IfConversion.cpp revision 327952
1//===- IfConversion.cpp - Machine code if conversion pass -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the machine instruction level if-conversion pass, which
11// tries to convert conditional branches into predicated instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#include "BranchFolding.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/ScopeExit.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/SparseSet.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/ADT/iterator_range.h"
23#include "llvm/CodeGen/LivePhysRegs.h"
24#include "llvm/CodeGen/MachineBasicBlock.h"
25#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/MachineInstr.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineOperand.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/TargetInstrInfo.h"
35#include "llvm/CodeGen/TargetLowering.h"
36#include "llvm/CodeGen/TargetRegisterInfo.h"
37#include "llvm/CodeGen/TargetSchedule.h"
38#include "llvm/CodeGen/TargetSubtargetInfo.h"
39#include "llvm/IR/DebugLoc.h"
40#include "llvm/MC/MCRegisterInfo.h"
41#include "llvm/Pass.h"
42#include "llvm/Support/BranchProbability.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/raw_ostream.h"
47#include <algorithm>
48#include <cassert>
49#include <functional>
50#include <iterator>
51#include <memory>
52#include <utility>
53#include <vector>
54
55using namespace llvm;
56
57#define DEBUG_TYPE "if-converter"
58
59// Hidden options for help debugging.
60static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
61static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
62static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
63static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
64                                   cl::init(false), cl::Hidden);
65static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
66                                    cl::init(false), cl::Hidden);
67static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
68                                     cl::init(false), cl::Hidden);
69static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
70                                      cl::init(false), cl::Hidden);
71static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
72                                      cl::init(false), cl::Hidden);
73static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
74                                       cl::init(false), cl::Hidden);
75static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
76                                    cl::init(false), cl::Hidden);
77static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
78                                        cl::init(false), cl::Hidden);
79static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
80                                     cl::init(true), cl::Hidden);
81
82STATISTIC(NumSimple,       "Number of simple if-conversions performed");
83STATISTIC(NumSimpleFalse,  "Number of simple (F) if-conversions performed");
84STATISTIC(NumTriangle,     "Number of triangle if-conversions performed");
85STATISTIC(NumTriangleRev,  "Number of triangle (R) if-conversions performed");
86STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
87STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
88STATISTIC(NumDiamonds,     "Number of diamond if-conversions performed");
89STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed");
90STATISTIC(NumIfConvBBs,    "Number of if-converted blocks");
91STATISTIC(NumDupBBs,       "Number of duplicated blocks");
92STATISTIC(NumUnpred,       "Number of true blocks of diamonds unpredicated");
93
94namespace {
95
96  class IfConverter : public MachineFunctionPass {
97    enum IfcvtKind {
98      ICNotClassfied,  // BB data valid, but not classified.
99      ICSimpleFalse,   // Same as ICSimple, but on the false path.
100      ICSimple,        // BB is entry of an one split, no rejoin sub-CFG.
101      ICTriangleFRev,  // Same as ICTriangleFalse, but false path rev condition.
102      ICTriangleRev,   // Same as ICTriangle, but true path rev condition.
103      ICTriangleFalse, // Same as ICTriangle, but on the false path.
104      ICTriangle,      // BB is entry of a triangle sub-CFG.
105      ICDiamond,       // BB is entry of a diamond sub-CFG.
106      ICForkedDiamond  // BB is entry of an almost diamond sub-CFG, with a
107                       // common tail that can be shared.
108    };
109
110    /// One per MachineBasicBlock, this is used to cache the result
111    /// if-conversion feasibility analysis. This includes results from
112    /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
113    /// classification, and common tail block of its successors (if it's a
114    /// diamond shape), its size, whether it's predicable, and whether any
115    /// instruction can clobber the 'would-be' predicate.
116    ///
117    /// IsDone          - True if BB is not to be considered for ifcvt.
118    /// IsBeingAnalyzed - True if BB is currently being analyzed.
119    /// IsAnalyzed      - True if BB has been analyzed (info is still valid).
120    /// IsEnqueued      - True if BB has been enqueued to be ifcvt'ed.
121    /// IsBrAnalyzable  - True if analyzeBranch() returns false.
122    /// HasFallThrough  - True if BB may fallthrough to the following BB.
123    /// IsUnpredicable  - True if BB is known to be unpredicable.
124    /// ClobbersPred    - True if BB could modify predicates (e.g. has
125    ///                   cmp, call, etc.)
126    /// NonPredSize     - Number of non-predicated instructions.
127    /// ExtraCost       - Extra cost for multi-cycle instructions.
128    /// ExtraCost2      - Some instructions are slower when predicated
129    /// BB              - Corresponding MachineBasicBlock.
130    /// TrueBB / FalseBB- See analyzeBranch().
131    /// BrCond          - Conditions for end of block conditional branches.
132    /// Predicate       - Predicate used in the BB.
133    struct BBInfo {
134      bool IsDone          : 1;
135      bool IsBeingAnalyzed : 1;
136      bool IsAnalyzed      : 1;
137      bool IsEnqueued      : 1;
138      bool IsBrAnalyzable  : 1;
139      bool IsBrReversible  : 1;
140      bool HasFallThrough  : 1;
141      bool IsUnpredicable  : 1;
142      bool CannotBeCopied  : 1;
143      bool ClobbersPred    : 1;
144      unsigned NonPredSize = 0;
145      unsigned ExtraCost = 0;
146      unsigned ExtraCost2 = 0;
147      MachineBasicBlock *BB = nullptr;
148      MachineBasicBlock *TrueBB = nullptr;
149      MachineBasicBlock *FalseBB = nullptr;
150      SmallVector<MachineOperand, 4> BrCond;
151      SmallVector<MachineOperand, 4> Predicate;
152
153      BBInfo() : IsDone(false), IsBeingAnalyzed(false),
154                 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
155                 IsBrReversible(false), HasFallThrough(false),
156                 IsUnpredicable(false), CannotBeCopied(false),
157                 ClobbersPred(false) {}
158    };
159
160    /// Record information about pending if-conversions to attempt:
161    /// BBI             - Corresponding BBInfo.
162    /// Kind            - Type of block. See IfcvtKind.
163    /// NeedSubsumption - True if the to-be-predicated BB has already been
164    ///                   predicated.
165    /// NumDups      - Number of instructions that would be duplicated due
166    ///                   to this if-conversion. (For diamonds, the number of
167    ///                   identical instructions at the beginnings of both
168    ///                   paths).
169    /// NumDups2     - For diamonds, the number of identical instructions
170    ///                   at the ends of both paths.
171    struct IfcvtToken {
172      BBInfo &BBI;
173      IfcvtKind Kind;
174      unsigned NumDups;
175      unsigned NumDups2;
176      bool NeedSubsumption : 1;
177      bool TClobbersPred : 1;
178      bool FClobbersPred : 1;
179
180      IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0,
181                 bool tc = false, bool fc = false)
182        : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s),
183          TClobbersPred(tc), FClobbersPred(fc) {}
184    };
185
186    /// Results of if-conversion feasibility analysis indexed by basic block
187    /// number.
188    std::vector<BBInfo> BBAnalysis;
189    TargetSchedModel SchedModel;
190
191    const TargetLoweringBase *TLI;
192    const TargetInstrInfo *TII;
193    const TargetRegisterInfo *TRI;
194    const MachineBranchProbabilityInfo *MBPI;
195    MachineRegisterInfo *MRI;
196
197    LivePhysRegs Redefs;
198
199    bool PreRegAlloc;
200    bool MadeChange;
201    int FnNum = -1;
202    std::function<bool(const MachineFunction &)> PredicateFtor;
203
204  public:
205    static char ID;
206
207    IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr)
208        : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
209      initializeIfConverterPass(*PassRegistry::getPassRegistry());
210    }
211
212    void getAnalysisUsage(AnalysisUsage &AU) const override {
213      AU.addRequired<MachineBlockFrequencyInfo>();
214      AU.addRequired<MachineBranchProbabilityInfo>();
215      MachineFunctionPass::getAnalysisUsage(AU);
216    }
217
218    bool runOnMachineFunction(MachineFunction &MF) override;
219
220    MachineFunctionProperties getRequiredProperties() const override {
221      return MachineFunctionProperties().set(
222          MachineFunctionProperties::Property::NoVRegs);
223    }
224
225  private:
226    bool reverseBranchCondition(BBInfo &BBI) const;
227    bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
228                     BranchProbability Prediction) const;
229    bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
230                       bool FalseBranch, unsigned &Dups,
231                       BranchProbability Prediction) const;
232    bool CountDuplicatedInstructions(
233        MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
234        MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
235        unsigned &Dups1, unsigned &Dups2,
236        MachineBasicBlock &TBB, MachineBasicBlock &FBB,
237        bool SkipUnconditionalBranches) const;
238    bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
239                      unsigned &Dups1, unsigned &Dups2,
240                      BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
241    bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
242                            unsigned &Dups1, unsigned &Dups2,
243                            BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
244    void AnalyzeBranches(BBInfo &BBI);
245    void ScanInstructions(BBInfo &BBI,
246                          MachineBasicBlock::iterator &Begin,
247                          MachineBasicBlock::iterator &End,
248                          bool BranchUnpredicable = false) const;
249    bool RescanInstructions(
250        MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
251        MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
252        BBInfo &TrueBBI, BBInfo &FalseBBI) const;
253    void AnalyzeBlock(MachineBasicBlock &MBB,
254                      std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
255    bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Cond,
256                             bool isTriangle = false, bool RevBranch = false,
257                             bool hasCommonTail = false);
258    void AnalyzeBlocks(MachineFunction &MF,
259                       std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
260    void InvalidatePreds(MachineBasicBlock &MBB);
261    bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
262    bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
263    bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
264                                unsigned NumDups1, unsigned NumDups2,
265                                bool TClobbersPred, bool FClobbersPred,
266                                bool RemoveBranch, bool MergeAddEdges);
267    bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
268                          unsigned NumDups1, unsigned NumDups2,
269                          bool TClobbers, bool FClobbers);
270    bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind,
271                              unsigned NumDups1, unsigned NumDups2,
272                              bool TClobbers, bool FClobbers);
273    void PredicateBlock(BBInfo &BBI,
274                        MachineBasicBlock::iterator E,
275                        SmallVectorImpl<MachineOperand> &Cond,
276                        SmallSet<unsigned, 4> *LaterRedefs = nullptr);
277    void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
278                               SmallVectorImpl<MachineOperand> &Cond,
279                               bool IgnoreBr = false);
280    void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
281
282    bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
283                            unsigned Cycle, unsigned Extra,
284                            BranchProbability Prediction) const {
285      return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
286                                                   Prediction);
287    }
288
289    bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB,
290                            unsigned TCycle, unsigned TExtra,
291                            MachineBasicBlock &FBB,
292                            unsigned FCycle, unsigned FExtra,
293                            BranchProbability Prediction) const {
294      return TCycle > 0 && FCycle > 0 &&
295        TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra,
296                                 Prediction);
297    }
298
299    /// Returns true if Block ends without a terminator.
300    bool blockAlwaysFallThrough(BBInfo &BBI) const {
301      return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
302    }
303
304    /// Used to sort if-conversion candidates.
305    static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
306                              const std::unique_ptr<IfcvtToken> &C2) {
307      int Incr1 = (C1->Kind == ICDiamond)
308        ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
309      int Incr2 = (C2->Kind == ICDiamond)
310        ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
311      if (Incr1 > Incr2)
312        return true;
313      else if (Incr1 == Incr2) {
314        // Favors subsumption.
315        if (!C1->NeedSubsumption && C2->NeedSubsumption)
316          return true;
317        else if (C1->NeedSubsumption == C2->NeedSubsumption) {
318          // Favors diamond over triangle, etc.
319          if ((unsigned)C1->Kind < (unsigned)C2->Kind)
320            return true;
321          else if (C1->Kind == C2->Kind)
322            return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
323        }
324      }
325      return false;
326    }
327  };
328
329} // end anonymous namespace
330
331char IfConverter::ID = 0;
332
333char &llvm::IfConverterID = IfConverter::ID;
334
335INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false)
336INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
337INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false)
338
339bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
340  if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF)))
341    return false;
342
343  const TargetSubtargetInfo &ST = MF.getSubtarget();
344  TLI = ST.getTargetLowering();
345  TII = ST.getInstrInfo();
346  TRI = ST.getRegisterInfo();
347  BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
348  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
349  MRI = &MF.getRegInfo();
350  SchedModel.init(ST.getSchedModel(), &ST, TII);
351
352  if (!TII) return false;
353
354  PreRegAlloc = MRI->isSSA();
355
356  bool BFChange = false;
357  if (!PreRegAlloc) {
358    // Tail merge tend to expose more if-conversion opportunities.
359    BranchFolder BF(true, false, MBFI, *MBPI);
360    BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(),
361                                   getAnalysisIfAvailable<MachineModuleInfo>());
362  }
363
364  DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum <<  ") \'"
365               << MF.getName() << "\'");
366
367  if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
368    DEBUG(dbgs() << " skipped\n");
369    return false;
370  }
371  DEBUG(dbgs() << "\n");
372
373  MF.RenumberBlocks();
374  BBAnalysis.resize(MF.getNumBlockIDs());
375
376  std::vector<std::unique_ptr<IfcvtToken>> Tokens;
377  MadeChange = false;
378  unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
379    NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
380  while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
381    // Do an initial analysis for each basic block and find all the potential
382    // candidates to perform if-conversion.
383    bool Change = false;
384    AnalyzeBlocks(MF, Tokens);
385    while (!Tokens.empty()) {
386      std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
387      Tokens.pop_back();
388      BBInfo &BBI = Token->BBI;
389      IfcvtKind Kind = Token->Kind;
390      unsigned NumDups = Token->NumDups;
391      unsigned NumDups2 = Token->NumDups2;
392
393      // If the block has been evicted out of the queue or it has already been
394      // marked dead (due to it being predicated), then skip it.
395      if (BBI.IsDone)
396        BBI.IsEnqueued = false;
397      if (!BBI.IsEnqueued)
398        continue;
399
400      BBI.IsEnqueued = false;
401
402      bool RetVal = false;
403      switch (Kind) {
404      default: llvm_unreachable("Unexpected!");
405      case ICSimple:
406      case ICSimpleFalse: {
407        bool isFalse = Kind == ICSimpleFalse;
408        if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
409        DEBUG(dbgs() << "Ifcvt (Simple"
410                     << (Kind == ICSimpleFalse ? " false" : "")
411                     << "): " << printMBBReference(*BBI.BB) << " ("
412                     << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber()
413                                                 : BBI.TrueBB->getNumber())
414                     << ") ");
415        RetVal = IfConvertSimple(BBI, Kind);
416        DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
417        if (RetVal) {
418          if (isFalse) ++NumSimpleFalse;
419          else         ++NumSimple;
420        }
421       break;
422      }
423      case ICTriangle:
424      case ICTriangleRev:
425      case ICTriangleFalse:
426      case ICTriangleFRev: {
427        bool isFalse = Kind == ICTriangleFalse;
428        bool isRev   = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
429        if (DisableTriangle && !isFalse && !isRev) break;
430        if (DisableTriangleR && !isFalse && isRev) break;
431        if (DisableTriangleF && isFalse && !isRev) break;
432        if (DisableTriangleFR && isFalse && isRev) break;
433        DEBUG(dbgs() << "Ifcvt (Triangle");
434        if (isFalse)
435          DEBUG(dbgs() << " false");
436        if (isRev)
437          DEBUG(dbgs() << " rev");
438        DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB)
439                     << " (T:" << BBI.TrueBB->getNumber()
440                     << ",F:" << BBI.FalseBB->getNumber() << ") ");
441        RetVal = IfConvertTriangle(BBI, Kind);
442        DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
443        if (RetVal) {
444          if (isFalse) {
445            if (isRev) ++NumTriangleFRev;
446            else       ++NumTriangleFalse;
447          } else {
448            if (isRev) ++NumTriangleRev;
449            else       ++NumTriangle;
450          }
451        }
452        break;
453      }
454      case ICDiamond:
455        if (DisableDiamond) break;
456        DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB)
457                     << " (T:" << BBI.TrueBB->getNumber()
458                     << ",F:" << BBI.FalseBB->getNumber() << ") ");
459        RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2,
460                                  Token->TClobbersPred,
461                                  Token->FClobbersPred);
462        DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
463        if (RetVal) ++NumDiamonds;
464        break;
465      case ICForkedDiamond:
466        if (DisableForkedDiamond) break;
467        DEBUG(dbgs() << "Ifcvt (Forked Diamond): " << printMBBReference(*BBI.BB)
468                     << " (T:" << BBI.TrueBB->getNumber()
469                     << ",F:" << BBI.FalseBB->getNumber() << ") ");
470        RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2,
471                                      Token->TClobbersPred,
472                                      Token->FClobbersPred);
473        DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
474        if (RetVal) ++NumForkedDiamonds;
475        break;
476      }
477
478      if (RetVal && MRI->tracksLiveness())
479        recomputeLivenessFlags(*BBI.BB);
480
481      Change |= RetVal;
482
483      NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
484        NumTriangleFalse + NumTriangleFRev + NumDiamonds;
485      if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
486        break;
487    }
488
489    if (!Change)
490      break;
491    MadeChange |= Change;
492  }
493
494  Tokens.clear();
495  BBAnalysis.clear();
496
497  if (MadeChange && IfCvtBranchFold) {
498    BranchFolder BF(false, false, MBFI, *MBPI);
499    BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
500                        getAnalysisIfAvailable<MachineModuleInfo>());
501  }
502
503  MadeChange |= BFChange;
504  return MadeChange;
505}
506
507/// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
508static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
509                                         MachineBasicBlock *TrueBB) {
510  for (MachineBasicBlock *SuccBB : BB->successors()) {
511    if (SuccBB != TrueBB)
512      return SuccBB;
513  }
514  return nullptr;
515}
516
517/// Reverse the condition of the end of the block branch. Swap block's 'true'
518/// and 'false' successors.
519bool IfConverter::reverseBranchCondition(BBInfo &BBI) const {
520  DebugLoc dl;  // FIXME: this is nowhere
521  if (!TII->reverseBranchCondition(BBI.BrCond)) {
522    TII->removeBranch(*BBI.BB);
523    TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
524    std::swap(BBI.TrueBB, BBI.FalseBB);
525    return true;
526  }
527  return false;
528}
529
530/// Returns the next block in the function blocks ordering. If it is the end,
531/// returns NULL.
532static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) {
533  MachineFunction::iterator I = MBB.getIterator();
534  MachineFunction::iterator E = MBB.getParent()->end();
535  if (++I == E)
536    return nullptr;
537  return &*I;
538}
539
540/// Returns true if the 'true' block (along with its predecessor) forms a valid
541/// simple shape for ifcvt. It also returns the number of instructions that the
542/// ifcvt would need to duplicate if performed in Dups.
543bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
544                              BranchProbability Prediction) const {
545  Dups = 0;
546  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
547    return false;
548
549  if (TrueBBI.IsBrAnalyzable)
550    return false;
551
552  if (TrueBBI.BB->pred_size() > 1) {
553    if (TrueBBI.CannotBeCopied ||
554        !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
555                                        Prediction))
556      return false;
557    Dups = TrueBBI.NonPredSize;
558  }
559
560  return true;
561}
562
563/// Returns true if the 'true' and 'false' blocks (along with their common
564/// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
565/// true, it checks if 'true' block's false branch branches to the 'false' block
566/// rather than the other way around. It also returns the number of instructions
567/// that the ifcvt would need to duplicate if performed in 'Dups'.
568bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
569                                bool FalseBranch, unsigned &Dups,
570                                BranchProbability Prediction) const {
571  Dups = 0;
572  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
573    return false;
574
575  if (TrueBBI.BB->pred_size() > 1) {
576    if (TrueBBI.CannotBeCopied)
577      return false;
578
579    unsigned Size = TrueBBI.NonPredSize;
580    if (TrueBBI.IsBrAnalyzable) {
581      if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
582        // Ends with an unconditional branch. It will be removed.
583        --Size;
584      else {
585        MachineBasicBlock *FExit = FalseBranch
586          ? TrueBBI.TrueBB : TrueBBI.FalseBB;
587        if (FExit)
588          // Require a conditional branch
589          ++Size;
590      }
591    }
592    if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
593      return false;
594    Dups = Size;
595  }
596
597  MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
598  if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
599    MachineFunction::iterator I = TrueBBI.BB->getIterator();
600    if (++I == TrueBBI.BB->getParent()->end())
601      return false;
602    TExit = &*I;
603  }
604  return TExit && TExit == FalseBBI.BB;
605}
606
607/// Count duplicated instructions and move the iterators to show where they
608/// are.
609/// @param TIB True Iterator Begin
610/// @param FIB False Iterator Begin
611/// These two iterators initially point to the first instruction of the two
612/// blocks, and finally point to the first non-shared instruction.
613/// @param TIE True Iterator End
614/// @param FIE False Iterator End
615/// These two iterators initially point to End() for the two blocks() and
616/// finally point to the first shared instruction in the tail.
617/// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
618/// two blocks.
619/// @param Dups1 count of duplicated instructions at the beginning of the 2
620/// blocks.
621/// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
622/// @param SkipUnconditionalBranches if true, Don't make sure that
623/// unconditional branches at the end of the blocks are the same. True is
624/// passed when the blocks are analyzable to allow for fallthrough to be
625/// handled.
626/// @return false if the shared portion prevents if conversion.
627bool IfConverter::CountDuplicatedInstructions(
628    MachineBasicBlock::iterator &TIB,
629    MachineBasicBlock::iterator &FIB,
630    MachineBasicBlock::iterator &TIE,
631    MachineBasicBlock::iterator &FIE,
632    unsigned &Dups1, unsigned &Dups2,
633    MachineBasicBlock &TBB, MachineBasicBlock &FBB,
634    bool SkipUnconditionalBranches) const {
635  while (TIB != TIE && FIB != FIE) {
636    // Skip dbg_value instructions. These do not count.
637    TIB = skipDebugInstructionsForward(TIB, TIE);
638    FIB = skipDebugInstructionsForward(FIB, FIE);
639    if (TIB == TIE || FIB == FIE)
640      break;
641    if (!TIB->isIdenticalTo(*FIB))
642      break;
643    // A pred-clobbering instruction in the shared portion prevents
644    // if-conversion.
645    std::vector<MachineOperand> PredDefs;
646    if (TII->DefinesPredicate(*TIB, PredDefs))
647      return false;
648    // If we get all the way to the branch instructions, don't count them.
649    if (!TIB->isBranch())
650      ++Dups1;
651    ++TIB;
652    ++FIB;
653  }
654
655  // Check for already containing all of the block.
656  if (TIB == TIE || FIB == FIE)
657    return true;
658  // Now, in preparation for counting duplicate instructions at the ends of the
659  // blocks, switch to reverse_iterators. Note that getReverse() returns an
660  // iterator that points to the same instruction, unlike std::reverse_iterator.
661  // We have to do our own shifting so that we get the same range.
662  MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse());
663  MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse());
664  const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse());
665  const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse());
666
667  if (!TBB.succ_empty() || !FBB.succ_empty()) {
668    if (SkipUnconditionalBranches) {
669      while (RTIE != RTIB && RTIE->isUnconditionalBranch())
670        ++RTIE;
671      while (RFIE != RFIB && RFIE->isUnconditionalBranch())
672        ++RFIE;
673    }
674  }
675
676  // Count duplicate instructions at the ends of the blocks.
677  while (RTIE != RTIB && RFIE != RFIB) {
678    // Skip dbg_value instructions. These do not count.
679    // Note that these are reverse iterators going forward.
680    RTIE = skipDebugInstructionsForward(RTIE, RTIB);
681    RFIE = skipDebugInstructionsForward(RFIE, RFIB);
682    if (RTIE == RTIB || RFIE == RFIB)
683      break;
684    if (!RTIE->isIdenticalTo(*RFIE))
685      break;
686    // We have to verify that any branch instructions are the same, and then we
687    // don't count them toward the # of duplicate instructions.
688    if (!RTIE->isBranch())
689      ++Dups2;
690    ++RTIE;
691    ++RFIE;
692  }
693  TIE = std::next(RTIE.getReverse());
694  FIE = std::next(RFIE.getReverse());
695  return true;
696}
697
698/// RescanInstructions - Run ScanInstructions on a pair of blocks.
699/// @param TIB - True Iterator Begin, points to first non-shared instruction
700/// @param FIB - False Iterator Begin, points to first non-shared instruction
701/// @param TIE - True Iterator End, points past last non-shared instruction
702/// @param FIE - False Iterator End, points past last non-shared instruction
703/// @param TrueBBI  - BBInfo to update for the true block.
704/// @param FalseBBI - BBInfo to update for the false block.
705/// @returns - false if either block cannot be predicated or if both blocks end
706///   with a predicate-clobbering instruction.
707bool IfConverter::RescanInstructions(
708    MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
709    MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
710    BBInfo &TrueBBI, BBInfo &FalseBBI) const {
711  bool BranchUnpredicable = true;
712  TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false;
713  ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable);
714  if (TrueBBI.IsUnpredicable)
715    return false;
716  ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable);
717  if (FalseBBI.IsUnpredicable)
718    return false;
719  if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)
720    return false;
721  return true;
722}
723
724#ifndef NDEBUG
725static void verifySameBranchInstructions(
726    MachineBasicBlock *MBB1,
727    MachineBasicBlock *MBB2) {
728  const MachineBasicBlock::reverse_iterator B1 = MBB1->rend();
729  const MachineBasicBlock::reverse_iterator B2 = MBB2->rend();
730  MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin();
731  MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin();
732  while (E1 != B1 && E2 != B2) {
733    skipDebugInstructionsForward(E1, B1);
734    skipDebugInstructionsForward(E2, B2);
735    if (E1 == B1 && E2 == B2)
736      break;
737
738    if (E1 == B1) {
739      assert(!E2->isBranch() && "Branch mis-match, one block is empty.");
740      break;
741    }
742    if (E2 == B2) {
743      assert(!E1->isBranch() && "Branch mis-match, one block is empty.");
744      break;
745    }
746
747    if (E1->isBranch() || E2->isBranch())
748      assert(E1->isIdenticalTo(*E2) &&
749             "Branch mis-match, branch instructions don't match.");
750    else
751      break;
752    ++E1;
753    ++E2;
754  }
755}
756#endif
757
758/// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
759/// with their common predecessor) form a diamond if a common tail block is
760/// extracted.
761/// While not strictly a diamond, this pattern would form a diamond if
762/// tail-merging had merged the shared tails.
763///           EBB
764///         _/   \_
765///         |     |
766///        TBB   FBB
767///        /  \ /   \
768///  FalseBB TrueBB FalseBB
769/// Currently only handles analyzable branches.
770/// Specifically excludes actual diamonds to avoid overlap.
771bool IfConverter::ValidForkedDiamond(
772    BBInfo &TrueBBI, BBInfo &FalseBBI,
773    unsigned &Dups1, unsigned &Dups2,
774    BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
775  Dups1 = Dups2 = 0;
776  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
777      FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
778    return false;
779
780  if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable)
781    return false;
782  // Don't IfConvert blocks that can't be folded into their predecessor.
783  if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
784    return false;
785
786  // This function is specifically looking for conditional tails, as
787  // unconditional tails are already handled by the standard diamond case.
788  if (TrueBBI.BrCond.size() == 0 ||
789      FalseBBI.BrCond.size() == 0)
790    return false;
791
792  MachineBasicBlock *TT = TrueBBI.TrueBB;
793  MachineBasicBlock *TF = TrueBBI.FalseBB;
794  MachineBasicBlock *FT = FalseBBI.TrueBB;
795  MachineBasicBlock *FF = FalseBBI.FalseBB;
796
797  if (!TT)
798    TT = getNextBlock(*TrueBBI.BB);
799  if (!TF)
800    TF = getNextBlock(*TrueBBI.BB);
801  if (!FT)
802    FT = getNextBlock(*FalseBBI.BB);
803  if (!FF)
804    FF = getNextBlock(*FalseBBI.BB);
805
806  if (!TT || !TF)
807    return false;
808
809  // Check successors. If they don't match, bail.
810  if (!((TT == FT && TF == FF) || (TF == FT && TT == FF)))
811    return false;
812
813  bool FalseReversed = false;
814  if (TF == FT && TT == FF) {
815    // If the branches are opposing, but we can't reverse, don't do it.
816    if (!FalseBBI.IsBrReversible)
817      return false;
818    FalseReversed = true;
819    reverseBranchCondition(FalseBBI);
820  }
821  auto UnReverseOnExit = make_scope_exit([&]() {
822    if (FalseReversed)
823      reverseBranchCondition(FalseBBI);
824  });
825
826  // Count duplicate instructions at the beginning of the true and false blocks.
827  MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
828  MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
829  MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
830  MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
831  if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
832                                  *TrueBBI.BB, *FalseBBI.BB,
833                                  /* SkipUnconditionalBranches */ true))
834    return false;
835
836  TrueBBICalc.BB = TrueBBI.BB;
837  FalseBBICalc.BB = FalseBBI.BB;
838  if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
839    return false;
840
841  // The size is used to decide whether to if-convert, and the shared portions
842  // are subtracted off. Because of the subtraction, we just use the size that
843  // was calculated by the original ScanInstructions, as it is correct.
844  TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
845  FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
846  return true;
847}
848
849/// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
850/// with their common predecessor) forms a valid diamond shape for ifcvt.
851bool IfConverter::ValidDiamond(
852    BBInfo &TrueBBI, BBInfo &FalseBBI,
853    unsigned &Dups1, unsigned &Dups2,
854    BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
855  Dups1 = Dups2 = 0;
856  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
857      FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
858    return false;
859
860  MachineBasicBlock *TT = TrueBBI.TrueBB;
861  MachineBasicBlock *FT = FalseBBI.TrueBB;
862
863  if (!TT && blockAlwaysFallThrough(TrueBBI))
864    TT = getNextBlock(*TrueBBI.BB);
865  if (!FT && blockAlwaysFallThrough(FalseBBI))
866    FT = getNextBlock(*FalseBBI.BB);
867  if (TT != FT)
868    return false;
869  if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
870    return false;
871  if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
872    return false;
873
874  // FIXME: Allow true block to have an early exit?
875  if (TrueBBI.FalseBB || FalseBBI.FalseBB)
876    return false;
877
878  // Count duplicate instructions at the beginning and end of the true and
879  // false blocks.
880  // Skip unconditional branches only if we are considering an analyzable
881  // diamond. Otherwise the branches must be the same.
882  bool SkipUnconditionalBranches =
883      TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable;
884  MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
885  MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
886  MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
887  MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
888  if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
889                                  *TrueBBI.BB, *FalseBBI.BB,
890                                  SkipUnconditionalBranches))
891    return false;
892
893  TrueBBICalc.BB = TrueBBI.BB;
894  FalseBBICalc.BB = FalseBBI.BB;
895  if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
896    return false;
897  // The size is used to decide whether to if-convert, and the shared portions
898  // are subtracted off. Because of the subtraction, we just use the size that
899  // was calculated by the original ScanInstructions, as it is correct.
900  TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
901  FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
902  return true;
903}
904
905/// AnalyzeBranches - Look at the branches at the end of a block to determine if
906/// the block is predicable.
907void IfConverter::AnalyzeBranches(BBInfo &BBI) {
908  if (BBI.IsDone)
909    return;
910
911  BBI.TrueBB = BBI.FalseBB = nullptr;
912  BBI.BrCond.clear();
913  BBI.IsBrAnalyzable =
914      !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
915  SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
916  BBI.IsBrReversible = (RevCond.size() == 0) ||
917      !TII->reverseBranchCondition(RevCond);
918  BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
919
920  if (BBI.BrCond.size()) {
921    // No false branch. This BB must end with a conditional branch and a
922    // fallthrough.
923    if (!BBI.FalseBB)
924      BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
925    if (!BBI.FalseBB) {
926      // Malformed bcc? True and false blocks are the same?
927      BBI.IsUnpredicable = true;
928    }
929  }
930}
931
932/// ScanInstructions - Scan all the instructions in the block to determine if
933/// the block is predicable. In most cases, that means all the instructions
934/// in the block are isPredicable(). Also checks if the block contains any
935/// instruction which can clobber a predicate (e.g. condition code register).
936/// If so, the block is not predicable unless it's the last instruction.
937void IfConverter::ScanInstructions(BBInfo &BBI,
938                                   MachineBasicBlock::iterator &Begin,
939                                   MachineBasicBlock::iterator &End,
940                                   bool BranchUnpredicable) const {
941  if (BBI.IsDone || BBI.IsUnpredicable)
942    return;
943
944  bool AlreadyPredicated = !BBI.Predicate.empty();
945
946  BBI.NonPredSize = 0;
947  BBI.ExtraCost = 0;
948  BBI.ExtraCost2 = 0;
949  BBI.ClobbersPred = false;
950  for (MachineInstr &MI : make_range(Begin, End)) {
951    if (MI.isDebugValue())
952      continue;
953
954    // It's unsafe to duplicate convergent instructions in this context, so set
955    // BBI.CannotBeCopied to true if MI is convergent.  To see why, consider the
956    // following CFG, which is subject to our "simple" transformation.
957    //
958    //    BB0     // if (c1) goto BB1; else goto BB2;
959    //   /   \
960    //  BB1   |
961    //   |   BB2  // if (c2) goto TBB; else goto FBB;
962    //   |   / |
963    //   |  /  |
964    //   TBB   |
965    //    |    |
966    //    |   FBB
967    //    |
968    //    exit
969    //
970    // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
971    // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
972    // TBB contains a convergent instruction.  This is safe iff doing so does
973    // not add a control-flow dependency to the convergent instruction -- i.e.,
974    // it's safe iff the set of control flows that leads us to the convergent
975    // instruction does not get smaller after the transformation.
976    //
977    // Originally we executed TBB if c1 || c2.  After the transformation, there
978    // are two copies of TBB's instructions.  We get to the first if c1, and we
979    // get to the second if !c1 && c2.
980    //
981    // There are clearly fewer ways to satisfy the condition "c1" than
982    // "c1 || c2".  Since we've shrunk the set of control flows which lead to
983    // our convergent instruction, the transformation is unsafe.
984    if (MI.isNotDuplicable() || MI.isConvergent())
985      BBI.CannotBeCopied = true;
986
987    bool isPredicated = TII->isPredicated(MI);
988    bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();
989
990    if (BranchUnpredicable && MI.isBranch()) {
991      BBI.IsUnpredicable = true;
992      return;
993    }
994
995    // A conditional branch is not predicable, but it may be eliminated.
996    if (isCondBr)
997      continue;
998
999    if (!isPredicated) {
1000      BBI.NonPredSize++;
1001      unsigned ExtraPredCost = TII->getPredicationCost(MI);
1002      unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
1003      if (NumCycles > 1)
1004        BBI.ExtraCost += NumCycles-1;
1005      BBI.ExtraCost2 += ExtraPredCost;
1006    } else if (!AlreadyPredicated) {
1007      // FIXME: This instruction is already predicated before the
1008      // if-conversion pass. It's probably something like a conditional move.
1009      // Mark this block unpredicable for now.
1010      BBI.IsUnpredicable = true;
1011      return;
1012    }
1013
1014    if (BBI.ClobbersPred && !isPredicated) {
1015      // Predicate modification instruction should end the block (except for
1016      // already predicated instructions and end of block branches).
1017      // Predicate may have been modified, the subsequent (currently)
1018      // unpredicated instructions cannot be correctly predicated.
1019      BBI.IsUnpredicable = true;
1020      return;
1021    }
1022
1023    // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
1024    // still potentially predicable.
1025    std::vector<MachineOperand> PredDefs;
1026    if (TII->DefinesPredicate(MI, PredDefs))
1027      BBI.ClobbersPred = true;
1028
1029    if (!TII->isPredicable(MI)) {
1030      BBI.IsUnpredicable = true;
1031      return;
1032    }
1033  }
1034}
1035
1036/// Determine if the block is a suitable candidate to be predicated by the
1037/// specified predicate.
1038/// @param BBI BBInfo for the block to check
1039/// @param Pred Predicate array for the branch that leads to BBI
1040/// @param isTriangle true if the Analysis is for a triangle
1041/// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
1042///        case
1043/// @param hasCommonTail true if BBI shares a tail with a sibling block that
1044///        contains any instruction that would make the block unpredicable.
1045bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
1046                                      SmallVectorImpl<MachineOperand> &Pred,
1047                                      bool isTriangle, bool RevBranch,
1048                                      bool hasCommonTail) {
1049  // If the block is dead or unpredicable, then it cannot be predicated.
1050  // Two blocks may share a common unpredicable tail, but this doesn't prevent
1051  // them from being if-converted. The non-shared portion is assumed to have
1052  // been checked
1053  if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail))
1054    return false;
1055
1056  // If it is already predicated but we couldn't analyze its terminator, the
1057  // latter might fallthrough, but we can't determine where to.
1058  // Conservatively avoid if-converting again.
1059  if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
1060    return false;
1061
1062  // If it is already predicated, check if the new predicate subsumes
1063  // its predicate.
1064  if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
1065    return false;
1066
1067  if (!hasCommonTail && BBI.BrCond.size()) {
1068    if (!isTriangle)
1069      return false;
1070
1071    // Test predicate subsumption.
1072    SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
1073    SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1074    if (RevBranch) {
1075      if (TII->reverseBranchCondition(Cond))
1076        return false;
1077    }
1078    if (TII->reverseBranchCondition(RevPred) ||
1079        !TII->SubsumesPredicate(Cond, RevPred))
1080      return false;
1081  }
1082
1083  return true;
1084}
1085
1086/// Analyze the structure of the sub-CFG starting from the specified block.
1087/// Record its successors and whether it looks like an if-conversion candidate.
1088void IfConverter::AnalyzeBlock(
1089    MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1090  struct BBState {
1091    BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {}
1092    MachineBasicBlock *MBB;
1093
1094    /// This flag is true if MBB's successors have been analyzed.
1095    bool SuccsAnalyzed;
1096  };
1097
1098  // Push MBB to the stack.
1099  SmallVector<BBState, 16> BBStack(1, MBB);
1100
1101  while (!BBStack.empty()) {
1102    BBState &State = BBStack.back();
1103    MachineBasicBlock *BB = State.MBB;
1104    BBInfo &BBI = BBAnalysis[BB->getNumber()];
1105
1106    if (!State.SuccsAnalyzed) {
1107      if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
1108        BBStack.pop_back();
1109        continue;
1110      }
1111
1112      BBI.BB = BB;
1113      BBI.IsBeingAnalyzed = true;
1114
1115      AnalyzeBranches(BBI);
1116      MachineBasicBlock::iterator Begin = BBI.BB->begin();
1117      MachineBasicBlock::iterator End = BBI.BB->end();
1118      ScanInstructions(BBI, Begin, End);
1119
1120      // Unanalyzable or ends with fallthrough or unconditional branch, or if is
1121      // not considered for ifcvt anymore.
1122      if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
1123        BBI.IsBeingAnalyzed = false;
1124        BBI.IsAnalyzed = true;
1125        BBStack.pop_back();
1126        continue;
1127      }
1128
1129      // Do not ifcvt if either path is a back edge to the entry block.
1130      if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
1131        BBI.IsBeingAnalyzed = false;
1132        BBI.IsAnalyzed = true;
1133        BBStack.pop_back();
1134        continue;
1135      }
1136
1137      // Do not ifcvt if true and false fallthrough blocks are the same.
1138      if (!BBI.FalseBB) {
1139        BBI.IsBeingAnalyzed = false;
1140        BBI.IsAnalyzed = true;
1141        BBStack.pop_back();
1142        continue;
1143      }
1144
1145      // Push the False and True blocks to the stack.
1146      State.SuccsAnalyzed = true;
1147      BBStack.push_back(*BBI.FalseBB);
1148      BBStack.push_back(*BBI.TrueBB);
1149      continue;
1150    }
1151
1152    BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1153    BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1154
1155    if (TrueBBI.IsDone && FalseBBI.IsDone) {
1156      BBI.IsBeingAnalyzed = false;
1157      BBI.IsAnalyzed = true;
1158      BBStack.pop_back();
1159      continue;
1160    }
1161
1162    SmallVector<MachineOperand, 4>
1163        RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1164    bool CanRevCond = !TII->reverseBranchCondition(RevCond);
1165
1166    unsigned Dups = 0;
1167    unsigned Dups2 = 0;
1168    bool TNeedSub = !TrueBBI.Predicate.empty();
1169    bool FNeedSub = !FalseBBI.Predicate.empty();
1170    bool Enqueued = false;
1171
1172    BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
1173
1174    if (CanRevCond) {
1175      BBInfo TrueBBICalc, FalseBBICalc;
1176      auto feasibleDiamond = [&]() {
1177        bool MeetsSize = MeetIfcvtSizeLimit(
1178            *TrueBBI.BB, (TrueBBICalc.NonPredSize - (Dups + Dups2) +
1179                          TrueBBICalc.ExtraCost), TrueBBICalc.ExtraCost2,
1180            *FalseBBI.BB, (FalseBBICalc.NonPredSize - (Dups + Dups2) +
1181                           FalseBBICalc.ExtraCost), FalseBBICalc.ExtraCost2,
1182            Prediction);
1183        bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond,
1184                                                /* IsTriangle */ false, /* RevCond */ false,
1185                                                /* hasCommonTail */ true);
1186        bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond,
1187                                                 /* IsTriangle */ false, /* RevCond */ false,
1188                                                 /* hasCommonTail */ true);
1189        return MeetsSize && TrueFeasible && FalseFeasible;
1190      };
1191
1192      if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1193                       TrueBBICalc, FalseBBICalc)) {
1194        if (feasibleDiamond()) {
1195          // Diamond:
1196          //   EBB
1197          //   / \_
1198          //  |   |
1199          // TBB FBB
1200          //   \ /
1201          //  TailBB
1202          // Note TailBB can be empty.
1203          Tokens.push_back(llvm::make_unique<IfcvtToken>(
1204              BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1205              (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1206          Enqueued = true;
1207        }
1208      } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1209                                    TrueBBICalc, FalseBBICalc)) {
1210        if (feasibleDiamond()) {
1211          // ForkedDiamond:
1212          // if TBB and FBB have a common tail that includes their conditional
1213          // branch instructions, then we can If Convert this pattern.
1214          //          EBB
1215          //         _/ \_
1216          //         |   |
1217          //        TBB  FBB
1218          //        / \ /   \
1219          //  FalseBB TrueBB FalseBB
1220          //
1221          Tokens.push_back(llvm::make_unique<IfcvtToken>(
1222              BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1223              (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1224          Enqueued = true;
1225        }
1226      }
1227    }
1228
1229    if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
1230        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1231                           TrueBBI.ExtraCost2, Prediction) &&
1232        FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
1233      // Triangle:
1234      //   EBB
1235      //   | \_
1236      //   |  |
1237      //   | TBB
1238      //   |  /
1239      //   FBB
1240      Tokens.push_back(
1241          llvm::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
1242      Enqueued = true;
1243    }
1244
1245    if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
1246        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1247                           TrueBBI.ExtraCost2, Prediction) &&
1248        FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
1249      Tokens.push_back(
1250          llvm::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
1251      Enqueued = true;
1252    }
1253
1254    if (ValidSimple(TrueBBI, Dups, Prediction) &&
1255        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1256                           TrueBBI.ExtraCost2, Prediction) &&
1257        FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
1258      // Simple (split, no rejoin):
1259      //   EBB
1260      //   | \_
1261      //   |  |
1262      //   | TBB---> exit
1263      //   |
1264      //   FBB
1265      Tokens.push_back(
1266          llvm::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
1267      Enqueued = true;
1268    }
1269
1270    if (CanRevCond) {
1271      // Try the other path...
1272      if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
1273                        Prediction.getCompl()) &&
1274          MeetIfcvtSizeLimit(*FalseBBI.BB,
1275                             FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1276                             FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1277          FeasibilityAnalysis(FalseBBI, RevCond, true)) {
1278        Tokens.push_back(llvm::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
1279                                                       FNeedSub, Dups));
1280        Enqueued = true;
1281      }
1282
1283      if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
1284                        Prediction.getCompl()) &&
1285          MeetIfcvtSizeLimit(*FalseBBI.BB,
1286                             FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1287                           FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1288        FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
1289        Tokens.push_back(
1290            llvm::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
1291        Enqueued = true;
1292      }
1293
1294      if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
1295          MeetIfcvtSizeLimit(*FalseBBI.BB,
1296                             FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1297                             FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1298          FeasibilityAnalysis(FalseBBI, RevCond)) {
1299        Tokens.push_back(
1300            llvm::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
1301        Enqueued = true;
1302      }
1303    }
1304
1305    BBI.IsEnqueued = Enqueued;
1306    BBI.IsBeingAnalyzed = false;
1307    BBI.IsAnalyzed = true;
1308    BBStack.pop_back();
1309  }
1310}
1311
1312/// Analyze all blocks and find entries for all if-conversion candidates.
1313void IfConverter::AnalyzeBlocks(
1314    MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1315  for (MachineBasicBlock &MBB : MF)
1316    AnalyzeBlock(MBB, Tokens);
1317
1318  // Sort to favor more complex ifcvt scheme.
1319  std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp);
1320}
1321
1322/// Returns true either if ToMBB is the next block after MBB or that all the
1323/// intervening blocks are empty (given MBB can fall through to its next block).
1324static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) {
1325  MachineFunction::iterator PI = MBB.getIterator();
1326  MachineFunction::iterator I = std::next(PI);
1327  MachineFunction::iterator TI = ToMBB.getIterator();
1328  MachineFunction::iterator E = MBB.getParent()->end();
1329  while (I != TI) {
1330    // Check isSuccessor to avoid case where the next block is empty, but
1331    // it's not a successor.
1332    if (I == E || !I->empty() || !PI->isSuccessor(&*I))
1333      return false;
1334    PI = I++;
1335  }
1336  // Finally see if the last I is indeed a successor to PI.
1337  return PI->isSuccessor(&*I);
1338}
1339
1340/// Invalidate predecessor BB info so it would be re-analyzed to determine if it
1341/// can be if-converted. If predecessor is already enqueued, dequeue it!
1342void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) {
1343  for (const MachineBasicBlock *Predecessor : MBB.predecessors()) {
1344    BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
1345    if (PBBI.IsDone || PBBI.BB == &MBB)
1346      continue;
1347    PBBI.IsAnalyzed = false;
1348    PBBI.IsEnqueued = false;
1349  }
1350}
1351
1352/// Inserts an unconditional branch from \p MBB to \p ToMBB.
1353static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB,
1354                               const TargetInstrInfo *TII) {
1355  DebugLoc dl;  // FIXME: this is nowhere
1356  SmallVector<MachineOperand, 0> NoCond;
1357  TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl);
1358}
1359
1360/// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
1361/// values defined in MI which are also live/used by MI.
1362static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
1363  const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo();
1364
1365  // Before stepping forward past MI, remember which regs were live
1366  // before MI. This is needed to set the Undef flag only when reg is
1367  // dead.
1368  SparseSet<unsigned> LiveBeforeMI;
1369  LiveBeforeMI.setUniverse(TRI->getNumRegs());
1370  for (unsigned Reg : Redefs)
1371    LiveBeforeMI.insert(Reg);
1372
1373  SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Clobbers;
1374  Redefs.stepForward(MI, Clobbers);
1375
1376  // Now add the implicit uses for each of the clobbered values.
1377  for (auto Clobber : Clobbers) {
1378    // FIXME: Const cast here is nasty, but better than making StepForward
1379    // take a mutable instruction instead of const.
1380    unsigned Reg = Clobber.first;
1381    MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second);
1382    MachineInstr *OpMI = Op.getParent();
1383    MachineInstrBuilder MIB(*OpMI->getMF(), OpMI);
1384    if (Op.isRegMask()) {
1385      // First handle regmasks.  They clobber any entries in the mask which
1386      // means that we need a def for those registers.
1387      if (LiveBeforeMI.count(Reg))
1388        MIB.addReg(Reg, RegState::Implicit);
1389
1390      // We also need to add an implicit def of this register for the later
1391      // use to read from.
1392      // For the register allocator to have allocated a register clobbered
1393      // by the call which is used later, it must be the case that
1394      // the call doesn't return.
1395      MIB.addReg(Reg, RegState::Implicit | RegState::Define);
1396      continue;
1397    }
1398    if (LiveBeforeMI.count(Reg))
1399      MIB.addReg(Reg, RegState::Implicit);
1400    else {
1401      bool HasLiveSubReg = false;
1402      for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) {
1403        if (!LiveBeforeMI.count(*S))
1404          continue;
1405        HasLiveSubReg = true;
1406        break;
1407      }
1408      if (HasLiveSubReg)
1409        MIB.addReg(Reg, RegState::Implicit);
1410    }
1411  }
1412}
1413
1414/// If convert a simple (split, no rejoin) sub-CFG.
1415bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
1416  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
1417  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1418  BBInfo *CvtBBI = &TrueBBI;
1419  BBInfo *NextBBI = &FalseBBI;
1420
1421  SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1422  if (Kind == ICSimpleFalse)
1423    std::swap(CvtBBI, NextBBI);
1424
1425  MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1426  MachineBasicBlock &NextMBB = *NextBBI->BB;
1427  if (CvtBBI->IsDone ||
1428      (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1429    // Something has changed. It's no longer safe to predicate this block.
1430    BBI.IsAnalyzed = false;
1431    CvtBBI->IsAnalyzed = false;
1432    return false;
1433  }
1434
1435  if (CvtMBB.hasAddressTaken())
1436    // Conservatively abort if-conversion if BB's address is taken.
1437    return false;
1438
1439  if (Kind == ICSimpleFalse)
1440    if (TII->reverseBranchCondition(Cond))
1441      llvm_unreachable("Unable to reverse branch condition!");
1442
1443  Redefs.init(*TRI);
1444
1445  if (MRI->tracksLiveness()) {
1446    // Initialize liveins to the first BB. These are potentiall redefined by
1447    // predicated instructions.
1448    Redefs.addLiveIns(CvtMBB);
1449    Redefs.addLiveIns(NextMBB);
1450  }
1451
1452  // Remove the branches from the entry so we can add the contents of the true
1453  // block to it.
1454  BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1455
1456  if (CvtMBB.pred_size() > 1) {
1457    // Copy instructions in the true block, predicate them, and add them to
1458    // the entry block.
1459    CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
1460
1461    // Keep the CFG updated.
1462    BBI.BB->removeSuccessor(&CvtMBB, true);
1463  } else {
1464    // Predicate the instructions in the true block.
1465    PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1466
1467    // Merge converted block into entry block. The BB to Cvt edge is removed
1468    // by MergeBlocks.
1469    MergeBlocks(BBI, *CvtBBI);
1470  }
1471
1472  bool IterIfcvt = true;
1473  if (!canFallThroughTo(*BBI.BB, NextMBB)) {
1474    InsertUncondBranch(*BBI.BB, NextMBB, TII);
1475    BBI.HasFallThrough = false;
1476    // Now ifcvt'd block will look like this:
1477    // BB:
1478    // ...
1479    // t, f = cmp
1480    // if t op
1481    // b BBf
1482    //
1483    // We cannot further ifcvt this block because the unconditional branch
1484    // will have to be predicated on the new condition, that will not be
1485    // available if cmp executes.
1486    IterIfcvt = false;
1487  }
1488
1489  // Update block info. BB can be iteratively if-converted.
1490  if (!IterIfcvt)
1491    BBI.IsDone = true;
1492  InvalidatePreds(*BBI.BB);
1493  CvtBBI->IsDone = true;
1494
1495  // FIXME: Must maintain LiveIns.
1496  return true;
1497}
1498
1499/// If convert a triangle sub-CFG.
1500bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
1501  BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1502  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1503  BBInfo *CvtBBI = &TrueBBI;
1504  BBInfo *NextBBI = &FalseBBI;
1505  DebugLoc dl;  // FIXME: this is nowhere
1506
1507  SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1508  if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1509    std::swap(CvtBBI, NextBBI);
1510
1511  MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1512  MachineBasicBlock &NextMBB = *NextBBI->BB;
1513  if (CvtBBI->IsDone ||
1514      (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1515    // Something has changed. It's no longer safe to predicate this block.
1516    BBI.IsAnalyzed = false;
1517    CvtBBI->IsAnalyzed = false;
1518    return false;
1519  }
1520
1521  if (CvtMBB.hasAddressTaken())
1522    // Conservatively abort if-conversion if BB's address is taken.
1523    return false;
1524
1525  if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1526    if (TII->reverseBranchCondition(Cond))
1527      llvm_unreachable("Unable to reverse branch condition!");
1528
1529  if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
1530    if (reverseBranchCondition(*CvtBBI)) {
1531      // BB has been changed, modify its predecessors (except for this
1532      // one) so they don't get ifcvt'ed based on bad intel.
1533      for (MachineBasicBlock *PBB : CvtMBB.predecessors()) {
1534        if (PBB == BBI.BB)
1535          continue;
1536        BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
1537        if (PBBI.IsEnqueued) {
1538          PBBI.IsAnalyzed = false;
1539          PBBI.IsEnqueued = false;
1540        }
1541      }
1542    }
1543  }
1544
1545  // Initialize liveins to the first BB. These are potentially redefined by
1546  // predicated instructions.
1547  Redefs.init(*TRI);
1548  if (MRI->tracksLiveness()) {
1549    Redefs.addLiveIns(CvtMBB);
1550    Redefs.addLiveIns(NextMBB);
1551  }
1552
1553  bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
1554  BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
1555
1556  if (HasEarlyExit) {
1557    // Get probabilities before modifying CvtMBB and BBI.BB.
1558    CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB);
1559    CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB);
1560    BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB);
1561    BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB);
1562  }
1563
1564  // Remove the branches from the entry so we can add the contents of the true
1565  // block to it.
1566  BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1567
1568  if (CvtMBB.pred_size() > 1) {
1569    // Copy instructions in the true block, predicate them, and add them to
1570    // the entry block.
1571    CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
1572  } else {
1573    // Predicate the 'true' block after removing its branch.
1574    CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB);
1575    PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1576
1577    // Now merge the entry of the triangle with the true block.
1578    MergeBlocks(BBI, *CvtBBI, false);
1579  }
1580
1581  // Keep the CFG updated.
1582  BBI.BB->removeSuccessor(&CvtMBB, true);
1583
1584  // If 'true' block has a 'false' successor, add an exit branch to it.
1585  if (HasEarlyExit) {
1586    SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
1587                                           CvtBBI->BrCond.end());
1588    if (TII->reverseBranchCondition(RevCond))
1589      llvm_unreachable("Unable to reverse branch condition!");
1590
1591    // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
1592    // NewNext = New_Prob(BBI.BB, NextMBB) =
1593    //   Prob(BBI.BB, NextMBB) +
1594    //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
1595    // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
1596    //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
1597    auto NewTrueBB = getNextBlock(*BBI.BB);
1598    auto NewNext = BBNext + BBCvt * CvtNext;
1599    auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB);
1600    if (NewTrueBBIter != BBI.BB->succ_end())
1601      BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
1602
1603    auto NewFalse = BBCvt * CvtFalse;
1604    TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
1605    BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
1606  }
1607
1608  // Merge in the 'false' block if the 'false' block has no other
1609  // predecessors. Otherwise, add an unconditional branch to 'false'.
1610  bool FalseBBDead = false;
1611  bool IterIfcvt = true;
1612  bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB);
1613  if (!isFallThrough) {
1614    // Only merge them if the true block does not fallthrough to the false
1615    // block. By not merging them, we make it possible to iteratively
1616    // ifcvt the blocks.
1617    if (!HasEarlyExit &&
1618        NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough &&
1619        !NextMBB.hasAddressTaken()) {
1620      MergeBlocks(BBI, *NextBBI);
1621      FalseBBDead = true;
1622    } else {
1623      InsertUncondBranch(*BBI.BB, NextMBB, TII);
1624      BBI.HasFallThrough = false;
1625    }
1626    // Mixed predicated and unpredicated code. This cannot be iteratively
1627    // predicated.
1628    IterIfcvt = false;
1629  }
1630
1631  // Update block info. BB can be iteratively if-converted.
1632  if (!IterIfcvt)
1633    BBI.IsDone = true;
1634  InvalidatePreds(*BBI.BB);
1635  CvtBBI->IsDone = true;
1636  if (FalseBBDead)
1637    NextBBI->IsDone = true;
1638
1639  // FIXME: Must maintain LiveIns.
1640  return true;
1641}
1642
1643/// Common code shared between diamond conversions.
1644/// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
1645/// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
1646///               and FalseBBI
1647/// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
1648///               and \p FalseBBI
1649/// \p RemoveBranch - Remove the common branch of the two blocks before
1650///                   predicating. Only false for unanalyzable fallthrough
1651///                   cases. The caller will replace the branch if necessary.
1652/// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
1653///                    unanalyzable fallthrough
1654bool IfConverter::IfConvertDiamondCommon(
1655    BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
1656    unsigned NumDups1, unsigned NumDups2,
1657    bool TClobbersPred, bool FClobbersPred,
1658    bool RemoveBranch, bool MergeAddEdges) {
1659
1660  if (TrueBBI.IsDone || FalseBBI.IsDone ||
1661      TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) {
1662    // Something has changed. It's no longer safe to predicate these blocks.
1663    BBI.IsAnalyzed = false;
1664    TrueBBI.IsAnalyzed = false;
1665    FalseBBI.IsAnalyzed = false;
1666    return false;
1667  }
1668
1669  if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
1670    // Conservatively abort if-conversion if either BB has its address taken.
1671    return false;
1672
1673  // Put the predicated instructions from the 'true' block before the
1674  // instructions from the 'false' block, unless the true block would clobber
1675  // the predicate, in which case, do the opposite.
1676  BBInfo *BBI1 = &TrueBBI;
1677  BBInfo *BBI2 = &FalseBBI;
1678  SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1679  if (TII->reverseBranchCondition(RevCond))
1680    llvm_unreachable("Unable to reverse branch condition!");
1681  SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
1682  SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
1683
1684  // Figure out the more profitable ordering.
1685  bool DoSwap = false;
1686  if (TClobbersPred && !FClobbersPred)
1687    DoSwap = true;
1688  else if (!TClobbersPred && !FClobbersPred) {
1689    if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
1690      DoSwap = true;
1691  } else if (TClobbersPred && FClobbersPred)
1692    llvm_unreachable("Predicate info cannot be clobbered by both sides.");
1693  if (DoSwap) {
1694    std::swap(BBI1, BBI2);
1695    std::swap(Cond1, Cond2);
1696  }
1697
1698  // Remove the conditional branch from entry to the blocks.
1699  BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1700
1701  MachineBasicBlock &MBB1 = *BBI1->BB;
1702  MachineBasicBlock &MBB2 = *BBI2->BB;
1703
1704  // Initialize the Redefs:
1705  // - BB2 live-in regs need implicit uses before being redefined by BB1
1706  //   instructions.
1707  // - BB1 live-out regs need implicit uses before being redefined by BB2
1708  //   instructions. We start with BB1 live-ins so we have the live-out regs
1709  //   after tracking the BB1 instructions.
1710  Redefs.init(*TRI);
1711  if (MRI->tracksLiveness()) {
1712    Redefs.addLiveIns(MBB1);
1713    Redefs.addLiveIns(MBB2);
1714  }
1715
1716  // Remove the duplicated instructions at the beginnings of both paths.
1717  // Skip dbg_value instructions
1718  MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr();
1719  MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr();
1720  BBI1->NonPredSize -= NumDups1;
1721  BBI2->NonPredSize -= NumDups1;
1722
1723  // Skip past the dups on each side separately since there may be
1724  // differing dbg_value entries.
1725  for (unsigned i = 0; i < NumDups1; ++DI1) {
1726    if (!DI1->isDebugValue())
1727      ++i;
1728  }
1729  while (NumDups1 != 0) {
1730    ++DI2;
1731    if (!DI2->isDebugValue())
1732      --NumDups1;
1733  }
1734
1735  if (MRI->tracksLiveness()) {
1736    for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) {
1737      SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Dummy;
1738      Redefs.stepForward(MI, Dummy);
1739    }
1740  }
1741  BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1);
1742  MBB2.erase(MBB2.begin(), DI2);
1743
1744  // The branches have been checked to match, so it is safe to remove the branch
1745  // in BB1 and rely on the copy in BB2
1746#ifndef NDEBUG
1747  // Unanalyzable branches must match exactly. Check that now.
1748  if (!BBI1->IsBrAnalyzable)
1749    verifySameBranchInstructions(&MBB1, &MBB2);
1750#endif
1751  BBI1->NonPredSize -= TII->removeBranch(*BBI1->BB);
1752  // Remove duplicated instructions.
1753  DI1 = MBB1.end();
1754  for (unsigned i = 0; i != NumDups2; ) {
1755    // NumDups2 only counted non-dbg_value instructions, so this won't
1756    // run off the head of the list.
1757    assert(DI1 != MBB1.begin());
1758    --DI1;
1759    // skip dbg_value instructions
1760    if (!DI1->isDebugValue())
1761      ++i;
1762  }
1763  MBB1.erase(DI1, MBB1.end());
1764
1765  DI2 = BBI2->BB->end();
1766  // The branches have been checked to match. Skip over the branch in the false
1767  // block so that we don't try to predicate it.
1768  if (RemoveBranch)
1769    BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB);
1770  else {
1771    do {
1772      assert(DI2 != MBB2.begin());
1773      DI2--;
1774    } while (DI2->isBranch() || DI2->isDebugValue());
1775    DI2++;
1776  }
1777  while (NumDups2 != 0) {
1778    // NumDups2 only counted non-dbg_value instructions, so this won't
1779    // run off the head of the list.
1780    assert(DI2 != MBB2.begin());
1781    --DI2;
1782    // skip dbg_value instructions
1783    if (!DI2->isDebugValue())
1784      --NumDups2;
1785  }
1786
1787  // Remember which registers would later be defined by the false block.
1788  // This allows us not to predicate instructions in the true block that would
1789  // later be re-defined. That is, rather than
1790  //   subeq  r0, r1, #1
1791  //   addne  r0, r1, #1
1792  // generate:
1793  //   sub    r0, r1, #1
1794  //   addne  r0, r1, #1
1795  SmallSet<unsigned, 4> RedefsByFalse;
1796  SmallSet<unsigned, 4> ExtUses;
1797  if (TII->isProfitableToUnpredicate(MBB1, MBB2)) {
1798    for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) {
1799      if (FI.isDebugValue())
1800        continue;
1801      SmallVector<unsigned, 4> Defs;
1802      for (const MachineOperand &MO : FI.operands()) {
1803        if (!MO.isReg())
1804          continue;
1805        unsigned Reg = MO.getReg();
1806        if (!Reg)
1807          continue;
1808        if (MO.isDef()) {
1809          Defs.push_back(Reg);
1810        } else if (!RedefsByFalse.count(Reg)) {
1811          // These are defined before ctrl flow reach the 'false' instructions.
1812          // They cannot be modified by the 'true' instructions.
1813          for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1814               SubRegs.isValid(); ++SubRegs)
1815            ExtUses.insert(*SubRegs);
1816        }
1817      }
1818
1819      for (unsigned Reg : Defs) {
1820        if (!ExtUses.count(Reg)) {
1821          for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1822               SubRegs.isValid(); ++SubRegs)
1823            RedefsByFalse.insert(*SubRegs);
1824        }
1825      }
1826    }
1827  }
1828
1829  // Predicate the 'true' block.
1830  PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse);
1831
1832  // After predicating BBI1, if there is a predicated terminator in BBI1 and
1833  // a non-predicated in BBI2, then we don't want to predicate the one from
1834  // BBI2. The reason is that if we merged these blocks, we would end up with
1835  // two predicated terminators in the same block.
1836  if (!MBB2.empty() && (DI2 == MBB2.end())) {
1837    MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator();
1838    MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator();
1839    if (BBI1T != MBB1.end() && TII->isPredicated(*BBI1T) &&
1840        BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T))
1841      --DI2;
1842  }
1843
1844  // Predicate the 'false' block.
1845  PredicateBlock(*BBI2, DI2, *Cond2);
1846
1847  // Merge the true block into the entry of the diamond.
1848  MergeBlocks(BBI, *BBI1, MergeAddEdges);
1849  MergeBlocks(BBI, *BBI2, MergeAddEdges);
1850  return true;
1851}
1852
1853/// If convert an almost-diamond sub-CFG where the true
1854/// and false blocks share a common tail.
1855bool IfConverter::IfConvertForkedDiamond(
1856    BBInfo &BBI, IfcvtKind Kind,
1857    unsigned NumDups1, unsigned NumDups2,
1858    bool TClobbersPred, bool FClobbersPred) {
1859  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
1860  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1861
1862  // Save the debug location for later.
1863  DebugLoc dl;
1864  MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator();
1865  if (TIE != TrueBBI.BB->end())
1866    dl = TIE->getDebugLoc();
1867  // Removing branches from both blocks is safe, because we have already
1868  // determined that both blocks have the same branch instructions. The branch
1869  // will be added back at the end, unpredicated.
1870  if (!IfConvertDiamondCommon(
1871      BBI, TrueBBI, FalseBBI,
1872      NumDups1, NumDups2,
1873      TClobbersPred, FClobbersPred,
1874      /* RemoveBranch */ true, /* MergeAddEdges */ true))
1875    return false;
1876
1877  // Add back the branch.
1878  // Debug location saved above when removing the branch from BBI2
1879  TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB,
1880                    TrueBBI.BrCond, dl);
1881
1882  // Update block info.
1883  BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
1884  InvalidatePreds(*BBI.BB);
1885
1886  // FIXME: Must maintain LiveIns.
1887  return true;
1888}
1889
1890/// If convert a diamond sub-CFG.
1891bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
1892                                   unsigned NumDups1, unsigned NumDups2,
1893                                   bool TClobbersPred, bool FClobbersPred) {
1894  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
1895  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1896  MachineBasicBlock *TailBB = TrueBBI.TrueBB;
1897
1898  // True block must fall through or end with an unanalyzable terminator.
1899  if (!TailBB) {
1900    if (blockAlwaysFallThrough(TrueBBI))
1901      TailBB = FalseBBI.TrueBB;
1902    assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
1903  }
1904
1905  if (!IfConvertDiamondCommon(
1906      BBI, TrueBBI, FalseBBI,
1907      NumDups1, NumDups2,
1908      TClobbersPred, FClobbersPred,
1909      /* RemoveBranch */ TrueBBI.IsBrAnalyzable,
1910      /* MergeAddEdges */ TailBB == nullptr))
1911    return false;
1912
1913  // If the if-converted block falls through or unconditionally branches into
1914  // the tail block, and the tail block does not have other predecessors, then
1915  // fold the tail block in as well. Otherwise, unless it falls through to the
1916  // tail, add a unconditional branch to it.
1917  if (TailBB) {
1918    // We need to remove the edges to the true and false blocks manually since
1919    // we didn't let IfConvertDiamondCommon update the CFG.
1920    BBI.BB->removeSuccessor(TrueBBI.BB);
1921    BBI.BB->removeSuccessor(FalseBBI.BB, true);
1922
1923    BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
1924    bool CanMergeTail = !TailBBI.HasFallThrough &&
1925      !TailBBI.BB->hasAddressTaken();
1926    // The if-converted block can still have a predicated terminator
1927    // (e.g. a predicated return). If that is the case, we cannot merge
1928    // it with the tail block.
1929    MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
1930    if (TI != BBI.BB->end() && TII->isPredicated(*TI))
1931      CanMergeTail = false;
1932    // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
1933    // check if there are any other predecessors besides those.
1934    unsigned NumPreds = TailBB->pred_size();
1935    if (NumPreds > 1)
1936      CanMergeTail = false;
1937    else if (NumPreds == 1 && CanMergeTail) {
1938      MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
1939      if (*PI != TrueBBI.BB && *PI != FalseBBI.BB)
1940        CanMergeTail = false;
1941    }
1942    if (CanMergeTail) {
1943      MergeBlocks(BBI, TailBBI);
1944      TailBBI.IsDone = true;
1945    } else {
1946      BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
1947      InsertUncondBranch(*BBI.BB, *TailBB, TII);
1948      BBI.HasFallThrough = false;
1949    }
1950  }
1951
1952  // Update block info.
1953  BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
1954  InvalidatePreds(*BBI.BB);
1955
1956  // FIXME: Must maintain LiveIns.
1957  return true;
1958}
1959
1960static bool MaySpeculate(const MachineInstr &MI,
1961                         SmallSet<unsigned, 4> &LaterRedefs) {
1962  bool SawStore = true;
1963  if (!MI.isSafeToMove(nullptr, SawStore))
1964    return false;
1965
1966  for (const MachineOperand &MO : MI.operands()) {
1967    if (!MO.isReg())
1968      continue;
1969    unsigned Reg = MO.getReg();
1970    if (!Reg)
1971      continue;
1972    if (MO.isDef() && !LaterRedefs.count(Reg))
1973      return false;
1974  }
1975
1976  return true;
1977}
1978
1979/// Predicate instructions from the start of the block to the specified end with
1980/// the specified condition.
1981void IfConverter::PredicateBlock(BBInfo &BBI,
1982                                 MachineBasicBlock::iterator E,
1983                                 SmallVectorImpl<MachineOperand> &Cond,
1984                                 SmallSet<unsigned, 4> *LaterRedefs) {
1985  bool AnyUnpred = false;
1986  bool MaySpec = LaterRedefs != nullptr;
1987  for (MachineInstr &I : make_range(BBI.BB->begin(), E)) {
1988    if (I.isDebugValue() || TII->isPredicated(I))
1989      continue;
1990    // It may be possible not to predicate an instruction if it's the 'true'
1991    // side of a diamond and the 'false' side may re-define the instruction's
1992    // defs.
1993    if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
1994      AnyUnpred = true;
1995      continue;
1996    }
1997    // If any instruction is predicated, then every instruction after it must
1998    // be predicated.
1999    MaySpec = false;
2000    if (!TII->PredicateInstruction(I, Cond)) {
2001#ifndef NDEBUG
2002      dbgs() << "Unable to predicate " << I << "!\n";
2003#endif
2004      llvm_unreachable(nullptr);
2005    }
2006
2007    // If the predicated instruction now redefines a register as the result of
2008    // if-conversion, add an implicit kill.
2009    UpdatePredRedefs(I, Redefs);
2010  }
2011
2012  BBI.Predicate.append(Cond.begin(), Cond.end());
2013
2014  BBI.IsAnalyzed = false;
2015  BBI.NonPredSize = 0;
2016
2017  ++NumIfConvBBs;
2018  if (AnyUnpred)
2019    ++NumUnpred;
2020}
2021
2022/// Copy and predicate instructions from source BB to the destination block.
2023/// Skip end of block branches if IgnoreBr is true.
2024void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
2025                                        SmallVectorImpl<MachineOperand> &Cond,
2026                                        bool IgnoreBr) {
2027  MachineFunction &MF = *ToBBI.BB->getParent();
2028
2029  MachineBasicBlock &FromMBB = *FromBBI.BB;
2030  for (MachineInstr &I : FromMBB) {
2031    // Do not copy the end of the block branches.
2032    if (IgnoreBr && I.isBranch())
2033      break;
2034
2035    MachineInstr *MI = MF.CloneMachineInstr(&I);
2036    ToBBI.BB->insert(ToBBI.BB->end(), MI);
2037    ToBBI.NonPredSize++;
2038    unsigned ExtraPredCost = TII->getPredicationCost(I);
2039    unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
2040    if (NumCycles > 1)
2041      ToBBI.ExtraCost += NumCycles-1;
2042    ToBBI.ExtraCost2 += ExtraPredCost;
2043
2044    if (!TII->isPredicated(I) && !MI->isDebugValue()) {
2045      if (!TII->PredicateInstruction(*MI, Cond)) {
2046#ifndef NDEBUG
2047        dbgs() << "Unable to predicate " << I << "!\n";
2048#endif
2049        llvm_unreachable(nullptr);
2050      }
2051    }
2052
2053    // If the predicated instruction now redefines a register as the result of
2054    // if-conversion, add an implicit kill.
2055    UpdatePredRedefs(*MI, Redefs);
2056  }
2057
2058  if (!IgnoreBr) {
2059    std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(),
2060                                           FromMBB.succ_end());
2061    MachineBasicBlock *NBB = getNextBlock(FromMBB);
2062    MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2063
2064    for (MachineBasicBlock *Succ : Succs) {
2065      // Fallthrough edge can't be transferred.
2066      if (Succ == FallThrough)
2067        continue;
2068      ToBBI.BB->addSuccessor(Succ);
2069    }
2070  }
2071
2072  ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2073  ToBBI.Predicate.append(Cond.begin(), Cond.end());
2074
2075  ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2076  ToBBI.IsAnalyzed = false;
2077
2078  ++NumDupBBs;
2079}
2080
2081/// Move all instructions from FromBB to the end of ToBB.  This will leave
2082/// FromBB as an empty block, so remove all of its successor edges except for
2083/// the fall-through edge.  If AddEdges is true, i.e., when FromBBI's branch is
2084/// being moved, add those successor edges to ToBBI and remove the old edge
2085/// from ToBBI to FromBBI.
2086void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
2087  MachineBasicBlock &FromMBB = *FromBBI.BB;
2088  assert(!FromMBB.hasAddressTaken() &&
2089         "Removing a BB whose address is taken!");
2090
2091  // In case FromMBB contains terminators (e.g. return instruction),
2092  // first move the non-terminator instructions, then the terminators.
2093  MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator();
2094  MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
2095  ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI);
2096
2097  // If FromBB has non-predicated terminator we should copy it at the end.
2098  if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI))
2099    ToTI = ToBBI.BB->end();
2100  ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end());
2101
2102  // Force normalizing the successors' probabilities of ToBBI.BB to convert all
2103  // unknown probabilities into known ones.
2104  // FIXME: This usage is too tricky and in the future we would like to
2105  // eliminate all unknown probabilities in MBB.
2106  if (ToBBI.IsBrAnalyzable)
2107    ToBBI.BB->normalizeSuccProbs();
2108
2109  SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(),
2110                                                FromMBB.succ_end());
2111  MachineBasicBlock *NBB = getNextBlock(FromMBB);
2112  MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2113  // The edge probability from ToBBI.BB to FromMBB, which is only needed when
2114  // AddEdges is true and FromMBB is a successor of ToBBI.BB.
2115  auto To2FromProb = BranchProbability::getZero();
2116  if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) {
2117    // Remove the old edge but remember the edge probability so we can calculate
2118    // the correct weights on the new edges being added further down.
2119    To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB);
2120    ToBBI.BB->removeSuccessor(&FromMBB);
2121  }
2122
2123  for (MachineBasicBlock *Succ : FromSuccs) {
2124    // Fallthrough edge can't be transferred.
2125    if (Succ == FallThrough)
2126      continue;
2127
2128    auto NewProb = BranchProbability::getZero();
2129    if (AddEdges) {
2130      // Calculate the edge probability for the edge from ToBBI.BB to Succ,
2131      // which is a portion of the edge probability from FromMBB to Succ. The
2132      // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
2133      // FromBBI is a successor of ToBBI.BB. See comment below for excepion).
2134      NewProb = MBPI->getEdgeProbability(&FromMBB, Succ);
2135
2136      // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
2137      // only happens when if-converting a diamond CFG and FromMBB is the
2138      // tail BB.  In this case FromMBB post-dominates ToBBI.BB and hence we
2139      // could just use the probabilities on FromMBB's out-edges when adding
2140      // new successors.
2141      if (!To2FromProb.isZero())
2142        NewProb *= To2FromProb;
2143    }
2144
2145    FromMBB.removeSuccessor(Succ);
2146
2147    if (AddEdges) {
2148      // If the edge from ToBBI.BB to Succ already exists, update the
2149      // probability of this edge by adding NewProb to it. An example is shown
2150      // below, in which A is ToBBI.BB and B is FromMBB. In this case we
2151      // don't have to set C as A's successor as it already is. We only need to
2152      // update the edge probability on A->C. Note that B will not be
2153      // immediately removed from A's successors. It is possible that B->D is
2154      // not removed either if D is a fallthrough of B. Later the edge A->D
2155      // (generated here) and B->D will be combined into one edge. To maintain
2156      // correct edge probability of this combined edge, we need to set the edge
2157      // probability of A->B to zero, which is already done above. The edge
2158      // probability on A->D is calculated by scaling the original probability
2159      // on A->B by the probability of B->D.
2160      //
2161      // Before ifcvt:      After ifcvt (assume B->D is kept):
2162      //
2163      //       A                A
2164      //      /|               /|\
2165      //     / B              / B|
2166      //    | /|             |  ||
2167      //    |/ |             |  |/
2168      //    C  D             C  D
2169      //
2170      if (ToBBI.BB->isSuccessor(Succ))
2171        ToBBI.BB->setSuccProbability(
2172            find(ToBBI.BB->successors(), Succ),
2173            MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
2174      else
2175        ToBBI.BB->addSuccessor(Succ, NewProb);
2176    }
2177  }
2178
2179  // Move the now empty FromMBB out of the way to the end of the function so
2180  // it doesn't interfere with fallthrough checks done by canFallThroughTo().
2181  MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin();
2182  if (Last != &FromMBB)
2183    FromMBB.moveAfter(Last);
2184
2185  // Normalize the probabilities of ToBBI.BB's successors with all adjustment
2186  // we've done above.
2187  if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable)
2188    ToBBI.BB->normalizeSuccProbs();
2189
2190  ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2191  FromBBI.Predicate.clear();
2192
2193  ToBBI.NonPredSize += FromBBI.NonPredSize;
2194  ToBBI.ExtraCost += FromBBI.ExtraCost;
2195  ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
2196  FromBBI.NonPredSize = 0;
2197  FromBBI.ExtraCost = 0;
2198  FromBBI.ExtraCost2 = 0;
2199
2200  ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2201  ToBBI.HasFallThrough = FromBBI.HasFallThrough;
2202  ToBBI.IsAnalyzed = false;
2203  FromBBI.IsAnalyzed = false;
2204}
2205
2206FunctionPass *
2207llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) {
2208  return new IfConverter(std::move(Ftor));
2209}
2210