IfConversion.cpp revision 341825
128263Spst//===- IfConversion.cpp - Machine code if conversion pass -----------------===//
228263Spst//
350472Speter//                     The LLVM Compiler Infrastructure
428263Spst//
528263Spst// This file is distributed under the University of Illinois Open Source
628263Spst// License. See LICENSE.TXT for details.
728263Spst//
828263Spst//===----------------------------------------------------------------------===//
961981Sbrian//
1061981Sbrian// This file implements the machine instruction level if-conversion pass, which
1161981Sbrian// tries to convert conditional branches into predicated instructions.
1261981Sbrian//
1361981Sbrian//===----------------------------------------------------------------------===//
1461981Sbrian
1528263Spst#include "BranchFolding.h"
1661981Sbrian#include "llvm/ADT/STLExtras.h"
1765843Sbrian#include "llvm/ADT/ScopeExit.h"
1861981Sbrian#include "llvm/ADT/SmallSet.h"
1961981Sbrian#include "llvm/ADT/SmallVector.h"
2077592Sdougb#include "llvm/ADT/SparseSet.h"
2161981Sbrian#include "llvm/ADT/Statistic.h"
2261981Sbrian#include "llvm/ADT/iterator_range.h"
2361981Sbrian#include "llvm/CodeGen/LivePhysRegs.h"
2461981Sbrian#include "llvm/CodeGen/MachineBasicBlock.h"
2561981Sbrian#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
2661981Sbrian#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
2765843Sbrian#include "llvm/CodeGen/MachineFunction.h"
2865843Sbrian#include "llvm/CodeGen/MachineFunctionPass.h"
2965843Sbrian#include "llvm/CodeGen/MachineInstr.h"
3065843Sbrian#include "llvm/CodeGen/MachineInstrBuilder.h"
3161981Sbrian#include "llvm/CodeGen/MachineModuleInfo.h"
3265843Sbrian#include "llvm/CodeGen/MachineOperand.h"
3365843Sbrian#include "llvm/CodeGen/MachineRegisterInfo.h"
3465843Sbrian#include "llvm/CodeGen/TargetInstrInfo.h"
3561981Sbrian#include "llvm/CodeGen/TargetLowering.h"
3661981Sbrian#include "llvm/CodeGen/TargetRegisterInfo.h"
3765843Sbrian#include "llvm/CodeGen/TargetSchedule.h"
3865843Sbrian#include "llvm/CodeGen/TargetSubtargetInfo.h"
39#include "llvm/IR/DebugLoc.h"
40#include "llvm/MC/MCRegisterInfo.h"
41#include "llvm/Pass.h"
42#include "llvm/Support/BranchProbability.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/raw_ostream.h"
47#include <algorithm>
48#include <cassert>
49#include <functional>
50#include <iterator>
51#include <memory>
52#include <utility>
53#include <vector>
54
55using namespace llvm;
56
57#define DEBUG_TYPE "if-converter"
58
59// Hidden options for help debugging.
60static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
61static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
62static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
63static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
64                                   cl::init(false), cl::Hidden);
65static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
66                                    cl::init(false), cl::Hidden);
67static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
68                                     cl::init(false), cl::Hidden);
69static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
70                                      cl::init(false), cl::Hidden);
71static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
72                                      cl::init(false), cl::Hidden);
73static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
74                                       cl::init(false), cl::Hidden);
75static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
76                                    cl::init(false), cl::Hidden);
77static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
78                                        cl::init(false), cl::Hidden);
79static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
80                                     cl::init(true), cl::Hidden);
81
82STATISTIC(NumSimple,       "Number of simple if-conversions performed");
83STATISTIC(NumSimpleFalse,  "Number of simple (F) if-conversions performed");
84STATISTIC(NumTriangle,     "Number of triangle if-conversions performed");
85STATISTIC(NumTriangleRev,  "Number of triangle (R) if-conversions performed");
86STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
87STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
88STATISTIC(NumDiamonds,     "Number of diamond if-conversions performed");
89STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed");
90STATISTIC(NumIfConvBBs,    "Number of if-converted blocks");
91STATISTIC(NumDupBBs,       "Number of duplicated blocks");
92STATISTIC(NumUnpred,       "Number of true blocks of diamonds unpredicated");
93
94namespace {
95
96  class IfConverter : public MachineFunctionPass {
97    enum IfcvtKind {
98      ICNotClassfied,  // BB data valid, but not classified.
99      ICSimpleFalse,   // Same as ICSimple, but on the false path.
100      ICSimple,        // BB is entry of an one split, no rejoin sub-CFG.
101      ICTriangleFRev,  // Same as ICTriangleFalse, but false path rev condition.
102      ICTriangleRev,   // Same as ICTriangle, but true path rev condition.
103      ICTriangleFalse, // Same as ICTriangle, but on the false path.
104      ICTriangle,      // BB is entry of a triangle sub-CFG.
105      ICDiamond,       // BB is entry of a diamond sub-CFG.
106      ICForkedDiamond  // BB is entry of an almost diamond sub-CFG, with a
107                       // common tail that can be shared.
108    };
109
110    /// One per MachineBasicBlock, this is used to cache the result
111    /// if-conversion feasibility analysis. This includes results from
112    /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
113    /// classification, and common tail block of its successors (if it's a
114    /// diamond shape), its size, whether it's predicable, and whether any
115    /// instruction can clobber the 'would-be' predicate.
116    ///
117    /// IsDone          - True if BB is not to be considered for ifcvt.
118    /// IsBeingAnalyzed - True if BB is currently being analyzed.
119    /// IsAnalyzed      - True if BB has been analyzed (info is still valid).
120    /// IsEnqueued      - True if BB has been enqueued to be ifcvt'ed.
121    /// IsBrAnalyzable  - True if analyzeBranch() returns false.
122    /// HasFallThrough  - True if BB may fallthrough to the following BB.
123    /// IsUnpredicable  - True if BB is known to be unpredicable.
124    /// ClobbersPred    - True if BB could modify predicates (e.g. has
125    ///                   cmp, call, etc.)
126    /// NonPredSize     - Number of non-predicated instructions.
127    /// ExtraCost       - Extra cost for multi-cycle instructions.
128    /// ExtraCost2      - Some instructions are slower when predicated
129    /// BB              - Corresponding MachineBasicBlock.
130    /// TrueBB / FalseBB- See analyzeBranch().
131    /// BrCond          - Conditions for end of block conditional branches.
132    /// Predicate       - Predicate used in the BB.
133    struct BBInfo {
134      bool IsDone          : 1;
135      bool IsBeingAnalyzed : 1;
136      bool IsAnalyzed      : 1;
137      bool IsEnqueued      : 1;
138      bool IsBrAnalyzable  : 1;
139      bool IsBrReversible  : 1;
140      bool HasFallThrough  : 1;
141      bool IsUnpredicable  : 1;
142      bool CannotBeCopied  : 1;
143      bool ClobbersPred    : 1;
144      unsigned NonPredSize = 0;
145      unsigned ExtraCost = 0;
146      unsigned ExtraCost2 = 0;
147      MachineBasicBlock *BB = nullptr;
148      MachineBasicBlock *TrueBB = nullptr;
149      MachineBasicBlock *FalseBB = nullptr;
150      SmallVector<MachineOperand, 4> BrCond;
151      SmallVector<MachineOperand, 4> Predicate;
152
153      BBInfo() : IsDone(false), IsBeingAnalyzed(false),
154                 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
155                 IsBrReversible(false), HasFallThrough(false),
156                 IsUnpredicable(false), CannotBeCopied(false),
157                 ClobbersPred(false) {}
158    };
159
160    /// Record information about pending if-conversions to attempt:
161    /// BBI             - Corresponding BBInfo.
162    /// Kind            - Type of block. See IfcvtKind.
163    /// NeedSubsumption - True if the to-be-predicated BB has already been
164    ///                   predicated.
165    /// NumDups      - Number of instructions that would be duplicated due
166    ///                   to this if-conversion. (For diamonds, the number of
167    ///                   identical instructions at the beginnings of both
168    ///                   paths).
169    /// NumDups2     - For diamonds, the number of identical instructions
170    ///                   at the ends of both paths.
171    struct IfcvtToken {
172      BBInfo &BBI;
173      IfcvtKind Kind;
174      unsigned NumDups;
175      unsigned NumDups2;
176      bool NeedSubsumption : 1;
177      bool TClobbersPred : 1;
178      bool FClobbersPred : 1;
179
180      IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0,
181                 bool tc = false, bool fc = false)
182        : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s),
183          TClobbersPred(tc), FClobbersPred(fc) {}
184    };
185
186    /// Results of if-conversion feasibility analysis indexed by basic block
187    /// number.
188    std::vector<BBInfo> BBAnalysis;
189    TargetSchedModel SchedModel;
190
191    const TargetLoweringBase *TLI;
192    const TargetInstrInfo *TII;
193    const TargetRegisterInfo *TRI;
194    const MachineBranchProbabilityInfo *MBPI;
195    MachineRegisterInfo *MRI;
196
197    LivePhysRegs Redefs;
198
199    bool PreRegAlloc;
200    bool MadeChange;
201    int FnNum = -1;
202    std::function<bool(const MachineFunction &)> PredicateFtor;
203
204  public:
205    static char ID;
206
207    IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr)
208        : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
209      initializeIfConverterPass(*PassRegistry::getPassRegistry());
210    }
211
212    void getAnalysisUsage(AnalysisUsage &AU) const override {
213      AU.addRequired<MachineBlockFrequencyInfo>();
214      AU.addRequired<MachineBranchProbabilityInfo>();
215      MachineFunctionPass::getAnalysisUsage(AU);
216    }
217
218    bool runOnMachineFunction(MachineFunction &MF) override;
219
220    MachineFunctionProperties getRequiredProperties() const override {
221      return MachineFunctionProperties().set(
222          MachineFunctionProperties::Property::NoVRegs);
223    }
224
225  private:
226    bool reverseBranchCondition(BBInfo &BBI) const;
227    bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
228                     BranchProbability Prediction) const;
229    bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
230                       bool FalseBranch, unsigned &Dups,
231                       BranchProbability Prediction) const;
232    bool CountDuplicatedInstructions(
233        MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
234        MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
235        unsigned &Dups1, unsigned &Dups2,
236        MachineBasicBlock &TBB, MachineBasicBlock &FBB,
237        bool SkipUnconditionalBranches) const;
238    bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
239                      unsigned &Dups1, unsigned &Dups2,
240                      BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
241    bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
242                            unsigned &Dups1, unsigned &Dups2,
243                            BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
244    void AnalyzeBranches(BBInfo &BBI);
245    void ScanInstructions(BBInfo &BBI,
246                          MachineBasicBlock::iterator &Begin,
247                          MachineBasicBlock::iterator &End,
248                          bool BranchUnpredicable = false) const;
249    bool RescanInstructions(
250        MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
251        MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
252        BBInfo &TrueBBI, BBInfo &FalseBBI) const;
253    void AnalyzeBlock(MachineBasicBlock &MBB,
254                      std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
255    bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred,
256                             bool isTriangle = false, bool RevBranch = false,
257                             bool hasCommonTail = false);
258    void AnalyzeBlocks(MachineFunction &MF,
259                       std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
260    void InvalidatePreds(MachineBasicBlock &MBB);
261    bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
262    bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
263    bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
264                                unsigned NumDups1, unsigned NumDups2,
265                                bool TClobbersPred, bool FClobbersPred,
266                                bool RemoveBranch, bool MergeAddEdges);
267    bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
268                          unsigned NumDups1, unsigned NumDups2,
269                          bool TClobbers, bool FClobbers);
270    bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind,
271                              unsigned NumDups1, unsigned NumDups2,
272                              bool TClobbers, bool FClobbers);
273    void PredicateBlock(BBInfo &BBI,
274                        MachineBasicBlock::iterator E,
275                        SmallVectorImpl<MachineOperand> &Cond,
276                        SmallSet<unsigned, 4> *LaterRedefs = nullptr);
277    void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
278                               SmallVectorImpl<MachineOperand> &Cond,
279                               bool IgnoreBr = false);
280    void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
281
282    bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
283                            unsigned Cycle, unsigned Extra,
284                            BranchProbability Prediction) const {
285      return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
286                                                   Prediction);
287    }
288
289    bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB,
290                            unsigned TCycle, unsigned TExtra,
291                            MachineBasicBlock &FBB,
292                            unsigned FCycle, unsigned FExtra,
293                            BranchProbability Prediction) const {
294      return TCycle > 0 && FCycle > 0 &&
295        TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra,
296                                 Prediction);
297    }
298
299    /// Returns true if Block ends without a terminator.
300    bool blockAlwaysFallThrough(BBInfo &BBI) const {
301      return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
302    }
303
304    /// Used to sort if-conversion candidates.
305    static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
306                              const std::unique_ptr<IfcvtToken> &C2) {
307      int Incr1 = (C1->Kind == ICDiamond)
308        ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
309      int Incr2 = (C2->Kind == ICDiamond)
310        ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
311      if (Incr1 > Incr2)
312        return true;
313      else if (Incr1 == Incr2) {
314        // Favors subsumption.
315        if (!C1->NeedSubsumption && C2->NeedSubsumption)
316          return true;
317        else if (C1->NeedSubsumption == C2->NeedSubsumption) {
318          // Favors diamond over triangle, etc.
319          if ((unsigned)C1->Kind < (unsigned)C2->Kind)
320            return true;
321          else if (C1->Kind == C2->Kind)
322            return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
323        }
324      }
325      return false;
326    }
327  };
328
329} // end anonymous namespace
330
331char IfConverter::ID = 0;
332
333char &llvm::IfConverterID = IfConverter::ID;
334
335INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false)
336INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
337INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false)
338
339bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
340  if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF)))
341    return false;
342
343  const TargetSubtargetInfo &ST = MF.getSubtarget();
344  TLI = ST.getTargetLowering();
345  TII = ST.getInstrInfo();
346  TRI = ST.getRegisterInfo();
347  BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
348  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
349  MRI = &MF.getRegInfo();
350  SchedModel.init(&ST);
351
352  if (!TII) return false;
353
354  PreRegAlloc = MRI->isSSA();
355
356  bool BFChange = false;
357  if (!PreRegAlloc) {
358    // Tail merge tend to expose more if-conversion opportunities.
359    BranchFolder BF(true, false, MBFI, *MBPI);
360    BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(),
361                                   getAnalysisIfAvailable<MachineModuleInfo>());
362  }
363
364  LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'"
365                    << MF.getName() << "\'");
366
367  if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
368    LLVM_DEBUG(dbgs() << " skipped\n");
369    return false;
370  }
371  LLVM_DEBUG(dbgs() << "\n");
372
373  MF.RenumberBlocks();
374  BBAnalysis.resize(MF.getNumBlockIDs());
375
376  std::vector<std::unique_ptr<IfcvtToken>> Tokens;
377  MadeChange = false;
378  unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
379    NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
380  while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
381    // Do an initial analysis for each basic block and find all the potential
382    // candidates to perform if-conversion.
383    bool Change = false;
384    AnalyzeBlocks(MF, Tokens);
385    while (!Tokens.empty()) {
386      std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
387      Tokens.pop_back();
388      BBInfo &BBI = Token->BBI;
389      IfcvtKind Kind = Token->Kind;
390      unsigned NumDups = Token->NumDups;
391      unsigned NumDups2 = Token->NumDups2;
392
393      // If the block has been evicted out of the queue or it has already been
394      // marked dead (due to it being predicated), then skip it.
395      if (BBI.IsDone)
396        BBI.IsEnqueued = false;
397      if (!BBI.IsEnqueued)
398        continue;
399
400      BBI.IsEnqueued = false;
401
402      bool RetVal = false;
403      switch (Kind) {
404      default: llvm_unreachable("Unexpected!");
405      case ICSimple:
406      case ICSimpleFalse: {
407        bool isFalse = Kind == ICSimpleFalse;
408        if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
409        LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
410                          << (Kind == ICSimpleFalse ? " false" : "")
411                          << "): " << printMBBReference(*BBI.BB) << " ("
412                          << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber()
413                                                      : BBI.TrueBB->getNumber())
414                          << ") ");
415        RetVal = IfConvertSimple(BBI, Kind);
416        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
417        if (RetVal) {
418          if (isFalse) ++NumSimpleFalse;
419          else         ++NumSimple;
420        }
421       break;
422      }
423      case ICTriangle:
424      case ICTriangleRev:
425      case ICTriangleFalse:
426      case ICTriangleFRev: {
427        bool isFalse = Kind == ICTriangleFalse;
428        bool isRev   = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
429        if (DisableTriangle && !isFalse && !isRev) break;
430        if (DisableTriangleR && !isFalse && isRev) break;
431        if (DisableTriangleF && isFalse && !isRev) break;
432        if (DisableTriangleFR && isFalse && isRev) break;
433        LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
434        if (isFalse)
435          LLVM_DEBUG(dbgs() << " false");
436        if (isRev)
437          LLVM_DEBUG(dbgs() << " rev");
438        LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB)
439                          << " (T:" << BBI.TrueBB->getNumber()
440                          << ",F:" << BBI.FalseBB->getNumber() << ") ");
441        RetVal = IfConvertTriangle(BBI, Kind);
442        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
443        if (RetVal) {
444          if (isFalse) {
445            if (isRev) ++NumTriangleFRev;
446            else       ++NumTriangleFalse;
447          } else {
448            if (isRev) ++NumTriangleRev;
449            else       ++NumTriangle;
450          }
451        }
452        break;
453      }
454      case ICDiamond:
455        if (DisableDiamond) break;
456        LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB)
457                          << " (T:" << BBI.TrueBB->getNumber()
458                          << ",F:" << BBI.FalseBB->getNumber() << ") ");
459        RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2,
460                                  Token->TClobbersPred,
461                                  Token->FClobbersPred);
462        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
463        if (RetVal) ++NumDiamonds;
464        break;
465      case ICForkedDiamond:
466        if (DisableForkedDiamond) break;
467        LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
468                          << printMBBReference(*BBI.BB)
469                          << " (T:" << BBI.TrueBB->getNumber()
470                          << ",F:" << BBI.FalseBB->getNumber() << ") ");
471        RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2,
472                                      Token->TClobbersPred,
473                                      Token->FClobbersPred);
474        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
475        if (RetVal) ++NumForkedDiamonds;
476        break;
477      }
478
479      if (RetVal && MRI->tracksLiveness())
480        recomputeLivenessFlags(*BBI.BB);
481
482      Change |= RetVal;
483
484      NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
485        NumTriangleFalse + NumTriangleFRev + NumDiamonds;
486      if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
487        break;
488    }
489
490    if (!Change)
491      break;
492    MadeChange |= Change;
493  }
494
495  Tokens.clear();
496  BBAnalysis.clear();
497
498  if (MadeChange && IfCvtBranchFold) {
499    BranchFolder BF(false, false, MBFI, *MBPI);
500    BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
501                        getAnalysisIfAvailable<MachineModuleInfo>());
502  }
503
504  MadeChange |= BFChange;
505  return MadeChange;
506}
507
508/// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
509static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
510                                         MachineBasicBlock *TrueBB) {
511  for (MachineBasicBlock *SuccBB : BB->successors()) {
512    if (SuccBB != TrueBB)
513      return SuccBB;
514  }
515  return nullptr;
516}
517
518/// Reverse the condition of the end of the block branch. Swap block's 'true'
519/// and 'false' successors.
520bool IfConverter::reverseBranchCondition(BBInfo &BBI) const {
521  DebugLoc dl;  // FIXME: this is nowhere
522  if (!TII->reverseBranchCondition(BBI.BrCond)) {
523    TII->removeBranch(*BBI.BB);
524    TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
525    std::swap(BBI.TrueBB, BBI.FalseBB);
526    return true;
527  }
528  return false;
529}
530
531/// Returns the next block in the function blocks ordering. If it is the end,
532/// returns NULL.
533static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) {
534  MachineFunction::iterator I = MBB.getIterator();
535  MachineFunction::iterator E = MBB.getParent()->end();
536  if (++I == E)
537    return nullptr;
538  return &*I;
539}
540
541/// Returns true if the 'true' block (along with its predecessor) forms a valid
542/// simple shape for ifcvt. It also returns the number of instructions that the
543/// ifcvt would need to duplicate if performed in Dups.
544bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
545                              BranchProbability Prediction) const {
546  Dups = 0;
547  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
548    return false;
549
550  if (TrueBBI.IsBrAnalyzable)
551    return false;
552
553  if (TrueBBI.BB->pred_size() > 1) {
554    if (TrueBBI.CannotBeCopied ||
555        !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
556                                        Prediction))
557      return false;
558    Dups = TrueBBI.NonPredSize;
559  }
560
561  return true;
562}
563
564/// Returns true if the 'true' and 'false' blocks (along with their common
565/// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
566/// true, it checks if 'true' block's false branch branches to the 'false' block
567/// rather than the other way around. It also returns the number of instructions
568/// that the ifcvt would need to duplicate if performed in 'Dups'.
569bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
570                                bool FalseBranch, unsigned &Dups,
571                                BranchProbability Prediction) const {
572  Dups = 0;
573  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
574    return false;
575
576  if (TrueBBI.BB->pred_size() > 1) {
577    if (TrueBBI.CannotBeCopied)
578      return false;
579
580    unsigned Size = TrueBBI.NonPredSize;
581    if (TrueBBI.IsBrAnalyzable) {
582      if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
583        // Ends with an unconditional branch. It will be removed.
584        --Size;
585      else {
586        MachineBasicBlock *FExit = FalseBranch
587          ? TrueBBI.TrueBB : TrueBBI.FalseBB;
588        if (FExit)
589          // Require a conditional branch
590          ++Size;
591      }
592    }
593    if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
594      return false;
595    Dups = Size;
596  }
597
598  MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
599  if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
600    MachineFunction::iterator I = TrueBBI.BB->getIterator();
601    if (++I == TrueBBI.BB->getParent()->end())
602      return false;
603    TExit = &*I;
604  }
605  return TExit && TExit == FalseBBI.BB;
606}
607
608/// Count duplicated instructions and move the iterators to show where they
609/// are.
610/// @param TIB True Iterator Begin
611/// @param FIB False Iterator Begin
612/// These two iterators initially point to the first instruction of the two
613/// blocks, and finally point to the first non-shared instruction.
614/// @param TIE True Iterator End
615/// @param FIE False Iterator End
616/// These two iterators initially point to End() for the two blocks() and
617/// finally point to the first shared instruction in the tail.
618/// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
619/// two blocks.
620/// @param Dups1 count of duplicated instructions at the beginning of the 2
621/// blocks.
622/// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
623/// @param SkipUnconditionalBranches if true, Don't make sure that
624/// unconditional branches at the end of the blocks are the same. True is
625/// passed when the blocks are analyzable to allow for fallthrough to be
626/// handled.
627/// @return false if the shared portion prevents if conversion.
628bool IfConverter::CountDuplicatedInstructions(
629    MachineBasicBlock::iterator &TIB,
630    MachineBasicBlock::iterator &FIB,
631    MachineBasicBlock::iterator &TIE,
632    MachineBasicBlock::iterator &FIE,
633    unsigned &Dups1, unsigned &Dups2,
634    MachineBasicBlock &TBB, MachineBasicBlock &FBB,
635    bool SkipUnconditionalBranches) const {
636  while (TIB != TIE && FIB != FIE) {
637    // Skip dbg_value instructions. These do not count.
638    TIB = skipDebugInstructionsForward(TIB, TIE);
639    FIB = skipDebugInstructionsForward(FIB, FIE);
640    if (TIB == TIE || FIB == FIE)
641      break;
642    if (!TIB->isIdenticalTo(*FIB))
643      break;
644    // A pred-clobbering instruction in the shared portion prevents
645    // if-conversion.
646    std::vector<MachineOperand> PredDefs;
647    if (TII->DefinesPredicate(*TIB, PredDefs))
648      return false;
649    // If we get all the way to the branch instructions, don't count them.
650    if (!TIB->isBranch())
651      ++Dups1;
652    ++TIB;
653    ++FIB;
654  }
655
656  // Check for already containing all of the block.
657  if (TIB == TIE || FIB == FIE)
658    return true;
659  // Now, in preparation for counting duplicate instructions at the ends of the
660  // blocks, switch to reverse_iterators. Note that getReverse() returns an
661  // iterator that points to the same instruction, unlike std::reverse_iterator.
662  // We have to do our own shifting so that we get the same range.
663  MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse());
664  MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse());
665  const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse());
666  const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse());
667
668  if (!TBB.succ_empty() || !FBB.succ_empty()) {
669    if (SkipUnconditionalBranches) {
670      while (RTIE != RTIB && RTIE->isUnconditionalBranch())
671        ++RTIE;
672      while (RFIE != RFIB && RFIE->isUnconditionalBranch())
673        ++RFIE;
674    }
675  }
676
677  // Count duplicate instructions at the ends of the blocks.
678  while (RTIE != RTIB && RFIE != RFIB) {
679    // Skip dbg_value instructions. These do not count.
680    // Note that these are reverse iterators going forward.
681    RTIE = skipDebugInstructionsForward(RTIE, RTIB);
682    RFIE = skipDebugInstructionsForward(RFIE, RFIB);
683    if (RTIE == RTIB || RFIE == RFIB)
684      break;
685    if (!RTIE->isIdenticalTo(*RFIE))
686      break;
687    // We have to verify that any branch instructions are the same, and then we
688    // don't count them toward the # of duplicate instructions.
689    if (!RTIE->isBranch())
690      ++Dups2;
691    ++RTIE;
692    ++RFIE;
693  }
694  TIE = std::next(RTIE.getReverse());
695  FIE = std::next(RFIE.getReverse());
696  return true;
697}
698
699/// RescanInstructions - Run ScanInstructions on a pair of blocks.
700/// @param TIB - True Iterator Begin, points to first non-shared instruction
701/// @param FIB - False Iterator Begin, points to first non-shared instruction
702/// @param TIE - True Iterator End, points past last non-shared instruction
703/// @param FIE - False Iterator End, points past last non-shared instruction
704/// @param TrueBBI  - BBInfo to update for the true block.
705/// @param FalseBBI - BBInfo to update for the false block.
706/// @returns - false if either block cannot be predicated or if both blocks end
707///   with a predicate-clobbering instruction.
708bool IfConverter::RescanInstructions(
709    MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
710    MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
711    BBInfo &TrueBBI, BBInfo &FalseBBI) const {
712  bool BranchUnpredicable = true;
713  TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false;
714  ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable);
715  if (TrueBBI.IsUnpredicable)
716    return false;
717  ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable);
718  if (FalseBBI.IsUnpredicable)
719    return false;
720  if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)
721    return false;
722  return true;
723}
724
725#ifndef NDEBUG
726static void verifySameBranchInstructions(
727    MachineBasicBlock *MBB1,
728    MachineBasicBlock *MBB2) {
729  const MachineBasicBlock::reverse_iterator B1 = MBB1->rend();
730  const MachineBasicBlock::reverse_iterator B2 = MBB2->rend();
731  MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin();
732  MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin();
733  while (E1 != B1 && E2 != B2) {
734    skipDebugInstructionsForward(E1, B1);
735    skipDebugInstructionsForward(E2, B2);
736    if (E1 == B1 && E2 == B2)
737      break;
738
739    if (E1 == B1) {
740      assert(!E2->isBranch() && "Branch mis-match, one block is empty.");
741      break;
742    }
743    if (E2 == B2) {
744      assert(!E1->isBranch() && "Branch mis-match, one block is empty.");
745      break;
746    }
747
748    if (E1->isBranch() || E2->isBranch())
749      assert(E1->isIdenticalTo(*E2) &&
750             "Branch mis-match, branch instructions don't match.");
751    else
752      break;
753    ++E1;
754    ++E2;
755  }
756}
757#endif
758
759/// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
760/// with their common predecessor) form a diamond if a common tail block is
761/// extracted.
762/// While not strictly a diamond, this pattern would form a diamond if
763/// tail-merging had merged the shared tails.
764///           EBB
765///         _/   \_
766///         |     |
767///        TBB   FBB
768///        /  \ /   \
769///  FalseBB TrueBB FalseBB
770/// Currently only handles analyzable branches.
771/// Specifically excludes actual diamonds to avoid overlap.
772bool IfConverter::ValidForkedDiamond(
773    BBInfo &TrueBBI, BBInfo &FalseBBI,
774    unsigned &Dups1, unsigned &Dups2,
775    BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
776  Dups1 = Dups2 = 0;
777  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
778      FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
779    return false;
780
781  if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable)
782    return false;
783  // Don't IfConvert blocks that can't be folded into their predecessor.
784  if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
785    return false;
786
787  // This function is specifically looking for conditional tails, as
788  // unconditional tails are already handled by the standard diamond case.
789  if (TrueBBI.BrCond.size() == 0 ||
790      FalseBBI.BrCond.size() == 0)
791    return false;
792
793  MachineBasicBlock *TT = TrueBBI.TrueBB;
794  MachineBasicBlock *TF = TrueBBI.FalseBB;
795  MachineBasicBlock *FT = FalseBBI.TrueBB;
796  MachineBasicBlock *FF = FalseBBI.FalseBB;
797
798  if (!TT)
799    TT = getNextBlock(*TrueBBI.BB);
800  if (!TF)
801    TF = getNextBlock(*TrueBBI.BB);
802  if (!FT)
803    FT = getNextBlock(*FalseBBI.BB);
804  if (!FF)
805    FF = getNextBlock(*FalseBBI.BB);
806
807  if (!TT || !TF)
808    return false;
809
810  // Check successors. If they don't match, bail.
811  if (!((TT == FT && TF == FF) || (TF == FT && TT == FF)))
812    return false;
813
814  bool FalseReversed = false;
815  if (TF == FT && TT == FF) {
816    // If the branches are opposing, but we can't reverse, don't do it.
817    if (!FalseBBI.IsBrReversible)
818      return false;
819    FalseReversed = true;
820    reverseBranchCondition(FalseBBI);
821  }
822  auto UnReverseOnExit = make_scope_exit([&]() {
823    if (FalseReversed)
824      reverseBranchCondition(FalseBBI);
825  });
826
827  // Count duplicate instructions at the beginning of the true and false blocks.
828  MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
829  MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
830  MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
831  MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
832  if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
833                                  *TrueBBI.BB, *FalseBBI.BB,
834                                  /* SkipUnconditionalBranches */ true))
835    return false;
836
837  TrueBBICalc.BB = TrueBBI.BB;
838  FalseBBICalc.BB = FalseBBI.BB;
839  if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
840    return false;
841
842  // The size is used to decide whether to if-convert, and the shared portions
843  // are subtracted off. Because of the subtraction, we just use the size that
844  // was calculated by the original ScanInstructions, as it is correct.
845  TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
846  FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
847  return true;
848}
849
850/// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
851/// with their common predecessor) forms a valid diamond shape for ifcvt.
852bool IfConverter::ValidDiamond(
853    BBInfo &TrueBBI, BBInfo &FalseBBI,
854    unsigned &Dups1, unsigned &Dups2,
855    BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
856  Dups1 = Dups2 = 0;
857  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
858      FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
859    return false;
860
861  MachineBasicBlock *TT = TrueBBI.TrueBB;
862  MachineBasicBlock *FT = FalseBBI.TrueBB;
863
864  if (!TT && blockAlwaysFallThrough(TrueBBI))
865    TT = getNextBlock(*TrueBBI.BB);
866  if (!FT && blockAlwaysFallThrough(FalseBBI))
867    FT = getNextBlock(*FalseBBI.BB);
868  if (TT != FT)
869    return false;
870  if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
871    return false;
872  if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
873    return false;
874
875  // FIXME: Allow true block to have an early exit?
876  if (TrueBBI.FalseBB || FalseBBI.FalseBB)
877    return false;
878
879  // Count duplicate instructions at the beginning and end of the true and
880  // false blocks.
881  // Skip unconditional branches only if we are considering an analyzable
882  // diamond. Otherwise the branches must be the same.
883  bool SkipUnconditionalBranches =
884      TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable;
885  MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
886  MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
887  MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
888  MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
889  if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
890                                  *TrueBBI.BB, *FalseBBI.BB,
891                                  SkipUnconditionalBranches))
892    return false;
893
894  TrueBBICalc.BB = TrueBBI.BB;
895  FalseBBICalc.BB = FalseBBI.BB;
896  if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
897    return false;
898  // The size is used to decide whether to if-convert, and the shared portions
899  // are subtracted off. Because of the subtraction, we just use the size that
900  // was calculated by the original ScanInstructions, as it is correct.
901  TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
902  FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
903  return true;
904}
905
906/// AnalyzeBranches - Look at the branches at the end of a block to determine if
907/// the block is predicable.
908void IfConverter::AnalyzeBranches(BBInfo &BBI) {
909  if (BBI.IsDone)
910    return;
911
912  BBI.TrueBB = BBI.FalseBB = nullptr;
913  BBI.BrCond.clear();
914  BBI.IsBrAnalyzable =
915      !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
916  SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
917  BBI.IsBrReversible = (RevCond.size() == 0) ||
918      !TII->reverseBranchCondition(RevCond);
919  BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
920
921  if (BBI.BrCond.size()) {
922    // No false branch. This BB must end with a conditional branch and a
923    // fallthrough.
924    if (!BBI.FalseBB)
925      BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
926    if (!BBI.FalseBB) {
927      // Malformed bcc? True and false blocks are the same?
928      BBI.IsUnpredicable = true;
929    }
930  }
931}
932
933/// ScanInstructions - Scan all the instructions in the block to determine if
934/// the block is predicable. In most cases, that means all the instructions
935/// in the block are isPredicable(). Also checks if the block contains any
936/// instruction which can clobber a predicate (e.g. condition code register).
937/// If so, the block is not predicable unless it's the last instruction.
938void IfConverter::ScanInstructions(BBInfo &BBI,
939                                   MachineBasicBlock::iterator &Begin,
940                                   MachineBasicBlock::iterator &End,
941                                   bool BranchUnpredicable) const {
942  if (BBI.IsDone || BBI.IsUnpredicable)
943    return;
944
945  bool AlreadyPredicated = !BBI.Predicate.empty();
946
947  BBI.NonPredSize = 0;
948  BBI.ExtraCost = 0;
949  BBI.ExtraCost2 = 0;
950  BBI.ClobbersPred = false;
951  for (MachineInstr &MI : make_range(Begin, End)) {
952    if (MI.isDebugInstr())
953      continue;
954
955    // It's unsafe to duplicate convergent instructions in this context, so set
956    // BBI.CannotBeCopied to true if MI is convergent.  To see why, consider the
957    // following CFG, which is subject to our "simple" transformation.
958    //
959    //    BB0     // if (c1) goto BB1; else goto BB2;
960    //   /   \
961    //  BB1   |
962    //   |   BB2  // if (c2) goto TBB; else goto FBB;
963    //   |   / |
964    //   |  /  |
965    //   TBB   |
966    //    |    |
967    //    |   FBB
968    //    |
969    //    exit
970    //
971    // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
972    // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
973    // TBB contains a convergent instruction.  This is safe iff doing so does
974    // not add a control-flow dependency to the convergent instruction -- i.e.,
975    // it's safe iff the set of control flows that leads us to the convergent
976    // instruction does not get smaller after the transformation.
977    //
978    // Originally we executed TBB if c1 || c2.  After the transformation, there
979    // are two copies of TBB's instructions.  We get to the first if c1, and we
980    // get to the second if !c1 && c2.
981    //
982    // There are clearly fewer ways to satisfy the condition "c1" than
983    // "c1 || c2".  Since we've shrunk the set of control flows which lead to
984    // our convergent instruction, the transformation is unsafe.
985    if (MI.isNotDuplicable() || MI.isConvergent())
986      BBI.CannotBeCopied = true;
987
988    bool isPredicated = TII->isPredicated(MI);
989    bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();
990
991    if (BranchUnpredicable && MI.isBranch()) {
992      BBI.IsUnpredicable = true;
993      return;
994    }
995
996    // A conditional branch is not predicable, but it may be eliminated.
997    if (isCondBr)
998      continue;
999
1000    if (!isPredicated) {
1001      BBI.NonPredSize++;
1002      unsigned ExtraPredCost = TII->getPredicationCost(MI);
1003      unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
1004      if (NumCycles > 1)
1005        BBI.ExtraCost += NumCycles-1;
1006      BBI.ExtraCost2 += ExtraPredCost;
1007    } else if (!AlreadyPredicated) {
1008      // FIXME: This instruction is already predicated before the
1009      // if-conversion pass. It's probably something like a conditional move.
1010      // Mark this block unpredicable for now.
1011      BBI.IsUnpredicable = true;
1012      return;
1013    }
1014
1015    if (BBI.ClobbersPred && !isPredicated) {
1016      // Predicate modification instruction should end the block (except for
1017      // already predicated instructions and end of block branches).
1018      // Predicate may have been modified, the subsequent (currently)
1019      // unpredicated instructions cannot be correctly predicated.
1020      BBI.IsUnpredicable = true;
1021      return;
1022    }
1023
1024    // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
1025    // still potentially predicable.
1026    std::vector<MachineOperand> PredDefs;
1027    if (TII->DefinesPredicate(MI, PredDefs))
1028      BBI.ClobbersPred = true;
1029
1030    if (!TII->isPredicable(MI)) {
1031      BBI.IsUnpredicable = true;
1032      return;
1033    }
1034  }
1035}
1036
1037/// Determine if the block is a suitable candidate to be predicated by the
1038/// specified predicate.
1039/// @param BBI BBInfo for the block to check
1040/// @param Pred Predicate array for the branch that leads to BBI
1041/// @param isTriangle true if the Analysis is for a triangle
1042/// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
1043///        case
1044/// @param hasCommonTail true if BBI shares a tail with a sibling block that
1045///        contains any instruction that would make the block unpredicable.
1046bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
1047                                      SmallVectorImpl<MachineOperand> &Pred,
1048                                      bool isTriangle, bool RevBranch,
1049                                      bool hasCommonTail) {
1050  // If the block is dead or unpredicable, then it cannot be predicated.
1051  // Two blocks may share a common unpredicable tail, but this doesn't prevent
1052  // them from being if-converted. The non-shared portion is assumed to have
1053  // been checked
1054  if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail))
1055    return false;
1056
1057  // If it is already predicated but we couldn't analyze its terminator, the
1058  // latter might fallthrough, but we can't determine where to.
1059  // Conservatively avoid if-converting again.
1060  if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
1061    return false;
1062
1063  // If it is already predicated, check if the new predicate subsumes
1064  // its predicate.
1065  if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
1066    return false;
1067
1068  if (!hasCommonTail && BBI.BrCond.size()) {
1069    if (!isTriangle)
1070      return false;
1071
1072    // Test predicate subsumption.
1073    SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
1074    SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1075    if (RevBranch) {
1076      if (TII->reverseBranchCondition(Cond))
1077        return false;
1078    }
1079    if (TII->reverseBranchCondition(RevPred) ||
1080        !TII->SubsumesPredicate(Cond, RevPred))
1081      return false;
1082  }
1083
1084  return true;
1085}
1086
1087/// Analyze the structure of the sub-CFG starting from the specified block.
1088/// Record its successors and whether it looks like an if-conversion candidate.
1089void IfConverter::AnalyzeBlock(
1090    MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1091  struct BBState {
1092    BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {}
1093    MachineBasicBlock *MBB;
1094
1095    /// This flag is true if MBB's successors have been analyzed.
1096    bool SuccsAnalyzed;
1097  };
1098
1099  // Push MBB to the stack.
1100  SmallVector<BBState, 16> BBStack(1, MBB);
1101
1102  while (!BBStack.empty()) {
1103    BBState &State = BBStack.back();
1104    MachineBasicBlock *BB = State.MBB;
1105    BBInfo &BBI = BBAnalysis[BB->getNumber()];
1106
1107    if (!State.SuccsAnalyzed) {
1108      if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
1109        BBStack.pop_back();
1110        continue;
1111      }
1112
1113      BBI.BB = BB;
1114      BBI.IsBeingAnalyzed = true;
1115
1116      AnalyzeBranches(BBI);
1117      MachineBasicBlock::iterator Begin = BBI.BB->begin();
1118      MachineBasicBlock::iterator End = BBI.BB->end();
1119      ScanInstructions(BBI, Begin, End);
1120
1121      // Unanalyzable or ends with fallthrough or unconditional branch, or if is
1122      // not considered for ifcvt anymore.
1123      if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
1124        BBI.IsBeingAnalyzed = false;
1125        BBI.IsAnalyzed = true;
1126        BBStack.pop_back();
1127        continue;
1128      }
1129
1130      // Do not ifcvt if either path is a back edge to the entry block.
1131      if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
1132        BBI.IsBeingAnalyzed = false;
1133        BBI.IsAnalyzed = true;
1134        BBStack.pop_back();
1135        continue;
1136      }
1137
1138      // Do not ifcvt if true and false fallthrough blocks are the same.
1139      if (!BBI.FalseBB) {
1140        BBI.IsBeingAnalyzed = false;
1141        BBI.IsAnalyzed = true;
1142        BBStack.pop_back();
1143        continue;
1144      }
1145
1146      // Push the False and True blocks to the stack.
1147      State.SuccsAnalyzed = true;
1148      BBStack.push_back(*BBI.FalseBB);
1149      BBStack.push_back(*BBI.TrueBB);
1150      continue;
1151    }
1152
1153    BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1154    BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1155
1156    if (TrueBBI.IsDone && FalseBBI.IsDone) {
1157      BBI.IsBeingAnalyzed = false;
1158      BBI.IsAnalyzed = true;
1159      BBStack.pop_back();
1160      continue;
1161    }
1162
1163    SmallVector<MachineOperand, 4>
1164        RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1165    bool CanRevCond = !TII->reverseBranchCondition(RevCond);
1166
1167    unsigned Dups = 0;
1168    unsigned Dups2 = 0;
1169    bool TNeedSub = !TrueBBI.Predicate.empty();
1170    bool FNeedSub = !FalseBBI.Predicate.empty();
1171    bool Enqueued = false;
1172
1173    BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
1174
1175    if (CanRevCond) {
1176      BBInfo TrueBBICalc, FalseBBICalc;
1177      auto feasibleDiamond = [&]() {
1178        bool MeetsSize = MeetIfcvtSizeLimit(
1179            *TrueBBI.BB, (TrueBBICalc.NonPredSize - (Dups + Dups2) +
1180                          TrueBBICalc.ExtraCost), TrueBBICalc.ExtraCost2,
1181            *FalseBBI.BB, (FalseBBICalc.NonPredSize - (Dups + Dups2) +
1182                           FalseBBICalc.ExtraCost), FalseBBICalc.ExtraCost2,
1183            Prediction);
1184        bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond,
1185                                                /* IsTriangle */ false, /* RevCond */ false,
1186                                                /* hasCommonTail */ true);
1187        bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond,
1188                                                 /* IsTriangle */ false, /* RevCond */ false,
1189                                                 /* hasCommonTail */ true);
1190        return MeetsSize && TrueFeasible && FalseFeasible;
1191      };
1192
1193      if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1194                       TrueBBICalc, FalseBBICalc)) {
1195        if (feasibleDiamond()) {
1196          // Diamond:
1197          //   EBB
1198          //   / \_
1199          //  |   |
1200          // TBB FBB
1201          //   \ /
1202          //  TailBB
1203          // Note TailBB can be empty.
1204          Tokens.push_back(llvm::make_unique<IfcvtToken>(
1205              BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1206              (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1207          Enqueued = true;
1208        }
1209      } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1210                                    TrueBBICalc, FalseBBICalc)) {
1211        if (feasibleDiamond()) {
1212          // ForkedDiamond:
1213          // if TBB and FBB have a common tail that includes their conditional
1214          // branch instructions, then we can If Convert this pattern.
1215          //          EBB
1216          //         _/ \_
1217          //         |   |
1218          //        TBB  FBB
1219          //        / \ /   \
1220          //  FalseBB TrueBB FalseBB
1221          //
1222          Tokens.push_back(llvm::make_unique<IfcvtToken>(
1223              BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1224              (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1225          Enqueued = true;
1226        }
1227      }
1228    }
1229
1230    if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
1231        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1232                           TrueBBI.ExtraCost2, Prediction) &&
1233        FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
1234      // Triangle:
1235      //   EBB
1236      //   | \_
1237      //   |  |
1238      //   | TBB
1239      //   |  /
1240      //   FBB
1241      Tokens.push_back(
1242          llvm::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
1243      Enqueued = true;
1244    }
1245
1246    if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
1247        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1248                           TrueBBI.ExtraCost2, Prediction) &&
1249        FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
1250      Tokens.push_back(
1251          llvm::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
1252      Enqueued = true;
1253    }
1254
1255    if (ValidSimple(TrueBBI, Dups, Prediction) &&
1256        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1257                           TrueBBI.ExtraCost2, Prediction) &&
1258        FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
1259      // Simple (split, no rejoin):
1260      //   EBB
1261      //   | \_
1262      //   |  |
1263      //   | TBB---> exit
1264      //   |
1265      //   FBB
1266      Tokens.push_back(
1267          llvm::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
1268      Enqueued = true;
1269    }
1270
1271    if (CanRevCond) {
1272      // Try the other path...
1273      if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
1274                        Prediction.getCompl()) &&
1275          MeetIfcvtSizeLimit(*FalseBBI.BB,
1276                             FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1277                             FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1278          FeasibilityAnalysis(FalseBBI, RevCond, true)) {
1279        Tokens.push_back(llvm::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
1280                                                       FNeedSub, Dups));
1281        Enqueued = true;
1282      }
1283
1284      if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
1285                        Prediction.getCompl()) &&
1286          MeetIfcvtSizeLimit(*FalseBBI.BB,
1287                             FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1288                           FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1289        FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
1290        Tokens.push_back(
1291            llvm::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
1292        Enqueued = true;
1293      }
1294
1295      if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
1296          MeetIfcvtSizeLimit(*FalseBBI.BB,
1297                             FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1298                             FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1299          FeasibilityAnalysis(FalseBBI, RevCond)) {
1300        Tokens.push_back(
1301            llvm::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
1302        Enqueued = true;
1303      }
1304    }
1305
1306    BBI.IsEnqueued = Enqueued;
1307    BBI.IsBeingAnalyzed = false;
1308    BBI.IsAnalyzed = true;
1309    BBStack.pop_back();
1310  }
1311}
1312
1313/// Analyze all blocks and find entries for all if-conversion candidates.
1314void IfConverter::AnalyzeBlocks(
1315    MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1316  for (MachineBasicBlock &MBB : MF)
1317    AnalyzeBlock(MBB, Tokens);
1318
1319  // Sort to favor more complex ifcvt scheme.
1320  std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp);
1321}
1322
1323/// Returns true either if ToMBB is the next block after MBB or that all the
1324/// intervening blocks are empty (given MBB can fall through to its next block).
1325static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) {
1326  MachineFunction::iterator PI = MBB.getIterator();
1327  MachineFunction::iterator I = std::next(PI);
1328  MachineFunction::iterator TI = ToMBB.getIterator();
1329  MachineFunction::iterator E = MBB.getParent()->end();
1330  while (I != TI) {
1331    // Check isSuccessor to avoid case where the next block is empty, but
1332    // it's not a successor.
1333    if (I == E || !I->empty() || !PI->isSuccessor(&*I))
1334      return false;
1335    PI = I++;
1336  }
1337  // Finally see if the last I is indeed a successor to PI.
1338  return PI->isSuccessor(&*I);
1339}
1340
1341/// Invalidate predecessor BB info so it would be re-analyzed to determine if it
1342/// can be if-converted. If predecessor is already enqueued, dequeue it!
1343void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) {
1344  for (const MachineBasicBlock *Predecessor : MBB.predecessors()) {
1345    BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
1346    if (PBBI.IsDone || PBBI.BB == &MBB)
1347      continue;
1348    PBBI.IsAnalyzed = false;
1349    PBBI.IsEnqueued = false;
1350  }
1351}
1352
1353/// Inserts an unconditional branch from \p MBB to \p ToMBB.
1354static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB,
1355                               const TargetInstrInfo *TII) {
1356  DebugLoc dl;  // FIXME: this is nowhere
1357  SmallVector<MachineOperand, 0> NoCond;
1358  TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl);
1359}
1360
1361/// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
1362/// values defined in MI which are also live/used by MI.
1363static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
1364  const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo();
1365
1366  // Before stepping forward past MI, remember which regs were live
1367  // before MI. This is needed to set the Undef flag only when reg is
1368  // dead.
1369  SparseSet<unsigned> LiveBeforeMI;
1370  LiveBeforeMI.setUniverse(TRI->getNumRegs());
1371  for (unsigned Reg : Redefs)
1372    LiveBeforeMI.insert(Reg);
1373
1374  SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Clobbers;
1375  Redefs.stepForward(MI, Clobbers);
1376
1377  // Now add the implicit uses for each of the clobbered values.
1378  for (auto Clobber : Clobbers) {
1379    // FIXME: Const cast here is nasty, but better than making StepForward
1380    // take a mutable instruction instead of const.
1381    unsigned Reg = Clobber.first;
1382    MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second);
1383    MachineInstr *OpMI = Op.getParent();
1384    MachineInstrBuilder MIB(*OpMI->getMF(), OpMI);
1385    if (Op.isRegMask()) {
1386      // First handle regmasks.  They clobber any entries in the mask which
1387      // means that we need a def for those registers.
1388      if (LiveBeforeMI.count(Reg))
1389        MIB.addReg(Reg, RegState::Implicit);
1390
1391      // We also need to add an implicit def of this register for the later
1392      // use to read from.
1393      // For the register allocator to have allocated a register clobbered
1394      // by the call which is used later, it must be the case that
1395      // the call doesn't return.
1396      MIB.addReg(Reg, RegState::Implicit | RegState::Define);
1397      continue;
1398    }
1399    if (LiveBeforeMI.count(Reg))
1400      MIB.addReg(Reg, RegState::Implicit);
1401    else {
1402      bool HasLiveSubReg = false;
1403      for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) {
1404        if (!LiveBeforeMI.count(*S))
1405          continue;
1406        HasLiveSubReg = true;
1407        break;
1408      }
1409      if (HasLiveSubReg)
1410        MIB.addReg(Reg, RegState::Implicit);
1411    }
1412  }
1413}
1414
1415/// If convert a simple (split, no rejoin) sub-CFG.
1416bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
1417  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
1418  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1419  BBInfo *CvtBBI = &TrueBBI;
1420  BBInfo *NextBBI = &FalseBBI;
1421
1422  SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1423  if (Kind == ICSimpleFalse)
1424    std::swap(CvtBBI, NextBBI);
1425
1426  MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1427  MachineBasicBlock &NextMBB = *NextBBI->BB;
1428  if (CvtBBI->IsDone ||
1429      (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1430    // Something has changed. It's no longer safe to predicate this block.
1431    BBI.IsAnalyzed = false;
1432    CvtBBI->IsAnalyzed = false;
1433    return false;
1434  }
1435
1436  if (CvtMBB.hasAddressTaken())
1437    // Conservatively abort if-conversion if BB's address is taken.
1438    return false;
1439
1440  if (Kind == ICSimpleFalse)
1441    if (TII->reverseBranchCondition(Cond))
1442      llvm_unreachable("Unable to reverse branch condition!");
1443
1444  Redefs.init(*TRI);
1445
1446  if (MRI->tracksLiveness()) {
1447    // Initialize liveins to the first BB. These are potentiall redefined by
1448    // predicated instructions.
1449    Redefs.addLiveIns(CvtMBB);
1450    Redefs.addLiveIns(NextMBB);
1451  }
1452
1453  // Remove the branches from the entry so we can add the contents of the true
1454  // block to it.
1455  BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1456
1457  if (CvtMBB.pred_size() > 1) {
1458    // Copy instructions in the true block, predicate them, and add them to
1459    // the entry block.
1460    CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
1461
1462    // Keep the CFG updated.
1463    BBI.BB->removeSuccessor(&CvtMBB, true);
1464  } else {
1465    // Predicate the instructions in the true block.
1466    PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1467
1468    // Merge converted block into entry block. The BB to Cvt edge is removed
1469    // by MergeBlocks.
1470    MergeBlocks(BBI, *CvtBBI);
1471  }
1472
1473  bool IterIfcvt = true;
1474  if (!canFallThroughTo(*BBI.BB, NextMBB)) {
1475    InsertUncondBranch(*BBI.BB, NextMBB, TII);
1476    BBI.HasFallThrough = false;
1477    // Now ifcvt'd block will look like this:
1478    // BB:
1479    // ...
1480    // t, f = cmp
1481    // if t op
1482    // b BBf
1483    //
1484    // We cannot further ifcvt this block because the unconditional branch
1485    // will have to be predicated on the new condition, that will not be
1486    // available if cmp executes.
1487    IterIfcvt = false;
1488  }
1489
1490  // Update block info. BB can be iteratively if-converted.
1491  if (!IterIfcvt)
1492    BBI.IsDone = true;
1493  InvalidatePreds(*BBI.BB);
1494  CvtBBI->IsDone = true;
1495
1496  // FIXME: Must maintain LiveIns.
1497  return true;
1498}
1499
1500/// If convert a triangle sub-CFG.
1501bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
1502  BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1503  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1504  BBInfo *CvtBBI = &TrueBBI;
1505  BBInfo *NextBBI = &FalseBBI;
1506  DebugLoc dl;  // FIXME: this is nowhere
1507
1508  SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1509  if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1510    std::swap(CvtBBI, NextBBI);
1511
1512  MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1513  MachineBasicBlock &NextMBB = *NextBBI->BB;
1514  if (CvtBBI->IsDone ||
1515      (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1516    // Something has changed. It's no longer safe to predicate this block.
1517    BBI.IsAnalyzed = false;
1518    CvtBBI->IsAnalyzed = false;
1519    return false;
1520  }
1521
1522  if (CvtMBB.hasAddressTaken())
1523    // Conservatively abort if-conversion if BB's address is taken.
1524    return false;
1525
1526  if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1527    if (TII->reverseBranchCondition(Cond))
1528      llvm_unreachable("Unable to reverse branch condition!");
1529
1530  if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
1531    if (reverseBranchCondition(*CvtBBI)) {
1532      // BB has been changed, modify its predecessors (except for this
1533      // one) so they don't get ifcvt'ed based on bad intel.
1534      for (MachineBasicBlock *PBB : CvtMBB.predecessors()) {
1535        if (PBB == BBI.BB)
1536          continue;
1537        BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
1538        if (PBBI.IsEnqueued) {
1539          PBBI.IsAnalyzed = false;
1540          PBBI.IsEnqueued = false;
1541        }
1542      }
1543    }
1544  }
1545
1546  // Initialize liveins to the first BB. These are potentially redefined by
1547  // predicated instructions.
1548  Redefs.init(*TRI);
1549  if (MRI->tracksLiveness()) {
1550    Redefs.addLiveIns(CvtMBB);
1551    Redefs.addLiveIns(NextMBB);
1552  }
1553
1554  bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
1555  BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
1556
1557  if (HasEarlyExit) {
1558    // Get probabilities before modifying CvtMBB and BBI.BB.
1559    CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB);
1560    CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB);
1561    BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB);
1562    BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB);
1563  }
1564
1565  // Remove the branches from the entry so we can add the contents of the true
1566  // block to it.
1567  BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1568
1569  if (CvtMBB.pred_size() > 1) {
1570    // Copy instructions in the true block, predicate them, and add them to
1571    // the entry block.
1572    CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
1573  } else {
1574    // Predicate the 'true' block after removing its branch.
1575    CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB);
1576    PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1577
1578    // Now merge the entry of the triangle with the true block.
1579    MergeBlocks(BBI, *CvtBBI, false);
1580  }
1581
1582  // Keep the CFG updated.
1583  BBI.BB->removeSuccessor(&CvtMBB, true);
1584
1585  // If 'true' block has a 'false' successor, add an exit branch to it.
1586  if (HasEarlyExit) {
1587    SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
1588                                           CvtBBI->BrCond.end());
1589    if (TII->reverseBranchCondition(RevCond))
1590      llvm_unreachable("Unable to reverse branch condition!");
1591
1592    // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
1593    // NewNext = New_Prob(BBI.BB, NextMBB) =
1594    //   Prob(BBI.BB, NextMBB) +
1595    //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
1596    // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
1597    //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
1598    auto NewTrueBB = getNextBlock(*BBI.BB);
1599    auto NewNext = BBNext + BBCvt * CvtNext;
1600    auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB);
1601    if (NewTrueBBIter != BBI.BB->succ_end())
1602      BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
1603
1604    auto NewFalse = BBCvt * CvtFalse;
1605    TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
1606    BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
1607  }
1608
1609  // Merge in the 'false' block if the 'false' block has no other
1610  // predecessors. Otherwise, add an unconditional branch to 'false'.
1611  bool FalseBBDead = false;
1612  bool IterIfcvt = true;
1613  bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB);
1614  if (!isFallThrough) {
1615    // Only merge them if the true block does not fallthrough to the false
1616    // block. By not merging them, we make it possible to iteratively
1617    // ifcvt the blocks.
1618    if (!HasEarlyExit &&
1619        NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough &&
1620        !NextMBB.hasAddressTaken()) {
1621      MergeBlocks(BBI, *NextBBI);
1622      FalseBBDead = true;
1623    } else {
1624      InsertUncondBranch(*BBI.BB, NextMBB, TII);
1625      BBI.HasFallThrough = false;
1626    }
1627    // Mixed predicated and unpredicated code. This cannot be iteratively
1628    // predicated.
1629    IterIfcvt = false;
1630  }
1631
1632  // Update block info. BB can be iteratively if-converted.
1633  if (!IterIfcvt)
1634    BBI.IsDone = true;
1635  InvalidatePreds(*BBI.BB);
1636  CvtBBI->IsDone = true;
1637  if (FalseBBDead)
1638    NextBBI->IsDone = true;
1639
1640  // FIXME: Must maintain LiveIns.
1641  return true;
1642}
1643
1644/// Common code shared between diamond conversions.
1645/// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
1646/// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
1647///               and FalseBBI
1648/// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
1649///               and \p FalseBBI
1650/// \p RemoveBranch - Remove the common branch of the two blocks before
1651///                   predicating. Only false for unanalyzable fallthrough
1652///                   cases. The caller will replace the branch if necessary.
1653/// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
1654///                    unanalyzable fallthrough
1655bool IfConverter::IfConvertDiamondCommon(
1656    BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
1657    unsigned NumDups1, unsigned NumDups2,
1658    bool TClobbersPred, bool FClobbersPred,
1659    bool RemoveBranch, bool MergeAddEdges) {
1660
1661  if (TrueBBI.IsDone || FalseBBI.IsDone ||
1662      TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) {
1663    // Something has changed. It's no longer safe to predicate these blocks.
1664    BBI.IsAnalyzed = false;
1665    TrueBBI.IsAnalyzed = false;
1666    FalseBBI.IsAnalyzed = false;
1667    return false;
1668  }
1669
1670  if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
1671    // Conservatively abort if-conversion if either BB has its address taken.
1672    return false;
1673
1674  // Put the predicated instructions from the 'true' block before the
1675  // instructions from the 'false' block, unless the true block would clobber
1676  // the predicate, in which case, do the opposite.
1677  BBInfo *BBI1 = &TrueBBI;
1678  BBInfo *BBI2 = &FalseBBI;
1679  SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1680  if (TII->reverseBranchCondition(RevCond))
1681    llvm_unreachable("Unable to reverse branch condition!");
1682  SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
1683  SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
1684
1685  // Figure out the more profitable ordering.
1686  bool DoSwap = false;
1687  if (TClobbersPred && !FClobbersPred)
1688    DoSwap = true;
1689  else if (!TClobbersPred && !FClobbersPred) {
1690    if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
1691      DoSwap = true;
1692  } else if (TClobbersPred && FClobbersPred)
1693    llvm_unreachable("Predicate info cannot be clobbered by both sides.");
1694  if (DoSwap) {
1695    std::swap(BBI1, BBI2);
1696    std::swap(Cond1, Cond2);
1697  }
1698
1699  // Remove the conditional branch from entry to the blocks.
1700  BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1701
1702  MachineBasicBlock &MBB1 = *BBI1->BB;
1703  MachineBasicBlock &MBB2 = *BBI2->BB;
1704
1705  // Initialize the Redefs:
1706  // - BB2 live-in regs need implicit uses before being redefined by BB1
1707  //   instructions.
1708  // - BB1 live-out regs need implicit uses before being redefined by BB2
1709  //   instructions. We start with BB1 live-ins so we have the live-out regs
1710  //   after tracking the BB1 instructions.
1711  Redefs.init(*TRI);
1712  if (MRI->tracksLiveness()) {
1713    Redefs.addLiveIns(MBB1);
1714    Redefs.addLiveIns(MBB2);
1715  }
1716
1717  // Remove the duplicated instructions at the beginnings of both paths.
1718  // Skip dbg_value instructions.
1719  MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr();
1720  MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr();
1721  BBI1->NonPredSize -= NumDups1;
1722  BBI2->NonPredSize -= NumDups1;
1723
1724  // Skip past the dups on each side separately since there may be
1725  // differing dbg_value entries. NumDups1 can include a "return"
1726  // instruction, if it's not marked as "branch".
1727  for (unsigned i = 0; i < NumDups1; ++DI1) {
1728    if (DI1 == MBB1.end())
1729      break;
1730    if (!DI1->isDebugInstr())
1731      ++i;
1732  }
1733  while (NumDups1 != 0) {
1734    ++DI2;
1735    if (DI2 == MBB2.end())
1736      break;
1737    if (!DI2->isDebugInstr())
1738      --NumDups1;
1739  }
1740
1741  if (MRI->tracksLiveness()) {
1742    for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) {
1743      SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Dummy;
1744      Redefs.stepForward(MI, Dummy);
1745    }
1746  }
1747
1748  BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1);
1749  MBB2.erase(MBB2.begin(), DI2);
1750
1751  // The branches have been checked to match, so it is safe to remove the
1752  // branch in BB1 and rely on the copy in BB2. The complication is that
1753  // the blocks may end with a return instruction, which may or may not
1754  // be marked as "branch". If it's not, then it could be included in
1755  // "dups1", leaving the blocks potentially empty after moving the common
1756  // duplicates.
1757#ifndef NDEBUG
1758  // Unanalyzable branches must match exactly. Check that now.
1759  if (!BBI1->IsBrAnalyzable)
1760    verifySameBranchInstructions(&MBB1, &MBB2);
1761#endif
1762  BBI1->NonPredSize -= TII->removeBranch(*BBI1->BB);
1763  // Remove duplicated instructions.
1764  DI1 = MBB1.end();
1765  for (unsigned i = 0; i != NumDups2; ) {
1766    // NumDups2 only counted non-dbg_value instructions, so this won't
1767    // run off the head of the list.
1768    assert(DI1 != MBB1.begin());
1769    --DI1;
1770    // skip dbg_value instructions
1771    if (!DI1->isDebugInstr())
1772      ++i;
1773  }
1774  MBB1.erase(DI1, MBB1.end());
1775
1776  DI2 = BBI2->BB->end();
1777  // The branches have been checked to match. Skip over the branch in the false
1778  // block so that we don't try to predicate it.
1779  if (RemoveBranch)
1780    BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB);
1781  else {
1782    // Make DI2 point to the end of the range where the common "tail"
1783    // instructions could be found.
1784    while (DI2 != MBB2.begin()) {
1785      MachineBasicBlock::iterator Prev = std::prev(DI2);
1786      if (!Prev->isBranch() && !Prev->isDebugInstr())
1787        break;
1788      DI2 = Prev;
1789    }
1790  }
1791  while (NumDups2 != 0) {
1792    // NumDups2 only counted non-dbg_value instructions, so this won't
1793    // run off the head of the list.
1794    assert(DI2 != MBB2.begin());
1795    --DI2;
1796    // skip dbg_value instructions
1797    if (!DI2->isDebugInstr())
1798      --NumDups2;
1799  }
1800
1801  // Remember which registers would later be defined by the false block.
1802  // This allows us not to predicate instructions in the true block that would
1803  // later be re-defined. That is, rather than
1804  //   subeq  r0, r1, #1
1805  //   addne  r0, r1, #1
1806  // generate:
1807  //   sub    r0, r1, #1
1808  //   addne  r0, r1, #1
1809  SmallSet<unsigned, 4> RedefsByFalse;
1810  SmallSet<unsigned, 4> ExtUses;
1811  if (TII->isProfitableToUnpredicate(MBB1, MBB2)) {
1812    for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) {
1813      if (FI.isDebugInstr())
1814        continue;
1815      SmallVector<unsigned, 4> Defs;
1816      for (const MachineOperand &MO : FI.operands()) {
1817        if (!MO.isReg())
1818          continue;
1819        unsigned Reg = MO.getReg();
1820        if (!Reg)
1821          continue;
1822        if (MO.isDef()) {
1823          Defs.push_back(Reg);
1824        } else if (!RedefsByFalse.count(Reg)) {
1825          // These are defined before ctrl flow reach the 'false' instructions.
1826          // They cannot be modified by the 'true' instructions.
1827          for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1828               SubRegs.isValid(); ++SubRegs)
1829            ExtUses.insert(*SubRegs);
1830        }
1831      }
1832
1833      for (unsigned Reg : Defs) {
1834        if (!ExtUses.count(Reg)) {
1835          for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1836               SubRegs.isValid(); ++SubRegs)
1837            RedefsByFalse.insert(*SubRegs);
1838        }
1839      }
1840    }
1841  }
1842
1843  // Predicate the 'true' block.
1844  PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse);
1845
1846  // After predicating BBI1, if there is a predicated terminator in BBI1 and
1847  // a non-predicated in BBI2, then we don't want to predicate the one from
1848  // BBI2. The reason is that if we merged these blocks, we would end up with
1849  // two predicated terminators in the same block.
1850  // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
1851  // predicate them either. They were checked to be identical, and so the
1852  // same branch would happen regardless of which path was taken.
1853  if (!MBB2.empty() && (DI2 == MBB2.end())) {
1854    MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator();
1855    MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator();
1856    bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T);
1857    bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T);
1858    if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable))
1859      --DI2;
1860  }
1861
1862  // Predicate the 'false' block.
1863  PredicateBlock(*BBI2, DI2, *Cond2);
1864
1865  // Merge the true block into the entry of the diamond.
1866  MergeBlocks(BBI, *BBI1, MergeAddEdges);
1867  MergeBlocks(BBI, *BBI2, MergeAddEdges);
1868  return true;
1869}
1870
1871/// If convert an almost-diamond sub-CFG where the true
1872/// and false blocks share a common tail.
1873bool IfConverter::IfConvertForkedDiamond(
1874    BBInfo &BBI, IfcvtKind Kind,
1875    unsigned NumDups1, unsigned NumDups2,
1876    bool TClobbersPred, bool FClobbersPred) {
1877  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
1878  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1879
1880  // Save the debug location for later.
1881  DebugLoc dl;
1882  MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator();
1883  if (TIE != TrueBBI.BB->end())
1884    dl = TIE->getDebugLoc();
1885  // Removing branches from both blocks is safe, because we have already
1886  // determined that both blocks have the same branch instructions. The branch
1887  // will be added back at the end, unpredicated.
1888  if (!IfConvertDiamondCommon(
1889      BBI, TrueBBI, FalseBBI,
1890      NumDups1, NumDups2,
1891      TClobbersPred, FClobbersPred,
1892      /* RemoveBranch */ true, /* MergeAddEdges */ true))
1893    return false;
1894
1895  // Add back the branch.
1896  // Debug location saved above when removing the branch from BBI2
1897  TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB,
1898                    TrueBBI.BrCond, dl);
1899
1900  // Update block info.
1901  BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
1902  InvalidatePreds(*BBI.BB);
1903
1904  // FIXME: Must maintain LiveIns.
1905  return true;
1906}
1907
1908/// If convert a diamond sub-CFG.
1909bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
1910                                   unsigned NumDups1, unsigned NumDups2,
1911                                   bool TClobbersPred, bool FClobbersPred) {
1912  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
1913  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1914  MachineBasicBlock *TailBB = TrueBBI.TrueBB;
1915
1916  // True block must fall through or end with an unanalyzable terminator.
1917  if (!TailBB) {
1918    if (blockAlwaysFallThrough(TrueBBI))
1919      TailBB = FalseBBI.TrueBB;
1920    assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
1921  }
1922
1923  if (!IfConvertDiamondCommon(
1924      BBI, TrueBBI, FalseBBI,
1925      NumDups1, NumDups2,
1926      TClobbersPred, FClobbersPred,
1927      /* RemoveBranch */ TrueBBI.IsBrAnalyzable,
1928      /* MergeAddEdges */ TailBB == nullptr))
1929    return false;
1930
1931  // If the if-converted block falls through or unconditionally branches into
1932  // the tail block, and the tail block does not have other predecessors, then
1933  // fold the tail block in as well. Otherwise, unless it falls through to the
1934  // tail, add a unconditional branch to it.
1935  if (TailBB) {
1936    // We need to remove the edges to the true and false blocks manually since
1937    // we didn't let IfConvertDiamondCommon update the CFG.
1938    BBI.BB->removeSuccessor(TrueBBI.BB);
1939    BBI.BB->removeSuccessor(FalseBBI.BB, true);
1940
1941    BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
1942    bool CanMergeTail = !TailBBI.HasFallThrough &&
1943      !TailBBI.BB->hasAddressTaken();
1944    // The if-converted block can still have a predicated terminator
1945    // (e.g. a predicated return). If that is the case, we cannot merge
1946    // it with the tail block.
1947    MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
1948    if (TI != BBI.BB->end() && TII->isPredicated(*TI))
1949      CanMergeTail = false;
1950    // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
1951    // check if there are any other predecessors besides those.
1952    unsigned NumPreds = TailBB->pred_size();
1953    if (NumPreds > 1)
1954      CanMergeTail = false;
1955    else if (NumPreds == 1 && CanMergeTail) {
1956      MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
1957      if (*PI != TrueBBI.BB && *PI != FalseBBI.BB)
1958        CanMergeTail = false;
1959    }
1960    if (CanMergeTail) {
1961      MergeBlocks(BBI, TailBBI);
1962      TailBBI.IsDone = true;
1963    } else {
1964      BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
1965      InsertUncondBranch(*BBI.BB, *TailBB, TII);
1966      BBI.HasFallThrough = false;
1967    }
1968  }
1969
1970  // Update block info.
1971  BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
1972  InvalidatePreds(*BBI.BB);
1973
1974  // FIXME: Must maintain LiveIns.
1975  return true;
1976}
1977
1978static bool MaySpeculate(const MachineInstr &MI,
1979                         SmallSet<unsigned, 4> &LaterRedefs) {
1980  bool SawStore = true;
1981  if (!MI.isSafeToMove(nullptr, SawStore))
1982    return false;
1983
1984  for (const MachineOperand &MO : MI.operands()) {
1985    if (!MO.isReg())
1986      continue;
1987    unsigned Reg = MO.getReg();
1988    if (!Reg)
1989      continue;
1990    if (MO.isDef() && !LaterRedefs.count(Reg))
1991      return false;
1992  }
1993
1994  return true;
1995}
1996
1997/// Predicate instructions from the start of the block to the specified end with
1998/// the specified condition.
1999void IfConverter::PredicateBlock(BBInfo &BBI,
2000                                 MachineBasicBlock::iterator E,
2001                                 SmallVectorImpl<MachineOperand> &Cond,
2002                                 SmallSet<unsigned, 4> *LaterRedefs) {
2003  bool AnyUnpred = false;
2004  bool MaySpec = LaterRedefs != nullptr;
2005  for (MachineInstr &I : make_range(BBI.BB->begin(), E)) {
2006    if (I.isDebugInstr() || TII->isPredicated(I))
2007      continue;
2008    // It may be possible not to predicate an instruction if it's the 'true'
2009    // side of a diamond and the 'false' side may re-define the instruction's
2010    // defs.
2011    if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
2012      AnyUnpred = true;
2013      continue;
2014    }
2015    // If any instruction is predicated, then every instruction after it must
2016    // be predicated.
2017    MaySpec = false;
2018    if (!TII->PredicateInstruction(I, Cond)) {
2019#ifndef NDEBUG
2020      dbgs() << "Unable to predicate " << I << "!\n";
2021#endif
2022      llvm_unreachable(nullptr);
2023    }
2024
2025    // If the predicated instruction now redefines a register as the result of
2026    // if-conversion, add an implicit kill.
2027    UpdatePredRedefs(I, Redefs);
2028  }
2029
2030  BBI.Predicate.append(Cond.begin(), Cond.end());
2031
2032  BBI.IsAnalyzed = false;
2033  BBI.NonPredSize = 0;
2034
2035  ++NumIfConvBBs;
2036  if (AnyUnpred)
2037    ++NumUnpred;
2038}
2039
2040/// Copy and predicate instructions from source BB to the destination block.
2041/// Skip end of block branches if IgnoreBr is true.
2042void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
2043                                        SmallVectorImpl<MachineOperand> &Cond,
2044                                        bool IgnoreBr) {
2045  MachineFunction &MF = *ToBBI.BB->getParent();
2046
2047  MachineBasicBlock &FromMBB = *FromBBI.BB;
2048  for (MachineInstr &I : FromMBB) {
2049    // Do not copy the end of the block branches.
2050    if (IgnoreBr && I.isBranch())
2051      break;
2052
2053    MachineInstr *MI = MF.CloneMachineInstr(&I);
2054    ToBBI.BB->insert(ToBBI.BB->end(), MI);
2055    ToBBI.NonPredSize++;
2056    unsigned ExtraPredCost = TII->getPredicationCost(I);
2057    unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
2058    if (NumCycles > 1)
2059      ToBBI.ExtraCost += NumCycles-1;
2060    ToBBI.ExtraCost2 += ExtraPredCost;
2061
2062    if (!TII->isPredicated(I) && !MI->isDebugInstr()) {
2063      if (!TII->PredicateInstruction(*MI, Cond)) {
2064#ifndef NDEBUG
2065        dbgs() << "Unable to predicate " << I << "!\n";
2066#endif
2067        llvm_unreachable(nullptr);
2068      }
2069    }
2070
2071    // If the predicated instruction now redefines a register as the result of
2072    // if-conversion, add an implicit kill.
2073    UpdatePredRedefs(*MI, Redefs);
2074  }
2075
2076  if (!IgnoreBr) {
2077    std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(),
2078                                           FromMBB.succ_end());
2079    MachineBasicBlock *NBB = getNextBlock(FromMBB);
2080    MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2081
2082    for (MachineBasicBlock *Succ : Succs) {
2083      // Fallthrough edge can't be transferred.
2084      if (Succ == FallThrough)
2085        continue;
2086      ToBBI.BB->addSuccessor(Succ);
2087    }
2088  }
2089
2090  ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2091  ToBBI.Predicate.append(Cond.begin(), Cond.end());
2092
2093  ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2094  ToBBI.IsAnalyzed = false;
2095
2096  ++NumDupBBs;
2097}
2098
2099/// Move all instructions from FromBB to the end of ToBB.  This will leave
2100/// FromBB as an empty block, so remove all of its successor edges except for
2101/// the fall-through edge.  If AddEdges is true, i.e., when FromBBI's branch is
2102/// being moved, add those successor edges to ToBBI and remove the old edge
2103/// from ToBBI to FromBBI.
2104void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
2105  MachineBasicBlock &FromMBB = *FromBBI.BB;
2106  assert(!FromMBB.hasAddressTaken() &&
2107         "Removing a BB whose address is taken!");
2108
2109  // In case FromMBB contains terminators (e.g. return instruction),
2110  // first move the non-terminator instructions, then the terminators.
2111  MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator();
2112  MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
2113  ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI);
2114
2115  // If FromBB has non-predicated terminator we should copy it at the end.
2116  if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI))
2117    ToTI = ToBBI.BB->end();
2118  ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end());
2119
2120  // Force normalizing the successors' probabilities of ToBBI.BB to convert all
2121  // unknown probabilities into known ones.
2122  // FIXME: This usage is too tricky and in the future we would like to
2123  // eliminate all unknown probabilities in MBB.
2124  if (ToBBI.IsBrAnalyzable)
2125    ToBBI.BB->normalizeSuccProbs();
2126
2127  SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(),
2128                                                FromMBB.succ_end());
2129  MachineBasicBlock *NBB = getNextBlock(FromMBB);
2130  MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2131  // The edge probability from ToBBI.BB to FromMBB, which is only needed when
2132  // AddEdges is true and FromMBB is a successor of ToBBI.BB.
2133  auto To2FromProb = BranchProbability::getZero();
2134  if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) {
2135    // Remove the old edge but remember the edge probability so we can calculate
2136    // the correct weights on the new edges being added further down.
2137    To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB);
2138    ToBBI.BB->removeSuccessor(&FromMBB);
2139  }
2140
2141  for (MachineBasicBlock *Succ : FromSuccs) {
2142    // Fallthrough edge can't be transferred.
2143    if (Succ == FallThrough)
2144      continue;
2145
2146    auto NewProb = BranchProbability::getZero();
2147    if (AddEdges) {
2148      // Calculate the edge probability for the edge from ToBBI.BB to Succ,
2149      // which is a portion of the edge probability from FromMBB to Succ. The
2150      // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
2151      // FromBBI is a successor of ToBBI.BB. See comment below for excepion).
2152      NewProb = MBPI->getEdgeProbability(&FromMBB, Succ);
2153
2154      // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
2155      // only happens when if-converting a diamond CFG and FromMBB is the
2156      // tail BB.  In this case FromMBB post-dominates ToBBI.BB and hence we
2157      // could just use the probabilities on FromMBB's out-edges when adding
2158      // new successors.
2159      if (!To2FromProb.isZero())
2160        NewProb *= To2FromProb;
2161    }
2162
2163    FromMBB.removeSuccessor(Succ);
2164
2165    if (AddEdges) {
2166      // If the edge from ToBBI.BB to Succ already exists, update the
2167      // probability of this edge by adding NewProb to it. An example is shown
2168      // below, in which A is ToBBI.BB and B is FromMBB. In this case we
2169      // don't have to set C as A's successor as it already is. We only need to
2170      // update the edge probability on A->C. Note that B will not be
2171      // immediately removed from A's successors. It is possible that B->D is
2172      // not removed either if D is a fallthrough of B. Later the edge A->D
2173      // (generated here) and B->D will be combined into one edge. To maintain
2174      // correct edge probability of this combined edge, we need to set the edge
2175      // probability of A->B to zero, which is already done above. The edge
2176      // probability on A->D is calculated by scaling the original probability
2177      // on A->B by the probability of B->D.
2178      //
2179      // Before ifcvt:      After ifcvt (assume B->D is kept):
2180      //
2181      //       A                A
2182      //      /|               /|\
2183      //     / B              / B|
2184      //    | /|             |  ||
2185      //    |/ |             |  |/
2186      //    C  D             C  D
2187      //
2188      if (ToBBI.BB->isSuccessor(Succ))
2189        ToBBI.BB->setSuccProbability(
2190            find(ToBBI.BB->successors(), Succ),
2191            MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
2192      else
2193        ToBBI.BB->addSuccessor(Succ, NewProb);
2194    }
2195  }
2196
2197  // Move the now empty FromMBB out of the way to the end of the function so
2198  // it doesn't interfere with fallthrough checks done by canFallThroughTo().
2199  MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin();
2200  if (Last != &FromMBB)
2201    FromMBB.moveAfter(Last);
2202
2203  // Normalize the probabilities of ToBBI.BB's successors with all adjustment
2204  // we've done above.
2205  if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable)
2206    ToBBI.BB->normalizeSuccProbs();
2207
2208  ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2209  FromBBI.Predicate.clear();
2210
2211  ToBBI.NonPredSize += FromBBI.NonPredSize;
2212  ToBBI.ExtraCost += FromBBI.ExtraCost;
2213  ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
2214  FromBBI.NonPredSize = 0;
2215  FromBBI.ExtraCost = 0;
2216  FromBBI.ExtraCost2 = 0;
2217
2218  ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2219  ToBBI.HasFallThrough = FromBBI.HasFallThrough;
2220  ToBBI.IsAnalyzed = false;
2221  FromBBI.IsAnalyzed = false;
2222}
2223
2224FunctionPass *
2225llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) {
2226  return new IfConverter(std::move(Ftor));
2227}
2228