EHStreamer.cpp revision 360784
1//===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains support for writing exception info into assembly files.
10//
11//===----------------------------------------------------------------------===//
12
13#include "EHStreamer.h"
14#include "llvm/ADT/SmallVector.h"
15#include "llvm/ADT/Twine.h"
16#include "llvm/ADT/iterator_range.h"
17#include "llvm/BinaryFormat/Dwarf.h"
18#include "llvm/CodeGen/AsmPrinter.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/CodeGen/MachineInstr.h"
21#include "llvm/CodeGen/MachineOperand.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/Function.h"
24#include "llvm/MC/MCAsmInfo.h"
25#include "llvm/MC/MCContext.h"
26#include "llvm/MC/MCStreamer.h"
27#include "llvm/MC/MCSymbol.h"
28#include "llvm/MC/MCTargetOptions.h"
29#include "llvm/Support/Casting.h"
30#include "llvm/Support/LEB128.h"
31#include "llvm/Target/TargetLoweringObjectFile.h"
32#include <algorithm>
33#include <cassert>
34#include <cstdint>
35#include <vector>
36
37using namespace llvm;
38
39EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
40
41EHStreamer::~EHStreamer() = default;
42
43/// How many leading type ids two landing pads have in common.
44unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
45                                   const LandingPadInfo *R) {
46  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
47  unsigned LSize = LIds.size(), RSize = RIds.size();
48  unsigned MinSize = LSize < RSize ? LSize : RSize;
49  unsigned Count = 0;
50
51  for (; Count != MinSize; ++Count)
52    if (LIds[Count] != RIds[Count])
53      return Count;
54
55  return Count;
56}
57
58/// Compute the actions table and gather the first action index for each landing
59/// pad site.
60void EHStreamer::computeActionsTable(
61    const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
62    SmallVectorImpl<ActionEntry> &Actions,
63    SmallVectorImpl<unsigned> &FirstActions) {
64  // The action table follows the call-site table in the LSDA. The individual
65  // records are of two types:
66  //
67  //   * Catch clause
68  //   * Exception specification
69  //
70  // The two record kinds have the same format, with only small differences.
71  // They are distinguished by the "switch value" field: Catch clauses
72  // (TypeInfos) have strictly positive switch values, and exception
73  // specifications (FilterIds) have strictly negative switch values. Value 0
74  // indicates a catch-all clause.
75  //
76  // Negative type IDs index into FilterIds. Positive type IDs index into
77  // TypeInfos.  The value written for a positive type ID is just the type ID
78  // itself.  For a negative type ID, however, the value written is the
79  // (negative) byte offset of the corresponding FilterIds entry.  The byte
80  // offset is usually equal to the type ID (because the FilterIds entries are
81  // written using a variable width encoding, which outputs one byte per entry
82  // as long as the value written is not too large) but can differ.  This kind
83  // of complication does not occur for positive type IDs because type infos are
84  // output using a fixed width encoding.  FilterOffsets[i] holds the byte
85  // offset corresponding to FilterIds[i].
86
87  const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds();
88  SmallVector<int, 16> FilterOffsets;
89  FilterOffsets.reserve(FilterIds.size());
90  int Offset = -1;
91
92  for (std::vector<unsigned>::const_iterator
93         I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
94    FilterOffsets.push_back(Offset);
95    Offset -= getULEB128Size(*I);
96  }
97
98  FirstActions.reserve(LandingPads.size());
99
100  int FirstAction = 0;
101  unsigned SizeActions = 0; // Total size of all action entries for a function
102  const LandingPadInfo *PrevLPI = nullptr;
103
104  for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
105         I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
106    const LandingPadInfo *LPI = *I;
107    const std::vector<int> &TypeIds = LPI->TypeIds;
108    unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
109    unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad
110
111    if (NumShared < TypeIds.size()) {
112      // Size of one action entry (typeid + next action)
113      unsigned SizeActionEntry = 0;
114      unsigned PrevAction = (unsigned)-1;
115
116      if (NumShared) {
117        unsigned SizePrevIds = PrevLPI->TypeIds.size();
118        assert(Actions.size());
119        PrevAction = Actions.size() - 1;
120        SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) +
121                          getSLEB128Size(Actions[PrevAction].ValueForTypeID);
122
123        for (unsigned j = NumShared; j != SizePrevIds; ++j) {
124          assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
125          SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
126          SizeActionEntry += -Actions[PrevAction].NextAction;
127          PrevAction = Actions[PrevAction].Previous;
128        }
129      }
130
131      // Compute the actions.
132      for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
133        int TypeID = TypeIds[J];
134        assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
135        int ValueForTypeID =
136            isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
137        unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
138
139        int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0;
140        SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction);
141        SizeSiteActions += SizeActionEntry;
142
143        ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
144        Actions.push_back(Action);
145        PrevAction = Actions.size() - 1;
146      }
147
148      // Record the first action of the landing pad site.
149      FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1;
150    } // else identical - re-use previous FirstAction
151
152    // Information used when creating the call-site table. The action record
153    // field of the call site record is the offset of the first associated
154    // action record, relative to the start of the actions table. This value is
155    // biased by 1 (1 indicating the start of the actions table), and 0
156    // indicates that there are no actions.
157    FirstActions.push_back(FirstAction);
158
159    // Compute this sites contribution to size.
160    SizeActions += SizeSiteActions;
161
162    PrevLPI = LPI;
163  }
164}
165
166/// Return `true' if this is a call to a function marked `nounwind'. Return
167/// `false' otherwise.
168bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
169  assert(MI->isCall() && "This should be a call instruction!");
170
171  bool MarkedNoUnwind = false;
172  bool SawFunc = false;
173
174  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
175    const MachineOperand &MO = MI->getOperand(I);
176
177    if (!MO.isGlobal()) continue;
178
179    const Function *F = dyn_cast<Function>(MO.getGlobal());
180    if (!F) continue;
181
182    if (SawFunc) {
183      // Be conservative. If we have more than one function operand for this
184      // call, then we can't make the assumption that it's the callee and
185      // not a parameter to the call.
186      //
187      // FIXME: Determine if there's a way to say that `F' is the callee or
188      // parameter.
189      MarkedNoUnwind = false;
190      break;
191    }
192
193    MarkedNoUnwind = F->doesNotThrow();
194    SawFunc = true;
195  }
196
197  return MarkedNoUnwind;
198}
199
200void EHStreamer::computePadMap(
201    const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
202    RangeMapType &PadMap) {
203  // Invokes and nounwind calls have entries in PadMap (due to being bracketed
204  // by try-range labels when lowered).  Ordinary calls do not, so appropriate
205  // try-ranges for them need be deduced so we can put them in the LSDA.
206  for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
207    const LandingPadInfo *LandingPad = LandingPads[i];
208    for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
209      MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
210      assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
211      PadRange P = { i, j };
212      PadMap[BeginLabel] = P;
213    }
214  }
215}
216
217/// Compute the call-site table.  The entry for an invoke has a try-range
218/// containing the call, a non-zero landing pad, and an appropriate action.  The
219/// entry for an ordinary call has a try-range containing the call and zero for
220/// the landing pad and the action.  Calls marked 'nounwind' have no entry and
221/// must not be contained in the try-range of any entry - they form gaps in the
222/// table.  Entries must be ordered by try-range address.
223void EHStreamer::
224computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
225                     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
226                     const SmallVectorImpl<unsigned> &FirstActions) {
227  RangeMapType PadMap;
228  computePadMap(LandingPads, PadMap);
229
230  // The end label of the previous invoke or nounwind try-range.
231  MCSymbol *LastLabel = nullptr;
232
233  // Whether there is a potentially throwing instruction (currently this means
234  // an ordinary call) between the end of the previous try-range and now.
235  bool SawPotentiallyThrowing = false;
236
237  // Whether the last CallSite entry was for an invoke.
238  bool PreviousIsInvoke = false;
239
240  bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
241
242  // Visit all instructions in order of address.
243  for (const auto &MBB : *Asm->MF) {
244    for (const auto &MI : MBB) {
245      if (!MI.isEHLabel()) {
246        if (MI.isCall())
247          SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
248        continue;
249      }
250
251      // End of the previous try-range?
252      MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
253      if (BeginLabel == LastLabel)
254        SawPotentiallyThrowing = false;
255
256      // Beginning of a new try-range?
257      RangeMapType::const_iterator L = PadMap.find(BeginLabel);
258      if (L == PadMap.end())
259        // Nope, it was just some random label.
260        continue;
261
262      const PadRange &P = L->second;
263      const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
264      assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
265             "Inconsistent landing pad map!");
266
267      // For Dwarf exception handling (SjLj handling doesn't use this). If some
268      // instruction between the previous try-range and this one may throw,
269      // create a call-site entry with no landing pad for the region between the
270      // try-ranges.
271      if (SawPotentiallyThrowing && Asm->MAI->usesCFIForEH()) {
272        CallSiteEntry Site = { LastLabel, BeginLabel, nullptr, 0 };
273        CallSites.push_back(Site);
274        PreviousIsInvoke = false;
275      }
276
277      LastLabel = LandingPad->EndLabels[P.RangeIndex];
278      assert(BeginLabel && LastLabel && "Invalid landing pad!");
279
280      if (!LandingPad->LandingPadLabel) {
281        // Create a gap.
282        PreviousIsInvoke = false;
283      } else {
284        // This try-range is for an invoke.
285        CallSiteEntry Site = {
286          BeginLabel,
287          LastLabel,
288          LandingPad,
289          FirstActions[P.PadIndex]
290        };
291
292        // Try to merge with the previous call-site. SJLJ doesn't do this
293        if (PreviousIsInvoke && !IsSJLJ) {
294          CallSiteEntry &Prev = CallSites.back();
295          if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
296            // Extend the range of the previous entry.
297            Prev.EndLabel = Site.EndLabel;
298            continue;
299          }
300        }
301
302        // Otherwise, create a new call-site.
303        if (!IsSJLJ)
304          CallSites.push_back(Site);
305        else {
306          // SjLj EH must maintain the call sites in the order assigned
307          // to them by the SjLjPrepare pass.
308          unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel);
309          if (CallSites.size() < SiteNo)
310            CallSites.resize(SiteNo);
311          CallSites[SiteNo - 1] = Site;
312        }
313        PreviousIsInvoke = true;
314      }
315    }
316  }
317
318  // If some instruction between the previous try-range and the end of the
319  // function may throw, create a call-site entry with no landing pad for the
320  // region following the try-range.
321  if (SawPotentiallyThrowing && !IsSJLJ) {
322    CallSiteEntry Site = { LastLabel, nullptr, nullptr, 0 };
323    CallSites.push_back(Site);
324  }
325}
326
327/// Emit landing pads and actions.
328///
329/// The general organization of the table is complex, but the basic concepts are
330/// easy.  First there is a header which describes the location and organization
331/// of the three components that follow.
332///
333///  1. The landing pad site information describes the range of code covered by
334///     the try.  In our case it's an accumulation of the ranges covered by the
335///     invokes in the try.  There is also a reference to the landing pad that
336///     handles the exception once processed.  Finally an index into the actions
337///     table.
338///  2. The action table, in our case, is composed of pairs of type IDs and next
339///     action offset.  Starting with the action index from the landing pad
340///     site, each type ID is checked for a match to the current exception.  If
341///     it matches then the exception and type id are passed on to the landing
342///     pad.  Otherwise the next action is looked up.  This chain is terminated
343///     with a next action of zero.  If no type id is found then the frame is
344///     unwound and handling continues.
345///  3. Type ID table contains references to all the C++ typeinfo for all
346///     catches in the function.  This tables is reverse indexed base 1.
347///
348/// Returns the starting symbol of an exception table.
349MCSymbol *EHStreamer::emitExceptionTable() {
350  const MachineFunction *MF = Asm->MF;
351  const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
352  const std::vector<unsigned> &FilterIds = MF->getFilterIds();
353  const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads();
354
355  // Sort the landing pads in order of their type ids.  This is used to fold
356  // duplicate actions.
357  SmallVector<const LandingPadInfo *, 64> LandingPads;
358  LandingPads.reserve(PadInfos.size());
359
360  for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
361    LandingPads.push_back(&PadInfos[i]);
362
363  // Order landing pads lexicographically by type id.
364  llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) {
365    return L->TypeIds < R->TypeIds;
366  });
367
368  // Compute the actions table and gather the first action index for each
369  // landing pad site.
370  SmallVector<ActionEntry, 32> Actions;
371  SmallVector<unsigned, 64> FirstActions;
372  computeActionsTable(LandingPads, Actions, FirstActions);
373
374  // Compute the call-site table.
375  SmallVector<CallSiteEntry, 64> CallSites;
376  computeCallSiteTable(CallSites, LandingPads, FirstActions);
377
378  bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
379  bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm;
380  unsigned CallSiteEncoding =
381      IsSJLJ ? static_cast<unsigned>(dwarf::DW_EH_PE_udata4) :
382               Asm->getObjFileLowering().getCallSiteEncoding();
383  bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty();
384
385  // Type infos.
386  MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
387  unsigned TTypeEncoding;
388
389  if (!HaveTTData) {
390    // If there is no TypeInfo, then we just explicitly say that we're omitting
391    // that bit.
392    TTypeEncoding = dwarf::DW_EH_PE_omit;
393  } else {
394    // Okay, we have actual filters or typeinfos to emit.  As such, we need to
395    // pick a type encoding for them.  We're about to emit a list of pointers to
396    // typeinfo objects at the end of the LSDA.  However, unless we're in static
397    // mode, this reference will require a relocation by the dynamic linker.
398    //
399    // Because of this, we have a couple of options:
400    //
401    //   1) If we are in -static mode, we can always use an absolute reference
402    //      from the LSDA, because the static linker will resolve it.
403    //
404    //   2) Otherwise, if the LSDA section is writable, we can output the direct
405    //      reference to the typeinfo and allow the dynamic linker to relocate
406    //      it.  Since it is in a writable section, the dynamic linker won't
407    //      have a problem.
408    //
409    //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
410    //      we need to use some form of indirection.  For example, on Darwin,
411    //      we can output a statically-relocatable reference to a dyld stub. The
412    //      offset to the stub is constant, but the contents are in a section
413    //      that is updated by the dynamic linker.  This is easy enough, but we
414    //      need to tell the personality function of the unwinder to indirect
415    //      through the dyld stub.
416    //
417    // FIXME: When (3) is actually implemented, we'll have to emit the stubs
418    // somewhere.  This predicate should be moved to a shared location that is
419    // in target-independent code.
420    //
421    TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
422  }
423
424  // Begin the exception table.
425  // Sometimes we want not to emit the data into separate section (e.g. ARM
426  // EHABI). In this case LSDASection will be NULL.
427  if (LSDASection)
428    Asm->OutStreamer->SwitchSection(LSDASection);
429  Asm->EmitAlignment(Align(4));
430
431  // Emit the LSDA.
432  MCSymbol *GCCETSym =
433    Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
434                                      Twine(Asm->getFunctionNumber()));
435  Asm->OutStreamer->EmitLabel(GCCETSym);
436  Asm->OutStreamer->EmitLabel(Asm->getCurExceptionSym());
437
438  // Emit the LSDA header.
439  Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
440  Asm->EmitEncodingByte(TTypeEncoding, "@TType");
441
442  MCSymbol *TTBaseLabel = nullptr;
443  if (HaveTTData) {
444    // N.B.: There is a dependency loop between the size of the TTBase uleb128
445    // here and the amount of padding before the aligned type table. The
446    // assembler must sometimes pad this uleb128 or insert extra padding before
447    // the type table. See PR35809 or GNU as bug 4029.
448    MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref");
449    TTBaseLabel = Asm->createTempSymbol("ttbase");
450    Asm->EmitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel);
451    Asm->OutStreamer->EmitLabel(TTBaseRefLabel);
452  }
453
454  bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
455
456  // Emit the landing pad call site table.
457  MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin");
458  MCSymbol *CstEndLabel = Asm->createTempSymbol("cst_end");
459  Asm->EmitEncodingByte(CallSiteEncoding, "Call site");
460  Asm->EmitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel);
461  Asm->OutStreamer->EmitLabel(CstBeginLabel);
462
463  // SjLj / Wasm Exception handling
464  if (IsSJLJ || IsWasm) {
465    unsigned idx = 0;
466    for (SmallVectorImpl<CallSiteEntry>::const_iterator
467         I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
468      const CallSiteEntry &S = *I;
469
470      // Index of the call site entry.
471      if (VerboseAsm) {
472        Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
473        Asm->OutStreamer->AddComment("  On exception at call site "+Twine(idx));
474      }
475      Asm->EmitULEB128(idx);
476
477      // Offset of the first associated action record, relative to the start of
478      // the action table. This value is biased by 1 (1 indicates the start of
479      // the action table), and 0 indicates that there are no actions.
480      if (VerboseAsm) {
481        if (S.Action == 0)
482          Asm->OutStreamer->AddComment("  Action: cleanup");
483        else
484          Asm->OutStreamer->AddComment("  Action: " +
485                                       Twine((S.Action - 1) / 2 + 1));
486      }
487      Asm->EmitULEB128(S.Action);
488    }
489  } else {
490    // Itanium LSDA exception handling
491
492    // The call-site table is a list of all call sites that may throw an
493    // exception (including C++ 'throw' statements) in the procedure
494    // fragment. It immediately follows the LSDA header. Each entry indicates,
495    // for a given call, the first corresponding action record and corresponding
496    // landing pad.
497    //
498    // The table begins with the number of bytes, stored as an LEB128
499    // compressed, unsigned integer. The records immediately follow the record
500    // count. They are sorted in increasing call-site address. Each record
501    // indicates:
502    //
503    //   * The position of the call-site.
504    //   * The position of the landing pad.
505    //   * The first action record for that call site.
506    //
507    // A missing entry in the call-site table indicates that a call is not
508    // supposed to throw.
509
510    unsigned Entry = 0;
511    for (SmallVectorImpl<CallSiteEntry>::const_iterator
512         I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
513      const CallSiteEntry &S = *I;
514
515      MCSymbol *EHFuncBeginSym = Asm->getFunctionBegin();
516
517      MCSymbol *BeginLabel = S.BeginLabel;
518      if (!BeginLabel)
519        BeginLabel = EHFuncBeginSym;
520      MCSymbol *EndLabel = S.EndLabel;
521      if (!EndLabel)
522        EndLabel = Asm->getFunctionEnd();
523
524      // Offset of the call site relative to the start of the procedure.
525      if (VerboseAsm)
526        Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) + " <<");
527      Asm->EmitCallSiteOffset(BeginLabel, EHFuncBeginSym, CallSiteEncoding);
528      if (VerboseAsm)
529        Asm->OutStreamer->AddComment(Twine("  Call between ") +
530                                     BeginLabel->getName() + " and " +
531                                     EndLabel->getName());
532      Asm->EmitCallSiteOffset(EndLabel, BeginLabel, CallSiteEncoding);
533
534      // Offset of the landing pad relative to the start of the procedure.
535      if (!S.LPad) {
536        if (VerboseAsm)
537          Asm->OutStreamer->AddComment("    has no landing pad");
538        Asm->EmitCallSiteValue(0, CallSiteEncoding);
539      } else {
540        if (VerboseAsm)
541          Asm->OutStreamer->AddComment(Twine("    jumps to ") +
542                                       S.LPad->LandingPadLabel->getName());
543        Asm->EmitCallSiteOffset(S.LPad->LandingPadLabel, EHFuncBeginSym,
544                                CallSiteEncoding);
545      }
546
547      // Offset of the first associated action record, relative to the start of
548      // the action table. This value is biased by 1 (1 indicates the start of
549      // the action table), and 0 indicates that there are no actions.
550      if (VerboseAsm) {
551        if (S.Action == 0)
552          Asm->OutStreamer->AddComment("  On action: cleanup");
553        else
554          Asm->OutStreamer->AddComment("  On action: " +
555                                       Twine((S.Action - 1) / 2 + 1));
556      }
557      Asm->EmitULEB128(S.Action);
558    }
559  }
560  Asm->OutStreamer->EmitLabel(CstEndLabel);
561
562  // Emit the Action Table.
563  int Entry = 0;
564  for (SmallVectorImpl<ActionEntry>::const_iterator
565         I = Actions.begin(), E = Actions.end(); I != E; ++I) {
566    const ActionEntry &Action = *I;
567
568    if (VerboseAsm) {
569      // Emit comments that decode the action table.
570      Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
571    }
572
573    // Type Filter
574    //
575    //   Used by the runtime to match the type of the thrown exception to the
576    //   type of the catch clauses or the types in the exception specification.
577    if (VerboseAsm) {
578      if (Action.ValueForTypeID > 0)
579        Asm->OutStreamer->AddComment("  Catch TypeInfo " +
580                                     Twine(Action.ValueForTypeID));
581      else if (Action.ValueForTypeID < 0)
582        Asm->OutStreamer->AddComment("  Filter TypeInfo " +
583                                     Twine(Action.ValueForTypeID));
584      else
585        Asm->OutStreamer->AddComment("  Cleanup");
586    }
587    Asm->EmitSLEB128(Action.ValueForTypeID);
588
589    // Action Record
590    //
591    //   Self-relative signed displacement in bytes of the next action record,
592    //   or 0 if there is no next action record.
593    if (VerboseAsm) {
594      if (Action.NextAction == 0) {
595        Asm->OutStreamer->AddComment("  No further actions");
596      } else {
597        unsigned NextAction = Entry + (Action.NextAction + 1) / 2;
598        Asm->OutStreamer->AddComment("  Continue to action "+Twine(NextAction));
599      }
600    }
601    Asm->EmitSLEB128(Action.NextAction);
602  }
603
604  if (HaveTTData) {
605    Asm->EmitAlignment(Align(4));
606    emitTypeInfos(TTypeEncoding, TTBaseLabel);
607  }
608
609  Asm->EmitAlignment(Align(4));
610  return GCCETSym;
611}
612
613void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) {
614  const MachineFunction *MF = Asm->MF;
615  const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
616  const std::vector<unsigned> &FilterIds = MF->getFilterIds();
617
618  bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
619
620  int Entry = 0;
621  // Emit the Catch TypeInfos.
622  if (VerboseAsm && !TypeInfos.empty()) {
623    Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
624    Asm->OutStreamer->AddBlankLine();
625    Entry = TypeInfos.size();
626  }
627
628  for (const GlobalValue *GV : make_range(TypeInfos.rbegin(),
629                                          TypeInfos.rend())) {
630    if (VerboseAsm)
631      Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
632    Asm->EmitTTypeReference(GV, TTypeEncoding);
633  }
634
635  Asm->OutStreamer->EmitLabel(TTBaseLabel);
636
637  // Emit the Exception Specifications.
638  if (VerboseAsm && !FilterIds.empty()) {
639    Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
640    Asm->OutStreamer->AddBlankLine();
641    Entry = 0;
642  }
643  for (std::vector<unsigned>::const_iterator
644         I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
645    unsigned TypeID = *I;
646    if (VerboseAsm) {
647      --Entry;
648      if (isFilterEHSelector(TypeID))
649        Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
650    }
651
652    Asm->EmitULEB128(TypeID);
653  }
654}
655