BranchFolding.cpp revision 363496
1//===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass forwards branches to unconditional branches to make them branch
10// directly to the target block.  This pass often results in dead MBB's, which
11// it then removes.
12//
13// Note that this pass must be run after register allocation, it cannot handle
14// SSA form. It also must handle virtual registers for targets that emit virtual
15// ISA (e.g. NVPTX).
16//
17//===----------------------------------------------------------------------===//
18
19#include "BranchFolding.h"
20#include "llvm/ADT/BitVector.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/SmallSet.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Analysis/ProfileSummaryInfo.h"
28#include "llvm/CodeGen/Analysis.h"
29#include "llvm/CodeGen/LivePhysRegs.h"
30#include "llvm/CodeGen/MachineBasicBlock.h"
31#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineJumpTableInfo.h"
38#include "llvm/CodeGen/MachineLoopInfo.h"
39#include "llvm/CodeGen/MachineModuleInfo.h"
40#include "llvm/CodeGen/MachineOperand.h"
41#include "llvm/CodeGen/MachineRegisterInfo.h"
42#include "llvm/CodeGen/MachineSizeOpts.h"
43#include "llvm/CodeGen/TargetInstrInfo.h"
44#include "llvm/CodeGen/TargetOpcodes.h"
45#include "llvm/CodeGen/TargetPassConfig.h"
46#include "llvm/CodeGen/TargetRegisterInfo.h"
47#include "llvm/CodeGen/TargetSubtargetInfo.h"
48#include "llvm/IR/DebugInfoMetadata.h"
49#include "llvm/IR/DebugLoc.h"
50#include "llvm/IR/Function.h"
51#include "llvm/InitializePasses.h"
52#include "llvm/MC/LaneBitmask.h"
53#include "llvm/MC/MCRegisterInfo.h"
54#include "llvm/Pass.h"
55#include "llvm/Support/BlockFrequency.h"
56#include "llvm/Support/BranchProbability.h"
57#include "llvm/Support/CommandLine.h"
58#include "llvm/Support/Debug.h"
59#include "llvm/Support/ErrorHandling.h"
60#include "llvm/Support/raw_ostream.h"
61#include "llvm/Target/TargetMachine.h"
62#include <cassert>
63#include <cstddef>
64#include <iterator>
65#include <numeric>
66#include <vector>
67
68using namespace llvm;
69
70#define DEBUG_TYPE "branch-folder"
71
72STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
73STATISTIC(NumBranchOpts, "Number of branches optimized");
74STATISTIC(NumTailMerge , "Number of block tails merged");
75STATISTIC(NumHoist     , "Number of times common instructions are hoisted");
76STATISTIC(NumTailCalls,  "Number of tail calls optimized");
77
78static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
79                              cl::init(cl::BOU_UNSET), cl::Hidden);
80
81// Throttle for huge numbers of predecessors (compile speed problems)
82static cl::opt<unsigned>
83TailMergeThreshold("tail-merge-threshold",
84          cl::desc("Max number of predecessors to consider tail merging"),
85          cl::init(150), cl::Hidden);
86
87// Heuristic for tail merging (and, inversely, tail duplication).
88// TODO: This should be replaced with a target query.
89static cl::opt<unsigned>
90TailMergeSize("tail-merge-size",
91              cl::desc("Min number of instructions to consider tail merging"),
92              cl::init(3), cl::Hidden);
93
94namespace {
95
96  /// BranchFolderPass - Wrap branch folder in a machine function pass.
97  class BranchFolderPass : public MachineFunctionPass {
98  public:
99    static char ID;
100
101    explicit BranchFolderPass(): MachineFunctionPass(ID) {}
102
103    bool runOnMachineFunction(MachineFunction &MF) override;
104
105    void getAnalysisUsage(AnalysisUsage &AU) const override {
106      AU.addRequired<MachineBlockFrequencyInfo>();
107      AU.addRequired<MachineBranchProbabilityInfo>();
108      AU.addRequired<ProfileSummaryInfoWrapperPass>();
109      AU.addRequired<TargetPassConfig>();
110      MachineFunctionPass::getAnalysisUsage(AU);
111    }
112  };
113
114} // end anonymous namespace
115
116char BranchFolderPass::ID = 0;
117
118char &llvm::BranchFolderPassID = BranchFolderPass::ID;
119
120INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE,
121                "Control Flow Optimizer", false, false)
122
123bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
124  if (skipFunction(MF.getFunction()))
125    return false;
126
127  TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
128  // TailMerge can create jump into if branches that make CFG irreducible for
129  // HW that requires structurized CFG.
130  bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
131                         PassConfig->getEnableTailMerge();
132  BranchFolder::MBFIWrapper MBBFreqInfo(
133      getAnalysis<MachineBlockFrequencyInfo>());
134  BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo,
135                      getAnalysis<MachineBranchProbabilityInfo>(),
136                      &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
137  auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
138  return Folder.OptimizeFunction(
139      MF, MF.getSubtarget().getInstrInfo(), MF.getSubtarget().getRegisterInfo(),
140      MMIWP ? &MMIWP->getMMI() : nullptr);
141}
142
143BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist,
144                           MBFIWrapper &FreqInfo,
145                           const MachineBranchProbabilityInfo &ProbInfo,
146                           ProfileSummaryInfo *PSI,
147                           unsigned MinTailLength)
148    : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength),
149      MBBFreqInfo(FreqInfo), MBPI(ProbInfo), PSI(PSI) {
150  if (MinCommonTailLength == 0)
151    MinCommonTailLength = TailMergeSize;
152  switch (FlagEnableTailMerge) {
153  case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break;
154  case cl::BOU_TRUE: EnableTailMerge = true; break;
155  case cl::BOU_FALSE: EnableTailMerge = false; break;
156  }
157}
158
159void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
160  assert(MBB->pred_empty() && "MBB must be dead!");
161  LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
162
163  MachineFunction *MF = MBB->getParent();
164  // drop all successors.
165  while (!MBB->succ_empty())
166    MBB->removeSuccessor(MBB->succ_end()-1);
167
168  // Avoid matching if this pointer gets reused.
169  TriedMerging.erase(MBB);
170
171  // Update call site info.
172  std::for_each(MBB->begin(), MBB->end(), [MF](const MachineInstr &MI) {
173    if (MI.isCall(MachineInstr::IgnoreBundle))
174      MF->eraseCallSiteInfo(&MI);
175  });
176  // Remove the block.
177  MF->erase(MBB);
178  EHScopeMembership.erase(MBB);
179  if (MLI)
180    MLI->removeBlock(MBB);
181}
182
183bool BranchFolder::OptimizeFunction(MachineFunction &MF,
184                                    const TargetInstrInfo *tii,
185                                    const TargetRegisterInfo *tri,
186                                    MachineModuleInfo *mmi,
187                                    MachineLoopInfo *mli, bool AfterPlacement) {
188  if (!tii) return false;
189
190  TriedMerging.clear();
191
192  MachineRegisterInfo &MRI = MF.getRegInfo();
193  AfterBlockPlacement = AfterPlacement;
194  TII = tii;
195  TRI = tri;
196  MMI = mmi;
197  MLI = mli;
198  this->MRI = &MRI;
199
200  UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF);
201  if (!UpdateLiveIns)
202    MRI.invalidateLiveness();
203
204  // Fix CFG.  The later algorithms expect it to be right.
205  bool MadeChange = false;
206  for (MachineBasicBlock &MBB : MF) {
207    MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
208    SmallVector<MachineOperand, 4> Cond;
209    if (!TII->analyzeBranch(MBB, TBB, FBB, Cond, true))
210      MadeChange |= MBB.CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
211  }
212
213  // Recalculate EH scope membership.
214  EHScopeMembership = getEHScopeMembership(MF);
215
216  bool MadeChangeThisIteration = true;
217  while (MadeChangeThisIteration) {
218    MadeChangeThisIteration    = TailMergeBlocks(MF);
219    // No need to clean up if tail merging does not change anything after the
220    // block placement.
221    if (!AfterBlockPlacement || MadeChangeThisIteration)
222      MadeChangeThisIteration |= OptimizeBranches(MF);
223    if (EnableHoistCommonCode)
224      MadeChangeThisIteration |= HoistCommonCode(MF);
225    MadeChange |= MadeChangeThisIteration;
226  }
227
228  // See if any jump tables have become dead as the code generator
229  // did its thing.
230  MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
231  if (!JTI)
232    return MadeChange;
233
234  // Walk the function to find jump tables that are live.
235  BitVector JTIsLive(JTI->getJumpTables().size());
236  for (const MachineBasicBlock &BB : MF) {
237    for (const MachineInstr &I : BB)
238      for (const MachineOperand &Op : I.operands()) {
239        if (!Op.isJTI()) continue;
240
241        // Remember that this JT is live.
242        JTIsLive.set(Op.getIndex());
243      }
244  }
245
246  // Finally, remove dead jump tables.  This happens when the
247  // indirect jump was unreachable (and thus deleted).
248  for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
249    if (!JTIsLive.test(i)) {
250      JTI->RemoveJumpTable(i);
251      MadeChange = true;
252    }
253
254  return MadeChange;
255}
256
257//===----------------------------------------------------------------------===//
258//  Tail Merging of Blocks
259//===----------------------------------------------------------------------===//
260
261/// HashMachineInstr - Compute a hash value for MI and its operands.
262static unsigned HashMachineInstr(const MachineInstr &MI) {
263  unsigned Hash = MI.getOpcode();
264  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
265    const MachineOperand &Op = MI.getOperand(i);
266
267    // Merge in bits from the operand if easy. We can't use MachineOperand's
268    // hash_code here because it's not deterministic and we sort by hash value
269    // later.
270    unsigned OperandHash = 0;
271    switch (Op.getType()) {
272    case MachineOperand::MO_Register:
273      OperandHash = Op.getReg();
274      break;
275    case MachineOperand::MO_Immediate:
276      OperandHash = Op.getImm();
277      break;
278    case MachineOperand::MO_MachineBasicBlock:
279      OperandHash = Op.getMBB()->getNumber();
280      break;
281    case MachineOperand::MO_FrameIndex:
282    case MachineOperand::MO_ConstantPoolIndex:
283    case MachineOperand::MO_JumpTableIndex:
284      OperandHash = Op.getIndex();
285      break;
286    case MachineOperand::MO_GlobalAddress:
287    case MachineOperand::MO_ExternalSymbol:
288      // Global address / external symbol are too hard, don't bother, but do
289      // pull in the offset.
290      OperandHash = Op.getOffset();
291      break;
292    default:
293      break;
294    }
295
296    Hash += ((OperandHash << 3) | Op.getType()) << (i & 31);
297  }
298  return Hash;
299}
300
301/// HashEndOfMBB - Hash the last instruction in the MBB.
302static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) {
303  MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
304  if (I == MBB.end())
305    return 0;
306
307  return HashMachineInstr(*I);
308}
309
310/// Whether MI should be counted as an instruction when calculating common tail.
311static bool countsAsInstruction(const MachineInstr &MI) {
312  return !(MI.isDebugInstr() || MI.isCFIInstruction());
313}
314
315/// Iterate backwards from the given iterator \p I, towards the beginning of the
316/// block. If a MI satisfying 'countsAsInstruction' is found, return an iterator
317/// pointing to that MI. If no such MI is found, return the end iterator.
318static MachineBasicBlock::iterator
319skipBackwardPastNonInstructions(MachineBasicBlock::iterator I,
320                                MachineBasicBlock *MBB) {
321  while (I != MBB->begin()) {
322    --I;
323    if (countsAsInstruction(*I))
324      return I;
325  }
326  return MBB->end();
327}
328
329/// Given two machine basic blocks, return the number of instructions they
330/// actually have in common together at their end. If a common tail is found (at
331/// least by one instruction), then iterators for the first shared instruction
332/// in each block are returned as well.
333///
334/// Non-instructions according to countsAsInstruction are ignored.
335static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
336                                        MachineBasicBlock *MBB2,
337                                        MachineBasicBlock::iterator &I1,
338                                        MachineBasicBlock::iterator &I2) {
339  MachineBasicBlock::iterator MBBI1 = MBB1->end();
340  MachineBasicBlock::iterator MBBI2 = MBB2->end();
341
342  unsigned TailLen = 0;
343  while (true) {
344    MBBI1 = skipBackwardPastNonInstructions(MBBI1, MBB1);
345    MBBI2 = skipBackwardPastNonInstructions(MBBI2, MBB2);
346    if (MBBI1 == MBB1->end() || MBBI2 == MBB2->end())
347      break;
348    if (!MBBI1->isIdenticalTo(*MBBI2) ||
349        // FIXME: This check is dubious. It's used to get around a problem where
350        // people incorrectly expect inline asm directives to remain in the same
351        // relative order. This is untenable because normal compiler
352        // optimizations (like this one) may reorder and/or merge these
353        // directives.
354        MBBI1->isInlineAsm()) {
355      break;
356    }
357    ++TailLen;
358    I1 = MBBI1;
359    I2 = MBBI2;
360  }
361
362  return TailLen;
363}
364
365void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
366                                           MachineBasicBlock &NewDest) {
367  if (UpdateLiveIns) {
368    // OldInst should always point to an instruction.
369    MachineBasicBlock &OldMBB = *OldInst->getParent();
370    LiveRegs.clear();
371    LiveRegs.addLiveOuts(OldMBB);
372    // Move backward to the place where will insert the jump.
373    MachineBasicBlock::iterator I = OldMBB.end();
374    do {
375      --I;
376      LiveRegs.stepBackward(*I);
377    } while (I != OldInst);
378
379    // Merging the tails may have switched some undef operand to non-undef ones.
380    // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
381    // register.
382    for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) {
383      // We computed the liveins with computeLiveIn earlier and should only see
384      // full registers:
385      assert(P.LaneMask == LaneBitmask::getAll() &&
386             "Can only handle full register.");
387      MCPhysReg Reg = P.PhysReg;
388      if (!LiveRegs.available(*MRI, Reg))
389        continue;
390      DebugLoc DL;
391      BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
392    }
393  }
394
395  TII->ReplaceTailWithBranchTo(OldInst, &NewDest);
396  ++NumTailMerge;
397}
398
399MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
400                                            MachineBasicBlock::iterator BBI1,
401                                            const BasicBlock *BB) {
402  if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1))
403    return nullptr;
404
405  MachineFunction &MF = *CurMBB.getParent();
406
407  // Create the fall-through block.
408  MachineFunction::iterator MBBI = CurMBB.getIterator();
409  MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB);
410  CurMBB.getParent()->insert(++MBBI, NewMBB);
411
412  // Move all the successors of this block to the specified block.
413  NewMBB->transferSuccessors(&CurMBB);
414
415  // Add an edge from CurMBB to NewMBB for the fall-through.
416  CurMBB.addSuccessor(NewMBB);
417
418  // Splice the code over.
419  NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());
420
421  // NewMBB belongs to the same loop as CurMBB.
422  if (MLI)
423    if (MachineLoop *ML = MLI->getLoopFor(&CurMBB))
424      ML->addBasicBlockToLoop(NewMBB, MLI->getBase());
425
426  // NewMBB inherits CurMBB's block frequency.
427  MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));
428
429  if (UpdateLiveIns)
430    computeAndAddLiveIns(LiveRegs, *NewMBB);
431
432  // Add the new block to the EH scope.
433  const auto &EHScopeI = EHScopeMembership.find(&CurMBB);
434  if (EHScopeI != EHScopeMembership.end()) {
435    auto n = EHScopeI->second;
436    EHScopeMembership[NewMBB] = n;
437  }
438
439  return NewMBB;
440}
441
442/// EstimateRuntime - Make a rough estimate for how long it will take to run
443/// the specified code.
444static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
445                                MachineBasicBlock::iterator E) {
446  unsigned Time = 0;
447  for (; I != E; ++I) {
448    if (!countsAsInstruction(*I))
449      continue;
450    if (I->isCall())
451      Time += 10;
452    else if (I->mayLoadOrStore())
453      Time += 2;
454    else
455      ++Time;
456  }
457  return Time;
458}
459
460// CurMBB needs to add an unconditional branch to SuccMBB (we removed these
461// branches temporarily for tail merging).  In the case where CurMBB ends
462// with a conditional branch to the next block, optimize by reversing the
463// test and conditionally branching to SuccMBB instead.
464static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB,
465                    const TargetInstrInfo *TII) {
466  MachineFunction *MF = CurMBB->getParent();
467  MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB));
468  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
469  SmallVector<MachineOperand, 4> Cond;
470  DebugLoc dl = CurMBB->findBranchDebugLoc();
471  if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
472    MachineBasicBlock *NextBB = &*I;
473    if (TBB == NextBB && !Cond.empty() && !FBB) {
474      if (!TII->reverseBranchCondition(Cond)) {
475        TII->removeBranch(*CurMBB);
476        TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
477        return;
478      }
479    }
480  }
481  TII->insertBranch(*CurMBB, SuccBB, nullptr,
482                    SmallVector<MachineOperand, 0>(), dl);
483}
484
485bool
486BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const {
487  if (getHash() < o.getHash())
488    return true;
489  if (getHash() > o.getHash())
490    return false;
491  if (getBlock()->getNumber() < o.getBlock()->getNumber())
492    return true;
493  if (getBlock()->getNumber() > o.getBlock()->getNumber())
494    return false;
495  // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
496  // an object with itself.
497#ifndef _GLIBCXX_DEBUG
498  llvm_unreachable("Predecessor appears twice");
499#else
500  return false;
501#endif
502}
503
504BlockFrequency
505BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock *MBB) const {
506  auto I = MergedBBFreq.find(MBB);
507
508  if (I != MergedBBFreq.end())
509    return I->second;
510
511  return MBFI.getBlockFreq(MBB);
512}
513
514void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock *MBB,
515                                             BlockFrequency F) {
516  MergedBBFreq[MBB] = F;
517}
518
519raw_ostream &
520BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS,
521                                          const MachineBasicBlock *MBB) const {
522  return MBFI.printBlockFreq(OS, getBlockFreq(MBB));
523}
524
525raw_ostream &
526BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS,
527                                          const BlockFrequency Freq) const {
528  return MBFI.printBlockFreq(OS, Freq);
529}
530
531void BranchFolder::MBFIWrapper::view(const Twine &Name, bool isSimple) {
532  MBFI.view(Name, isSimple);
533}
534
535uint64_t
536BranchFolder::MBFIWrapper::getEntryFreq() const {
537  return MBFI.getEntryFreq();
538}
539
540/// CountTerminators - Count the number of terminators in the given
541/// block and set I to the position of the first non-terminator, if there
542/// is one, or MBB->end() otherwise.
543static unsigned CountTerminators(MachineBasicBlock *MBB,
544                                 MachineBasicBlock::iterator &I) {
545  I = MBB->end();
546  unsigned NumTerms = 0;
547  while (true) {
548    if (I == MBB->begin()) {
549      I = MBB->end();
550      break;
551    }
552    --I;
553    if (!I->isTerminator()) break;
554    ++NumTerms;
555  }
556  return NumTerms;
557}
558
559/// A no successor, non-return block probably ends in unreachable and is cold.
560/// Also consider a block that ends in an indirect branch to be a return block,
561/// since many targets use plain indirect branches to return.
562static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) {
563  if (!MBB->succ_empty())
564    return false;
565  if (MBB->empty())
566    return true;
567  return !(MBB->back().isReturn() || MBB->back().isIndirectBranch());
568}
569
570/// ProfitableToMerge - Check if two machine basic blocks have a common tail
571/// and decide if it would be profitable to merge those tails.  Return the
572/// length of the common tail and iterators to the first common instruction
573/// in each block.
574/// MBB1, MBB2      The blocks to check
575/// MinCommonTailLength  Minimum size of tail block to be merged.
576/// CommonTailLen   Out parameter to record the size of the shared tail between
577///                 MBB1 and MBB2
578/// I1, I2          Iterator references that will be changed to point to the first
579///                 instruction in the common tail shared by MBB1,MBB2
580/// SuccBB          A common successor of MBB1, MBB2 which are in a canonical form
581///                 relative to SuccBB
582/// PredBB          The layout predecessor of SuccBB, if any.
583/// EHScopeMembership  map from block to EH scope #.
584/// AfterPlacement  True if we are merging blocks after layout. Stricter
585///                 thresholds apply to prevent undoing tail-duplication.
586static bool
587ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
588                  unsigned MinCommonTailLength, unsigned &CommonTailLen,
589                  MachineBasicBlock::iterator &I1,
590                  MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB,
591                  MachineBasicBlock *PredBB,
592                  DenseMap<const MachineBasicBlock *, int> &EHScopeMembership,
593                  bool AfterPlacement,
594                  BranchFolder::MBFIWrapper &MBBFreqInfo,
595                  ProfileSummaryInfo *PSI) {
596  // It is never profitable to tail-merge blocks from two different EH scopes.
597  if (!EHScopeMembership.empty()) {
598    auto EHScope1 = EHScopeMembership.find(MBB1);
599    assert(EHScope1 != EHScopeMembership.end());
600    auto EHScope2 = EHScopeMembership.find(MBB2);
601    assert(EHScope2 != EHScopeMembership.end());
602    if (EHScope1->second != EHScope2->second)
603      return false;
604  }
605
606  CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2);
607  if (CommonTailLen == 0)
608    return false;
609  LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1)
610                    << " and " << printMBBReference(*MBB2) << " is "
611                    << CommonTailLen << '\n');
612
613  // Move the iterators to the beginning of the MBB if we only got debug
614  // instructions before the tail. This is to avoid splitting a block when we
615  // only got debug instructions before the tail (to be invariant on -g).
616  if (skipDebugInstructionsForward(MBB1->begin(), MBB1->end()) == I1)
617    I1 = MBB1->begin();
618  if (skipDebugInstructionsForward(MBB2->begin(), MBB2->end()) == I2)
619    I2 = MBB2->begin();
620
621  bool FullBlockTail1 = I1 == MBB1->begin();
622  bool FullBlockTail2 = I2 == MBB2->begin();
623
624  // It's almost always profitable to merge any number of non-terminator
625  // instructions with the block that falls through into the common successor.
626  // This is true only for a single successor. For multiple successors, we are
627  // trading a conditional branch for an unconditional one.
628  // TODO: Re-visit successor size for non-layout tail merging.
629  if ((MBB1 == PredBB || MBB2 == PredBB) &&
630      (!AfterPlacement || MBB1->succ_size() == 1)) {
631    MachineBasicBlock::iterator I;
632    unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
633    if (CommonTailLen > NumTerms)
634      return true;
635  }
636
637  // If these are identical non-return blocks with no successors, merge them.
638  // Such blocks are typically cold calls to noreturn functions like abort, and
639  // are unlikely to become a fallthrough target after machine block placement.
640  // Tail merging these blocks is unlikely to create additional unconditional
641  // branches, and will reduce the size of this cold code.
642  if (FullBlockTail1 && FullBlockTail2 &&
643      blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2))
644    return true;
645
646  // If one of the blocks can be completely merged and happens to be in
647  // a position where the other could fall through into it, merge any number
648  // of instructions, because it can be done without a branch.
649  // TODO: If the blocks are not adjacent, move one of them so that they are?
650  if (MBB1->isLayoutSuccessor(MBB2) && FullBlockTail2)
651    return true;
652  if (MBB2->isLayoutSuccessor(MBB1) && FullBlockTail1)
653    return true;
654
655  // If both blocks are identical and end in a branch, merge them unless they
656  // both have a fallthrough predecessor and successor.
657  // We can only do this after block placement because it depends on whether
658  // there are fallthroughs, and we don't know until after layout.
659  if (AfterPlacement && FullBlockTail1 && FullBlockTail2) {
660    auto BothFallThrough = [](MachineBasicBlock *MBB) {
661      if (MBB->succ_size() != 0 && !MBB->canFallThrough())
662        return false;
663      MachineFunction::iterator I(MBB);
664      MachineFunction *MF = MBB->getParent();
665      return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough();
666    };
667    if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2))
668      return true;
669  }
670
671  // If both blocks have an unconditional branch temporarily stripped out,
672  // count that as an additional common instruction for the following
673  // heuristics. This heuristic is only accurate for single-succ blocks, so to
674  // make sure that during layout merging and duplicating don't crash, we check
675  // for that when merging during layout.
676  unsigned EffectiveTailLen = CommonTailLen;
677  if (SuccBB && MBB1 != PredBB && MBB2 != PredBB &&
678      (MBB1->succ_size() == 1 || !AfterPlacement) &&
679      !MBB1->back().isBarrier() &&
680      !MBB2->back().isBarrier())
681    ++EffectiveTailLen;
682
683  // Check if the common tail is long enough to be worthwhile.
684  if (EffectiveTailLen >= MinCommonTailLength)
685    return true;
686
687  // If we are optimizing for code size, 2 instructions in common is enough if
688  // we don't have to split a block.  At worst we will be introducing 1 new
689  // branch instruction, which is likely to be smaller than the 2
690  // instructions that would be deleted in the merge.
691  MachineFunction *MF = MBB1->getParent();
692  bool OptForSize =
693      MF->getFunction().hasOptSize() ||
694      (llvm::shouldOptimizeForSize(MBB1, PSI, &MBBFreqInfo.getMBFI()) &&
695       llvm::shouldOptimizeForSize(MBB2, PSI, &MBBFreqInfo.getMBFI()));
696  return EffectiveTailLen >= 2 && OptForSize &&
697         (FullBlockTail1 || FullBlockTail2);
698}
699
700unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
701                                        unsigned MinCommonTailLength,
702                                        MachineBasicBlock *SuccBB,
703                                        MachineBasicBlock *PredBB) {
704  unsigned maxCommonTailLength = 0U;
705  SameTails.clear();
706  MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
707  MPIterator HighestMPIter = std::prev(MergePotentials.end());
708  for (MPIterator CurMPIter = std::prev(MergePotentials.end()),
709                  B = MergePotentials.begin();
710       CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) {
711    for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) {
712      unsigned CommonTailLen;
713      if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(),
714                            MinCommonTailLength,
715                            CommonTailLen, TrialBBI1, TrialBBI2,
716                            SuccBB, PredBB,
717                            EHScopeMembership,
718                            AfterBlockPlacement, MBBFreqInfo, PSI)) {
719        if (CommonTailLen > maxCommonTailLength) {
720          SameTails.clear();
721          maxCommonTailLength = CommonTailLen;
722          HighestMPIter = CurMPIter;
723          SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1));
724        }
725        if (HighestMPIter == CurMPIter &&
726            CommonTailLen == maxCommonTailLength)
727          SameTails.push_back(SameTailElt(I, TrialBBI2));
728      }
729      if (I == B)
730        break;
731    }
732  }
733  return maxCommonTailLength;
734}
735
736void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
737                                        MachineBasicBlock *SuccBB,
738                                        MachineBasicBlock *PredBB) {
739  MPIterator CurMPIter, B;
740  for (CurMPIter = std::prev(MergePotentials.end()),
741      B = MergePotentials.begin();
742       CurMPIter->getHash() == CurHash; --CurMPIter) {
743    // Put the unconditional branch back, if we need one.
744    MachineBasicBlock *CurMBB = CurMPIter->getBlock();
745    if (SuccBB && CurMBB != PredBB)
746      FixTail(CurMBB, SuccBB, TII);
747    if (CurMPIter == B)
748      break;
749  }
750  if (CurMPIter->getHash() != CurHash)
751    CurMPIter++;
752  MergePotentials.erase(CurMPIter, MergePotentials.end());
753}
754
755bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
756                                             MachineBasicBlock *SuccBB,
757                                             unsigned maxCommonTailLength,
758                                             unsigned &commonTailIndex) {
759  commonTailIndex = 0;
760  unsigned TimeEstimate = ~0U;
761  for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
762    // Use PredBB if possible; that doesn't require a new branch.
763    if (SameTails[i].getBlock() == PredBB) {
764      commonTailIndex = i;
765      break;
766    }
767    // Otherwise, make a (fairly bogus) choice based on estimate of
768    // how long it will take the various blocks to execute.
769    unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(),
770                                 SameTails[i].getTailStartPos());
771    if (t <= TimeEstimate) {
772      TimeEstimate = t;
773      commonTailIndex = i;
774    }
775  }
776
777  MachineBasicBlock::iterator BBI =
778    SameTails[commonTailIndex].getTailStartPos();
779  MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
780
781  LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size "
782                    << maxCommonTailLength);
783
784  // If the split block unconditionally falls-thru to SuccBB, it will be
785  // merged. In control flow terms it should then take SuccBB's name. e.g. If
786  // SuccBB is an inner loop, the common tail is still part of the inner loop.
787  const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ?
788    SuccBB->getBasicBlock() : MBB->getBasicBlock();
789  MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB);
790  if (!newMBB) {
791    LLVM_DEBUG(dbgs() << "... failed!");
792    return false;
793  }
794
795  SameTails[commonTailIndex].setBlock(newMBB);
796  SameTails[commonTailIndex].setTailStartPos(newMBB->begin());
797
798  // If we split PredBB, newMBB is the new predecessor.
799  if (PredBB == MBB)
800    PredBB = newMBB;
801
802  return true;
803}
804
805static void
806mergeOperations(MachineBasicBlock::iterator MBBIStartPos,
807                MachineBasicBlock &MBBCommon) {
808  MachineBasicBlock *MBB = MBBIStartPos->getParent();
809  // Note CommonTailLen does not necessarily matches the size of
810  // the common BB nor all its instructions because of debug
811  // instructions differences.
812  unsigned CommonTailLen = 0;
813  for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos)
814    ++CommonTailLen;
815
816  MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin();
817  MachineBasicBlock::reverse_iterator MBBIE = MBB->rend();
818  MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin();
819  MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend();
820
821  while (CommonTailLen--) {
822    assert(MBBI != MBBIE && "Reached BB end within common tail length!");
823    (void)MBBIE;
824
825    if (!countsAsInstruction(*MBBI)) {
826      ++MBBI;
827      continue;
828    }
829
830    while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon))
831      ++MBBICommon;
832
833    assert(MBBICommon != MBBIECommon &&
834           "Reached BB end within common tail length!");
835    assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!");
836
837    // Merge MMOs from memory operations in the common block.
838    if (MBBICommon->mayLoadOrStore())
839      MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI});
840    // Drop undef flags if they aren't present in all merged instructions.
841    for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) {
842      MachineOperand &MO = MBBICommon->getOperand(I);
843      if (MO.isReg() && MO.isUndef()) {
844        const MachineOperand &OtherMO = MBBI->getOperand(I);
845        if (!OtherMO.isUndef())
846          MO.setIsUndef(false);
847      }
848    }
849
850    ++MBBI;
851    ++MBBICommon;
852  }
853}
854
855void BranchFolder::mergeCommonTails(unsigned commonTailIndex) {
856  MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
857
858  std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size());
859  for (unsigned int i = 0 ; i != SameTails.size() ; ++i) {
860    if (i != commonTailIndex) {
861      NextCommonInsts[i] = SameTails[i].getTailStartPos();
862      mergeOperations(SameTails[i].getTailStartPos(), *MBB);
863    } else {
864      assert(SameTails[i].getTailStartPos() == MBB->begin() &&
865          "MBB is not a common tail only block");
866    }
867  }
868
869  for (auto &MI : *MBB) {
870    if (!countsAsInstruction(MI))
871      continue;
872    DebugLoc DL = MI.getDebugLoc();
873    for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) {
874      if (i == commonTailIndex)
875        continue;
876
877      auto &Pos = NextCommonInsts[i];
878      assert(Pos != SameTails[i].getBlock()->end() &&
879          "Reached BB end within common tail");
880      while (!countsAsInstruction(*Pos)) {
881        ++Pos;
882        assert(Pos != SameTails[i].getBlock()->end() &&
883            "Reached BB end within common tail");
884      }
885      assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!");
886      DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc());
887      NextCommonInsts[i] = ++Pos;
888    }
889    MI.setDebugLoc(DL);
890  }
891
892  if (UpdateLiveIns) {
893    LivePhysRegs NewLiveIns(*TRI);
894    computeLiveIns(NewLiveIns, *MBB);
895    LiveRegs.init(*TRI);
896
897    // The flag merging may lead to some register uses no longer using the
898    // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
899    for (MachineBasicBlock *Pred : MBB->predecessors()) {
900      LiveRegs.clear();
901      LiveRegs.addLiveOuts(*Pred);
902      MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator();
903      for (unsigned Reg : NewLiveIns) {
904        if (!LiveRegs.available(*MRI, Reg))
905          continue;
906        DebugLoc DL;
907        BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF),
908                Reg);
909      }
910    }
911
912    MBB->clearLiveIns();
913    addLiveIns(*MBB, NewLiveIns);
914  }
915}
916
917// See if any of the blocks in MergePotentials (which all have SuccBB as a
918// successor, or all have no successor if it is null) can be tail-merged.
919// If there is a successor, any blocks in MergePotentials that are not
920// tail-merged and are not immediately before Succ must have an unconditional
921// branch to Succ added (but the predecessor/successor lists need no
922// adjustment). The lone predecessor of Succ that falls through into Succ,
923// if any, is given in PredBB.
924// MinCommonTailLength - Except for the special cases below, tail-merge if
925// there are at least this many instructions in common.
926bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
927                                      MachineBasicBlock *PredBB,
928                                      unsigned MinCommonTailLength) {
929  bool MadeChange = false;
930
931  LLVM_DEBUG(
932      dbgs() << "\nTryTailMergeBlocks: ";
933      for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs()
934      << printMBBReference(*MergePotentials[i].getBlock())
935      << (i == e - 1 ? "" : ", ");
936      dbgs() << "\n"; if (SuccBB) {
937        dbgs() << "  with successor " << printMBBReference(*SuccBB) << '\n';
938        if (PredBB)
939          dbgs() << "  which has fall-through from "
940                 << printMBBReference(*PredBB) << "\n";
941      } dbgs() << "Looking for common tails of at least "
942               << MinCommonTailLength << " instruction"
943               << (MinCommonTailLength == 1 ? "" : "s") << '\n';);
944
945  // Sort by hash value so that blocks with identical end sequences sort
946  // together.
947  array_pod_sort(MergePotentials.begin(), MergePotentials.end());
948
949  // Walk through equivalence sets looking for actual exact matches.
950  while (MergePotentials.size() > 1) {
951    unsigned CurHash = MergePotentials.back().getHash();
952
953    // Build SameTails, identifying the set of blocks with this hash code
954    // and with the maximum number of instructions in common.
955    unsigned maxCommonTailLength = ComputeSameTails(CurHash,
956                                                    MinCommonTailLength,
957                                                    SuccBB, PredBB);
958
959    // If we didn't find any pair that has at least MinCommonTailLength
960    // instructions in common, remove all blocks with this hash code and retry.
961    if (SameTails.empty()) {
962      RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
963      continue;
964    }
965
966    // If one of the blocks is the entire common tail (and is not the entry
967    // block/an EH pad, which we can't jump to), we can treat all blocks with
968    // this same tail at once.  Use PredBB if that is one of the possibilities,
969    // as that will not introduce any extra branches.
970    MachineBasicBlock *EntryBB =
971        &MergePotentials.front().getBlock()->getParent()->front();
972    unsigned commonTailIndex = SameTails.size();
973    // If there are two blocks, check to see if one can be made to fall through
974    // into the other.
975    if (SameTails.size() == 2 &&
976        SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) &&
977        SameTails[1].tailIsWholeBlock() && !SameTails[1].getBlock()->isEHPad())
978      commonTailIndex = 1;
979    else if (SameTails.size() == 2 &&
980             SameTails[1].getBlock()->isLayoutSuccessor(
981                 SameTails[0].getBlock()) &&
982             SameTails[0].tailIsWholeBlock() &&
983             !SameTails[0].getBlock()->isEHPad())
984      commonTailIndex = 0;
985    else {
986      // Otherwise just pick one, favoring the fall-through predecessor if
987      // there is one.
988      for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
989        MachineBasicBlock *MBB = SameTails[i].getBlock();
990        if ((MBB == EntryBB || MBB->isEHPad()) &&
991            SameTails[i].tailIsWholeBlock())
992          continue;
993        if (MBB == PredBB) {
994          commonTailIndex = i;
995          break;
996        }
997        if (SameTails[i].tailIsWholeBlock())
998          commonTailIndex = i;
999      }
1000    }
1001
1002    if (commonTailIndex == SameTails.size() ||
1003        (SameTails[commonTailIndex].getBlock() == PredBB &&
1004         !SameTails[commonTailIndex].tailIsWholeBlock())) {
1005      // None of the blocks consist entirely of the common tail.
1006      // Split a block so that one does.
1007      if (!CreateCommonTailOnlyBlock(PredBB, SuccBB,
1008                                     maxCommonTailLength, commonTailIndex)) {
1009        RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
1010        continue;
1011      }
1012    }
1013
1014    MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
1015
1016    // Recompute common tail MBB's edge weights and block frequency.
1017    setCommonTailEdgeWeights(*MBB);
1018
1019    // Merge debug locations, MMOs and undef flags across identical instructions
1020    // for common tail.
1021    mergeCommonTails(commonTailIndex);
1022
1023    // MBB is common tail.  Adjust all other BB's to jump to this one.
1024    // Traversal must be forwards so erases work.
1025    LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB)
1026                      << " for ");
1027    for (unsigned int i=0, e = SameTails.size(); i != e; ++i) {
1028      if (commonTailIndex == i)
1029        continue;
1030      LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock())
1031                        << (i == e - 1 ? "" : ", "));
1032      // Hack the end off BB i, making it jump to BB commonTailIndex instead.
1033      replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB);
1034      // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
1035      MergePotentials.erase(SameTails[i].getMPIter());
1036    }
1037    LLVM_DEBUG(dbgs() << "\n");
1038    // We leave commonTailIndex in the worklist in case there are other blocks
1039    // that match it with a smaller number of instructions.
1040    MadeChange = true;
1041  }
1042  return MadeChange;
1043}
1044
1045bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
1046  bool MadeChange = false;
1047  if (!EnableTailMerge)
1048    return MadeChange;
1049
1050  // First find blocks with no successors.
1051  // Block placement may create new tail merging opportunities for these blocks.
1052  MergePotentials.clear();
1053  for (MachineBasicBlock &MBB : MF) {
1054    if (MergePotentials.size() == TailMergeThreshold)
1055      break;
1056    if (!TriedMerging.count(&MBB) && MBB.succ_empty())
1057      MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB));
1058  }
1059
1060  // If this is a large problem, avoid visiting the same basic blocks
1061  // multiple times.
1062  if (MergePotentials.size() == TailMergeThreshold)
1063    for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1064      TriedMerging.insert(MergePotentials[i].getBlock());
1065
1066  // See if we can do any tail merging on those.
1067  if (MergePotentials.size() >= 2)
1068    MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength);
1069
1070  // Look at blocks (IBB) with multiple predecessors (PBB).
1071  // We change each predecessor to a canonical form, by
1072  // (1) temporarily removing any unconditional branch from the predecessor
1073  // to IBB, and
1074  // (2) alter conditional branches so they branch to the other block
1075  // not IBB; this may require adding back an unconditional branch to IBB
1076  // later, where there wasn't one coming in.  E.g.
1077  //   Bcc IBB
1078  //   fallthrough to QBB
1079  // here becomes
1080  //   Bncc QBB
1081  // with a conceptual B to IBB after that, which never actually exists.
1082  // With those changes, we see whether the predecessors' tails match,
1083  // and merge them if so.  We change things out of canonical form and
1084  // back to the way they were later in the process.  (OptimizeBranches
1085  // would undo some of this, but we can't use it, because we'd get into
1086  // a compile-time infinite loop repeatedly doing and undoing the same
1087  // transformations.)
1088
1089  for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1090       I != E; ++I) {
1091    if (I->pred_size() < 2) continue;
1092    SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
1093    MachineBasicBlock *IBB = &*I;
1094    MachineBasicBlock *PredBB = &*std::prev(I);
1095    MergePotentials.clear();
1096    MachineLoop *ML;
1097
1098    // Bail if merging after placement and IBB is the loop header because
1099    // -- If merging predecessors that belong to the same loop as IBB, the
1100    // common tail of merged predecessors may become the loop top if block
1101    // placement is called again and the predecessors may branch to this common
1102    // tail and require more branches. This can be relaxed if
1103    // MachineBlockPlacement::findBestLoopTop is more flexible.
1104    // --If merging predecessors that do not belong to the same loop as IBB, the
1105    // loop info of IBB's loop and the other loops may be affected. Calling the
1106    // block placement again may make big change to the layout and eliminate the
1107    // reason to do tail merging here.
1108    if (AfterBlockPlacement && MLI) {
1109      ML = MLI->getLoopFor(IBB);
1110      if (ML && IBB == ML->getHeader())
1111        continue;
1112    }
1113
1114    for (MachineBasicBlock *PBB : I->predecessors()) {
1115      if (MergePotentials.size() == TailMergeThreshold)
1116        break;
1117
1118      if (TriedMerging.count(PBB))
1119        continue;
1120
1121      // Skip blocks that loop to themselves, can't tail merge these.
1122      if (PBB == IBB)
1123        continue;
1124
1125      // Visit each predecessor only once.
1126      if (!UniquePreds.insert(PBB).second)
1127        continue;
1128
1129      // Skip blocks which may jump to a landing pad. Can't tail merge these.
1130      if (PBB->hasEHPadSuccessor())
1131        continue;
1132
1133      // After block placement, only consider predecessors that belong to the
1134      // same loop as IBB.  The reason is the same as above when skipping loop
1135      // header.
1136      if (AfterBlockPlacement && MLI)
1137        if (ML != MLI->getLoopFor(PBB))
1138          continue;
1139
1140      MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1141      SmallVector<MachineOperand, 4> Cond;
1142      if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) {
1143        // Failing case: IBB is the target of a cbr, and we cannot reverse the
1144        // branch.
1145        SmallVector<MachineOperand, 4> NewCond(Cond);
1146        if (!Cond.empty() && TBB == IBB) {
1147          if (TII->reverseBranchCondition(NewCond))
1148            continue;
1149          // This is the QBB case described above
1150          if (!FBB) {
1151            auto Next = ++PBB->getIterator();
1152            if (Next != MF.end())
1153              FBB = &*Next;
1154          }
1155        }
1156
1157        // Remove the unconditional branch at the end, if any.
1158        if (TBB && (Cond.empty() || FBB)) {
1159          DebugLoc dl = PBB->findBranchDebugLoc();
1160          TII->removeBranch(*PBB);
1161          if (!Cond.empty())
1162            // reinsert conditional branch only, for now
1163            TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
1164                              NewCond, dl);
1165        }
1166
1167        MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB));
1168      }
1169    }
1170
1171    // If this is a large problem, avoid visiting the same basic blocks multiple
1172    // times.
1173    if (MergePotentials.size() == TailMergeThreshold)
1174      for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1175        TriedMerging.insert(MergePotentials[i].getBlock());
1176
1177    if (MergePotentials.size() >= 2)
1178      MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength);
1179
1180    // Reinsert an unconditional branch if needed. The 1 below can occur as a
1181    // result of removing blocks in TryTailMergeBlocks.
1182    PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks
1183    if (MergePotentials.size() == 1 &&
1184        MergePotentials.begin()->getBlock() != PredBB)
1185      FixTail(MergePotentials.begin()->getBlock(), IBB, TII);
1186  }
1187
1188  return MadeChange;
1189}
1190
1191void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) {
1192  SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size());
1193  BlockFrequency AccumulatedMBBFreq;
1194
1195  // Aggregate edge frequency of successor edge j:
1196  //  edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
1197  //  where bb is a basic block that is in SameTails.
1198  for (const auto &Src : SameTails) {
1199    const MachineBasicBlock *SrcMBB = Src.getBlock();
1200    BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB);
1201    AccumulatedMBBFreq += BlockFreq;
1202
1203    // It is not necessary to recompute edge weights if TailBB has less than two
1204    // successors.
1205    if (TailMBB.succ_size() <= 1)
1206      continue;
1207
1208    auto EdgeFreq = EdgeFreqLs.begin();
1209
1210    for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1211         SuccI != SuccE; ++SuccI, ++EdgeFreq)
1212      *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI);
1213  }
1214
1215  MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq);
1216
1217  if (TailMBB.succ_size() <= 1)
1218    return;
1219
1220  auto SumEdgeFreq =
1221      std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0))
1222          .getFrequency();
1223  auto EdgeFreq = EdgeFreqLs.begin();
1224
1225  if (SumEdgeFreq > 0) {
1226    for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1227         SuccI != SuccE; ++SuccI, ++EdgeFreq) {
1228      auto Prob = BranchProbability::getBranchProbability(
1229          EdgeFreq->getFrequency(), SumEdgeFreq);
1230      TailMBB.setSuccProbability(SuccI, Prob);
1231    }
1232  }
1233}
1234
1235//===----------------------------------------------------------------------===//
1236//  Branch Optimization
1237//===----------------------------------------------------------------------===//
1238
1239bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
1240  bool MadeChange = false;
1241
1242  // Make sure blocks are numbered in order
1243  MF.RenumberBlocks();
1244  // Renumbering blocks alters EH scope membership, recalculate it.
1245  EHScopeMembership = getEHScopeMembership(MF);
1246
1247  for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1248       I != E; ) {
1249    MachineBasicBlock *MBB = &*I++;
1250    MadeChange |= OptimizeBlock(MBB);
1251
1252    // If it is dead, remove it.
1253    if (MBB->pred_empty()) {
1254      RemoveDeadBlock(MBB);
1255      MadeChange = true;
1256      ++NumDeadBlocks;
1257    }
1258  }
1259
1260  return MadeChange;
1261}
1262
1263// Blocks should be considered empty if they contain only debug info;
1264// else the debug info would affect codegen.
1265static bool IsEmptyBlock(MachineBasicBlock *MBB) {
1266  return MBB->getFirstNonDebugInstr() == MBB->end();
1267}
1268
1269// Blocks with only debug info and branches should be considered the same
1270// as blocks with only branches.
1271static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) {
1272  MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr();
1273  assert(I != MBB->end() && "empty block!");
1274  return I->isBranch();
1275}
1276
1277/// IsBetterFallthrough - Return true if it would be clearly better to
1278/// fall-through to MBB1 than to fall through into MBB2.  This has to return
1279/// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
1280/// result in infinite loops.
1281static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
1282                                MachineBasicBlock *MBB2) {
1283  assert(MBB1 && MBB2 && "Unknown MachineBasicBlock");
1284
1285  // Right now, we use a simple heuristic.  If MBB2 ends with a call, and
1286  // MBB1 doesn't, we prefer to fall through into MBB1.  This allows us to
1287  // optimize branches that branch to either a return block or an assert block
1288  // into a fallthrough to the return.
1289  MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr();
1290  MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr();
1291  if (MBB1I == MBB1->end() || MBB2I == MBB2->end())
1292    return false;
1293
1294  // If there is a clear successor ordering we make sure that one block
1295  // will fall through to the next
1296  if (MBB1->isSuccessor(MBB2)) return true;
1297  if (MBB2->isSuccessor(MBB1)) return false;
1298
1299  return MBB2I->isCall() && !MBB1I->isCall();
1300}
1301
1302/// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
1303/// instructions on the block.
1304static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) {
1305  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1306  if (I != MBB.end() && I->isBranch())
1307    return I->getDebugLoc();
1308  return DebugLoc();
1309}
1310
1311static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII,
1312                                       MachineBasicBlock &MBB,
1313                                       MachineBasicBlock &PredMBB) {
1314  auto InsertBefore = PredMBB.getFirstTerminator();
1315  for (MachineInstr &MI : MBB.instrs())
1316    if (MI.isDebugInstr()) {
1317      TII->duplicate(PredMBB, InsertBefore, MI);
1318      LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: "
1319                        << MI);
1320    }
1321}
1322
1323static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII,
1324                                     MachineBasicBlock &MBB,
1325                                     MachineBasicBlock &SuccMBB) {
1326  auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin());
1327  for (MachineInstr &MI : MBB.instrs())
1328    if (MI.isDebugInstr()) {
1329      TII->duplicate(SuccMBB, InsertBefore, MI);
1330      LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: "
1331                        << MI);
1332    }
1333}
1334
1335// Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
1336// a basic block is removed we would lose the debug information unless we have
1337// copied the information to a predecessor/successor.
1338//
1339// TODO: This function only handles some simple cases. An alternative would be
1340// to run a heavier analysis, such as the LiveDebugValues pass, before we do
1341// branch folding.
1342static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII,
1343                                           MachineBasicBlock &MBB) {
1344  assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info).");
1345  // If this MBB is the only predecessor of a successor it is legal to copy
1346  // DBG_VALUE instructions to the beginning of the successor.
1347  for (MachineBasicBlock *SuccBB : MBB.successors())
1348    if (SuccBB->pred_size() == 1)
1349      copyDebugInfoToSuccessor(TII, MBB, *SuccBB);
1350  // If this MBB is the only successor of a predecessor it is legal to copy the
1351  // DBG_VALUE instructions to the end of the predecessor (just before the
1352  // terminators, assuming that the terminator isn't affecting the DBG_VALUE).
1353  for (MachineBasicBlock *PredBB : MBB.predecessors())
1354    if (PredBB->succ_size() == 1)
1355      copyDebugInfoToPredecessor(TII, MBB, *PredBB);
1356}
1357
1358bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
1359  bool MadeChange = false;
1360  MachineFunction &MF = *MBB->getParent();
1361ReoptimizeBlock:
1362
1363  MachineFunction::iterator FallThrough = MBB->getIterator();
1364  ++FallThrough;
1365
1366  // Make sure MBB and FallThrough belong to the same EH scope.
1367  bool SameEHScope = true;
1368  if (!EHScopeMembership.empty() && FallThrough != MF.end()) {
1369    auto MBBEHScope = EHScopeMembership.find(MBB);
1370    assert(MBBEHScope != EHScopeMembership.end());
1371    auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough);
1372    assert(FallThroughEHScope != EHScopeMembership.end());
1373    SameEHScope = MBBEHScope->second == FallThroughEHScope->second;
1374  }
1375
1376  // If this block is empty, make everyone use its fall-through, not the block
1377  // explicitly.  Landing pads should not do this since the landing-pad table
1378  // points to this block.  Blocks with their addresses taken shouldn't be
1379  // optimized away.
1380  if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() &&
1381      SameEHScope) {
1382    salvageDebugInfoFromEmptyBlock(TII, *MBB);
1383    // Dead block?  Leave for cleanup later.
1384    if (MBB->pred_empty()) return MadeChange;
1385
1386    if (FallThrough == MF.end()) {
1387      // TODO: Simplify preds to not branch here if possible!
1388    } else if (FallThrough->isEHPad()) {
1389      // Don't rewrite to a landing pad fallthough.  That could lead to the case
1390      // where a BB jumps to more than one landing pad.
1391      // TODO: Is it ever worth rewriting predecessors which don't already
1392      // jump to a landing pad, and so can safely jump to the fallthrough?
1393    } else if (MBB->isSuccessor(&*FallThrough)) {
1394      // Rewrite all predecessors of the old block to go to the fallthrough
1395      // instead.
1396      while (!MBB->pred_empty()) {
1397        MachineBasicBlock *Pred = *(MBB->pred_end()-1);
1398        Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough);
1399      }
1400      // If MBB was the target of a jump table, update jump tables to go to the
1401      // fallthrough instead.
1402      if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1403        MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough);
1404      MadeChange = true;
1405    }
1406    return MadeChange;
1407  }
1408
1409  // Check to see if we can simplify the terminator of the block before this
1410  // one.
1411  MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB));
1412
1413  MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
1414  SmallVector<MachineOperand, 4> PriorCond;
1415  bool PriorUnAnalyzable =
1416      TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
1417  if (!PriorUnAnalyzable) {
1418    // If the CFG for the prior block has extra edges, remove them.
1419    MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB,
1420                                              !PriorCond.empty());
1421
1422    // If the previous branch is conditional and both conditions go to the same
1423    // destination, remove the branch, replacing it with an unconditional one or
1424    // a fall-through.
1425    if (PriorTBB && PriorTBB == PriorFBB) {
1426      DebugLoc dl = getBranchDebugLoc(PrevBB);
1427      TII->removeBranch(PrevBB);
1428      PriorCond.clear();
1429      if (PriorTBB != MBB)
1430        TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1431      MadeChange = true;
1432      ++NumBranchOpts;
1433      goto ReoptimizeBlock;
1434    }
1435
1436    // If the previous block unconditionally falls through to this block and
1437    // this block has no other predecessors, move the contents of this block
1438    // into the prior block. This doesn't usually happen when SimplifyCFG
1439    // has been used, but it can happen if tail merging splits a fall-through
1440    // predecessor of a block.
1441    // This has to check PrevBB->succ_size() because EH edges are ignored by
1442    // AnalyzeBranch.
1443    if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 &&
1444        PrevBB.succ_size() == 1 &&
1445        !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1446      LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
1447                        << "From MBB: " << *MBB);
1448      // Remove redundant DBG_VALUEs first.
1449      if (PrevBB.begin() != PrevBB.end()) {
1450        MachineBasicBlock::iterator PrevBBIter = PrevBB.end();
1451        --PrevBBIter;
1452        MachineBasicBlock::iterator MBBIter = MBB->begin();
1453        // Check if DBG_VALUE at the end of PrevBB is identical to the
1454        // DBG_VALUE at the beginning of MBB.
1455        while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end()
1456               && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) {
1457          if (!MBBIter->isIdenticalTo(*PrevBBIter))
1458            break;
1459          MachineInstr &DuplicateDbg = *MBBIter;
1460          ++MBBIter; -- PrevBBIter;
1461          DuplicateDbg.eraseFromParent();
1462        }
1463      }
1464      PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end());
1465      PrevBB.removeSuccessor(PrevBB.succ_begin());
1466      assert(PrevBB.succ_empty());
1467      PrevBB.transferSuccessors(MBB);
1468      MadeChange = true;
1469      return MadeChange;
1470    }
1471
1472    // If the previous branch *only* branches to *this* block (conditional or
1473    // not) remove the branch.
1474    if (PriorTBB == MBB && !PriorFBB) {
1475      TII->removeBranch(PrevBB);
1476      MadeChange = true;
1477      ++NumBranchOpts;
1478      goto ReoptimizeBlock;
1479    }
1480
1481    // If the prior block branches somewhere else on the condition and here if
1482    // the condition is false, remove the uncond second branch.
1483    if (PriorFBB == MBB) {
1484      DebugLoc dl = getBranchDebugLoc(PrevBB);
1485      TII->removeBranch(PrevBB);
1486      TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1487      MadeChange = true;
1488      ++NumBranchOpts;
1489      goto ReoptimizeBlock;
1490    }
1491
1492    // If the prior block branches here on true and somewhere else on false, and
1493    // if the branch condition is reversible, reverse the branch to create a
1494    // fall-through.
1495    if (PriorTBB == MBB) {
1496      SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1497      if (!TII->reverseBranchCondition(NewPriorCond)) {
1498        DebugLoc dl = getBranchDebugLoc(PrevBB);
1499        TII->removeBranch(PrevBB);
1500        TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl);
1501        MadeChange = true;
1502        ++NumBranchOpts;
1503        goto ReoptimizeBlock;
1504      }
1505    }
1506
1507    // If this block has no successors (e.g. it is a return block or ends with
1508    // a call to a no-return function like abort or __cxa_throw) and if the pred
1509    // falls through into this block, and if it would otherwise fall through
1510    // into the block after this, move this block to the end of the function.
1511    //
1512    // We consider it more likely that execution will stay in the function (e.g.
1513    // due to loops) than it is to exit it.  This asserts in loops etc, moving
1514    // the assert condition out of the loop body.
1515    if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB &&
1516        MachineFunction::iterator(PriorTBB) == FallThrough &&
1517        !MBB->canFallThrough()) {
1518      bool DoTransform = true;
1519
1520      // We have to be careful that the succs of PredBB aren't both no-successor
1521      // blocks.  If neither have successors and if PredBB is the second from
1522      // last block in the function, we'd just keep swapping the two blocks for
1523      // last.  Only do the swap if one is clearly better to fall through than
1524      // the other.
1525      if (FallThrough == --MF.end() &&
1526          !IsBetterFallthrough(PriorTBB, MBB))
1527        DoTransform = false;
1528
1529      if (DoTransform) {
1530        // Reverse the branch so we will fall through on the previous true cond.
1531        SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1532        if (!TII->reverseBranchCondition(NewPriorCond)) {
1533          LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
1534                            << "To make fallthrough to: " << *PriorTBB << "\n");
1535
1536          DebugLoc dl = getBranchDebugLoc(PrevBB);
1537          TII->removeBranch(PrevBB);
1538          TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl);
1539
1540          // Move this block to the end of the function.
1541          MBB->moveAfter(&MF.back());
1542          MadeChange = true;
1543          ++NumBranchOpts;
1544          return MadeChange;
1545        }
1546      }
1547    }
1548  }
1549
1550  bool OptForSize =
1551      MF.getFunction().hasOptSize() ||
1552      llvm::shouldOptimizeForSize(MBB, PSI, &MBBFreqInfo.getMBFI());
1553  if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && OptForSize) {
1554    // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch
1555    // direction, thereby defeating careful block placement and regressing
1556    // performance. Therefore, only consider this for optsize functions.
1557    MachineInstr &TailCall = *MBB->getFirstNonDebugInstr();
1558    if (TII->isUnconditionalTailCall(TailCall)) {
1559      MachineBasicBlock *Pred = *MBB->pred_begin();
1560      MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1561      SmallVector<MachineOperand, 4> PredCond;
1562      bool PredAnalyzable =
1563          !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true);
1564
1565      if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB &&
1566          PredTBB != PredFBB) {
1567        // The predecessor has a conditional branch to this block which consists
1568        // of only a tail call. Try to fold the tail call into the conditional
1569        // branch.
1570        if (TII->canMakeTailCallConditional(PredCond, TailCall)) {
1571          // TODO: It would be nice if analyzeBranch() could provide a pointer
1572          // to the branch instruction so replaceBranchWithTailCall() doesn't
1573          // have to search for it.
1574          TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall);
1575          ++NumTailCalls;
1576          Pred->removeSuccessor(MBB);
1577          MadeChange = true;
1578          return MadeChange;
1579        }
1580      }
1581      // If the predecessor is falling through to this block, we could reverse
1582      // the branch condition and fold the tail call into that. However, after
1583      // that we might have to re-arrange the CFG to fall through to the other
1584      // block and there is a high risk of regressing code size rather than
1585      // improving it.
1586    }
1587  }
1588
1589  // Analyze the branch in the current block.
1590  MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr;
1591  SmallVector<MachineOperand, 4> CurCond;
1592  bool CurUnAnalyzable =
1593      TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
1594  if (!CurUnAnalyzable) {
1595    // If the CFG for the prior block has extra edges, remove them.
1596    MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty());
1597
1598    // If this is a two-way branch, and the FBB branches to this block, reverse
1599    // the condition so the single-basic-block loop is faster.  Instead of:
1600    //    Loop: xxx; jcc Out; jmp Loop
1601    // we want:
1602    //    Loop: xxx; jncc Loop; jmp Out
1603    if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
1604      SmallVector<MachineOperand, 4> NewCond(CurCond);
1605      if (!TII->reverseBranchCondition(NewCond)) {
1606        DebugLoc dl = getBranchDebugLoc(*MBB);
1607        TII->removeBranch(*MBB);
1608        TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl);
1609        MadeChange = true;
1610        ++NumBranchOpts;
1611        goto ReoptimizeBlock;
1612      }
1613    }
1614
1615    // If this branch is the only thing in its block, see if we can forward
1616    // other blocks across it.
1617    if (CurTBB && CurCond.empty() && !CurFBB &&
1618        IsBranchOnlyBlock(MBB) && CurTBB != MBB &&
1619        !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1620      DebugLoc dl = getBranchDebugLoc(*MBB);
1621      // This block may contain just an unconditional branch.  Because there can
1622      // be 'non-branch terminators' in the block, try removing the branch and
1623      // then seeing if the block is empty.
1624      TII->removeBranch(*MBB);
1625      // If the only things remaining in the block are debug info, remove these
1626      // as well, so this will behave the same as an empty block in non-debug
1627      // mode.
1628      if (IsEmptyBlock(MBB)) {
1629        // Make the block empty, losing the debug info (we could probably
1630        // improve this in some cases.)
1631        MBB->erase(MBB->begin(), MBB->end());
1632      }
1633      // If this block is just an unconditional branch to CurTBB, we can
1634      // usually completely eliminate the block.  The only case we cannot
1635      // completely eliminate the block is when the block before this one
1636      // falls through into MBB and we can't understand the prior block's branch
1637      // condition.
1638      if (MBB->empty()) {
1639        bool PredHasNoFallThrough = !PrevBB.canFallThrough();
1640        if (PredHasNoFallThrough || !PriorUnAnalyzable ||
1641            !PrevBB.isSuccessor(MBB)) {
1642          // If the prior block falls through into us, turn it into an
1643          // explicit branch to us to make updates simpler.
1644          if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
1645              PriorTBB != MBB && PriorFBB != MBB) {
1646            if (!PriorTBB) {
1647              assert(PriorCond.empty() && !PriorFBB &&
1648                     "Bad branch analysis");
1649              PriorTBB = MBB;
1650            } else {
1651              assert(!PriorFBB && "Machine CFG out of date!");
1652              PriorFBB = MBB;
1653            }
1654            DebugLoc pdl = getBranchDebugLoc(PrevBB);
1655            TII->removeBranch(PrevBB);
1656            TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl);
1657          }
1658
1659          // Iterate through all the predecessors, revectoring each in-turn.
1660          size_t PI = 0;
1661          bool DidChange = false;
1662          bool HasBranchToSelf = false;
1663          while(PI != MBB->pred_size()) {
1664            MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
1665            if (PMBB == MBB) {
1666              // If this block has an uncond branch to itself, leave it.
1667              ++PI;
1668              HasBranchToSelf = true;
1669            } else {
1670              DidChange = true;
1671              PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
1672              // If this change resulted in PMBB ending in a conditional
1673              // branch where both conditions go to the same destination,
1674              // change this to an unconditional branch (and fix the CFG).
1675              MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr;
1676              SmallVector<MachineOperand, 4> NewCurCond;
1677              bool NewCurUnAnalyzable = TII->analyzeBranch(
1678                  *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true);
1679              if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
1680                DebugLoc pdl = getBranchDebugLoc(*PMBB);
1681                TII->removeBranch(*PMBB);
1682                NewCurCond.clear();
1683                TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl);
1684                MadeChange = true;
1685                ++NumBranchOpts;
1686                PMBB->CorrectExtraCFGEdges(NewCurTBB, nullptr, false);
1687              }
1688            }
1689          }
1690
1691          // Change any jumptables to go to the new MBB.
1692          if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1693            MJTI->ReplaceMBBInJumpTables(MBB, CurTBB);
1694          if (DidChange) {
1695            ++NumBranchOpts;
1696            MadeChange = true;
1697            if (!HasBranchToSelf) return MadeChange;
1698          }
1699        }
1700      }
1701
1702      // Add the branch back if the block is more than just an uncond branch.
1703      TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl);
1704    }
1705  }
1706
1707  // If the prior block doesn't fall through into this block, and if this
1708  // block doesn't fall through into some other block, see if we can find a
1709  // place to move this block where a fall-through will happen.
1710  if (!PrevBB.canFallThrough()) {
1711    // Now we know that there was no fall-through into this block, check to
1712    // see if it has a fall-through into its successor.
1713    bool CurFallsThru = MBB->canFallThrough();
1714
1715    if (!MBB->isEHPad()) {
1716      // Check all the predecessors of this block.  If one of them has no fall
1717      // throughs, move this block right after it.
1718      for (MachineBasicBlock *PredBB : MBB->predecessors()) {
1719        // Analyze the branch at the end of the pred.
1720        MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1721        SmallVector<MachineOperand, 4> PredCond;
1722        if (PredBB != MBB && !PredBB->canFallThrough() &&
1723            !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) &&
1724            (!CurFallsThru || !CurTBB || !CurFBB) &&
1725            (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
1726          // If the current block doesn't fall through, just move it.
1727          // If the current block can fall through and does not end with a
1728          // conditional branch, we need to append an unconditional jump to
1729          // the (current) next block.  To avoid a possible compile-time
1730          // infinite loop, move blocks only backward in this case.
1731          // Also, if there are already 2 branches here, we cannot add a third;
1732          // this means we have the case
1733          // Bcc next
1734          // B elsewhere
1735          // next:
1736          if (CurFallsThru) {
1737            MachineBasicBlock *NextBB = &*std::next(MBB->getIterator());
1738            CurCond.clear();
1739            TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
1740          }
1741          MBB->moveAfter(PredBB);
1742          MadeChange = true;
1743          goto ReoptimizeBlock;
1744        }
1745      }
1746    }
1747
1748    if (!CurFallsThru) {
1749      // Check all successors to see if we can move this block before it.
1750      for (MachineBasicBlock *SuccBB : MBB->successors()) {
1751        // Analyze the branch at the end of the block before the succ.
1752        MachineFunction::iterator SuccPrev = --SuccBB->getIterator();
1753
1754        // If this block doesn't already fall-through to that successor, and if
1755        // the succ doesn't already have a block that can fall through into it,
1756        // and if the successor isn't an EH destination, we can arrange for the
1757        // fallthrough to happen.
1758        if (SuccBB != MBB && &*SuccPrev != MBB &&
1759            !SuccPrev->canFallThrough() && !CurUnAnalyzable &&
1760            !SuccBB->isEHPad()) {
1761          MBB->moveBefore(SuccBB);
1762          MadeChange = true;
1763          goto ReoptimizeBlock;
1764        }
1765      }
1766
1767      // Okay, there is no really great place to put this block.  If, however,
1768      // the block before this one would be a fall-through if this block were
1769      // removed, move this block to the end of the function. There is no real
1770      // advantage in "falling through" to an EH block, so we don't want to
1771      // perform this transformation for that case.
1772      //
1773      // Also, Windows EH introduced the possibility of an arbitrary number of
1774      // successors to a given block.  The analyzeBranch call does not consider
1775      // exception handling and so we can get in a state where a block
1776      // containing a call is followed by multiple EH blocks that would be
1777      // rotated infinitely at the end of the function if the transformation
1778      // below were performed for EH "FallThrough" blocks.  Therefore, even if
1779      // that appears not to be happening anymore, we should assume that it is
1780      // possible and not remove the "!FallThrough()->isEHPad" condition below.
1781      MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr;
1782      SmallVector<MachineOperand, 4> PrevCond;
1783      if (FallThrough != MF.end() &&
1784          !FallThrough->isEHPad() &&
1785          !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
1786          PrevBB.isSuccessor(&*FallThrough)) {
1787        MBB->moveAfter(&MF.back());
1788        MadeChange = true;
1789        return MadeChange;
1790      }
1791    }
1792  }
1793
1794  return MadeChange;
1795}
1796
1797//===----------------------------------------------------------------------===//
1798//  Hoist Common Code
1799//===----------------------------------------------------------------------===//
1800
1801bool BranchFolder::HoistCommonCode(MachineFunction &MF) {
1802  bool MadeChange = false;
1803  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) {
1804    MachineBasicBlock *MBB = &*I++;
1805    MadeChange |= HoistCommonCodeInSuccs(MBB);
1806  }
1807
1808  return MadeChange;
1809}
1810
1811/// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
1812/// its 'true' successor.
1813static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
1814                                         MachineBasicBlock *TrueBB) {
1815  for (MachineBasicBlock *SuccBB : BB->successors())
1816    if (SuccBB != TrueBB)
1817      return SuccBB;
1818  return nullptr;
1819}
1820
1821template <class Container>
1822static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI,
1823                                Container &Set) {
1824  if (Register::isPhysicalRegister(Reg)) {
1825    for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
1826      Set.insert(*AI);
1827  } else {
1828    Set.insert(Reg);
1829  }
1830}
1831
1832/// findHoistingInsertPosAndDeps - Find the location to move common instructions
1833/// in successors to. The location is usually just before the terminator,
1834/// however if the terminator is a conditional branch and its previous
1835/// instruction is the flag setting instruction, the previous instruction is
1836/// the preferred location. This function also gathers uses and defs of the
1837/// instructions from the insertion point to the end of the block. The data is
1838/// used by HoistCommonCodeInSuccs to ensure safety.
1839static
1840MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB,
1841                                                  const TargetInstrInfo *TII,
1842                                                  const TargetRegisterInfo *TRI,
1843                                                  SmallSet<unsigned,4> &Uses,
1844                                                  SmallSet<unsigned,4> &Defs) {
1845  MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
1846  if (!TII->isUnpredicatedTerminator(*Loc))
1847    return MBB->end();
1848
1849  for (const MachineOperand &MO : Loc->operands()) {
1850    if (!MO.isReg())
1851      continue;
1852    Register Reg = MO.getReg();
1853    if (!Reg)
1854      continue;
1855    if (MO.isUse()) {
1856      addRegAndItsAliases(Reg, TRI, Uses);
1857    } else {
1858      if (!MO.isDead())
1859        // Don't try to hoist code in the rare case the terminator defines a
1860        // register that is later used.
1861        return MBB->end();
1862
1863      // If the terminator defines a register, make sure we don't hoist
1864      // the instruction whose def might be clobbered by the terminator.
1865      addRegAndItsAliases(Reg, TRI, Defs);
1866    }
1867  }
1868
1869  if (Uses.empty())
1870    return Loc;
1871  // If the terminator is the only instruction in the block and Uses is not
1872  // empty (or we would have returned above), we can still safely hoist
1873  // instructions just before the terminator as long as the Defs/Uses are not
1874  // violated (which is checked in HoistCommonCodeInSuccs).
1875  if (Loc == MBB->begin())
1876    return Loc;
1877
1878  // The terminator is probably a conditional branch, try not to separate the
1879  // branch from condition setting instruction.
1880  MachineBasicBlock::iterator PI =
1881    skipDebugInstructionsBackward(std::prev(Loc), MBB->begin());
1882
1883  bool IsDef = false;
1884  for (const MachineOperand &MO : PI->operands()) {
1885    // If PI has a regmask operand, it is probably a call. Separate away.
1886    if (MO.isRegMask())
1887      return Loc;
1888    if (!MO.isReg() || MO.isUse())
1889      continue;
1890    Register Reg = MO.getReg();
1891    if (!Reg)
1892      continue;
1893    if (Uses.count(Reg)) {
1894      IsDef = true;
1895      break;
1896    }
1897  }
1898  if (!IsDef)
1899    // The condition setting instruction is not just before the conditional
1900    // branch.
1901    return Loc;
1902
1903  // Be conservative, don't insert instruction above something that may have
1904  // side-effects. And since it's potentially bad to separate flag setting
1905  // instruction from the conditional branch, just abort the optimization
1906  // completely.
1907  // Also avoid moving code above predicated instruction since it's hard to
1908  // reason about register liveness with predicated instruction.
1909  bool DontMoveAcrossStore = true;
1910  if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI))
1911    return MBB->end();
1912
1913  // Find out what registers are live. Note this routine is ignoring other live
1914  // registers which are only used by instructions in successor blocks.
1915  for (const MachineOperand &MO : PI->operands()) {
1916    if (!MO.isReg())
1917      continue;
1918    Register Reg = MO.getReg();
1919    if (!Reg)
1920      continue;
1921    if (MO.isUse()) {
1922      addRegAndItsAliases(Reg, TRI, Uses);
1923    } else {
1924      if (Uses.erase(Reg)) {
1925        if (Register::isPhysicalRegister(Reg)) {
1926          for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
1927            Uses.erase(*SubRegs); // Use sub-registers to be conservative
1928        }
1929      }
1930      addRegAndItsAliases(Reg, TRI, Defs);
1931    }
1932  }
1933
1934  return PI;
1935}
1936
1937bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
1938  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1939  SmallVector<MachineOperand, 4> Cond;
1940  if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty())
1941    return false;
1942
1943  if (!FBB) FBB = findFalseBlock(MBB, TBB);
1944  if (!FBB)
1945    // Malformed bcc? True and false blocks are the same?
1946    return false;
1947
1948  // Restrict the optimization to cases where MBB is the only predecessor,
1949  // it is an obvious win.
1950  if (TBB->pred_size() > 1 || FBB->pred_size() > 1)
1951    return false;
1952
1953  // Find a suitable position to hoist the common instructions to. Also figure
1954  // out which registers are used or defined by instructions from the insertion
1955  // point to the end of the block.
1956  SmallSet<unsigned, 4> Uses, Defs;
1957  MachineBasicBlock::iterator Loc =
1958    findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs);
1959  if (Loc == MBB->end())
1960    return false;
1961
1962  bool HasDups = false;
1963  SmallSet<unsigned, 4> ActiveDefsSet, AllDefsSet;
1964  MachineBasicBlock::iterator TIB = TBB->begin();
1965  MachineBasicBlock::iterator FIB = FBB->begin();
1966  MachineBasicBlock::iterator TIE = TBB->end();
1967  MachineBasicBlock::iterator FIE = FBB->end();
1968  while (TIB != TIE && FIB != FIE) {
1969    // Skip dbg_value instructions. These do not count.
1970    TIB = skipDebugInstructionsForward(TIB, TIE);
1971    FIB = skipDebugInstructionsForward(FIB, FIE);
1972    if (TIB == TIE || FIB == FIE)
1973      break;
1974
1975    if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead))
1976      break;
1977
1978    if (TII->isPredicated(*TIB))
1979      // Hard to reason about register liveness with predicated instruction.
1980      break;
1981
1982    bool IsSafe = true;
1983    for (MachineOperand &MO : TIB->operands()) {
1984      // Don't attempt to hoist instructions with register masks.
1985      if (MO.isRegMask()) {
1986        IsSafe = false;
1987        break;
1988      }
1989      if (!MO.isReg())
1990        continue;
1991      Register Reg = MO.getReg();
1992      if (!Reg)
1993        continue;
1994      if (MO.isDef()) {
1995        if (Uses.count(Reg)) {
1996          // Avoid clobbering a register that's used by the instruction at
1997          // the point of insertion.
1998          IsSafe = false;
1999          break;
2000        }
2001
2002        if (Defs.count(Reg) && !MO.isDead()) {
2003          // Don't hoist the instruction if the def would be clobber by the
2004          // instruction at the point insertion. FIXME: This is overly
2005          // conservative. It should be possible to hoist the instructions
2006          // in BB2 in the following example:
2007          // BB1:
2008          // r1, eflag = op1 r2, r3
2009          // brcc eflag
2010          //
2011          // BB2:
2012          // r1 = op2, ...
2013          //    = op3, killed r1
2014          IsSafe = false;
2015          break;
2016        }
2017      } else if (!ActiveDefsSet.count(Reg)) {
2018        if (Defs.count(Reg)) {
2019          // Use is defined by the instruction at the point of insertion.
2020          IsSafe = false;
2021          break;
2022        }
2023
2024        if (MO.isKill() && Uses.count(Reg))
2025          // Kills a register that's read by the instruction at the point of
2026          // insertion. Remove the kill marker.
2027          MO.setIsKill(false);
2028      }
2029    }
2030    if (!IsSafe)
2031      break;
2032
2033    bool DontMoveAcrossStore = true;
2034    if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore))
2035      break;
2036
2037    // Remove kills from ActiveDefsSet, these registers had short live ranges.
2038    for (const MachineOperand &MO : TIB->operands()) {
2039      if (!MO.isReg() || !MO.isUse() || !MO.isKill())
2040        continue;
2041      Register Reg = MO.getReg();
2042      if (!Reg)
2043        continue;
2044      if (!AllDefsSet.count(Reg)) {
2045        continue;
2046      }
2047      if (Register::isPhysicalRegister(Reg)) {
2048        for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
2049          ActiveDefsSet.erase(*AI);
2050      } else {
2051        ActiveDefsSet.erase(Reg);
2052      }
2053    }
2054
2055    // Track local defs so we can update liveins.
2056    for (const MachineOperand &MO : TIB->operands()) {
2057      if (!MO.isReg() || !MO.isDef() || MO.isDead())
2058        continue;
2059      Register Reg = MO.getReg();
2060      if (!Reg || Register::isVirtualRegister(Reg))
2061        continue;
2062      addRegAndItsAliases(Reg, TRI, ActiveDefsSet);
2063      addRegAndItsAliases(Reg, TRI, AllDefsSet);
2064    }
2065
2066    HasDups = true;
2067    ++TIB;
2068    ++FIB;
2069  }
2070
2071  if (!HasDups)
2072    return false;
2073
2074  MBB->splice(Loc, TBB, TBB->begin(), TIB);
2075  FBB->erase(FBB->begin(), FIB);
2076
2077  if (UpdateLiveIns) {
2078    recomputeLiveIns(*TBB);
2079    recomputeLiveIns(*FBB);
2080  }
2081
2082  ++NumHoist;
2083  return true;
2084}
2085