && isFalse && !isRev) break;
431        if (DisableTriangleFR && isFalse && isRev) break;
432        LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
433        if (isFalse)
434          LLVM_DEBUG(dbgs() << " false");
435        if (isRev)
436          LLVM_DEBUG(dbgs() << " rev");
437        LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB)
438                          << " (T:" << BBI.TrueBB->getNumber()
439                          << ",F:" << BBI.FalseBB->getNumber() << ") ");
440        RetVal = IfConvertTriangle(BBI, Kind);
441        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
442        if (RetVal) {
443          if (isFalse) {
444            if (isRev) ++NumTriangleFRev;
445            else       ++NumTriangleFalse;
446          } else {
447            if (isRev) ++NumTriangleRev;
448            else       ++NumTriangle;
449          }
450        }
451        break;
452      }
453      case ICDiamond:
454        if (DisableDiamond) break;
455        LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB)
456                          << " (T:" << BBI.TrueBB->getNumber()
457                          << ",F:" << BBI.FalseBB->getNumber() << ") ");
458        RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2,
459                                  Token->TClobbersPred,
460                                  Token->FClobbersPred);
461        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
462        if (RetVal) ++NumDiamonds;
463        break;
464      case ICForkedDiamond:
465        if (DisableForkedDiamond) break;
466        LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
467                          << printMBBReference(*BBI.BB)
468                          << " (T:" << BBI.TrueBB->getNumber()
469                          << ",F:" << BBI.FalseBB->getNumber() << ") ");
470        RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2,
471                                      Token->TClobbersPred,
472                                      Token->FClobbersPred);
473        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
474        if (RetVal) ++NumForkedDiamonds;
475        break;
476      }
477
478      if (RetVal && MRI->tracksLiveness())
479        recomputeLivenessFlags(*BBI.BB);
480
481      Change |= RetVal;
482
483      NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
484        NumTriangleFalse + NumTriangleFRev + NumDiamonds;
485      if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
486        break;
487    }
488
489    if (!Change)
490      break;
491    MadeChange |= Change;
492  }
493
494  Tokens.clear();
495  BBAnalysis.clear();
496
497  if (MadeChange && IfCvtBranchFold) {
498    BranchFolder BF(false, false, MBFI, *MBPI);
499    BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
500                        getAnalysisIfAvailable<MachineModuleInfo>());
501  }
502
503  MadeChange |= BFChange;
504  return MadeChange;
505}
506
507/// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
508static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
509                                         MachineBasicBlock *TrueBB) {
510  for (MachineBasicBlock *SuccBB : BB->successors()) {
511    if (SuccBB != TrueBB)
512      return SuccBB;
513  }
514  return nullptr;
515}
516
517/// Reverse the condition of the end of the block branch. Swap block's 'true'
518/// and 'false' successors.
519bool IfConverter::reverseBranchCondition(BBInfo &BBI) const {
520  DebugLoc dl;  // FIXME: this is nowhere
521  if (!TII->reverseBranchCondition(BBI.BrCond)) {
522    TII->removeBranch(*BBI.BB);
523    TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
524    std::swap(BBI.TrueBB, BBI.FalseBB);
525    return true;
526  }
527  return false;
528}
529
530/// Returns the next block in the function blocks ordering. If it is the end,
531/// returns NULL.
532static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) {
533  MachineFunction::iterator I = MBB.getIterator();
534  MachineFunction::iterator E = MBB.getParent()->end();
535  if (++I == E)
536    return nullptr;
537  return &*I;
538}
539
540/// Returns true if the 'true' block (along with its predecessor) forms a valid
541/// simple shape for ifcvt. It also returns the number of instructions that the
542/// ifcvt would need to duplicate if performed in Dups.
543bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
544                              BranchProbability Prediction) const {
545  Dups = 0;
546  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
547    return false;
548
549  if (TrueBBI.IsBrAnalyzable)
550    return false;
551
552  if (TrueBBI.BB->pred_size() > 1) {
553    if (TrueBBI.CannotBeCopied ||
554        !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
555                                        Prediction))
556      return false;
557    Dups = TrueBBI.NonPredSize;
558  }
559
560  return true;
561}
562
563/// Returns true if the 'true' and 'false' blocks (along with their common
564/// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
565/// true, it checks if 'true' block's false branch branches to the 'false' block
566/// rather than the other way around. It also returns the number of instructions
567/// that the ifcvt would need to duplicate if performed in 'Dups'.
568bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
569                                bool FalseBranch, unsigned &Dups,
570                                BranchProbability Prediction) const {
571  Dups = 0;
572  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
573    return false;
574
575  if (TrueBBI.BB->pred_size() > 1) {
576    if (TrueBBI.CannotBeCopied)
577      return false;
578
579    unsigned Size = TrueBBI.NonPredSize;
580    if (TrueBBI.IsBrAnalyzable) {
581      if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
582        // Ends with an unconditional branch. It will be removed.
583        --Size;
584      else {
585        MachineBasicBlock *FExit = FalseBranch
586          ? TrueBBI.TrueBB : TrueBBI.FalseBB;
587        if (FExit)
588          // Require a conditional branch
589          ++Size;
590      }
591    }
592    if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
593      return false;
594    Dups = Size;
595  }
596
597  MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
598  if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
599    MachineFunction::iterator I = TrueBBI.BB->getIterator();
600    if (++I == TrueBBI.BB->getParent()->end())
601      return false;
602    TExit = &*I;
603  }
604  return TExit && TExit == FalseBBI.BB;
605}
606
607/// Count duplicated instructions and move the iterators to show where they
608/// are.
609/// @param TIB True Iterator Begin
610/// @param FIB False Iterator Begin
611/// These two iterators initially point to the first instruction of the two
612/// blocks, and finally point to the first non-shared instruction.
613/// @param TIE True Iterator End
614/// @param FIE False Iterator End
615/// These two iterators initially point to End() for the two blocks() and
616/// finally point to the first shared instruction in the tail.
617/// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
618/// two blocks.
619/// @param Dups1 count of duplicated instructions at the beginning of the 2
620/// blocks.
621/// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
622/// @param SkipUnconditionalBranches if true, Don't make sure that
623/// unconditional branches at the end of the blocks are the same. True is
624/// passed when the blocks are analyzable to allow for fallthrough to be
625/// handled.
626/// @return false if the shared portion prevents if conversion.
627bool IfConverter::CountDuplicatedInstructions(
628    MachineBasicBlock::iterator &TIB,
629    MachineBasicBlock::iterator &FIB,
630    MachineBasicBlock::iterator &TIE,
631    MachineBasicBlock::iterator &FIE,
632    unsigned &Dups1, unsigned &Dups2,
633    MachineBasicBlock &TBB, MachineBasicBlock &FBB,
634    bool SkipUnconditionalBranches) const {
635  while (TIB != TIE && FIB != FIE) {
636    // Skip dbg_value instructions. These do not count.
637    TIB = skipDebugInstructionsForward(TIB, TIE);
638    FIB = skipDebugInstructionsForward(FIB, FIE);
639    if (TIB == TIE || FIB == FIE)
640      break;
641    if (!TIB->isIdenticalTo(*FIB))
642      break;
643    // A pred-clobbering instruction in the shared portion prevents
644    // if-conversion.
645    std::vector<MachineOperand> PredDefs;
646    if (TII->DefinesPredicate(*TIB, PredDefs))
647      return false;
648    // If we get all the way to the branch instructions, don't count them.
649    if (!TIB->isBranch())
650      ++Dups1;
651    ++TIB;
652    ++FIB;
653  }
654
655  // Check for already containing all of the block.
656  if (TIB == TIE || FIB == FIE)
657    return true;
658  // Now, in preparation for counting duplicate instructions at the ends of the
659  // blocks, switch to reverse_iterators. Note that getReverse() returns an
660  // iterator that points to the same instruction, unlike std::reverse_iterator.
661  // We have to do our own shifting so that we get the same range.
662  MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse());
663  MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse());
664  const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse());
665  const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse());
666
667  if (!TBB.succ_empty() || !FBB.succ_empty()) {
668    if (SkipUnconditionalBranches) {
669      while (RTIE != RTIB && RTIE->isUnconditionalBranch())
670        ++RTIE;
671      while (RFIE != RFIB && RFIE->isUnconditionalBranch())
672        ++RFIE;
673    }
674  }
675
676  // Count duplicate instructions at the ends of the blocks.
677  while (RTIE != RTIB && RFIE != RFIB) {
678    // Skip dbg_value instructions. These do not count.
679    // Note that these are reverse iterators going forward.
680    RTIE = skipDebugInstructionsForward(RTIE, RTIB);
681    RFIE = skipDebugInstructionsForward(RFIE, RFIB);
682    if (RTIE == RTIB || RFIE == RFIB)
683      break;
684    if (!RTIE->isIdenticalTo(*RFIE))
685      break;
686    // We have to verify that any branch instructions are the same, and then we
687    // don't count them toward the # of duplicate instructions.
688    if (!RTIE->isBranch())
689      ++Dups2;
690    ++RTIE;
691    ++RFIE;
692  }
693  TIE = std::next(RTIE.getReverse());
694  FIE = std::next(RFIE.getReverse());
695  return true;
696}
697
698/// RescanInstructions - Run ScanInstructions on a pair of blocks.
699/// @param TIB - True Iterator Begin, points to first non-shared instruction
700/// @param FIB - False Iterator Begin, points to first non-shared instruction
701/// @param TIE - True Iterator End, points past last non-shared instruction
702/// @param FIE - False Iterator End, points past last non-shared instruction
703/// @param TrueBBI  - BBInfo to update for the true block.
704/// @param FalseBBI - BBInfo to update for the false block.
705/// @returns - false if either block cannot be predicated or if both blocks end
706///   with a predicate-clobbering instruction.
707bool IfConverter::RescanInstructions(
708    MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
709    MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
710    BBInfo &TrueBBI, BBInfo &FalseBBI) const {
711  bool BranchUnpredicable = true;
712  TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false;
713  ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable);
714  if (TrueBBI.IsUnpredicable)
715    return false;
716  ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable);
717  if (FalseBBI.IsUnpredicable)
718    return false;
719  if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)
720    return false;
721  return true;
722}
723
724#ifndef NDEBUG
725static void verifySameBranchInstructions(
726    MachineBasicBlock *MBB1,
727    MachineBasicBlock *MBB2) {
728  const MachineBasicBlock::reverse_iterator B1 = MBB1->rend();
729  const MachineBasicBlock::reverse_iterator B2 = MBB2->rend();
730  MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin();
731  MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin();
732  while (E1 != B1 && E2 != B2) {
733    skipDebugInstructionsForward(E1, B1);
734    skipDebugInstructionsForward(E2, B2);
735    if (E1 == B1 && E2 == B2)
736      break;
737
738    if (E1 == B1) {
739      assert(!E2->isBranch() && "Branch mis-match, one block is empty.");
740      break;
741    }
742    if (E2 == B2) {
743      assert(!E1->isBranch() && "Branch mis-match, one block is empty.");
744      break;
745    }
746
747    if (E1->isBranch() || E2->isBranch())
748      assert(E1->isIdenticalTo(*E2) &&
749             "Branch mis-match, branch instructions don't match.");
750    else
751      break;
752    ++E1;
753    ++E2;
754  }
755}
756#endif
757
758/// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
759/// with their common predecessor) form a diamond if a common tail block is
760/// extracted.
761/// While not strictly a diamond, this pattern would form a diamond if
762/// tail-merging had merged the shared tails.
763///           EBB
764///         _/   \_
765///         |     |
766///        TBB   FBB
767///        /  \ /   \
768///  FalseBB TrueBB FalseBB
769/// Currently only handles analyzable branches.
770/// Specifically excludes actual diamonds to avoid overlap.
771bool IfConverter::ValidForkedDiamond(
772    BBInfo &TrueBBI, BBInfo &FalseBBI,
773    unsigned &Dups1, unsigned &Dups2,
774    BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
775  Dups1 = Dups2 = 0;
776  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
777      FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
778    return false;
779
780  if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable)
781    return false;
782  // Don't IfConvert blocks that can't be folded into their predecessor.
783  if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
784    return false;
785
786  // This function is specifically looking for conditional tails, as
787  // unconditional tails are already handled by the standard diamond case.
788  if (TrueBBI.BrCond.size() == 0 ||
789      FalseBBI.BrCond.size() == 0)
790    return false;
791
792  MachineBasicBlock *TT = TrueBBI.TrueBB;
793  MachineBasicBlock *TF = TrueBBI.FalseBB;
794  MachineBasicBlock *FT = FalseBBI.TrueBB;
795  MachineBasicBlock *FF = FalseBBI.FalseBB;
796
797  if (!TT)
798    TT = getNextBlock(*TrueBBI.BB);
799  if (!TF)
800    TF = getNextBlock(*TrueBBI.BB);
801  if (!FT)
802    FT = getNextBlock(*FalseBBI.BB);
803  if (!FF)
804    FF = getNextBlock(*FalseBBI.BB);
805
806  if (!TT || !TF)
807    return false;
808
809  // Check successors. If they don't match, bail.
810  if (!((TT == FT && TF == FF) || (TF == FT && TT == FF)))
811    return false;
812
813  bool FalseReversed = false;
814  if (TF == FT && TT == FF) {
815    // If the branches are opposing, but we can't reverse, don't do it.
816    if (!FalseBBI.IsBrReversible)
817      return false;
818    FalseReversed = true;
819    reverseBranchCondition(FalseBBI);
820  }
821  auto UnReverseOnExit = make_scope_exit([&]() {
822    if (FalseReversed)
823      reverseBranchCondition(FalseBBI);
824  });
825
826  // Count duplicate instructions at the beginning of the true and false blocks.
827  MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
828  MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
829  MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
830  MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
831  if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
832                                  *TrueBBI.BB, *FalseBBI.BB,
833                                  /* SkipUnconditionalBranches */ true))
834    return false;
835
836  TrueBBICalc.BB = TrueBBI.BB;
837  FalseBBICalc.BB = FalseBBI.BB;
838  if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
839    return false;
840
841  // The size is used to decide whether to if-convert, and the shared portions
842  // are subtracted off. Because of the subtraction, we just use the size that
843  // was calculated by the original ScanInstructions, as it is correct.
844  TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
845  FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
846  return true;
847}
848
849/// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
850/// with their common predecessor) forms a valid diamond shape for ifcvt.
851bool IfConverter::ValidDiamond(
852    BBInfo &TrueBBI, BBInfo &FalseBBI,
853    unsigned &Dups1, unsigned &Dups2,
854    BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
855  Dups1 = Dups2 = 0;
856  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
857      FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
858    return false;
859
860  MachineBasicBlock *TT = TrueBBI.TrueBB;
861  MachineBasicBlock *FT = FalseBBI.TrueBB;
862
863  if (!TT && blockAlwaysFallThrough(TrueBBI))
864    TT = getNextBlock(*TrueBBI.BB);
865  if (!FT && blockAlwaysFallThrough(FalseBBI))
866    FT = getNextBlock(*FalseBBI.BB);
867  if (TT != FT)
868    return false;
869  if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
870    return false;
871  if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
872    return false;
873
874  // FIXME: Allow true block to have an early exit?
875  if (TrueBBI.FalseBB || FalseBBI.FalseBB)
876    return false;
877
878  // Count duplicate instructions at the beginning and end of the true and
879  // false blocks.
880  // Skip unconditional branches only if we are considering an analyzable
881  // diamond. Otherwise the branches must be the same.
882  bool SkipUnconditionalBranches =
883      TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable;
884  MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
885  MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
886  MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
887  MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
888  if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
889                                  *TrueBBI.BB, *FalseBBI.BB,
890                                  SkipUnconditionalBranches))
891    return false;
892
893  TrueBBICalc.BB = TrueBBI.BB;
894  FalseBBICalc.BB = FalseBBI.BB;
895  if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
896    return false;
897  // The size is used to decide whether to if-convert, and the shared portions
898  // are subtracted off. Because of the subtraction, we just use the size that
899  // was calculated by the original ScanInstructions, as it is correct.
900  TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
901  FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
902  return true;
903}
904
905/// AnalyzeBranches - Look at the branches at the end of a block to determine if
906/// the block is predicable.
907void IfConverter::AnalyzeBranches(BBInfo &BBI) {
908  if (BBI.IsDone)
909    return;
910
911  BBI.TrueBB = BBI.FalseBB = nullptr;
912  BBI.BrCond.clear();
913  BBI.IsBrAnalyzable =
914      !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
915  if (!BBI.IsBrAnalyzable) {
916    BBI.TrueBB = nullptr;
917    BBI.FalseBB = nullptr;
918    BBI.BrCond.clear();
919  }
920
921  SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
922  BBI.IsBrReversible = (RevCond.size() == 0) ||
923      !TII->reverseBranchCondition(RevCond);
924  BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
925
926  if (BBI.BrCond.size()) {
927    // No false branch. This BB must end with a conditional branch and a
928    // fallthrough.
929    if (!BBI.FalseBB)
930      BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
931    if (!BBI.FalseBB) {
932      // Malformed bcc? True and false blocks are the same?
933      BBI.IsUnpredicable = true;
934    }
935  }
936}
937
938/// ScanInstructions - Scan all the instructions in the block to determine if
939/// the block is predicable. In most cases, that means all the instructions
940/// in the block are isPredicable(). Also checks if the block contains any
941/// instruction which can clobber a predicate (e.g. condition code register).
942/// If so, the block is not predicable unless it's the last instruction.
943void IfConverter::ScanInstructions(BBInfo &BBI,
944                                   MachineBasicBlock::iterator &Begin,
945                                   MachineBasicBlock::iterator &End,
946                                   bool BranchUnpredicable) const {
947  if (BBI.IsDone || BBI.IsUnpredicable)
948    return;
949
950  bool AlreadyPredicated = !BBI.Predicate.empty();
951
952  BBI.NonPredSize = 0;
953  BBI.ExtraCost = 0;
954  BBI.ExtraCost2 = 0;
955  BBI.ClobbersPred = false;
956  for (MachineInstr &MI : make_range(Begin, End)) {
957    if (MI.isDebugInstr())
958      continue;
959
960    // It's unsafe to duplicate convergent instructions in this context, so set
961    // BBI.CannotBeCopied to true if MI is convergent.  To see why, consider the
962    // following CFG, which is subject to our "simple" transformation.
963    //
964    //    BB0     // if (c1) goto BB1; else goto BB2;
965    //   /   \
966    //  BB1   |
967    //   |   BB2  // if (c2) goto TBB; else goto FBB;
968    //   |   / |
969    //   |  /  |
970    //   TBB   |
971    //    |    |
972    //    |   FBB
973    //    |
974    //    exit
975    //
976    // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
977    // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
978    // TBB contains a convergent instruction.  This is safe iff doing so does
979    // not add a control-flow dependency to the convergent instruction -- i.e.,
980    // it's safe iff the set of control flows that leads us to the convergent
981    // instruction does not get smaller after the transformation.
982    //
983    // Originally we executed TBB if c1 || c2.  After the transformation, there
984    // are two copies of TBB's instructions.  We get to the first if c1, and we
985    // get to the second if !c1 && c2.
986    //
987    // There are clearly fewer ways to satisfy the condition "c1" than
988    // "c1 || c2".  Since we've shrunk the set of control flows which lead to
989    // our convergent instruction, the transformation is unsafe.
990    if (MI.isNotDuplicable() || MI.isConvergent())
991      BBI.CannotBeCopied = true;
992
993    bool isPredicated = TII->isPredicated(MI);
994    bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();
995
996    if (BranchUnpredicable && MI.isBranch()) {
997      BBI.IsUnpredicable = true;
998      return;
999    }
1000
1001    // A conditional branch is not predicable, but it may be eliminated.
1002    if (isCondBr)
1003      continue;
1004
1005    if (!isPredicated) {
1006      BBI.NonPredSize++;
1007      unsigned ExtraPredCost = TII->getPredicationCost(MI);
1008      unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
1009      if (NumCycles > 1)
1010        BBI.ExtraCost += NumCycles-1;
1011      BBI.ExtraCost2 += ExtraPredCost;
1012    } else if (!AlreadyPredicated) {
1013      // FIXME: This instruction is already predicated before the
1014      // if-conversion pass. It's probably something like a conditional move.
1015      // Mark this block unpredicable for now.
1016      BBI.IsUnpredicable = true;
1017      return;
1018    }
1019
1020    if (BBI.ClobbersPred && !isPredicated) {
1021      // Predicate modification instruction should end the block (except for
1022      // already predicated instructions and end of block branches).
1023      // Predicate may have been modified, the subsequent (currently)
1024      // unpredicated instructions cannot be correctly predicated.
1025      BBI.IsUnpredicable = true;
1026      return;
1027    }
1028
1029    // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
1030    // still potentially predicable.
1031    std::vector<MachineOperand> PredDefs;
1032    if (TII->DefinesPredicate(MI, PredDefs))
1033      BBI.ClobbersPred = true;
1034
1035    if (!TII->isPredicable(MI)) {
1036      BBI.IsUnpredicable = true;
1037      return;
1038    }
1039  }
1040}
1041
1042/// Determine if the block is a suitable candidate to be predicated by the
1043/// specified predicate.
1044/// @param BBI BBInfo for the block to check
1045/// @param Pred Predicate array for the branch that leads to BBI
1046/// @param isTriangle true if the Analysis is for a triangle
1047/// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
1048///        case
1049/// @param hasCommonTail true if BBI shares a tail with a sibling block that
1050///        contains any instruction that would make the block unpredicable.
1051bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
1052                                      SmallVectorImpl<MachineOperand> &Pred,
1053                                      bool isTriangle, bool RevBranch,
1054                                      bool hasCommonTail) {
1055  // If the block is dead or unpredicable, then it cannot be predicated.
1056  // Two blocks may share a common unpredicable tail, but this doesn't prevent
1057  // them from being if-converted. The non-shared portion is assumed to have
1058  // been checked
1059  if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail))
1060    return false;
1061
1062  // If it is already predicated but we couldn't analyze its terminator, the
1063  // latter might fallthrough, but we can't determine where to.
1064  // Conservatively avoid if-converting again.
1065  if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
1066    return false;
1067
1068  // If it is already predicated, check if the new predicate subsumes
1069  // its predicate.
1070  if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
1071    return false;
1072
1073  if (!hasCommonTail && BBI.BrCond.size()) {
1074    if (!isTriangle)
1075      return false;
1076
1077    // Test predicate subsumption.
1078    SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
1079    SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1080    if (RevBranch) {
1081      if (TII->reverseBranchCondition(Cond))
1082        return false;
1083    }
1084    if (TII->reverseBranchCondition(RevPred) ||
1085        !TII->SubsumesPredicate(Cond, RevPred))
1086      return false;
1087  }
1088
1089  return true;
1090}
1091
1092/// Analyze the structure of the sub-CFG starting from the specified block.
1093/// Record its successors and whether it looks like an if-conversion candidate.
1094void IfConverter::AnalyzeBlock(
1095    MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1096  struct BBState {
1097    BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {}
1098    MachineBasicBlock *MBB;
1099
1100    /// This flag is true if MBB's successors have been analyzed.
1101    bool SuccsAnalyzed;
1102  };
1103
1104  // Push MBB to the stack.
1105  SmallVector<BBState, 16> BBStack(1, MBB);
1106
1107  while (!BBStack.empty()) {
1108    BBState &State = BBStack.back();
1109    MachineBasicBlock *BB = State.MBB;
1110    BBInfo &BBI = BBAnalysis[BB->getNumber()];
1111
1112    if (!State.SuccsAnalyzed) {
1113      if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
1114        BBStack.pop_back();
1115        continue;
1116      }
1117
1118      BBI.BB = BB;
1119      BBI.IsBeingAnalyzed = true;
1120
1121      AnalyzeBranches(BBI);
1122      MachineBasicBlock::iterator Begin = BBI.BB->begin();
1123      MachineBasicBlock::iterator End = BBI.BB->end();
1124      ScanInstructions(BBI, Begin, End);
1125
1126      // Unanalyzable or ends with fallthrough or unconditional branch, or if is
1127      // not considered for ifcvt anymore.
1128      if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
1129        BBI.IsBeingAnalyzed = false;
1130        BBI.IsAnalyzed = true;
1131        BBStack.pop_back();
1132        continue;
1133      }
1134
1135      // Do not ifcvt if either path is a back edge to the entry block.
1136      if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
1137        BBI.IsBeingAnalyzed = false;
1138        BBI.IsAnalyzed = true;
1139        BBStack.pop_back();
1140        continue;
1141      }
1142
1143      // Do not ifcvt if true and false fallthrough blocks are the same.
1144      if (!BBI.FalseBB) {
1145        BBI.IsBeingAnalyzed = false;
1146        BBI.IsAnalyzed = true;
1147        BBStack.pop_back();
1148        continue;
1149      }
1150
1151      // Push the False and True blocks to the stack.
1152      State.SuccsAnalyzed = true;
1153      BBStack.push_back(*BBI.FalseBB);
1154      BBStack.push_back(*BBI.TrueBB);
1155      continue;
1156    }
1157
1158    BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1159    BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1160
1161    if (TrueBBI.IsDone && FalseBBI.IsDone) {
1162      BBI.IsBeingAnalyzed = false;
1163      BBI.IsAnalyzed = true;
1164      BBStack.pop_back();
1165      continue;
1166    }
1167
1168    SmallVector<MachineOperand, 4>
1169        RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1170    bool CanRevCond = !TII->reverseBranchCondition(RevCond);
1171
1172    unsigned Dups = 0;
1173    unsigned Dups2 = 0;
1174    bool TNeedSub = !TrueBBI.Predicate.empty();
1175    bool FNeedSub = !FalseBBI.Predicate.empty();
1176    bool Enqueued = false;
1177
1178    BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
1179
1180    if (CanRevCond) {
1181      BBInfo TrueBBICalc, FalseBBICalc;
1182      auto feasibleDiamond = [&]() {
1183        bool MeetsSize = MeetIfcvtSizeLimit(
1184            *TrueBBI.BB, (TrueBBICalc.NonPredSize - (Dups + Dups2) +
1185                          TrueBBICalc.ExtraCost), TrueBBICalc.ExtraCost2,
1186            *FalseBBI.BB, (FalseBBICalc.NonPredSize - (Dups + Dups2) +
1187                           FalseBBICalc.ExtraCost), FalseBBICalc.ExtraCost2,
1188            Prediction);
1189        bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond,
1190                                                /* IsTriangle */ false, /* RevCond */ false,
1191                                                /* hasCommonTail */ true);
1192        bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond,
1193                                                 /* IsTriangle */ false, /* RevCond */ false,
1194                                                 /* hasCommonTail */ true);
1195        return MeetsSize && TrueFeasible && FalseFeasible;
1196      };
1197
1198      if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1199                       TrueBBICalc, FalseBBICalc)) {
1200        if (feasibleDiamond()) {
1201          // Diamond:
1202          //   EBB
1203          //   / \_
1204          //  |   |
1205          // TBB FBB
1206          //   \ /
1207          //  TailBB
1208          // Note TailBB can be empty.
1209          Tokens.push_back(llvm::make_unique<IfcvtToken>(
1210              BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1211              (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1212          Enqueued = true;
1213        }
1214      } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1215                                    TrueBBICalc, FalseBBICalc)) {
1216        if (feasibleDiamond()) {
1217          // ForkedDiamond:
1218          // if TBB and FBB have a common tail that includes their conditional
1219          // branch instructions, then we can If Convert this pattern.
1220          //          EBB
1221          //         _/ \_
1222          //         |   |
1223          //        TBB  FBB
1224          //        / \ /   \
1225          //  FalseBB TrueBB FalseBB
1226          //
1227          Tokens.push_back(llvm::make_unique<IfcvtToken>(
1228              BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1229              (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1230          Enqueued = true;
1231        }
1232      }
1233    }
1234
1235    if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
1236        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1237                           TrueBBI.ExtraCost2, Prediction) &&
1238        FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
1239      // Triangle:
1240      //   EBB
1241      //   | \_
1242      //   |  |
1243      //   | TBB
1244      //   |  /
1245      //   FBB
1246      Tokens.push_back(
1247          llvm::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
1248      Enqueued = true;
1249    }
1250
1251    if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
1252        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1253                           TrueBBI.ExtraCost2, Prediction) &&
1254        FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
1255      Tokens.push_back(
1256          llvm::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
1257      Enqueued = true;
1258    }
1259
1260    if (ValidSimple(TrueBBI, Dups, Prediction) &&
1261        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1262                           TrueBBI.ExtraCost2, Prediction) &&
1263        FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
1264      // Simple (split, no rejoin):
1265      //   EBB
1266      //   | \_
1267      //   |  |
1268      //   | TBB---> exit
1269      //   |
1270      //   FBB
1271      Tokens.push_back(
1272          llvm::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
1273      Enqueued = true;
1274    }
1275
1276    if (CanRevCond) {
1277      // Try the other path...
1278      if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
1279                        Prediction.getCompl()) &&
1280          MeetIfcvtSizeLimit(*FalseBBI.BB,
1281                             FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1282                             FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1283          FeasibilityAnalysis(FalseBBI, RevCond, true)) {
1284        Tokens.push_back(llvm::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
1285                                                       FNeedSub, Dups));
1286        Enqueued = true;
1287      }
1288
1289      if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
1290                        Prediction.getCompl()) &&
1291          MeetIfcvtSizeLimit(*FalseBBI.BB,
1292                             FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1293                           FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1294        FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
1295        Tokens.push_back(
1296            llvm::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
1297        Enqueued = true;
1298      }
1299
1300      if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
1301          MeetIfcvtSizeLimit(*FalseBBI.BB,
1302                             FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1303                             FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1304          FeasibilityAnalysis(FalseBBI, RevCond)) {
1305        Tokens.push_back(
1306            llvm::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
1307        Enqueued = true;
1308      }
1309    }
1310
1311    BBI.IsEnqueued = Enqueued;
1312    BBI.IsBeingAnalyzed = false;
1313    BBI.IsAnalyzed = true;
1314    BBStack.pop_back();
1315  }
1316}
1317
1318/// Analyze all blocks and find entries for all if-conversion candidates.
1319void IfConverter::AnalyzeBlocks(
1320    MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1321  for (MachineBasicBlock &MBB : MF)
1322    AnalyzeBlock(MBB, Tokens);
1323
1324  // Sort to favor more complex ifcvt scheme.
1325  llvm::stable_sort(Tokens, IfcvtTokenCmp);
1326}
1327
1328/// Returns true either if ToMBB is the next block after MBB or that all the
1329/// intervening blocks are empty (given MBB can fall through to its next block).
1330static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) {
1331  MachineFunction::iterator PI = MBB.getIterator();
1332  MachineFunction::iterator I = std::next(PI);
1333  MachineFunction::iterator TI = ToMBB.getIterator();
1334  MachineFunction::iterator E = MBB.getParent()->end();
1335  while (I != TI) {
1336    // Check isSuccessor to avoid case where the next block is empty, but
1337    // it's not a successor.
1338    if (I == E || !I->empty() || !PI->isSuccessor(&*I))
1339      return false;
1340    PI = I++;
1341  }
1342  // Finally see if the last I is indeed a successor to PI.
1343  return PI->isSuccessor(&*I);
1344}
1345
1346/// Invalidate predecessor BB info so it would be re-analyzed to determine if it
1347/// can be if-converted. If predecessor is already enqueued, dequeue it!
1348void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) {
1349  for (const MachineBasicBlock *Predecessor : MBB.predecessors()) {
1350    BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
1351    if (PBBI.IsDone || PBBI.BB == &MBB)
1352      continue;
1353    PBBI.IsAnalyzed = false;
1354    PBBI.IsEnqueued = false;
1355  }
1356}
1357
1358/// Inserts an unconditional branch from \p MBB to \p ToMBB.
1359static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB,
1360                               const TargetInstrInfo *TII) {
1361  DebugLoc dl;  // FIXME: this is nowhere
1362  SmallVector<MachineOperand, 0> NoCond;
1363  TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl);
1364}
1365
1366/// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
1367/// values defined in MI which are also live/used by MI.
1368static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
1369  const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo();
1370
1371  // Before stepping forward past MI, remember which regs were live
1372  // before MI. This is needed to set the Undef flag only when reg is
1373  // dead.
1374  SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI;
1375  LiveBeforeMI.setUniverse(TRI->getNumRegs());
1376  for (unsigned Reg : Redefs)
1377    LiveBeforeMI.insert(Reg);
1378
1379  SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers;
1380  Redefs.stepForward(MI, Clobbers);
1381
1382  // Now add the implicit uses for each of the clobbered values.
1383  for (auto Clobber : Clobbers) {
1384    // FIXME: Const cast here is nasty, but better than making StepForward
1385    // take a mutable instruction instead of const.
1386    unsigned Reg = Clobber.first;
1387    MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second);
1388    MachineInstr *OpMI = Op.getParent();
1389    MachineInstrBuilder MIB(*OpMI->getMF(), OpMI);
1390    if (Op.isRegMask()) {
1391      // First handle regmasks.  They clobber any entries in the mask which
1392      // means that we need a def for those registers.
1393      if (LiveBeforeMI.count(Reg))
1394        MIB.addReg(Reg, RegState::Implicit);
1395
1396      // We also need to add an implicit def of this register for the later
1397      // use to read from.
1398      // For the register allocator to have allocated a register clobbered
1399      // by the call which is used later, it must be the case that
1400      // the call doesn't return.
1401      MIB.addReg(Reg, RegState::Implicit | RegState::Define);
1402      continue;
1403    }
1404    if (LiveBeforeMI.count(Reg))
1405      MIB.addReg(Reg, RegState::Implicit);
1406    else {
1407      bool HasLiveSubReg = false;
1408      for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) {
1409        if (!LiveBeforeMI.count(*S))
1410          continue;
1411        HasLiveSubReg = true;
1412        break;
1413      }
1414      if (HasLiveSubReg)
1415        MIB.addReg(Reg, RegState::Implicit);
1416    }
1417  }
1418}
1419
1420/// If convert a simple (split, no rejoin) sub-CFG.
1421bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
1422  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
1423  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1424  BBInfo *CvtBBI = &TrueBBI;
1425  BBInfo *NextBBI = &FalseBBI;
1426
1427  SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1428  if (Kind == ICSimpleFalse)
1429    std::swap(CvtBBI, NextBBI);
1430
1431  MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1432  MachineBasicBlock &NextMBB = *NextBBI->BB;
1433  if (CvtBBI->IsDone ||
1434      (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1435    // Something has changed. It's no longer safe to predicate this block.
1436    BBI.IsAnalyzed = false;
1437    CvtBBI->IsAnalyzed = false;
1438    return false;
1439  }
1440
1441  if (CvtMBB.hasAddressTaken())
1442    // Conservatively abort if-conversion if BB's address is taken.
1443    return false;
1444
1445  if (Kind == ICSimpleFalse)
1446    if (TII->reverseBranchCondition(Cond))
1447      llvm_unreachable("Unable to reverse branch condition!");
1448
1449  Redefs.init(*TRI);
1450
1451  if (MRI->tracksLiveness()) {
1452    // Initialize liveins to the first BB. These are potentially redefined by
1453    // predicated instructions.
1454    Redefs.addLiveIns(CvtMBB);
1455    Redefs.addLiveIns(NextMBB);
1456  }
1457
1458  // Remove the branches from the entry so we can add the contents of the true
1459  // block to it.
1460  BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1461
1462  if (CvtMBB.pred_size() > 1) {
1463    // Copy instructions in the true block, predicate them, and add them to
1464    // the entry block.
1465    CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
1466
1467    // Keep the CFG updated.
1468    BBI.BB->removeSuccessor(&CvtMBB, true);
1469  } else {
1470    // Predicate the instructions in the true block.
1471    PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1472
1473    // Merge converted block into entry block. The BB to Cvt edge is removed
1474    // by MergeBlocks.
1475    MergeBlocks(BBI, *CvtBBI);
1476  }
1477
1478  bool IterIfcvt = true;
1479  if (!canFallThroughTo(*BBI.BB, NextMBB)) {
1480    InsertUncondBranch(*BBI.BB, NextMBB, TII);
1481    BBI.HasFallThrough = false;
1482    // Now ifcvt'd block will look like this:
1483    // BB:
1484    // ...
1485    // t, f = cmp
1486    // if t op
1487    // b BBf
1488    //
1489    // We cannot further ifcvt this block because the unconditional branch
1490    // will have to be predicated on the new condition, that will not be
1491    // available if cmp executes.
1492    IterIfcvt = false;
1493  }
1494
1495  // Update block info. BB can be iteratively if-converted.
1496  if (!IterIfcvt)
1497    BBI.IsDone = true;
1498  InvalidatePreds(*BBI.BB);
1499  CvtBBI->IsDone = true;
1500
1501  // FIXME: Must maintain LiveIns.
1502  return true;
1503}
1504
1505/// If convert a triangle sub-CFG.
1506bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
1507  BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1508  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1509  BBInfo *CvtBBI = &TrueBBI;
1510  BBInfo *NextBBI = &FalseBBI;
1511  DebugLoc dl;  // FIXME: this is nowhere
1512
1513  SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1514  if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1515    std::swap(CvtBBI, NextBBI);
1516
1517  MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1518  MachineBasicBlock &NextMBB = *NextBBI->BB;
1519  if (CvtBBI->IsDone ||
1520      (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1521    // Something has changed. It's no longer safe to predicate this block.
1522    BBI.IsAnalyzed = false;
1523    CvtBBI->IsAnalyzed = false;
1524    return false;
1525  }
1526
1527  if (CvtMBB.hasAddressTaken())
1528    // Conservatively abort if-conversion if BB's address is taken.
1529    return false;
1530
1531  if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1532    if (TII->reverseBranchCondition(Cond))
1533      llvm_unreachable("Unable to reverse branch condition!");
1534
1535  if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
1536    if (reverseBranchCondition(*CvtBBI)) {
1537      // BB has been changed, modify its predecessors (except for this
1538      // one) so they don't get ifcvt'ed based on bad intel.
1539      for (MachineBasicBlock *PBB : CvtMBB.predecessors()) {
1540        if (PBB == BBI.BB)
1541          continue;
1542        BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
1543        if (PBBI.IsEnqueued) {
1544          PBBI.IsAnalyzed = false;
1545          PBBI.IsEnqueued = false;
1546        }
1547      }
1548    }
1549  }
1550
1551  // Initialize liveins to the first BB. These are potentially redefined by
1552  // predicated instructions.
1553  Redefs.init(*TRI);
1554  if (MRI->tracksLiveness()) {
1555    Redefs.addLiveIns(CvtMBB);
1556    Redefs.addLiveIns(NextMBB);
1557  }
1558
1559  bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
1560  BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
1561
1562  if (HasEarlyExit) {
1563    // Get probabilities before modifying CvtMBB and BBI.BB.
1564    CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB);
1565    CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB);
1566    BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB);
1567    BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB);
1568  }
1569
1570  // Remove the branches from the entry so we can add the contents of the true
1571  // block to it.
1572  BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1573
1574  if (CvtMBB.pred_size() > 1) {
1575    // Copy instructions in the true block, predicate them, and add them to
1576    // the entry block.
1577    CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
1578  } else {
1579    // Predicate the 'true' block after removing its branch.
1580    CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB);
1581    PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1582
1583    // Now merge the entry of the triangle with the true block.
1584    MergeBlocks(BBI, *CvtBBI, false);
1585  }
1586
1587  // Keep the CFG updated.
1588  BBI.BB->removeSuccessor(&CvtMBB, true);
1589
1590  // If 'true' block has a 'false' successor, add an exit branch to it.
1591  if (HasEarlyExit) {
1592    SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
1593                                           CvtBBI->BrCond.end());
1594    if (TII->reverseBranchCondition(RevCond))
1595      llvm_unreachable("Unable to reverse branch condition!");
1596
1597    // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
1598    // NewNext = New_Prob(BBI.BB, NextMBB) =
1599    //   Prob(BBI.BB, NextMBB) +
1600    //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
1601    // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
1602    //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
1603    auto NewTrueBB = getNextBlock(*BBI.BB);
1604    auto NewNext = BBNext + BBCvt * CvtNext;
1605    auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB);
1606    if (NewTrueBBIter != BBI.BB->succ_end())
1607      BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
1608
1609    auto NewFalse = BBCvt * CvtFalse;
1610    TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
1611    BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
1612  }
1613
1614  // Merge in the 'false' block if the 'false' block has no other
1615  // predecessors. Otherwise, add an unconditional branch to 'false'.
1616  bool FalseBBDead = false;
1617  bool IterIfcvt = true;
1618  bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB);
1619  if (!isFallThrough) {
1620    // Only merge them if the true block does not fallthrough to the false
1621    // block. By not merging them, we make it possible to iteratively
1622    // ifcvt the blocks.
1623    if (!HasEarlyExit &&
1624        NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough &&
1625        !NextMBB.hasAddressTaken()) {
1626      MergeBlocks(BBI, *NextBBI);
1627      FalseBBDead = true;
1628    } else {
1629      InsertUncondBranch(*BBI.BB, NextMBB, TII);
1630      BBI.HasFallThrough = false;
1631    }
1632    // Mixed predicated and unpredicated code. This cannot be iteratively
1633    // predicated.
1634    IterIfcvt = false;
1635  }
1636
1637  // Update block info. BB can be iteratively if-converted.
1638  if (!IterIfcvt)
1639    BBI.IsDone = true;
1640  InvalidatePreds(*BBI.BB);
1641  CvtBBI->IsDone = true;
1642  if (FalseBBDead)
1643    NextBBI->IsDone = true;
1644
1645  // FIXME: Must maintain LiveIns.
1646  return true;
1647}
1648
1649/// Common code shared between diamond conversions.
1650/// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
1651/// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
1652///               and FalseBBI
1653/// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
1654///               and \p FalseBBI
1655/// \p RemoveBranch - Remove the common branch of the two blocks before
1656///                   predicating. Only false for unanalyzable fallthrough
1657///                   cases. The caller will replace the branch if necessary.
1658/// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
1659///                    unanalyzable fallthrough
1660bool IfConverter::IfConvertDiamondCommon(
1661    BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
1662    unsigned NumDups1, unsigned NumDups2,
1663    bool TClobbersPred, bool FClobbersPred,
1664    bool RemoveBranch, bool MergeAddEdges) {
1665
1666  if (TrueBBI.IsDone || FalseBBI.IsDone ||
1667      TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) {
1668    // Something has changed. It's no longer safe to predicate these blocks.
1669    BBI.IsAnalyzed = false;
1670    TrueBBI.IsAnalyzed = false;
1671    FalseBBI.IsAnalyzed = false;
1672    return false;
1673  }
1674
1675  if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
1676    // Conservatively abort if-conversion if either BB has its address taken.
1677    return false;
1678
1679  // Put the predicated instructions from the 'true' block before the
1680  // instructions from the 'false' block, unless the true block would clobber
1681  // the predicate, in which case, do the opposite.
1682  BBInfo *BBI1 = &TrueBBI;
1683  BBInfo *BBI2 = &FalseBBI;
1684  SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1685  if (TII->reverseBranchCondition(RevCond))
1686    llvm_unreachable("Unable to reverse branch condition!");
1687  SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
1688  SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
1689
1690  // Figure out the more profitable ordering.
1691  bool DoSwap = false;
1692  if (TClobbersPred && !FClobbersPred)
1693    DoSwap = true;
1694  else if (!TClobbersPred && !FClobbersPred) {
1695    if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
1696      DoSwap = true;
1697  } else if (TClobbersPred && FClobbersPred)
1698    llvm_unreachable("Predicate info cannot be clobbered by both sides.");
1699  if (DoSwap) {
1700    std::swap(BBI1, BBI2);
1701    std::swap(Cond1, Cond2);
1702  }
1703
1704  // Remove the conditional branch from entry to the blocks.
1705  BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1706
1707  MachineBasicBlock &MBB1 = *BBI1->BB;
1708  MachineBasicBlock &MBB2 = *BBI2->BB;
1709
1710  // Initialize the Redefs:
1711  // - BB2 live-in regs need implicit uses before being redefined by BB1
1712  //   instructions.
1713  // - BB1 live-out regs need implicit uses before being redefined by BB2
1714  //   instructions. We start with BB1 live-ins so we have the live-out regs
1715  //   after tracking the BB1 instructions.
1716  Redefs.init(*TRI);
1717  if (MRI->tracksLiveness()) {
1718    Redefs.addLiveIns(MBB1);
1719    Redefs.addLiveIns(MBB2);
1720  }
1721
1722  // Remove the duplicated instructions at the beginnings of both paths.
1723  // Skip dbg_value instructions.
1724  MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr();
1725  MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr();
1726  BBI1->NonPredSize -= NumDups1;
1727  BBI2->NonPredSize -= NumDups1;
1728
1729  // Skip past the dups on each side separately since there may be
1730  // differing dbg_value entries. NumDups1 can include a "return"
1731  // instruction, if it's not marked as "branch".
1732  for (unsigned i = 0; i < NumDups1; ++DI1) {
1733    if (DI1 == MBB1.end())
1734      break;
1735    if (!DI1->isDebugInstr())
1736      ++i;
1737  }
1738  while (NumDups1 != 0) {
1739    ++DI2;
1740    if (DI2 == MBB2.end())
1741      break;
1742    if (!DI2->isDebugInstr())
1743      --NumDups1;
1744  }
1745
1746  if (MRI->tracksLiveness()) {
1747    for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) {
1748      SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy;
1749      Redefs.stepForward(MI, Dummy);
1750    }
1751  }
1752
1753  BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1);
1754  MBB2.erase(MBB2.begin(), DI2);
1755
1756  // The branches have been checked to match, so it is safe to remove the
1757  // branch in BB1 and rely on the copy in BB2. The complication is that
1758  // the blocks may end with a return instruction, which may or may not
1759  // be marked as "branch". If it's not, then it could be included in
1760  // "dups1", leaving the blocks potentially empty after moving the common
1761  // duplicates.
1762#ifndef NDEBUG
1763  // Unanalyzable branches must match exactly. Check that now.
1764  if (!BBI1->IsBrAnalyzable)
1765    verifySameBranchInstructions(&MBB1, &MBB2);
1766#endif
1767  // Remove duplicated instructions from the tail of MBB1: any branch
1768  // instructions, and the common instructions counted by NumDups2.
1769  DI1 = MBB1.end();
1770  while (DI1 != MBB1.begin()) {
1771    MachineBasicBlock::iterator Prev = std::prev(DI1);
1772    if (!Prev->isBranch() && !Prev->isDebugInstr())
1773      break;
1774    DI1 = Prev;
1775  }
1776  for (unsigned i = 0; i != NumDups2; ) {
1777    // NumDups2 only counted non-dbg_value instructions, so this won't
1778    // run off the head of the list.
1779    assert(DI1 != MBB1.begin());
1780    --DI1;
1781    // skip dbg_value instructions
1782    if (!DI1->isDebugInstr())
1783      ++i;
1784  }
1785  MBB1.erase(DI1, MBB1.end());
1786
1787  DI2 = BBI2->BB->end();
1788  // The branches have been checked to match. Skip over the branch in the false
1789  // block so that we don't try to predicate it.
1790  if (RemoveBranch)
1791    BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB);
1792  else {
1793    // Make DI2 point to the end of the range where the common "tail"
1794    // instructions could be found.
1795    while (DI2 != MBB2.begin()) {
1796      MachineBasicBlock::iterator Prev = std::prev(DI2);
1797      if (!Prev->isBranch() && !Prev->isDebugInstr())
1798        break;
1799      DI2 = Prev;
1800    }
1801  }
1802  while (NumDups2 != 0) {
1803    // NumDups2 only counted non-dbg_value instructions, so this won't
1804    // run off the head of the list.
1805    assert(DI2 != MBB2.begin());
1806    --DI2;
1807    // skip dbg_value instructions
1808    if (!DI2->isDebugInstr())
1809      --NumDups2;
1810  }
1811
1812  // Remember which registers would later be defined by the false block.
1813  // This allows us not to predicate instructions in the true block that would
1814  // later be re-defined. That is, rather than
1815  //   subeq  r0, r1, #1
1816  //   addne  r0, r1, #1
1817  // generate:
1818  //   sub    r0, r1, #1
1819  //   addne  r0, r1, #1
1820  SmallSet<MCPhysReg, 4> RedefsByFalse;
1821  SmallSet<MCPhysReg, 4> ExtUses;
1822  if (TII->isProfitableToUnpredicate(MBB1, MBB2)) {
1823    for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) {
1824      if (FI.isDebugInstr())
1825        continue;
1826      SmallVector<MCPhysReg, 4> Defs;
1827      for (const MachineOperand &MO : FI.operands()) {
1828        if (!MO.isReg())
1829          continue;
1830        unsigned Reg = MO.getReg();
1831        if (!Reg)
1832          continue;
1833        if (MO.isDef()) {
1834          Defs.push_back(Reg);
1835        } else if (!RedefsByFalse.count(Reg)) {
1836          // These are defined before ctrl flow reach the 'false' instructions.
1837          // They cannot be modified by the 'true' instructions.
1838          for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1839               SubRegs.isValid(); ++SubRegs)
1840            ExtUses.insert(*SubRegs);
1841        }
1842      }
1843
1844      for (MCPhysReg Reg : Defs) {
1845        if (!ExtUses.count(Reg)) {
1846          for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1847               SubRegs.isValid(); ++SubRegs)
1848            RedefsByFalse.insert(*SubRegs);
1849        }
1850      }
1851    }
1852  }
1853
1854  // Predicate the 'true' block.
1855  PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse);
1856
1857  // After predicating BBI1, if there is a predicated terminator in BBI1 and
1858  // a non-predicated in BBI2, then we don't want to predicate the one from
1859  // BBI2. The reason is that if we merged these blocks, we would end up with
1860  // two predicated terminators in the same block.
1861  // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
1862  // predicate them either. They were checked to be identical, and so the
1863  // same branch would happen regardless of which path was taken.
1864  if (!MBB2.empty() && (DI2 == MBB2.end())) {
1865    MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator();
1866    MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator();
1867    bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T);
1868    bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T);
1869    if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable))
1870      --DI2;
1871  }
1872
1873  // Predicate the 'false' block.
1874  PredicateBlock(*BBI2, DI2, *Cond2);
1875
1876  // Merge the true block into the entry of the diamond.
1877  MergeBlocks(BBI, *BBI1, MergeAddEdges);
1878  MergeBlocks(BBI, *BBI2, MergeAddEdges);
1879  return true;
1880}
1881
1882/// If convert an almost-diamond sub-CFG where the true
1883/// and false blocks share a common tail.
1884bool IfConverter::IfConvertForkedDiamond(
1885    BBInfo &BBI, IfcvtKind Kind,
1886    unsigned NumDups1, unsigned NumDups2,
1887    bool TClobbersPred, bool FClobbersPred) {
1888  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
1889  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1890
1891  // Save the debug location for later.
1892  DebugLoc dl;
1893  MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator();
1894  if (TIE != TrueBBI.BB->end())
1895    dl = TIE->getDebugLoc();
1896  // Removing branches from both blocks is safe, because we have already
1897  // determined that both blocks have the same branch instructions. The branch
1898  // will be added back at the end, unpredicated.
1899  if (!IfConvertDiamondCommon(
1900      BBI, TrueBBI, FalseBBI,
1901      NumDups1, NumDups2,
1902      TClobbersPred, FClobbersPred,
1903      /* RemoveBranch */ true, /* MergeAddEdges */ true))
1904    return false;
1905
1906  // Add back the branch.
1907  // Debug location saved above when removing the branch from BBI2
1908  TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB,
1909                    TrueBBI.BrCond, dl);
1910
1911  // Update block info.
1912  BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
1913  InvalidatePreds(*BBI.BB);
1914
1915  // FIXME: Must maintain LiveIns.
1916  return true;
1917}
1918
1919/// If convert a diamond sub-CFG.
1920bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
1921                                   unsigned NumDups1, unsigned NumDups2,
1922                                   bool TClobbersPred, bool FClobbersPred) {
1923  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
1924  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1925  MachineBasicBlock *TailBB = TrueBBI.TrueBB;
1926
1927  // True block must fall through or end with an unanalyzable terminator.
1928  if (!TailBB) {
1929    if (blockAlwaysFallThrough(TrueBBI))
1930      TailBB = FalseBBI.TrueBB;
1931    assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
1932  }
1933
1934  if (!IfConvertDiamondCommon(
1935      BBI, TrueBBI, FalseBBI,
1936      NumDups1, NumDups2,
1937      TClobbersPred, FClobbersPred,
1938      /* RemoveBranch */ TrueBBI.IsBrAnalyzable,
1939      /* MergeAddEdges */ TailBB == nullptr))
1940    return false;
1941
1942  // If the if-converted block falls through or unconditionally branches into
1943  // the tail block, and the tail block does not have other predecessors, then
1944  // fold the tail block in as well. Otherwise, unless it falls through to the
1945  // tail, add a unconditional branch to it.
1946  if (TailBB) {
1947    // We need to remove the edges to the true and false blocks manually since
1948    // we didn't let IfConvertDiamondCommon update the CFG.
1949    BBI.BB->removeSuccessor(TrueBBI.BB);
1950    BBI.BB->removeSuccessor(FalseBBI.BB, true);
1951
1952    BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
1953    bool CanMergeTail = !TailBBI.HasFallThrough &&
1954      !TailBBI.BB->hasAddressTaken();
1955    // The if-converted block can still have a predicated terminator
1956    // (e.g. a predicated return). If that is the case, we cannot merge
1957    // it with the tail block.
1958    MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
1959    if (TI != BBI.BB->end() && TII->isPredicated(*TI))
1960      CanMergeTail = false;
1961    // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
1962    // check if there are any other predecessors besides those.
1963    unsigned NumPreds = TailBB->pred_size();
1964    if (NumPreds > 1)
1965      CanMergeTail = false;
1966    else if (NumPreds == 1 && CanMergeTail) {
1967      MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
1968      if (*PI != TrueBBI.BB && *PI != FalseBBI.BB)
1969        CanMergeTail = false;
1970    }
1971    if (CanMergeTail) {
1972      MergeBlocks(BBI, TailBBI);
1973      TailBBI.IsDone = true;
1974    } else {
1975      BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
1976      InsertUncondBranch(*BBI.BB, *TailBB, TII);
1977      BBI.HasFallThrough = false;
1978    }
1979  }
1980
1981  // Update block info.
1982  BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
1983  InvalidatePreds(*BBI.BB);
1984
1985  // FIXME: Must maintain LiveIns.
1986  return true;
1987}
1988
1989static bool MaySpeculate(const MachineInstr &MI,
1990                         SmallSet<MCPhysReg, 4> &LaterRedefs) {
1991  bool SawStore = true;
1992  if (!MI.isSafeToMove(nullptr, SawStore))
1993    return false;
1994
1995  for (const MachineOperand &MO : MI.operands()) {
1996    if (!MO.isReg())
1997      continue;
1998    unsigned Reg = MO.getReg();
1999    if (!Reg)
2000      continue;
2001    if (MO.isDef() && !LaterRedefs.count(Reg))
2002      return false;
2003  }
2004
2005  return true;
2006}
2007
2008/// Predicate instructions from the start of the block to the specified end with
2009/// the specified condition.
2010void IfConverter::PredicateBlock(BBInfo &BBI,
2011                                 MachineBasicBlock::iterator E,
2012                                 SmallVectorImpl<MachineOperand> &Cond,
2013                                 SmallSet<MCPhysReg, 4> *LaterRedefs) {
2014  bool AnyUnpred = false;
2015  bool MaySpec = LaterRedefs != nullptr;
2016  for (MachineInstr &I : make_range(BBI.BB->begin(), E)) {
2017    if (I.isDebugInstr() || TII->isPredicated(I))
2018      continue;
2019    // It may be possible not to predicate an instruction if it's the 'true'
2020    // side of a diamond and the 'false' side may re-define the instruction's
2021    // defs.
2022    if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
2023      AnyUnpred = true;
2024      continue;
2025    }
2026    // If any instruction is predicated, then every instruction after it must
2027    // be predicated.
2028    MaySpec = false;
2029    if (!TII->PredicateInstruction(I, Cond)) {
2030#ifndef NDEBUG
2031      dbgs() << "Unable to predicate " << I << "!\n";
2032#endif
2033      llvm_unreachable(nullptr);
2034    }
2035
2036    // If the predicated instruction now redefines a register as the result of
2037    // if-conversion, add an implicit kill.
2038    UpdatePredRedefs(I, Redefs);
2039  }
2040
2041  BBI.Predicate.append(Cond.begin(), Cond.end());
2042
2043  BBI.IsAnalyzed = false;
2044  BBI.NonPredSize = 0;
2045
2046  ++NumIfConvBBs;
2047  if (AnyUnpred)
2048    ++NumUnpred;
2049}
2050
2051/// Copy and predicate instructions from source BB to the destination block.
2052/// Skip end of block branches if IgnoreBr is true.
2053void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
2054                                        SmallVectorImpl<MachineOperand> &Cond,
2055                                        bool IgnoreBr) {
2056  MachineFunction &MF = *ToBBI.BB->getParent();
2057
2058  MachineBasicBlock &FromMBB = *FromBBI.BB;
2059  for (MachineInstr &I : FromMBB) {
2060    // Do not copy the end of the block branches.
2061    if (IgnoreBr && I.isBranch())
2062      break;
2063
2064    MachineInstr *MI = MF.CloneMachineInstr(&I);
2065    ToBBI.BB->insert(ToBBI.BB->end(), MI);
2066    ToBBI.NonPredSize++;
2067    unsigned ExtraPredCost = TII->getPredicationCost(I);
2068    unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
2069    if (NumCycles > 1)
2070      ToBBI.ExtraCost += NumCycles-1;
2071    ToBBI.ExtraCost2 += ExtraPredCost;
2072
2073    if (!TII->isPredicated(I) && !MI->isDebugInstr()) {
2074      if (!TII->PredicateInstruction(*MI, Cond)) {
2075#ifndef NDEBUG
2076        dbgs() << "Unable to predicate " << I << "!\n";
2077#endif
2078        llvm_unreachable(nullptr);
2079      }
2080    }
2081
2082    // If the predicated instruction now redefines a register as the result of
2083    // if-conversion, add an implicit kill.
2084    UpdatePredRedefs(*MI, Redefs);
2085  }
2086
2087  if (!IgnoreBr) {
2088    std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(),
2089                                           FromMBB.succ_end());
2090    MachineBasicBlock *NBB = getNextBlock(FromMBB);
2091    MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2092
2093    for (MachineBasicBlock *Succ : Succs) {
2094      // Fallthrough edge can't be transferred.
2095      if (Succ == FallThrough)
2096        continue;
2097      ToBBI.BB->addSuccessor(Succ);
2098    }
2099  }
2100
2101  ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2102  ToBBI.Predicate.append(Cond.begin(), Cond.end());
2103
2104  ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2105  ToBBI.IsAnalyzed = false;
2106
2107  ++NumDupBBs;
2108}
2109
2110/// Move all instructions from FromBB to the end of ToBB.  This will leave
2111/// FromBB as an empty block, so remove all of its successor edges except for
2112/// the fall-through edge.  If AddEdges is true, i.e., when FromBBI's branch is
2113/// being moved, add those successor edges to ToBBI and remove the old edge
2114/// from ToBBI to FromBBI.
2115void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
2116  MachineBasicBlock &FromMBB = *FromBBI.BB;
2117  assert(!FromMBB.hasAddressTaken() &&
2118         "Removing a BB whose address is taken!");
2119
2120  // In case FromMBB contains terminators (e.g. return instruction),
2121  // first move the non-terminator instructions, then the terminators.
2122  MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator();
2123  MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
2124  ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI);
2125
2126  // If FromBB has non-predicated terminator we should copy it at the end.
2127  if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI))
2128    ToTI = ToBBI.BB->end();
2129  ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end());
2130
2131  // Force normalizing the successors' probabilities of ToBBI.BB to convert all
2132  // unknown probabilities into known ones.
2133  // FIXME: This usage is too tricky and in the future we would like to
2134  // eliminate all unknown probabilities in MBB.
2135  if (ToBBI.IsBrAnalyzable)
2136    ToBBI.BB->normalizeSuccProbs();
2137
2138  SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(),
2139                                                FromMBB.succ_end());
2140  MachineBasicBlock *NBB = getNextBlock(FromMBB);
2141  MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2142  // The edge probability from ToBBI.BB to FromMBB, which is only needed when
2143  // AddEdges is true and FromMBB is a successor of ToBBI.BB.
2144  auto To2FromProb = BranchProbability::getZero();
2145  if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) {
2146    // Remove the old edge but remember the edge probability so we can calculate
2147    // the correct weights on the new edges being added further down.
2148    To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB);
2149    ToBBI.BB->removeSuccessor(&FromMBB);
2150  }
2151
2152  for (MachineBasicBlock *Succ : FromSuccs) {
2153    // Fallthrough edge can't be transferred.
2154    if (Succ == FallThrough)
2155      continue;
2156
2157    auto NewProb = BranchProbability::getZero();
2158    if (AddEdges) {
2159      // Calculate the edge probability for the edge from ToBBI.BB to Succ,
2160      // which is a portion of the edge probability from FromMBB to Succ. The
2161      // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
2162      // FromBBI is a successor of ToBBI.BB. See comment below for exception).
2163      NewProb = MBPI->getEdgeProbability(&FromMBB, Succ);
2164
2165      // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
2166      // only happens when if-converting a diamond CFG and FromMBB is the
2167      // tail BB.  In this case FromMBB post-dominates ToBBI.BB and hence we
2168      // could just use the probabilities on FromMBB's out-edges when adding
2169      // new successors.
2170      if (!To2FromProb.isZero())
2171        NewProb *= To2FromProb;
2172    }
2173
2174    FromMBB.removeSuccessor(Succ);
2175
2176    if (AddEdges) {
2177      // If the edge from ToBBI.BB to Succ already exists, update the
2178      // probability of this edge by adding NewProb to it. An example is shown
2179      // below, in which A is ToBBI.BB and B is FromMBB. In this case we
2180      // don't have to set C as A's successor as it already is. We only need to
2181      // update the edge probability on A->C. Note that B will not be
2182      // immediately removed from A's successors. It is possible that B->D is
2183      // not removed either if D is a fallthrough of B. Later the edge A->D
2184      // (generated here) and B->D will be combined into one edge. To maintain
2185      // correct edge probability of this combined edge, we need to set the edge
2186      // probability of A->B to zero, which is already done above. The edge
2187      // probability on A->D is calculated by scaling the original probability
2188      // on A->B by the probability of B->D.
2189      //
2190      // Before ifcvt:      After ifcvt (assume B->D is kept):
2191      //
2192      //       A                A
2193      //      /|               /|\
2194      //     / B              / B|
2195      //    | /|             |  ||
2196      //    |/ |             |  |/
2197      //    C  D             C  D
2198      //
2199      if (ToBBI.BB->isSuccessor(Succ))
2200        ToBBI.BB->setSuccProbability(
2201            find(ToBBI.BB->successors(), Succ),
2202            MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
2203      else
2204        ToBBI.BB->addSuccessor(Succ, NewProb);
2205    }
2206  }
2207
2208  // Move the now empty FromMBB out of the way to the end of the function so
2209  // it doesn't interfere with fallthrough checks done by canFallThroughTo().
2210  MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin();
2211  if (Last != &FromMBB)
2212    FromMBB.moveAfter(Last);
2213
2214  // Normalize the probabilities of ToBBI.BB's successors with all adjustment
2215  // we've done above.
2216  if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable)
2217    ToBBI.BB->normalizeSuccProbs();
2218
2219  ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2220  FromBBI.Predicate.clear();
2221
2222  ToBBI.NonPredSize += FromBBI.NonPredSize;
2223  ToBBI.ExtraCost += FromBBI.ExtraCost;
2224  ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
2225  FromBBI.NonPredSize = 0;
2226  FromBBI.ExtraCost = 0;
2227  FromBBI.ExtraCost2 = 0;
2228
2229  ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2230  ToBBI.HasFallThrough = FromBBI.HasFallThrough;
2231  ToBBI.IsAnalyzed = false;
2232  FromBBI.IsAnalyzed = false;
2233}
2234
2235FunctionPass *
2236llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) {
2237  return new IfConverter(std::move(Ftor));
2238}
2239