ScalarEvolutionExpander.cpp revision 204792
1//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution expander,
11// which is used to generate the code corresponding to a given scalar evolution
12// expression.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/ScalarEvolutionExpander.h"
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/LLVMContext.h"
20#include "llvm/Target/TargetData.h"
21#include "llvm/ADT/STLExtras.h"
22using namespace llvm;
23
24/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
25/// which must be possible with a noop cast, doing what we can to share
26/// the casts.
27Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
28  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
29  assert((Op == Instruction::BitCast ||
30          Op == Instruction::PtrToInt ||
31          Op == Instruction::IntToPtr) &&
32         "InsertNoopCastOfTo cannot perform non-noop casts!");
33  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
34         "InsertNoopCastOfTo cannot change sizes!");
35
36  // Short-circuit unnecessary bitcasts.
37  if (Op == Instruction::BitCast && V->getType() == Ty)
38    return V;
39
40  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
41  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
42      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
43    if (CastInst *CI = dyn_cast<CastInst>(V))
44      if ((CI->getOpcode() == Instruction::PtrToInt ||
45           CI->getOpcode() == Instruction::IntToPtr) &&
46          SE.getTypeSizeInBits(CI->getType()) ==
47          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
48        return CI->getOperand(0);
49    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
50      if ((CE->getOpcode() == Instruction::PtrToInt ||
51           CE->getOpcode() == Instruction::IntToPtr) &&
52          SE.getTypeSizeInBits(CE->getType()) ==
53          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
54        return CE->getOperand(0);
55  }
56
57  if (Constant *C = dyn_cast<Constant>(V))
58    return ConstantExpr::getCast(Op, C, Ty);
59
60  if (Argument *A = dyn_cast<Argument>(V)) {
61    // Check to see if there is already a cast!
62    for (Value::use_iterator UI = A->use_begin(), E = A->use_end();
63         UI != E; ++UI)
64      if ((*UI)->getType() == Ty)
65        if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
66          if (CI->getOpcode() == Op) {
67            // If the cast isn't the first instruction of the function, move it.
68            if (BasicBlock::iterator(CI) !=
69                A->getParent()->getEntryBlock().begin()) {
70              // Recreate the cast at the beginning of the entry block.
71              // The old cast is left in place in case it is being used
72              // as an insert point.
73              Instruction *NewCI =
74                CastInst::Create(Op, V, Ty, "",
75                                 A->getParent()->getEntryBlock().begin());
76              NewCI->takeName(CI);
77              CI->replaceAllUsesWith(NewCI);
78              return NewCI;
79            }
80            return CI;
81          }
82
83    Instruction *I = CastInst::Create(Op, V, Ty, V->getName(),
84                                      A->getParent()->getEntryBlock().begin());
85    rememberInstruction(I);
86    return I;
87  }
88
89  Instruction *I = cast<Instruction>(V);
90
91  // Check to see if there is already a cast.  If there is, use it.
92  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
93       UI != E; ++UI) {
94    if ((*UI)->getType() == Ty)
95      if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
96        if (CI->getOpcode() == Op) {
97          BasicBlock::iterator It = I; ++It;
98          if (isa<InvokeInst>(I))
99            It = cast<InvokeInst>(I)->getNormalDest()->begin();
100          while (isa<PHINode>(It)) ++It;
101          if (It != BasicBlock::iterator(CI)) {
102            // Recreate the cast after the user.
103            // The old cast is left in place in case it is being used
104            // as an insert point.
105            Instruction *NewCI = CastInst::Create(Op, V, Ty, "", It);
106            NewCI->takeName(CI);
107            CI->replaceAllUsesWith(NewCI);
108            rememberInstruction(NewCI);
109            return NewCI;
110          }
111          rememberInstruction(CI);
112          return CI;
113        }
114  }
115  BasicBlock::iterator IP = I; ++IP;
116  if (InvokeInst *II = dyn_cast<InvokeInst>(I))
117    IP = II->getNormalDest()->begin();
118  while (isa<PHINode>(IP)) ++IP;
119  Instruction *CI = CastInst::Create(Op, V, Ty, V->getName(), IP);
120  rememberInstruction(CI);
121  return CI;
122}
123
124/// InsertBinop - Insert the specified binary operator, doing a small amount
125/// of work to avoid inserting an obviously redundant operation.
126Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
127                                 Value *LHS, Value *RHS) {
128  // Fold a binop with constant operands.
129  if (Constant *CLHS = dyn_cast<Constant>(LHS))
130    if (Constant *CRHS = dyn_cast<Constant>(RHS))
131      return ConstantExpr::get(Opcode, CLHS, CRHS);
132
133  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
134  unsigned ScanLimit = 6;
135  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
136  // Scanning starts from the last instruction before the insertion point.
137  BasicBlock::iterator IP = Builder.GetInsertPoint();
138  if (IP != BlockBegin) {
139    --IP;
140    for (; ScanLimit; --IP, --ScanLimit) {
141      // Don't count dbg.value against the ScanLimit, to avoid perturbing the
142      // generated code.
143      if (isa<DbgInfoIntrinsic>(IP))
144        ScanLimit++;
145      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
146          IP->getOperand(1) == RHS)
147        return IP;
148      if (IP == BlockBegin) break;
149    }
150  }
151
152  // Save the original insertion point so we can restore it when we're done.
153  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
154  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
155
156  // Move the insertion point out of as many loops as we can.
157  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
158    if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
159    BasicBlock *Preheader = L->getLoopPreheader();
160    if (!Preheader) break;
161
162    // Ok, move up a level.
163    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
164  }
165
166  // If we haven't found this binop, insert it.
167  Value *BO = Builder.CreateBinOp(Opcode, LHS, RHS, "tmp");
168  rememberInstruction(BO);
169
170  // Restore the original insert point.
171  if (SaveInsertBB)
172    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
173
174  return BO;
175}
176
177/// FactorOutConstant - Test if S is divisible by Factor, using signed
178/// division. If so, update S with Factor divided out and return true.
179/// S need not be evenly divisible if a reasonable remainder can be
180/// computed.
181/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
182/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
183/// check to see if the divide was folded.
184static bool FactorOutConstant(const SCEV *&S,
185                              const SCEV *&Remainder,
186                              const SCEV *Factor,
187                              ScalarEvolution &SE,
188                              const TargetData *TD) {
189  // Everything is divisible by one.
190  if (Factor->isOne())
191    return true;
192
193  // x/x == 1.
194  if (S == Factor) {
195    S = SE.getIntegerSCEV(1, S->getType());
196    return true;
197  }
198
199  // For a Constant, check for a multiple of the given factor.
200  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
201    // 0/x == 0.
202    if (C->isZero())
203      return true;
204    // Check for divisibility.
205    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
206      ConstantInt *CI =
207        ConstantInt::get(SE.getContext(),
208                         C->getValue()->getValue().sdiv(
209                                                   FC->getValue()->getValue()));
210      // If the quotient is zero and the remainder is non-zero, reject
211      // the value at this scale. It will be considered for subsequent
212      // smaller scales.
213      if (!CI->isZero()) {
214        const SCEV *Div = SE.getConstant(CI);
215        S = Div;
216        Remainder =
217          SE.getAddExpr(Remainder,
218                        SE.getConstant(C->getValue()->getValue().srem(
219                                                  FC->getValue()->getValue())));
220        return true;
221      }
222    }
223  }
224
225  // In a Mul, check if there is a constant operand which is a multiple
226  // of the given factor.
227  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
228    if (TD) {
229      // With TargetData, the size is known. Check if there is a constant
230      // operand which is a multiple of the given factor. If so, we can
231      // factor it.
232      const SCEVConstant *FC = cast<SCEVConstant>(Factor);
233      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
234        if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
235          const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
236          SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
237                                                 MOperands.end());
238          NewMulOps[0] =
239            SE.getConstant(C->getValue()->getValue().sdiv(
240                                                   FC->getValue()->getValue()));
241          S = SE.getMulExpr(NewMulOps);
242          return true;
243        }
244    } else {
245      // Without TargetData, check if Factor can be factored out of any of the
246      // Mul's operands. If so, we can just remove it.
247      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
248        const SCEV *SOp = M->getOperand(i);
249        const SCEV *Remainder = SE.getIntegerSCEV(0, SOp->getType());
250        if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
251            Remainder->isZero()) {
252          const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
253          SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
254                                                 MOperands.end());
255          NewMulOps[i] = SOp;
256          S = SE.getMulExpr(NewMulOps);
257          return true;
258        }
259      }
260    }
261  }
262
263  // In an AddRec, check if both start and step are divisible.
264  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
265    const SCEV *Step = A->getStepRecurrence(SE);
266    const SCEV *StepRem = SE.getIntegerSCEV(0, Step->getType());
267    if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
268      return false;
269    if (!StepRem->isZero())
270      return false;
271    const SCEV *Start = A->getStart();
272    if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
273      return false;
274    S = SE.getAddRecExpr(Start, Step, A->getLoop());
275    return true;
276  }
277
278  return false;
279}
280
281/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
282/// is the number of SCEVAddRecExprs present, which are kept at the end of
283/// the list.
284///
285static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
286                                const Type *Ty,
287                                ScalarEvolution &SE) {
288  unsigned NumAddRecs = 0;
289  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
290    ++NumAddRecs;
291  // Group Ops into non-addrecs and addrecs.
292  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
293  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
294  // Let ScalarEvolution sort and simplify the non-addrecs list.
295  const SCEV *Sum = NoAddRecs.empty() ?
296                    SE.getIntegerSCEV(0, Ty) :
297                    SE.getAddExpr(NoAddRecs);
298  // If it returned an add, use the operands. Otherwise it simplified
299  // the sum into a single value, so just use that.
300  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
301    Ops = Add->getOperands();
302  else {
303    Ops.clear();
304    if (!Sum->isZero())
305      Ops.push_back(Sum);
306  }
307  // Then append the addrecs.
308  Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
309}
310
311/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
312/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
313/// This helps expose more opportunities for folding parts of the expressions
314/// into GEP indices.
315///
316static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
317                         const Type *Ty,
318                         ScalarEvolution &SE) {
319  // Find the addrecs.
320  SmallVector<const SCEV *, 8> AddRecs;
321  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
322    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
323      const SCEV *Start = A->getStart();
324      if (Start->isZero()) break;
325      const SCEV *Zero = SE.getIntegerSCEV(0, Ty);
326      AddRecs.push_back(SE.getAddRecExpr(Zero,
327                                         A->getStepRecurrence(SE),
328                                         A->getLoop()));
329      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
330        Ops[i] = Zero;
331        Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
332        e += Add->getNumOperands();
333      } else {
334        Ops[i] = Start;
335      }
336    }
337  if (!AddRecs.empty()) {
338    // Add the addrecs onto the end of the list.
339    Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
340    // Resort the operand list, moving any constants to the front.
341    SimplifyAddOperands(Ops, Ty, SE);
342  }
343}
344
345/// expandAddToGEP - Expand an addition expression with a pointer type into
346/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
347/// BasicAliasAnalysis and other passes analyze the result. See the rules
348/// for getelementptr vs. inttoptr in
349/// http://llvm.org/docs/LangRef.html#pointeraliasing
350/// for details.
351///
352/// Design note: The correctness of using getelementptr here depends on
353/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
354/// they may introduce pointer arithmetic which may not be safely converted
355/// into getelementptr.
356///
357/// Design note: It might seem desirable for this function to be more
358/// loop-aware. If some of the indices are loop-invariant while others
359/// aren't, it might seem desirable to emit multiple GEPs, keeping the
360/// loop-invariant portions of the overall computation outside the loop.
361/// However, there are a few reasons this is not done here. Hoisting simple
362/// arithmetic is a low-level optimization that often isn't very
363/// important until late in the optimization process. In fact, passes
364/// like InstructionCombining will combine GEPs, even if it means
365/// pushing loop-invariant computation down into loops, so even if the
366/// GEPs were split here, the work would quickly be undone. The
367/// LoopStrengthReduction pass, which is usually run quite late (and
368/// after the last InstructionCombining pass), takes care of hoisting
369/// loop-invariant portions of expressions, after considering what
370/// can be folded using target addressing modes.
371///
372Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
373                                    const SCEV *const *op_end,
374                                    const PointerType *PTy,
375                                    const Type *Ty,
376                                    Value *V) {
377  const Type *ElTy = PTy->getElementType();
378  SmallVector<Value *, 4> GepIndices;
379  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
380  bool AnyNonZeroIndices = false;
381
382  // Split AddRecs up into parts as either of the parts may be usable
383  // without the other.
384  SplitAddRecs(Ops, Ty, SE);
385
386  // Descend down the pointer's type and attempt to convert the other
387  // operands into GEP indices, at each level. The first index in a GEP
388  // indexes into the array implied by the pointer operand; the rest of
389  // the indices index into the element or field type selected by the
390  // preceding index.
391  for (;;) {
392    // If the scale size is not 0, attempt to factor out a scale for
393    // array indexing.
394    SmallVector<const SCEV *, 8> ScaledOps;
395    if (ElTy->isSized()) {
396      const SCEV *ElSize = SE.getSizeOfExpr(ElTy);
397      if (!ElSize->isZero()) {
398        SmallVector<const SCEV *, 8> NewOps;
399        for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
400          const SCEV *Op = Ops[i];
401          const SCEV *Remainder = SE.getIntegerSCEV(0, Ty);
402          if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
403            // Op now has ElSize factored out.
404            ScaledOps.push_back(Op);
405            if (!Remainder->isZero())
406              NewOps.push_back(Remainder);
407            AnyNonZeroIndices = true;
408          } else {
409            // The operand was not divisible, so add it to the list of operands
410            // we'll scan next iteration.
411            NewOps.push_back(Ops[i]);
412          }
413        }
414        // If we made any changes, update Ops.
415        if (!ScaledOps.empty()) {
416          Ops = NewOps;
417          SimplifyAddOperands(Ops, Ty, SE);
418        }
419      }
420    }
421
422    // Record the scaled array index for this level of the type. If
423    // we didn't find any operands that could be factored, tentatively
424    // assume that element zero was selected (since the zero offset
425    // would obviously be folded away).
426    Value *Scaled = ScaledOps.empty() ?
427                    Constant::getNullValue(Ty) :
428                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
429    GepIndices.push_back(Scaled);
430
431    // Collect struct field index operands.
432    while (const StructType *STy = dyn_cast<StructType>(ElTy)) {
433      bool FoundFieldNo = false;
434      // An empty struct has no fields.
435      if (STy->getNumElements() == 0) break;
436      if (SE.TD) {
437        // With TargetData, field offsets are known. See if a constant offset
438        // falls within any of the struct fields.
439        if (Ops.empty()) break;
440        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
441          if (SE.getTypeSizeInBits(C->getType()) <= 64) {
442            const StructLayout &SL = *SE.TD->getStructLayout(STy);
443            uint64_t FullOffset = C->getValue()->getZExtValue();
444            if (FullOffset < SL.getSizeInBytes()) {
445              unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
446              GepIndices.push_back(
447                  ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
448              ElTy = STy->getTypeAtIndex(ElIdx);
449              Ops[0] =
450                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
451              AnyNonZeroIndices = true;
452              FoundFieldNo = true;
453            }
454          }
455      } else {
456        // Without TargetData, just check for an offsetof expression of the
457        // appropriate struct type.
458        for (unsigned i = 0, e = Ops.size(); i != e; ++i)
459          if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
460            const Type *CTy;
461            Constant *FieldNo;
462            if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
463              GepIndices.push_back(FieldNo);
464              ElTy =
465                STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
466              Ops[i] = SE.getConstant(Ty, 0);
467              AnyNonZeroIndices = true;
468              FoundFieldNo = true;
469              break;
470            }
471          }
472      }
473      // If no struct field offsets were found, tentatively assume that
474      // field zero was selected (since the zero offset would obviously
475      // be folded away).
476      if (!FoundFieldNo) {
477        ElTy = STy->getTypeAtIndex(0u);
478        GepIndices.push_back(
479          Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
480      }
481    }
482
483    if (const ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
484      ElTy = ATy->getElementType();
485    else
486      break;
487  }
488
489  // If none of the operands were convertible to proper GEP indices, cast
490  // the base to i8* and do an ugly getelementptr with that. It's still
491  // better than ptrtoint+arithmetic+inttoptr at least.
492  if (!AnyNonZeroIndices) {
493    // Cast the base to i8*.
494    V = InsertNoopCastOfTo(V,
495       Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
496
497    // Expand the operands for a plain byte offset.
498    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
499
500    // Fold a GEP with constant operands.
501    if (Constant *CLHS = dyn_cast<Constant>(V))
502      if (Constant *CRHS = dyn_cast<Constant>(Idx))
503        return ConstantExpr::getGetElementPtr(CLHS, &CRHS, 1);
504
505    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
506    unsigned ScanLimit = 6;
507    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
508    // Scanning starts from the last instruction before the insertion point.
509    BasicBlock::iterator IP = Builder.GetInsertPoint();
510    if (IP != BlockBegin) {
511      --IP;
512      for (; ScanLimit; --IP, --ScanLimit) {
513        // Don't count dbg.value against the ScanLimit, to avoid perturbing the
514        // generated code.
515        if (isa<DbgInfoIntrinsic>(IP))
516          ScanLimit++;
517        if (IP->getOpcode() == Instruction::GetElementPtr &&
518            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
519          return IP;
520        if (IP == BlockBegin) break;
521      }
522    }
523
524    // Save the original insertion point so we can restore it when we're done.
525    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
526    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
527
528    // Move the insertion point out of as many loops as we can.
529    while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
530      if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
531      BasicBlock *Preheader = L->getLoopPreheader();
532      if (!Preheader) break;
533
534      // Ok, move up a level.
535      Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
536    }
537
538    // Emit a GEP.
539    Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
540    rememberInstruction(GEP);
541
542    // Restore the original insert point.
543    if (SaveInsertBB)
544      restoreInsertPoint(SaveInsertBB, SaveInsertPt);
545
546    return GEP;
547  }
548
549  // Save the original insertion point so we can restore it when we're done.
550  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
551  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
552
553  // Move the insertion point out of as many loops as we can.
554  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
555    if (!L->isLoopInvariant(V)) break;
556
557    bool AnyIndexNotLoopInvariant = false;
558    for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
559         E = GepIndices.end(); I != E; ++I)
560      if (!L->isLoopInvariant(*I)) {
561        AnyIndexNotLoopInvariant = true;
562        break;
563      }
564    if (AnyIndexNotLoopInvariant)
565      break;
566
567    BasicBlock *Preheader = L->getLoopPreheader();
568    if (!Preheader) break;
569
570    // Ok, move up a level.
571    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
572  }
573
574  // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
575  // because ScalarEvolution may have changed the address arithmetic to
576  // compute a value which is beyond the end of the allocated object.
577  Value *Casted = V;
578  if (V->getType() != PTy)
579    Casted = InsertNoopCastOfTo(Casted, PTy);
580  Value *GEP = Builder.CreateGEP(Casted,
581                                 GepIndices.begin(),
582                                 GepIndices.end(),
583                                 "scevgep");
584  Ops.push_back(SE.getUnknown(GEP));
585  rememberInstruction(GEP);
586
587  // Restore the original insert point.
588  if (SaveInsertBB)
589    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
590
591  return expand(SE.getAddExpr(Ops));
592}
593
594/// isNonConstantNegative - Return true if the specified scev is negated, but
595/// not a constant.
596static bool isNonConstantNegative(const SCEV *F) {
597  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(F);
598  if (!Mul) return false;
599
600  // If there is a constant factor, it will be first.
601  const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
602  if (!SC) return false;
603
604  // Return true if the value is negative, this matches things like (-42 * V).
605  return SC->getValue()->getValue().isNegative();
606}
607
608/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
609/// SCEV expansion. If they are nested, this is the most nested. If they are
610/// neighboring, pick the later.
611static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
612                                        DominatorTree &DT) {
613  if (!A) return B;
614  if (!B) return A;
615  if (A->contains(B)) return B;
616  if (B->contains(A)) return A;
617  if (DT.dominates(A->getHeader(), B->getHeader())) return B;
618  if (DT.dominates(B->getHeader(), A->getHeader())) return A;
619  return A; // Arbitrarily break the tie.
620}
621
622/// GetRelevantLoop - Get the most relevant loop associated with the given
623/// expression, according to PickMostRelevantLoop.
624static const Loop *GetRelevantLoop(const SCEV *S, LoopInfo &LI,
625                                   DominatorTree &DT) {
626  if (isa<SCEVConstant>(S))
627    return 0;
628  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
629    if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
630      return LI.getLoopFor(I->getParent());
631    return 0;
632  }
633  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
634    const Loop *L = 0;
635    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
636      L = AR->getLoop();
637    for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
638         I != E; ++I)
639      L = PickMostRelevantLoop(L, GetRelevantLoop(*I, LI, DT), DT);
640    return L;
641  }
642  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
643    return GetRelevantLoop(C->getOperand(), LI, DT);
644  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S))
645    return PickMostRelevantLoop(GetRelevantLoop(D->getLHS(), LI, DT),
646                                GetRelevantLoop(D->getRHS(), LI, DT),
647                                DT);
648  llvm_unreachable("Unexpected SCEV type!");
649}
650
651/// LoopCompare - Compare loops by PickMostRelevantLoop.
652class LoopCompare {
653  DominatorTree &DT;
654public:
655  explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
656
657  bool operator()(std::pair<const Loop *, const SCEV *> LHS,
658                  std::pair<const Loop *, const SCEV *> RHS) const {
659    // Compare loops with PickMostRelevantLoop.
660    if (LHS.first != RHS.first)
661      return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
662
663    // If one operand is a non-constant negative and the other is not,
664    // put the non-constant negative on the right so that a sub can
665    // be used instead of a negate and add.
666    if (isNonConstantNegative(LHS.second)) {
667      if (!isNonConstantNegative(RHS.second))
668        return false;
669    } else if (isNonConstantNegative(RHS.second))
670      return true;
671
672    // Otherwise they are equivalent according to this comparison.
673    return false;
674  }
675};
676
677Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
678  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
679
680  // Collect all the add operands in a loop, along with their associated loops.
681  // Iterate in reverse so that constants are emitted last, all else equal, and
682  // so that pointer operands are inserted first, which the code below relies on
683  // to form more involved GEPs.
684  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
685  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
686       E(S->op_begin()); I != E; ++I)
687    OpsAndLoops.push_back(std::make_pair(GetRelevantLoop(*I, *SE.LI, *SE.DT),
688                                         *I));
689
690  // Sort by loop. Use a stable sort so that constants follow non-constants and
691  // pointer operands precede non-pointer operands.
692  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
693
694  // Emit instructions to add all the operands. Hoist as much as possible
695  // out of loops, and form meaningful getelementptrs where possible.
696  Value *Sum = 0;
697  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
698       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
699    const Loop *CurLoop = I->first;
700    const SCEV *Op = I->second;
701    if (!Sum) {
702      // This is the first operand. Just expand it.
703      Sum = expand(Op);
704      ++I;
705    } else if (const PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
706      // The running sum expression is a pointer. Try to form a getelementptr
707      // at this level with that as the base.
708      SmallVector<const SCEV *, 4> NewOps;
709      for (; I != E && I->first == CurLoop; ++I)
710        NewOps.push_back(I->second);
711      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
712    } else if (const PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
713      // The running sum is an integer, and there's a pointer at this level.
714      // Try to form a getelementptr.
715      SmallVector<const SCEV *, 4> NewOps;
716      NewOps.push_back(SE.getUnknown(Sum));
717      for (++I; I != E && I->first == CurLoop; ++I)
718        NewOps.push_back(I->second);
719      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
720    } else if (isNonConstantNegative(Op)) {
721      // Instead of doing a negate and add, just do a subtract.
722      Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
723      Sum = InsertNoopCastOfTo(Sum, Ty);
724      Sum = InsertBinop(Instruction::Sub, Sum, W);
725      ++I;
726    } else {
727      // A simple add.
728      Value *W = expandCodeFor(Op, Ty);
729      Sum = InsertNoopCastOfTo(Sum, Ty);
730      // Canonicalize a constant to the RHS.
731      if (isa<Constant>(Sum)) std::swap(Sum, W);
732      Sum = InsertBinop(Instruction::Add, Sum, W);
733      ++I;
734    }
735  }
736
737  return Sum;
738}
739
740Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
741  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
742
743  // Collect all the mul operands in a loop, along with their associated loops.
744  // Iterate in reverse so that constants are emitted last, all else equal.
745  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
746  for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
747       E(S->op_begin()); I != E; ++I)
748    OpsAndLoops.push_back(std::make_pair(GetRelevantLoop(*I, *SE.LI, *SE.DT),
749                                         *I));
750
751  // Sort by loop. Use a stable sort so that constants follow non-constants.
752  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
753
754  // Emit instructions to mul all the operands. Hoist as much as possible
755  // out of loops.
756  Value *Prod = 0;
757  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
758       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
759    const SCEV *Op = I->second;
760    if (!Prod) {
761      // This is the first operand. Just expand it.
762      Prod = expand(Op);
763      ++I;
764    } else if (Op->isAllOnesValue()) {
765      // Instead of doing a multiply by negative one, just do a negate.
766      Prod = InsertNoopCastOfTo(Prod, Ty);
767      Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
768      ++I;
769    } else {
770      // A simple mul.
771      Value *W = expandCodeFor(Op, Ty);
772      Prod = InsertNoopCastOfTo(Prod, Ty);
773      // Canonicalize a constant to the RHS.
774      if (isa<Constant>(Prod)) std::swap(Prod, W);
775      Prod = InsertBinop(Instruction::Mul, Prod, W);
776      ++I;
777    }
778  }
779
780  return Prod;
781}
782
783Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
784  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
785
786  Value *LHS = expandCodeFor(S->getLHS(), Ty);
787  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
788    const APInt &RHS = SC->getValue()->getValue();
789    if (RHS.isPowerOf2())
790      return InsertBinop(Instruction::LShr, LHS,
791                         ConstantInt::get(Ty, RHS.logBase2()));
792  }
793
794  Value *RHS = expandCodeFor(S->getRHS(), Ty);
795  return InsertBinop(Instruction::UDiv, LHS, RHS);
796}
797
798/// Move parts of Base into Rest to leave Base with the minimal
799/// expression that provides a pointer operand suitable for a
800/// GEP expansion.
801static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
802                              ScalarEvolution &SE) {
803  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
804    Base = A->getStart();
805    Rest = SE.getAddExpr(Rest,
806                         SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()),
807                                          A->getStepRecurrence(SE),
808                                          A->getLoop()));
809  }
810  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
811    Base = A->getOperand(A->getNumOperands()-1);
812    SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
813    NewAddOps.back() = Rest;
814    Rest = SE.getAddExpr(NewAddOps);
815    ExposePointerBase(Base, Rest, SE);
816  }
817}
818
819/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
820/// the base addrec, which is the addrec without any non-loop-dominating
821/// values, and return the PHI.
822PHINode *
823SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
824                                        const Loop *L,
825                                        const Type *ExpandTy,
826                                        const Type *IntTy) {
827  // Reuse a previously-inserted PHI, if present.
828  for (BasicBlock::iterator I = L->getHeader()->begin();
829       PHINode *PN = dyn_cast<PHINode>(I); ++I)
830    if (SE.isSCEVable(PN->getType()) &&
831        (SE.getEffectiveSCEVType(PN->getType()) ==
832         SE.getEffectiveSCEVType(Normalized->getType())) &&
833        SE.getSCEV(PN) == Normalized)
834      if (BasicBlock *LatchBlock = L->getLoopLatch()) {
835        Instruction *IncV =
836          cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
837
838        // Determine if this is a well-behaved chain of instructions leading
839        // back to the PHI. It probably will be, if we're scanning an inner
840        // loop already visited by LSR for example, but it wouldn't have
841        // to be.
842        do {
843          if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV)) {
844            IncV = 0;
845            break;
846          }
847          // If any of the operands don't dominate the insert position, bail.
848          // Addrec operands are always loop-invariant, so this can only happen
849          // if there are instructions which haven't been hoisted.
850          for (User::op_iterator OI = IncV->op_begin()+1,
851               OE = IncV->op_end(); OI != OE; ++OI)
852            if (Instruction *OInst = dyn_cast<Instruction>(OI))
853              if (!SE.DT->dominates(OInst, IVIncInsertPos)) {
854                IncV = 0;
855                break;
856              }
857          if (!IncV)
858            break;
859          // Advance to the next instruction.
860          IncV = dyn_cast<Instruction>(IncV->getOperand(0));
861          if (!IncV)
862            break;
863          if (IncV->mayHaveSideEffects()) {
864            IncV = 0;
865            break;
866          }
867        } while (IncV != PN);
868
869        if (IncV) {
870          // Ok, the add recurrence looks usable.
871          // Remember this PHI, even in post-inc mode.
872          InsertedValues.insert(PN);
873          // Remember the increment.
874          IncV = cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
875          rememberInstruction(IncV);
876          if (L == IVIncInsertLoop)
877            do {
878              if (SE.DT->dominates(IncV, IVIncInsertPos))
879                break;
880              // Make sure the increment is where we want it. But don't move it
881              // down past a potential existing post-inc user.
882              IncV->moveBefore(IVIncInsertPos);
883              IVIncInsertPos = IncV;
884              IncV = cast<Instruction>(IncV->getOperand(0));
885            } while (IncV != PN);
886          return PN;
887        }
888      }
889
890  // Save the original insertion point so we can restore it when we're done.
891  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
892  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
893
894  // Expand code for the start value.
895  Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
896                                L->getHeader()->begin());
897
898  // Expand code for the step value. Insert instructions right before the
899  // terminator corresponding to the back-edge. Do this before creating the PHI
900  // so that PHI reuse code doesn't see an incomplete PHI. If the stride is
901  // negative, insert a sub instead of an add for the increment (unless it's a
902  // constant, because subtracts of constants are canonicalized to adds).
903  const SCEV *Step = Normalized->getStepRecurrence(SE);
904  bool isPointer = ExpandTy->isPointerTy();
905  bool isNegative = !isPointer && isNonConstantNegative(Step);
906  if (isNegative)
907    Step = SE.getNegativeSCEV(Step);
908  Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
909
910  // Create the PHI.
911  Builder.SetInsertPoint(L->getHeader(), L->getHeader()->begin());
912  PHINode *PN = Builder.CreatePHI(ExpandTy, "lsr.iv");
913  rememberInstruction(PN);
914
915  // Create the step instructions and populate the PHI.
916  BasicBlock *Header = L->getHeader();
917  for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header);
918       HPI != HPE; ++HPI) {
919    BasicBlock *Pred = *HPI;
920
921    // Add a start value.
922    if (!L->contains(Pred)) {
923      PN->addIncoming(StartV, Pred);
924      continue;
925    }
926
927    // Create a step value and add it to the PHI. If IVIncInsertLoop is
928    // non-null and equal to the addrec's loop, insert the instructions
929    // at IVIncInsertPos.
930    Instruction *InsertPos = L == IVIncInsertLoop ?
931      IVIncInsertPos : Pred->getTerminator();
932    Builder.SetInsertPoint(InsertPos->getParent(), InsertPos);
933    Value *IncV;
934    // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
935    if (isPointer) {
936      const PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
937      // If the step isn't constant, don't use an implicitly scaled GEP, because
938      // that would require a multiply inside the loop.
939      if (!isa<ConstantInt>(StepV))
940        GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
941                                    GEPPtrTy->getAddressSpace());
942      const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
943      IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
944      if (IncV->getType() != PN->getType()) {
945        IncV = Builder.CreateBitCast(IncV, PN->getType(), "tmp");
946        rememberInstruction(IncV);
947      }
948    } else {
949      IncV = isNegative ?
950        Builder.CreateSub(PN, StepV, "lsr.iv.next") :
951        Builder.CreateAdd(PN, StepV, "lsr.iv.next");
952      rememberInstruction(IncV);
953    }
954    PN->addIncoming(IncV, Pred);
955  }
956
957  // Restore the original insert point.
958  if (SaveInsertBB)
959    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
960
961  // Remember this PHI, even in post-inc mode.
962  InsertedValues.insert(PN);
963
964  return PN;
965}
966
967Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
968  const Type *STy = S->getType();
969  const Type *IntTy = SE.getEffectiveSCEVType(STy);
970  const Loop *L = S->getLoop();
971
972  // Determine a normalized form of this expression, which is the expression
973  // before any post-inc adjustment is made.
974  const SCEVAddRecExpr *Normalized = S;
975  if (L == PostIncLoop) {
976    const SCEV *Step = S->getStepRecurrence(SE);
977    Normalized = cast<SCEVAddRecExpr>(SE.getMinusSCEV(S, Step));
978  }
979
980  // Strip off any non-loop-dominating component from the addrec start.
981  const SCEV *Start = Normalized->getStart();
982  const SCEV *PostLoopOffset = 0;
983  if (!Start->properlyDominates(L->getHeader(), SE.DT)) {
984    PostLoopOffset = Start;
985    Start = SE.getIntegerSCEV(0, Normalized->getType());
986    Normalized =
987      cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start,
988                                            Normalized->getStepRecurrence(SE),
989                                            Normalized->getLoop()));
990  }
991
992  // Strip off any non-loop-dominating component from the addrec step.
993  const SCEV *Step = Normalized->getStepRecurrence(SE);
994  const SCEV *PostLoopScale = 0;
995  if (!Step->hasComputableLoopEvolution(L) &&
996      !Step->dominates(L->getHeader(), SE.DT)) {
997    PostLoopScale = Step;
998    Step = SE.getIntegerSCEV(1, Normalized->getType());
999    Normalized =
1000      cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, Step,
1001                                            Normalized->getLoop()));
1002  }
1003
1004  // Expand the core addrec. If we need post-loop scaling, force it to
1005  // expand to an integer type to avoid the need for additional casting.
1006  const Type *ExpandTy = PostLoopScale ? IntTy : STy;
1007  PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
1008
1009  // Accommodate post-inc mode, if necessary.
1010  Value *Result;
1011  if (L != PostIncLoop)
1012    Result = PN;
1013  else {
1014    // In PostInc mode, use the post-incremented value.
1015    BasicBlock *LatchBlock = L->getLoopLatch();
1016    assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1017    Result = PN->getIncomingValueForBlock(LatchBlock);
1018  }
1019
1020  // Re-apply any non-loop-dominating scale.
1021  if (PostLoopScale) {
1022    Result = InsertNoopCastOfTo(Result, IntTy);
1023    Result = Builder.CreateMul(Result,
1024                               expandCodeFor(PostLoopScale, IntTy));
1025    rememberInstruction(Result);
1026  }
1027
1028  // Re-apply any non-loop-dominating offset.
1029  if (PostLoopOffset) {
1030    if (const PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1031      const SCEV *const OffsetArray[1] = { PostLoopOffset };
1032      Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
1033    } else {
1034      Result = InsertNoopCastOfTo(Result, IntTy);
1035      Result = Builder.CreateAdd(Result,
1036                                 expandCodeFor(PostLoopOffset, IntTy));
1037      rememberInstruction(Result);
1038    }
1039  }
1040
1041  return Result;
1042}
1043
1044Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1045  if (!CanonicalMode) return expandAddRecExprLiterally(S);
1046
1047  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
1048  const Loop *L = S->getLoop();
1049
1050  // First check for an existing canonical IV in a suitable type.
1051  PHINode *CanonicalIV = 0;
1052  if (PHINode *PN = L->getCanonicalInductionVariable())
1053    if (SE.isSCEVable(PN->getType()) &&
1054        SE.getEffectiveSCEVType(PN->getType())->isIntegerTy() &&
1055        SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1056      CanonicalIV = PN;
1057
1058  // Rewrite an AddRec in terms of the canonical induction variable, if
1059  // its type is more narrow.
1060  if (CanonicalIV &&
1061      SE.getTypeSizeInBits(CanonicalIV->getType()) >
1062      SE.getTypeSizeInBits(Ty)) {
1063    const SmallVectorImpl<const SCEV *> &Ops = S->getOperands();
1064    SmallVector<const SCEV *, 4> NewOps(Ops.size());
1065    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1066      NewOps[i] = SE.getAnyExtendExpr(Ops[i], CanonicalIV->getType());
1067    Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop()));
1068    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1069    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1070    BasicBlock::iterator NewInsertPt =
1071      llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
1072    while (isa<PHINode>(NewInsertPt)) ++NewInsertPt;
1073    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
1074                      NewInsertPt);
1075    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1076    return V;
1077  }
1078
1079  // {X,+,F} --> X + {0,+,F}
1080  if (!S->getStart()->isZero()) {
1081    const SmallVectorImpl<const SCEV *> &SOperands = S->getOperands();
1082    SmallVector<const SCEV *, 4> NewOps(SOperands.begin(), SOperands.end());
1083    NewOps[0] = SE.getIntegerSCEV(0, Ty);
1084    const SCEV *Rest = SE.getAddRecExpr(NewOps, L);
1085
1086    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1087    // comments on expandAddToGEP for details.
1088    const SCEV *Base = S->getStart();
1089    const SCEV *RestArray[1] = { Rest };
1090    // Dig into the expression to find the pointer base for a GEP.
1091    ExposePointerBase(Base, RestArray[0], SE);
1092    // If we found a pointer, expand the AddRec with a GEP.
1093    if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1094      // Make sure the Base isn't something exotic, such as a multiplied
1095      // or divided pointer value. In those cases, the result type isn't
1096      // actually a pointer type.
1097      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1098        Value *StartV = expand(Base);
1099        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1100        return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
1101      }
1102    }
1103
1104    // Just do a normal add. Pre-expand the operands to suppress folding.
1105    return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
1106                                SE.getUnknown(expand(Rest))));
1107  }
1108
1109  // {0,+,1} --> Insert a canonical induction variable into the loop!
1110  if (S->isAffine() &&
1111      S->getOperand(1) == SE.getIntegerSCEV(1, Ty)) {
1112    // If there's a canonical IV, just use it.
1113    if (CanonicalIV) {
1114      assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1115             "IVs with types different from the canonical IV should "
1116             "already have been handled!");
1117      return CanonicalIV;
1118    }
1119
1120    // Create and insert the PHI node for the induction variable in the
1121    // specified loop.
1122    BasicBlock *Header = L->getHeader();
1123    PHINode *PN = PHINode::Create(Ty, "indvar", Header->begin());
1124    rememberInstruction(PN);
1125
1126    Constant *One = ConstantInt::get(Ty, 1);
1127    for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header);
1128         HPI != HPE; ++HPI)
1129      if (L->contains(*HPI)) {
1130        // Insert a unit add instruction right before the terminator
1131        // corresponding to the back-edge.
1132        Instruction *Add = BinaryOperator::CreateAdd(PN, One, "indvar.next",
1133                                                     (*HPI)->getTerminator());
1134        rememberInstruction(Add);
1135        PN->addIncoming(Add, *HPI);
1136      } else {
1137        PN->addIncoming(Constant::getNullValue(Ty), *HPI);
1138      }
1139  }
1140
1141  // {0,+,F} --> {0,+,1} * F
1142  // Get the canonical induction variable I for this loop.
1143  Value *I = CanonicalIV ?
1144             CanonicalIV :
1145             getOrInsertCanonicalInductionVariable(L, Ty);
1146
1147  // If this is a simple linear addrec, emit it now as a special case.
1148  if (S->isAffine())    // {0,+,F} --> i*F
1149    return
1150      expand(SE.getTruncateOrNoop(
1151        SE.getMulExpr(SE.getUnknown(I),
1152                      SE.getNoopOrAnyExtend(S->getOperand(1),
1153                                            I->getType())),
1154        Ty));
1155
1156  // If this is a chain of recurrences, turn it into a closed form, using the
1157  // folders, then expandCodeFor the closed form.  This allows the folders to
1158  // simplify the expression without having to build a bunch of special code
1159  // into this folder.
1160  const SCEV *IH = SE.getUnknown(I);   // Get I as a "symbolic" SCEV.
1161
1162  // Promote S up to the canonical IV type, if the cast is foldable.
1163  const SCEV *NewS = S;
1164  const SCEV *Ext = SE.getNoopOrAnyExtend(S, I->getType());
1165  if (isa<SCEVAddRecExpr>(Ext))
1166    NewS = Ext;
1167
1168  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1169  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1170
1171  // Truncate the result down to the original type, if needed.
1172  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1173  return expand(T);
1174}
1175
1176Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1177  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
1178  Value *V = expandCodeFor(S->getOperand(),
1179                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1180  Value *I = Builder.CreateTrunc(V, Ty, "tmp");
1181  rememberInstruction(I);
1182  return I;
1183}
1184
1185Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1186  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
1187  Value *V = expandCodeFor(S->getOperand(),
1188                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1189  Value *I = Builder.CreateZExt(V, Ty, "tmp");
1190  rememberInstruction(I);
1191  return I;
1192}
1193
1194Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1195  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
1196  Value *V = expandCodeFor(S->getOperand(),
1197                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1198  Value *I = Builder.CreateSExt(V, Ty, "tmp");
1199  rememberInstruction(I);
1200  return I;
1201}
1202
1203Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1204  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1205  const Type *Ty = LHS->getType();
1206  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1207    // In the case of mixed integer and pointer types, do the
1208    // rest of the comparisons as integer.
1209    if (S->getOperand(i)->getType() != Ty) {
1210      Ty = SE.getEffectiveSCEVType(Ty);
1211      LHS = InsertNoopCastOfTo(LHS, Ty);
1212    }
1213    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1214    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS, "tmp");
1215    rememberInstruction(ICmp);
1216    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1217    rememberInstruction(Sel);
1218    LHS = Sel;
1219  }
1220  // In the case of mixed integer and pointer types, cast the
1221  // final result back to the pointer type.
1222  if (LHS->getType() != S->getType())
1223    LHS = InsertNoopCastOfTo(LHS, S->getType());
1224  return LHS;
1225}
1226
1227Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1228  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1229  const Type *Ty = LHS->getType();
1230  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1231    // In the case of mixed integer and pointer types, do the
1232    // rest of the comparisons as integer.
1233    if (S->getOperand(i)->getType() != Ty) {
1234      Ty = SE.getEffectiveSCEVType(Ty);
1235      LHS = InsertNoopCastOfTo(LHS, Ty);
1236    }
1237    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1238    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS, "tmp");
1239    rememberInstruction(ICmp);
1240    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1241    rememberInstruction(Sel);
1242    LHS = Sel;
1243  }
1244  // In the case of mixed integer and pointer types, cast the
1245  // final result back to the pointer type.
1246  if (LHS->getType() != S->getType())
1247    LHS = InsertNoopCastOfTo(LHS, S->getType());
1248  return LHS;
1249}
1250
1251Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty) {
1252  // Expand the code for this SCEV.
1253  Value *V = expand(SH);
1254  if (Ty) {
1255    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1256           "non-trivial casts should be done with the SCEVs directly!");
1257    V = InsertNoopCastOfTo(V, Ty);
1258  }
1259  return V;
1260}
1261
1262Value *SCEVExpander::expand(const SCEV *S) {
1263  // Compute an insertion point for this SCEV object. Hoist the instructions
1264  // as far out in the loop nest as possible.
1265  Instruction *InsertPt = Builder.GetInsertPoint();
1266  for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
1267       L = L->getParentLoop())
1268    if (S->isLoopInvariant(L)) {
1269      if (!L) break;
1270      if (BasicBlock *Preheader = L->getLoopPreheader()) {
1271        InsertPt = Preheader->getTerminator();
1272        BasicBlock::iterator IP = InsertPt;
1273        // Back past any debug info instructions.  Sometimes we inserted
1274        // something earlier before debug info but after any real instructions.
1275        // This should behave the same as if debug info was not present.
1276        while (IP != Preheader->begin()) {
1277          --IP;
1278          if (!isa<DbgInfoIntrinsic>(IP))
1279            break;
1280          InsertPt = IP;
1281        }
1282      }
1283    } else {
1284      // If the SCEV is computable at this level, insert it into the header
1285      // after the PHIs (and after any other instructions that we've inserted
1286      // there) so that it is guaranteed to dominate any user inside the loop.
1287      if (L && S->hasComputableLoopEvolution(L) && L != PostIncLoop)
1288        InsertPt = L->getHeader()->getFirstNonPHI();
1289      while (isInsertedInstruction(InsertPt))
1290        InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
1291      break;
1292    }
1293
1294  // Check to see if we already expanded this here.
1295  std::map<std::pair<const SCEV *, Instruction *>,
1296           AssertingVH<Value> >::iterator I =
1297    InsertedExpressions.find(std::make_pair(S, InsertPt));
1298  if (I != InsertedExpressions.end())
1299    return I->second;
1300
1301  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1302  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1303  Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1304
1305  // Expand the expression into instructions.
1306  Value *V = visit(S);
1307
1308  // Remember the expanded value for this SCEV at this location.
1309  if (!PostIncLoop)
1310    InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1311
1312  restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1313  return V;
1314}
1315
1316void SCEVExpander::rememberInstruction(Value *I) {
1317  if (!PostIncLoop)
1318    InsertedValues.insert(I);
1319
1320  // If we just claimed an existing instruction and that instruction had
1321  // been the insert point, adjust the insert point forward so that
1322  // subsequently inserted code will be dominated.
1323  if (Builder.GetInsertPoint() == I) {
1324    BasicBlock::iterator It = cast<Instruction>(I);
1325    do { ++It; } while (isInsertedInstruction(It));
1326    Builder.SetInsertPoint(Builder.GetInsertBlock(), It);
1327  }
1328}
1329
1330void SCEVExpander::restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I) {
1331  // If we acquired more instructions since the old insert point was saved,
1332  // advance past them.
1333  while (isInsertedInstruction(I)) ++I;
1334
1335  Builder.SetInsertPoint(BB, I);
1336}
1337
1338/// getOrInsertCanonicalInductionVariable - This method returns the
1339/// canonical induction variable of the specified type for the specified
1340/// loop (inserting one if there is none).  A canonical induction variable
1341/// starts at zero and steps by one on each iteration.
1342Value *
1343SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1344                                                    const Type *Ty) {
1345  assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1346  const SCEV *H = SE.getAddRecExpr(SE.getIntegerSCEV(0, Ty),
1347                                   SE.getIntegerSCEV(1, Ty), L);
1348  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1349  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1350  Value *V = expandCodeFor(H, 0, L->getHeader()->begin());
1351  if (SaveInsertBB)
1352    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1353  return V;
1354}
1355