RegBankSelect.cpp revision 344779
1//==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements the RegBankSelect class.
11//===----------------------------------------------------------------------===//
12
13#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
14#include "llvm/ADT/PostOrderIterator.h"
15#include "llvm/ADT/STLExtras.h"
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
18#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
19#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
20#include "llvm/CodeGen/GlobalISel/Utils.h"
21#include "llvm/CodeGen/MachineBasicBlock.h"
22#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
23#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/MachineOperand.h"
27#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/TargetOpcodes.h"
30#include "llvm/CodeGen/TargetPassConfig.h"
31#include "llvm/CodeGen/TargetRegisterInfo.h"
32#include "llvm/CodeGen/TargetSubtargetInfo.h"
33#include "llvm/Config/llvm-config.h"
34#include "llvm/IR/Attributes.h"
35#include "llvm/IR/Function.h"
36#include "llvm/Pass.h"
37#include "llvm/Support/BlockFrequency.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/Compiler.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/raw_ostream.h"
43#include <algorithm>
44#include <cassert>
45#include <cstdint>
46#include <limits>
47#include <memory>
48#include <utility>
49
50#define DEBUG_TYPE "regbankselect"
51
52using namespace llvm;
53
54static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
55    cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
56    cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
57                          "Run the Fast mode (default mapping)"),
58               clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
59                          "Use the Greedy mode (best local mapping)")));
60
61char RegBankSelect::ID = 0;
62
63INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
64                      "Assign register bank of generic virtual registers",
65                      false, false);
66INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
67INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
68INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
69INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
70                    "Assign register bank of generic virtual registers", false,
71                    false)
72
73RegBankSelect::RegBankSelect(Mode RunningMode)
74    : MachineFunctionPass(ID), OptMode(RunningMode) {
75  initializeRegBankSelectPass(*PassRegistry::getPassRegistry());
76  if (RegBankSelectMode.getNumOccurrences() != 0) {
77    OptMode = RegBankSelectMode;
78    if (RegBankSelectMode != RunningMode)
79      LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
80  }
81}
82
83void RegBankSelect::init(MachineFunction &MF) {
84  RBI = MF.getSubtarget().getRegBankInfo();
85  assert(RBI && "Cannot work without RegisterBankInfo");
86  MRI = &MF.getRegInfo();
87  TRI = MF.getSubtarget().getRegisterInfo();
88  TPC = &getAnalysis<TargetPassConfig>();
89  if (OptMode != Mode::Fast) {
90    MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
91    MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
92  } else {
93    MBFI = nullptr;
94    MBPI = nullptr;
95  }
96  MIRBuilder.setMF(MF);
97  MORE = llvm::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
98}
99
100void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
101  if (OptMode != Mode::Fast) {
102    // We could preserve the information from these two analysis but
103    // the APIs do not allow to do so yet.
104    AU.addRequired<MachineBlockFrequencyInfo>();
105    AU.addRequired<MachineBranchProbabilityInfo>();
106  }
107  AU.addRequired<TargetPassConfig>();
108  getSelectionDAGFallbackAnalysisUsage(AU);
109  MachineFunctionPass::getAnalysisUsage(AU);
110}
111
112bool RegBankSelect::assignmentMatch(
113    unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping,
114    bool &OnlyAssign) const {
115  // By default we assume we will have to repair something.
116  OnlyAssign = false;
117  // Each part of a break down needs to end up in a different register.
118  // In other word, Reg assignment does not match.
119  if (ValMapping.NumBreakDowns != 1)
120    return false;
121
122  const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
123  const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
124  // Reg is free of assignment, a simple assignment will make the
125  // register bank to match.
126  OnlyAssign = CurRegBank == nullptr;
127  LLVM_DEBUG(dbgs() << "Does assignment already match: ";
128             if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
129             dbgs() << " against ";
130             assert(DesiredRegBrank && "The mapping must be valid");
131             dbgs() << *DesiredRegBrank << '\n';);
132  return CurRegBank == DesiredRegBrank;
133}
134
135bool RegBankSelect::repairReg(
136    MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
137    RegBankSelect::RepairingPlacement &RepairPt,
138    const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) {
139  if (ValMapping.NumBreakDowns != 1 && !TPC->isGlobalISelAbortEnabled())
140    return false;
141  assert(ValMapping.NumBreakDowns == 1 && "Not yet implemented");
142  // An empty range of new register means no repairing.
143  assert(!empty(NewVRegs) && "We should not have to repair");
144
145  // Assume we are repairing a use and thus, the original reg will be
146  // the source of the repairing.
147  unsigned Src = MO.getReg();
148  unsigned Dst = *NewVRegs.begin();
149
150  // If we repair a definition, swap the source and destination for
151  // the repairing.
152  if (MO.isDef())
153    std::swap(Src, Dst);
154
155  assert((RepairPt.getNumInsertPoints() == 1 ||
156          TargetRegisterInfo::isPhysicalRegister(Dst)) &&
157         "We are about to create several defs for Dst");
158
159  // Build the instruction used to repair, then clone it at the right
160  // places. Avoiding buildCopy bypasses the check that Src and Dst have the
161  // same types because the type is a placeholder when this function is called.
162  MachineInstr *MI =
163      MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY).addDef(Dst).addUse(Src);
164  LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst)
165                    << '\n');
166  // TODO:
167  // Check if MI is legal. if not, we need to legalize all the
168  // instructions we are going to insert.
169  std::unique_ptr<MachineInstr *[]> NewInstrs(
170      new MachineInstr *[RepairPt.getNumInsertPoints()]);
171  bool IsFirst = true;
172  unsigned Idx = 0;
173  for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
174    MachineInstr *CurMI;
175    if (IsFirst)
176      CurMI = MI;
177    else
178      CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
179    InsertPt->insert(*CurMI);
180    NewInstrs[Idx++] = CurMI;
181    IsFirst = false;
182  }
183  // TODO:
184  // Legalize NewInstrs if need be.
185  return true;
186}
187
188uint64_t RegBankSelect::getRepairCost(
189    const MachineOperand &MO,
190    const RegisterBankInfo::ValueMapping &ValMapping) const {
191  assert(MO.isReg() && "We should only repair register operand");
192  assert(ValMapping.NumBreakDowns && "Nothing to map??");
193
194  bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
195  const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
196  // If MO does not have a register bank, we should have just been
197  // able to set one unless we have to break the value down.
198  assert((!IsSameNumOfValues || CurRegBank) && "We should not have to repair");
199  // Def: Val <- NewDefs
200  //     Same number of values: copy
201  //     Different number: Val = build_sequence Defs1, Defs2, ...
202  // Use: NewSources <- Val.
203  //     Same number of values: copy.
204  //     Different number: Src1, Src2, ... =
205  //           extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
206  // We should remember that this value is available somewhere else to
207  // coalesce the value.
208
209  if (IsSameNumOfValues) {
210    const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
211    // If we repair a definition, swap the source and destination for
212    // the repairing.
213    if (MO.isDef())
214      std::swap(CurRegBank, DesiredRegBrank);
215    // TODO: It may be possible to actually avoid the copy.
216    // If we repair something where the source is defined by a copy
217    // and the source of that copy is on the right bank, we can reuse
218    // it for free.
219    // E.g.,
220    // RegToRepair<BankA> = copy AlternativeSrc<BankB>
221    // = op RegToRepair<BankA>
222    // We can simply propagate AlternativeSrc instead of copying RegToRepair
223    // into a new virtual register.
224    // We would also need to propagate this information in the
225    // repairing placement.
226    unsigned Cost = RBI->copyCost(*DesiredRegBrank, *CurRegBank,
227                                  RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
228    // TODO: use a dedicated constant for ImpossibleCost.
229    if (Cost != std::numeric_limits<unsigned>::max())
230      return Cost;
231    // Return the legalization cost of that repairing.
232  }
233  return std::numeric_limits<unsigned>::max();
234}
235
236const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
237    MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
238    SmallVectorImpl<RepairingPlacement> &RepairPts) {
239  assert(!PossibleMappings.empty() &&
240         "Do not know how to map this instruction");
241
242  const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
243  MappingCost Cost = MappingCost::ImpossibleCost();
244  SmallVector<RepairingPlacement, 4> LocalRepairPts;
245  for (const RegisterBankInfo::InstructionMapping *CurMapping :
246       PossibleMappings) {
247    MappingCost CurCost =
248        computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
249    if (CurCost < Cost) {
250      LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');
251      Cost = CurCost;
252      BestMapping = CurMapping;
253      RepairPts.clear();
254      for (RepairingPlacement &RepairPt : LocalRepairPts)
255        RepairPts.emplace_back(std::move(RepairPt));
256    }
257  }
258  if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
259    // If none of the mapping worked that means they are all impossible.
260    // Thus, pick the first one and set an impossible repairing point.
261    // It will trigger the failed isel mode.
262    BestMapping = *PossibleMappings.begin();
263    RepairPts.emplace_back(
264        RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
265  } else
266    assert(BestMapping && "No suitable mapping for instruction");
267  return *BestMapping;
268}
269
270void RegBankSelect::tryAvoidingSplit(
271    RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
272    const RegisterBankInfo::ValueMapping &ValMapping) const {
273  const MachineInstr &MI = *MO.getParent();
274  assert(RepairPt.hasSplit() && "We should not have to adjust for split");
275  // Splitting should only occur for PHIs or between terminators,
276  // because we only do local repairing.
277  assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
278
279  assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
280         "Repairing placement does not match operand");
281
282  // If we need splitting for phis, that means it is because we
283  // could not find an insertion point before the terminators of
284  // the predecessor block for this argument. In other words,
285  // the input value is defined by one of the terminators.
286  assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
287
288  // We split to repair the use of a phi or a terminator.
289  if (!MO.isDef()) {
290    if (MI.isTerminator()) {
291      assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
292             "Need to split for the first terminator?!");
293    } else {
294      // For the PHI case, the split may not be actually required.
295      // In the copy case, a phi is already a copy on the incoming edge,
296      // therefore there is no need to split.
297      if (ValMapping.NumBreakDowns == 1)
298        // This is a already a copy, there is nothing to do.
299        RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
300    }
301    return;
302  }
303
304  // At this point, we need to repair a defintion of a terminator.
305
306  // Technically we need to fix the def of MI on all outgoing
307  // edges of MI to keep the repairing local. In other words, we
308  // will create several definitions of the same register. This
309  // does not work for SSA unless that definition is a physical
310  // register.
311  // However, there are other cases where we can get away with
312  // that while still keeping the repairing local.
313  assert(MI.isTerminator() && MO.isDef() &&
314         "This code is for the def of a terminator");
315
316  // Since we use RPO traversal, if we need to repair a definition
317  // this means this definition could be:
318  // 1. Used by PHIs (i.e., this VReg has been visited as part of the
319  //    uses of a phi.), or
320  // 2. Part of a target specific instruction (i.e., the target applied
321  //    some register class constraints when creating the instruction.)
322  // If the constraints come for #2, the target said that another mapping
323  // is supported so we may just drop them. Indeed, if we do not change
324  // the number of registers holding that value, the uses will get fixed
325  // when we get to them.
326  // Uses in PHIs may have already been proceeded though.
327  // If the constraints come for #1, then, those are weak constraints and
328  // no actual uses may rely on them. However, the problem remains mainly
329  // the same as for #2. If the value stays in one register, we could
330  // just switch the register bank of the definition, but we would need to
331  // account for a repairing cost for each phi we silently change.
332  //
333  // In any case, if the value needs to be broken down into several
334  // registers, the repairing is not local anymore as we need to patch
335  // every uses to rebuild the value in just one register.
336  //
337  // To summarize:
338  // - If the value is in a physical register, we can do the split and
339  //   fix locally.
340  // Otherwise if the value is in a virtual register:
341  // - If the value remains in one register, we do not have to split
342  //   just switching the register bank would do, but we need to account
343  //   in the repairing cost all the phi we changed.
344  // - If the value spans several registers, then we cannot do a local
345  //   repairing.
346
347  // Check if this is a physical or virtual register.
348  unsigned Reg = MO.getReg();
349  if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
350    // We are going to split every outgoing edges.
351    // Check that this is possible.
352    // FIXME: The machine representation is currently broken
353    // since it also several terminators in one basic block.
354    // Because of that we would technically need a way to get
355    // the targets of just one terminator to know which edges
356    // we have to split.
357    // Assert that we do not hit the ill-formed representation.
358
359    // If there are other terminators before that one, some of
360    // the outgoing edges may not be dominated by this definition.
361    assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
362           "Do not know which outgoing edges are relevant");
363    const MachineInstr *Next = MI.getNextNode();
364    assert((!Next || Next->isUnconditionalBranch()) &&
365           "Do not know where each terminator ends up");
366    if (Next)
367      // If the next terminator uses Reg, this means we have
368      // to split right after MI and thus we need a way to ask
369      // which outgoing edges are affected.
370      assert(!Next->readsRegister(Reg) && "Need to split between terminators");
371    // We will split all the edges and repair there.
372  } else {
373    // This is a virtual register defined by a terminator.
374    if (ValMapping.NumBreakDowns == 1) {
375      // There is nothing to repair, but we may actually lie on
376      // the repairing cost because of the PHIs already proceeded
377      // as already stated.
378      // Though the code will be correct.
379      assert(false && "Repairing cost may not be accurate");
380    } else {
381      // We need to do non-local repairing. Basically, patch all
382      // the uses (i.e., phis) that we already proceeded.
383      // For now, just say this mapping is not possible.
384      RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
385    }
386  }
387}
388
389RegBankSelect::MappingCost RegBankSelect::computeMapping(
390    MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
391    SmallVectorImpl<RepairingPlacement> &RepairPts,
392    const RegBankSelect::MappingCost *BestCost) {
393  assert((MBFI || !BestCost) && "Costs comparison require MBFI");
394
395  if (!InstrMapping.isValid())
396    return MappingCost::ImpossibleCost();
397
398  // If mapped with InstrMapping, MI will have the recorded cost.
399  MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
400  bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
401  assert(!Saturated && "Possible mapping saturated the cost");
402  LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
403  LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');
404  RepairPts.clear();
405  if (BestCost && Cost > *BestCost) {
406    LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
407    return Cost;
408  }
409
410  // Moreover, to realize this mapping, the register bank of each operand must
411  // match this mapping. In other words, we may need to locally reassign the
412  // register banks. Account for that repairing cost as well.
413  // In this context, local means in the surrounding of MI.
414  for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
415       OpIdx != EndOpIdx; ++OpIdx) {
416    const MachineOperand &MO = MI.getOperand(OpIdx);
417    if (!MO.isReg())
418      continue;
419    unsigned Reg = MO.getReg();
420    if (!Reg)
421      continue;
422    LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n');
423    const RegisterBankInfo::ValueMapping &ValMapping =
424        InstrMapping.getOperandMapping(OpIdx);
425    // If Reg is already properly mapped, this is free.
426    bool Assign;
427    if (assignmentMatch(Reg, ValMapping, Assign)) {
428      LLVM_DEBUG(dbgs() << "=> is free (match).\n");
429      continue;
430    }
431    if (Assign) {
432      LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
433      RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
434                                                RepairingPlacement::Reassign));
435      continue;
436    }
437
438    // Find the insertion point for the repairing code.
439    RepairPts.emplace_back(
440        RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
441    RepairingPlacement &RepairPt = RepairPts.back();
442
443    // If we need to split a basic block to materialize this insertion point,
444    // we may give a higher cost to this mapping.
445    // Nevertheless, we may get away with the split, so try that first.
446    if (RepairPt.hasSplit())
447      tryAvoidingSplit(RepairPt, MO, ValMapping);
448
449    // Check that the materialization of the repairing is possible.
450    if (!RepairPt.canMaterialize()) {
451      LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
452      return MappingCost::ImpossibleCost();
453    }
454
455    // Account for the split cost and repair cost.
456    // Unless the cost is already saturated or we do not care about the cost.
457    if (!BestCost || Saturated)
458      continue;
459
460    // To get accurate information we need MBFI and MBPI.
461    // Thus, if we end up here this information should be here.
462    assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
463
464    // FIXME: We will have to rework the repairing cost model.
465    // The repairing cost depends on the register bank that MO has.
466    // However, when we break down the value into different values,
467    // MO may not have a register bank while still needing repairing.
468    // For the fast mode, we don't compute the cost so that is fine,
469    // but still for the repairing code, we will have to make a choice.
470    // For the greedy mode, we should choose greedily what is the best
471    // choice based on the next use of MO.
472
473    // Sums up the repairing cost of MO at each insertion point.
474    uint64_t RepairCost = getRepairCost(MO, ValMapping);
475
476    // This is an impossible to repair cost.
477    if (RepairCost == std::numeric_limits<unsigned>::max())
478      return MappingCost::ImpossibleCost();
479
480    // Bias used for splitting: 5%.
481    const uint64_t PercentageForBias = 5;
482    uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
483    // We should not need more than a couple of instructions to repair
484    // an assignment. In other words, the computation should not
485    // overflow because the repairing cost is free of basic block
486    // frequency.
487    assert(((RepairCost < RepairCost * PercentageForBias) &&
488            (RepairCost * PercentageForBias <
489             RepairCost * PercentageForBias + 99)) &&
490           "Repairing involves more than a billion of instructions?!");
491    for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
492      assert(InsertPt->canMaterialize() && "We should not have made it here");
493      // We will applied some basic block frequency and those uses uint64_t.
494      if (!InsertPt->isSplit())
495        Saturated = Cost.addLocalCost(RepairCost);
496      else {
497        uint64_t CostForInsertPt = RepairCost;
498        // Again we shouldn't overflow here givent that
499        // CostForInsertPt is frequency free at this point.
500        assert(CostForInsertPt + Bias > CostForInsertPt &&
501               "Repairing + split bias overflows");
502        CostForInsertPt += Bias;
503        uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
504        // Check if we just overflowed.
505        if ((Saturated = PtCost < CostForInsertPt))
506          Cost.saturate();
507        else
508          Saturated = Cost.addNonLocalCost(PtCost);
509      }
510
511      // Stop looking into what it takes to repair, this is already
512      // too expensive.
513      if (BestCost && Cost > *BestCost) {
514        LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
515        return Cost;
516      }
517
518      // No need to accumulate more cost information.
519      // We need to still gather the repairing information though.
520      if (Saturated)
521        break;
522    }
523  }
524  LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
525  return Cost;
526}
527
528bool RegBankSelect::applyMapping(
529    MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
530    SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
531  // OpdMapper will hold all the information needed for the rewriting.
532  RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
533
534  // First, place the repairing code.
535  for (RepairingPlacement &RepairPt : RepairPts) {
536    if (!RepairPt.canMaterialize() ||
537        RepairPt.getKind() == RepairingPlacement::Impossible)
538      return false;
539    assert(RepairPt.getKind() != RepairingPlacement::None &&
540           "This should not make its way in the list");
541    unsigned OpIdx = RepairPt.getOpIdx();
542    MachineOperand &MO = MI.getOperand(OpIdx);
543    const RegisterBankInfo::ValueMapping &ValMapping =
544        InstrMapping.getOperandMapping(OpIdx);
545    unsigned Reg = MO.getReg();
546
547    switch (RepairPt.getKind()) {
548    case RepairingPlacement::Reassign:
549      assert(ValMapping.NumBreakDowns == 1 &&
550             "Reassignment should only be for simple mapping");
551      MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
552      break;
553    case RepairingPlacement::Insert:
554      OpdMapper.createVRegs(OpIdx);
555      if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
556        return false;
557      break;
558    default:
559      llvm_unreachable("Other kind should not happen");
560    }
561  }
562
563  // Second, rewrite the instruction.
564  LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
565  RBI->applyMapping(OpdMapper);
566
567  return true;
568}
569
570bool RegBankSelect::assignInstr(MachineInstr &MI) {
571  LLVM_DEBUG(dbgs() << "Assign: " << MI);
572  // Remember the repairing placement for all the operands.
573  SmallVector<RepairingPlacement, 4> RepairPts;
574
575  const RegisterBankInfo::InstructionMapping *BestMapping;
576  if (OptMode == RegBankSelect::Mode::Fast) {
577    BestMapping = &RBI->getInstrMapping(MI);
578    MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
579    (void)DefaultCost;
580    if (DefaultCost == MappingCost::ImpossibleCost())
581      return false;
582  } else {
583    RegisterBankInfo::InstructionMappings PossibleMappings =
584        RBI->getInstrPossibleMappings(MI);
585    if (PossibleMappings.empty())
586      return false;
587    BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
588  }
589  // Make sure the mapping is valid for MI.
590  assert(BestMapping->verify(MI) && "Invalid instruction mapping");
591
592  LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
593
594  // After this call, MI may not be valid anymore.
595  // Do not use it.
596  return applyMapping(MI, *BestMapping, RepairPts);
597}
598
599bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
600  // If the ISel pipeline failed, do not bother running that pass.
601  if (MF.getProperties().hasProperty(
602          MachineFunctionProperties::Property::FailedISel))
603    return false;
604
605  LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
606  const Function &F = MF.getFunction();
607  Mode SaveOptMode = OptMode;
608  if (F.hasFnAttribute(Attribute::OptimizeNone))
609    OptMode = Mode::Fast;
610  init(MF);
611
612#ifndef NDEBUG
613  // Check that our input is fully legal: we require the function to have the
614  // Legalized property, so it should be.
615  // FIXME: This should be in the MachineVerifier.
616  if (!DisableGISelLegalityCheck)
617    if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
618      reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
619                         "instruction is not legal", *MI);
620      return false;
621    }
622#endif
623
624  // Walk the function and assign register banks to all operands.
625  // Use a RPOT to make sure all registers are assigned before we choose
626  // the best mapping of the current instruction.
627  ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
628  for (MachineBasicBlock *MBB : RPOT) {
629    // Set a sensible insertion point so that subsequent calls to
630    // MIRBuilder.
631    MIRBuilder.setMBB(*MBB);
632    for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end();
633         MII != End;) {
634      // MI might be invalidated by the assignment, so move the
635      // iterator before hand.
636      MachineInstr &MI = *MII++;
637
638      // Ignore target-specific instructions: they should use proper regclasses.
639      if (isTargetSpecificOpcode(MI.getOpcode()))
640        continue;
641
642      if (!assignInstr(MI)) {
643        reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
644                           "unable to map instruction", MI);
645        return false;
646      }
647    }
648  }
649  OptMode = SaveOptMode;
650  return false;
651}
652
653//------------------------------------------------------------------------------
654//                  Helper Classes Implementation
655//------------------------------------------------------------------------------
656RegBankSelect::RepairingPlacement::RepairingPlacement(
657    MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
658    RepairingPlacement::RepairingKind Kind)
659    // Default is, we are going to insert code to repair OpIdx.
660    : Kind(Kind), OpIdx(OpIdx),
661      CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
662  const MachineOperand &MO = MI.getOperand(OpIdx);
663  assert(MO.isReg() && "Trying to repair a non-reg operand");
664
665  if (Kind != RepairingKind::Insert)
666    return;
667
668  // Repairings for definitions happen after MI, uses happen before.
669  bool Before = !MO.isDef();
670
671  // Check if we are done with MI.
672  if (!MI.isPHI() && !MI.isTerminator()) {
673    addInsertPoint(MI, Before);
674    // We are done with the initialization.
675    return;
676  }
677
678  // Now, look for the special cases.
679  if (MI.isPHI()) {
680    // - PHI must be the first instructions:
681    //   * Before, we have to split the related incoming edge.
682    //   * After, move the insertion point past the last phi.
683    if (!Before) {
684      MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
685      if (It != MI.getParent()->end())
686        addInsertPoint(*It, /*Before*/ true);
687      else
688        addInsertPoint(*(--It), /*Before*/ false);
689      return;
690    }
691    // We repair a use of a phi, we may need to split the related edge.
692    MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
693    // Check if we can move the insertion point prior to the
694    // terminators of the predecessor.
695    unsigned Reg = MO.getReg();
696    MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
697    for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
698      if (It->modifiesRegister(Reg, &TRI)) {
699        // We cannot hoist the repairing code in the predecessor.
700        // Split the edge.
701        addInsertPoint(Pred, *MI.getParent());
702        return;
703      }
704    // At this point, we can insert in Pred.
705
706    // - If It is invalid, Pred is empty and we can insert in Pred
707    //   wherever we want.
708    // - If It is valid, It is the first non-terminator, insert after It.
709    if (It == Pred.end())
710      addInsertPoint(Pred, /*Beginning*/ false);
711    else
712      addInsertPoint(*It, /*Before*/ false);
713  } else {
714    // - Terminators must be the last instructions:
715    //   * Before, move the insert point before the first terminator.
716    //   * After, we have to split the outcoming edges.
717    if (Before) {
718      // Check whether Reg is defined by any terminator.
719      MachineBasicBlock::reverse_iterator It = MI;
720      auto REnd = MI.getParent()->rend();
721
722      for (; It != REnd && It->isTerminator(); ++It) {
723        assert(!It->modifiesRegister(MO.getReg(), &TRI) &&
724               "copy insertion in middle of terminators not handled");
725      }
726
727      if (It == REnd) {
728        addInsertPoint(*MI.getParent()->begin(), true);
729        return;
730      }
731
732      // We are sure to be right before the first terminator.
733      addInsertPoint(*It, /*Before*/ false);
734      return;
735    }
736    // Make sure Reg is not redefined by other terminators, otherwise
737    // we do not know how to split.
738    for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
739         ++It != End;)
740      // The machine verifier should reject this kind of code.
741      assert(It->modifiesRegister(MO.getReg(), &TRI) &&
742             "Do not know where to split");
743    // Split each outcoming edges.
744    MachineBasicBlock &Src = *MI.getParent();
745    for (auto &Succ : Src.successors())
746      addInsertPoint(Src, Succ);
747  }
748}
749
750void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
751                                                       bool Before) {
752  addInsertPoint(*new InstrInsertPoint(MI, Before));
753}
754
755void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
756                                                       bool Beginning) {
757  addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
758}
759
760void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
761                                                       MachineBasicBlock &Dst) {
762  addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
763}
764
765void RegBankSelect::RepairingPlacement::addInsertPoint(
766    RegBankSelect::InsertPoint &Point) {
767  CanMaterialize &= Point.canMaterialize();
768  HasSplit |= Point.isSplit();
769  InsertPoints.emplace_back(&Point);
770}
771
772RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
773                                                  bool Before)
774    : InsertPoint(), Instr(Instr), Before(Before) {
775  // Since we do not support splitting, we do not need to update
776  // liveness and such, so do not do anything with P.
777  assert((!Before || !Instr.isPHI()) &&
778         "Splitting before phis requires more points");
779  assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
780         "Splitting between phis does not make sense");
781}
782
783void RegBankSelect::InstrInsertPoint::materialize() {
784  if (isSplit()) {
785    // Slice and return the beginning of the new block.
786    // If we need to split between the terminators, we theoritically
787    // need to know where the first and second set of terminators end
788    // to update the successors properly.
789    // Now, in pratice, we should have a maximum of 2 branch
790    // instructions; one conditional and one unconditional. Therefore
791    // we know how to update the successor by looking at the target of
792    // the unconditional branch.
793    // If we end up splitting at some point, then, we should update
794    // the liveness information and such. I.e., we would need to
795    // access P here.
796    // The machine verifier should actually make sure such cases
797    // cannot happen.
798    llvm_unreachable("Not yet implemented");
799  }
800  // Otherwise the insertion point is just the current or next
801  // instruction depending on Before. I.e., there is nothing to do
802  // here.
803}
804
805bool RegBankSelect::InstrInsertPoint::isSplit() const {
806  // If the insertion point is after a terminator, we need to split.
807  if (!Before)
808    return Instr.isTerminator();
809  // If we insert before an instruction that is after a terminator,
810  // we are still after a terminator.
811  return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
812}
813
814uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
815  // Even if we need to split, because we insert between terminators,
816  // this split has actually the same frequency as the instruction.
817  const MachineBlockFrequencyInfo *MBFI =
818      P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
819  if (!MBFI)
820    return 1;
821  return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
822}
823
824uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
825  const MachineBlockFrequencyInfo *MBFI =
826      P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
827  if (!MBFI)
828    return 1;
829  return MBFI->getBlockFreq(&MBB).getFrequency();
830}
831
832void RegBankSelect::EdgeInsertPoint::materialize() {
833  // If we end up repairing twice at the same place before materializing the
834  // insertion point, we may think we have to split an edge twice.
835  // We should have a factory for the insert point such that identical points
836  // are the same instance.
837  assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
838         "This point has already been split");
839  MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
840  assert(NewBB && "Invalid call to materialize");
841  // We reuse the destination block to hold the information of the new block.
842  DstOrSplit = NewBB;
843}
844
845uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
846  const MachineBlockFrequencyInfo *MBFI =
847      P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
848  if (!MBFI)
849    return 1;
850  if (WasMaterialized)
851    return MBFI->getBlockFreq(DstOrSplit).getFrequency();
852
853  const MachineBranchProbabilityInfo *MBPI =
854      P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
855  if (!MBPI)
856    return 1;
857  // The basic block will be on the edge.
858  return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
859      .getFrequency();
860}
861
862bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
863  // If this is not a critical edge, we should not have used this insert
864  // point. Indeed, either the successor or the predecessor should
865  // have do.
866  assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
867         "Edge is not critical");
868  return Src.canSplitCriticalEdge(DstOrSplit);
869}
870
871RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
872    : LocalFreq(LocalFreq.getFrequency()) {}
873
874bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
875  // Check if this overflows.
876  if (LocalCost + Cost < LocalCost) {
877    saturate();
878    return true;
879  }
880  LocalCost += Cost;
881  return isSaturated();
882}
883
884bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
885  // Check if this overflows.
886  if (NonLocalCost + Cost < NonLocalCost) {
887    saturate();
888    return true;
889  }
890  NonLocalCost += Cost;
891  return isSaturated();
892}
893
894bool RegBankSelect::MappingCost::isSaturated() const {
895  return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
896         LocalFreq == UINT64_MAX;
897}
898
899void RegBankSelect::MappingCost::saturate() {
900  *this = ImpossibleCost();
901  --LocalCost;
902}
903
904RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
905  return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
906}
907
908bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
909  // Sort out the easy cases.
910  if (*this == Cost)
911    return false;
912  // If one is impossible to realize the other is cheaper unless it is
913  // impossible as well.
914  if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
915    return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
916  // If one is saturated the other is cheaper, unless it is saturated
917  // as well.
918  if (isSaturated() || Cost.isSaturated())
919    return isSaturated() < Cost.isSaturated();
920  // At this point we know both costs hold sensible values.
921
922  // If both values have a different base frequency, there is no much
923  // we can do but to scale everything.
924  // However, if they have the same base frequency we can avoid making
925  // complicated computation.
926  uint64_t ThisLocalAdjust;
927  uint64_t OtherLocalAdjust;
928  if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
929
930    // At this point, we know the local costs are comparable.
931    // Do the case that do not involve potential overflow first.
932    if (NonLocalCost == Cost.NonLocalCost)
933      // Since the non-local costs do not discriminate on the result,
934      // just compare the local costs.
935      return LocalCost < Cost.LocalCost;
936
937    // The base costs are comparable so we may only keep the relative
938    // value to increase our chances of avoiding overflows.
939    ThisLocalAdjust = 0;
940    OtherLocalAdjust = 0;
941    if (LocalCost < Cost.LocalCost)
942      OtherLocalAdjust = Cost.LocalCost - LocalCost;
943    else
944      ThisLocalAdjust = LocalCost - Cost.LocalCost;
945  } else {
946    ThisLocalAdjust = LocalCost;
947    OtherLocalAdjust = Cost.LocalCost;
948  }
949
950  // The non-local costs are comparable, just keep the relative value.
951  uint64_t ThisNonLocalAdjust = 0;
952  uint64_t OtherNonLocalAdjust = 0;
953  if (NonLocalCost < Cost.NonLocalCost)
954    OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
955  else
956    ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
957  // Scale everything to make them comparable.
958  uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
959  // Check for overflow on that operation.
960  bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
961                                           ThisScaledCost < LocalFreq);
962  uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
963  // Check for overflow on the last operation.
964  bool OtherOverflows =
965      OtherLocalAdjust &&
966      (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
967  // Add the non-local costs.
968  ThisOverflows |= ThisNonLocalAdjust &&
969                   ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
970  ThisScaledCost += ThisNonLocalAdjust;
971  OtherOverflows |= OtherNonLocalAdjust &&
972                    OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
973  OtherScaledCost += OtherNonLocalAdjust;
974  // If both overflows, we cannot compare without additional
975  // precision, e.g., APInt. Just give up on that case.
976  if (ThisOverflows && OtherOverflows)
977    return false;
978  // If one overflows but not the other, we can still compare.
979  if (ThisOverflows || OtherOverflows)
980    return ThisOverflows < OtherOverflows;
981  // Otherwise, just compare the values.
982  return ThisScaledCost < OtherScaledCost;
983}
984
985bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
986  return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
987         LocalFreq == Cost.LocalFreq;
988}
989
990#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
991LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
992  print(dbgs());
993  dbgs() << '\n';
994}
995#endif
996
997void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
998  if (*this == ImpossibleCost()) {
999    OS << "impossible";
1000    return;
1001  }
1002  if (isSaturated()) {
1003    OS << "saturated";
1004    return;
1005  }
1006  OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;
1007}
1008