ScalarEvolutionExpander.cpp revision 198090
1//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution expander,
11// which is used to generate the code corresponding to a given scalar evolution
12// expression.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/ScalarEvolutionExpander.h"
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/LLVMContext.h"
19#include "llvm/Target/TargetData.h"
20#include "llvm/ADT/STLExtras.h"
21using namespace llvm;
22
23/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
24/// which must be possible with a noop cast, doing what we can to share
25/// the casts.
26Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
27  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
28  assert((Op == Instruction::BitCast ||
29          Op == Instruction::PtrToInt ||
30          Op == Instruction::IntToPtr) &&
31         "InsertNoopCastOfTo cannot perform non-noop casts!");
32  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
33         "InsertNoopCastOfTo cannot change sizes!");
34
35  // Short-circuit unnecessary bitcasts.
36  if (Op == Instruction::BitCast && V->getType() == Ty)
37    return V;
38
39  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
40  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
41      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
42    if (CastInst *CI = dyn_cast<CastInst>(V))
43      if ((CI->getOpcode() == Instruction::PtrToInt ||
44           CI->getOpcode() == Instruction::IntToPtr) &&
45          SE.getTypeSizeInBits(CI->getType()) ==
46          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
47        return CI->getOperand(0);
48    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
49      if ((CE->getOpcode() == Instruction::PtrToInt ||
50           CE->getOpcode() == Instruction::IntToPtr) &&
51          SE.getTypeSizeInBits(CE->getType()) ==
52          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
53        return CE->getOperand(0);
54  }
55
56  if (Constant *C = dyn_cast<Constant>(V))
57    return ConstantExpr::getCast(Op, C, Ty);
58
59  if (Argument *A = dyn_cast<Argument>(V)) {
60    // Check to see if there is already a cast!
61    for (Value::use_iterator UI = A->use_begin(), E = A->use_end();
62         UI != E; ++UI)
63      if ((*UI)->getType() == Ty)
64        if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
65          if (CI->getOpcode() == Op) {
66            // If the cast isn't the first instruction of the function, move it.
67            if (BasicBlock::iterator(CI) !=
68                A->getParent()->getEntryBlock().begin()) {
69              // Recreate the cast at the beginning of the entry block.
70              // The old cast is left in place in case it is being used
71              // as an insert point.
72              Instruction *NewCI =
73                CastInst::Create(Op, V, Ty, "",
74                                 A->getParent()->getEntryBlock().begin());
75              NewCI->takeName(CI);
76              CI->replaceAllUsesWith(NewCI);
77              return NewCI;
78            }
79            return CI;
80          }
81
82    Instruction *I = CastInst::Create(Op, V, Ty, V->getName(),
83                                      A->getParent()->getEntryBlock().begin());
84    InsertedValues.insert(I);
85    return I;
86  }
87
88  Instruction *I = cast<Instruction>(V);
89
90  // Check to see if there is already a cast.  If there is, use it.
91  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
92       UI != E; ++UI) {
93    if ((*UI)->getType() == Ty)
94      if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
95        if (CI->getOpcode() == Op) {
96          BasicBlock::iterator It = I; ++It;
97          if (isa<InvokeInst>(I))
98            It = cast<InvokeInst>(I)->getNormalDest()->begin();
99          while (isa<PHINode>(It)) ++It;
100          if (It != BasicBlock::iterator(CI)) {
101            // Recreate the cast at the beginning of the entry block.
102            // The old cast is left in place in case it is being used
103            // as an insert point.
104            Instruction *NewCI = CastInst::Create(Op, V, Ty, "", It);
105            NewCI->takeName(CI);
106            CI->replaceAllUsesWith(NewCI);
107            return NewCI;
108          }
109          return CI;
110        }
111  }
112  BasicBlock::iterator IP = I; ++IP;
113  if (InvokeInst *II = dyn_cast<InvokeInst>(I))
114    IP = II->getNormalDest()->begin();
115  while (isa<PHINode>(IP)) ++IP;
116  Instruction *CI = CastInst::Create(Op, V, Ty, V->getName(), IP);
117  InsertedValues.insert(CI);
118  return CI;
119}
120
121/// InsertBinop - Insert the specified binary operator, doing a small amount
122/// of work to avoid inserting an obviously redundant operation.
123Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
124                                 Value *LHS, Value *RHS) {
125  // Fold a binop with constant operands.
126  if (Constant *CLHS = dyn_cast<Constant>(LHS))
127    if (Constant *CRHS = dyn_cast<Constant>(RHS))
128      return ConstantExpr::get(Opcode, CLHS, CRHS);
129
130  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
131  unsigned ScanLimit = 6;
132  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
133  // Scanning starts from the last instruction before the insertion point.
134  BasicBlock::iterator IP = Builder.GetInsertPoint();
135  if (IP != BlockBegin) {
136    --IP;
137    for (; ScanLimit; --IP, --ScanLimit) {
138      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
139          IP->getOperand(1) == RHS)
140        return IP;
141      if (IP == BlockBegin) break;
142    }
143  }
144
145  // If we haven't found this binop, insert it.
146  Value *BO = Builder.CreateBinOp(Opcode, LHS, RHS, "tmp");
147  InsertedValues.insert(BO);
148  return BO;
149}
150
151/// FactorOutConstant - Test if S is divisible by Factor, using signed
152/// division. If so, update S with Factor divided out and return true.
153/// S need not be evenly divisble if a reasonable remainder can be
154/// computed.
155/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
156/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
157/// check to see if the divide was folded.
158static bool FactorOutConstant(const SCEV *&S,
159                              const SCEV *&Remainder,
160                              const SCEV *Factor,
161                              ScalarEvolution &SE,
162                              const TargetData *TD) {
163  // Everything is divisible by one.
164  if (Factor->isOne())
165    return true;
166
167  // x/x == 1.
168  if (S == Factor) {
169    S = SE.getIntegerSCEV(1, S->getType());
170    return true;
171  }
172
173  // For a Constant, check for a multiple of the given factor.
174  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
175    // 0/x == 0.
176    if (C->isZero())
177      return true;
178    // Check for divisibility.
179    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
180      ConstantInt *CI =
181        ConstantInt::get(SE.getContext(),
182                         C->getValue()->getValue().sdiv(
183                                                   FC->getValue()->getValue()));
184      // If the quotient is zero and the remainder is non-zero, reject
185      // the value at this scale. It will be considered for subsequent
186      // smaller scales.
187      if (!CI->isZero()) {
188        const SCEV *Div = SE.getConstant(CI);
189        S = Div;
190        Remainder =
191          SE.getAddExpr(Remainder,
192                        SE.getConstant(C->getValue()->getValue().srem(
193                                                  FC->getValue()->getValue())));
194        return true;
195      }
196    }
197  }
198
199  // In a Mul, check if there is a constant operand which is a multiple
200  // of the given factor.
201  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
202    if (TD) {
203      // With TargetData, the size is known. Check if there is a constant
204      // operand which is a multiple of the given factor. If so, we can
205      // factor it.
206      const SCEVConstant *FC = cast<SCEVConstant>(Factor);
207      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
208        if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
209          const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
210          SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
211                                                 MOperands.end());
212          NewMulOps[0] =
213            SE.getConstant(C->getValue()->getValue().sdiv(
214                                                   FC->getValue()->getValue()));
215          S = SE.getMulExpr(NewMulOps);
216          return true;
217        }
218    } else {
219      // Without TargetData, check if Factor can be factored out of any of the
220      // Mul's operands. If so, we can just remove it.
221      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
222        const SCEV *SOp = M->getOperand(i);
223        const SCEV *Remainder = SE.getIntegerSCEV(0, SOp->getType());
224        if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
225            Remainder->isZero()) {
226          const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
227          SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
228                                                 MOperands.end());
229          NewMulOps[i] = SOp;
230          S = SE.getMulExpr(NewMulOps);
231          return true;
232        }
233      }
234    }
235  }
236
237  // In an AddRec, check if both start and step are divisible.
238  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
239    const SCEV *Step = A->getStepRecurrence(SE);
240    const SCEV *StepRem = SE.getIntegerSCEV(0, Step->getType());
241    if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
242      return false;
243    if (!StepRem->isZero())
244      return false;
245    const SCEV *Start = A->getStart();
246    if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
247      return false;
248    S = SE.getAddRecExpr(Start, Step, A->getLoop());
249    return true;
250  }
251
252  return false;
253}
254
255/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
256/// is the number of SCEVAddRecExprs present, which are kept at the end of
257/// the list.
258///
259static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
260                                const Type *Ty,
261                                ScalarEvolution &SE) {
262  unsigned NumAddRecs = 0;
263  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
264    ++NumAddRecs;
265  // Group Ops into non-addrecs and addrecs.
266  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
267  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
268  // Let ScalarEvolution sort and simplify the non-addrecs list.
269  const SCEV *Sum = NoAddRecs.empty() ?
270                    SE.getIntegerSCEV(0, Ty) :
271                    SE.getAddExpr(NoAddRecs);
272  // If it returned an add, use the operands. Otherwise it simplified
273  // the sum into a single value, so just use that.
274  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
275    Ops = Add->getOperands();
276  else {
277    Ops.clear();
278    if (!Sum->isZero())
279      Ops.push_back(Sum);
280  }
281  // Then append the addrecs.
282  Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
283}
284
285/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
286/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
287/// This helps expose more opportunities for folding parts of the expressions
288/// into GEP indices.
289///
290static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
291                         const Type *Ty,
292                         ScalarEvolution &SE) {
293  // Find the addrecs.
294  SmallVector<const SCEV *, 8> AddRecs;
295  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
296    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
297      const SCEV *Start = A->getStart();
298      if (Start->isZero()) break;
299      const SCEV *Zero = SE.getIntegerSCEV(0, Ty);
300      AddRecs.push_back(SE.getAddRecExpr(Zero,
301                                         A->getStepRecurrence(SE),
302                                         A->getLoop()));
303      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
304        Ops[i] = Zero;
305        Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
306        e += Add->getNumOperands();
307      } else {
308        Ops[i] = Start;
309      }
310    }
311  if (!AddRecs.empty()) {
312    // Add the addrecs onto the end of the list.
313    Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
314    // Resort the operand list, moving any constants to the front.
315    SimplifyAddOperands(Ops, Ty, SE);
316  }
317}
318
319/// expandAddToGEP - Expand an addition expression with a pointer type into
320/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
321/// BasicAliasAnalysis and other passes analyze the result. See the rules
322/// for getelementptr vs. inttoptr in
323/// http://llvm.org/docs/LangRef.html#pointeraliasing
324/// for details.
325///
326/// Design note: The correctness of using getelmeentptr here depends on
327/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
328/// they may introduce pointer arithmetic which may not be safely converted
329/// into getelementptr.
330///
331/// Design note: It might seem desirable for this function to be more
332/// loop-aware. If some of the indices are loop-invariant while others
333/// aren't, it might seem desirable to emit multiple GEPs, keeping the
334/// loop-invariant portions of the overall computation outside the loop.
335/// However, there are a few reasons this is not done here. Hoisting simple
336/// arithmetic is a low-level optimization that often isn't very
337/// important until late in the optimization process. In fact, passes
338/// like InstructionCombining will combine GEPs, even if it means
339/// pushing loop-invariant computation down into loops, so even if the
340/// GEPs were split here, the work would quickly be undone. The
341/// LoopStrengthReduction pass, which is usually run quite late (and
342/// after the last InstructionCombining pass), takes care of hoisting
343/// loop-invariant portions of expressions, after considering what
344/// can be folded using target addressing modes.
345///
346Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
347                                    const SCEV *const *op_end,
348                                    const PointerType *PTy,
349                                    const Type *Ty,
350                                    Value *V) {
351  const Type *ElTy = PTy->getElementType();
352  SmallVector<Value *, 4> GepIndices;
353  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
354  bool AnyNonZeroIndices = false;
355
356  // Split AddRecs up into parts as either of the parts may be usable
357  // without the other.
358  SplitAddRecs(Ops, Ty, SE);
359
360  // Decend down the pointer's type and attempt to convert the other
361  // operands into GEP indices, at each level. The first index in a GEP
362  // indexes into the array implied by the pointer operand; the rest of
363  // the indices index into the element or field type selected by the
364  // preceding index.
365  for (;;) {
366    const SCEV *ElSize = SE.getAllocSizeExpr(ElTy);
367    // If the scale size is not 0, attempt to factor out a scale for
368    // array indexing.
369    SmallVector<const SCEV *, 8> ScaledOps;
370    if (ElTy->isSized() && !ElSize->isZero()) {
371      SmallVector<const SCEV *, 8> NewOps;
372      for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
373        const SCEV *Op = Ops[i];
374        const SCEV *Remainder = SE.getIntegerSCEV(0, Ty);
375        if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
376          // Op now has ElSize factored out.
377          ScaledOps.push_back(Op);
378          if (!Remainder->isZero())
379            NewOps.push_back(Remainder);
380          AnyNonZeroIndices = true;
381        } else {
382          // The operand was not divisible, so add it to the list of operands
383          // we'll scan next iteration.
384          NewOps.push_back(Ops[i]);
385        }
386      }
387      // If we made any changes, update Ops.
388      if (!ScaledOps.empty()) {
389        Ops = NewOps;
390        SimplifyAddOperands(Ops, Ty, SE);
391      }
392    }
393
394    // Record the scaled array index for this level of the type. If
395    // we didn't find any operands that could be factored, tentatively
396    // assume that element zero was selected (since the zero offset
397    // would obviously be folded away).
398    Value *Scaled = ScaledOps.empty() ?
399                    Constant::getNullValue(Ty) :
400                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
401    GepIndices.push_back(Scaled);
402
403    // Collect struct field index operands.
404    while (const StructType *STy = dyn_cast<StructType>(ElTy)) {
405      bool FoundFieldNo = false;
406      // An empty struct has no fields.
407      if (STy->getNumElements() == 0) break;
408      if (SE.TD) {
409        // With TargetData, field offsets are known. See if a constant offset
410        // falls within any of the struct fields.
411        if (Ops.empty()) break;
412        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
413          if (SE.getTypeSizeInBits(C->getType()) <= 64) {
414            const StructLayout &SL = *SE.TD->getStructLayout(STy);
415            uint64_t FullOffset = C->getValue()->getZExtValue();
416            if (FullOffset < SL.getSizeInBytes()) {
417              unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
418              GepIndices.push_back(
419                  ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
420              ElTy = STy->getTypeAtIndex(ElIdx);
421              Ops[0] =
422                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
423              AnyNonZeroIndices = true;
424              FoundFieldNo = true;
425            }
426          }
427      } else {
428        // Without TargetData, just check for a SCEVFieldOffsetExpr of the
429        // appropriate struct type.
430        for (unsigned i = 0, e = Ops.size(); i != e; ++i)
431          if (const SCEVFieldOffsetExpr *FO =
432                dyn_cast<SCEVFieldOffsetExpr>(Ops[i]))
433            if (FO->getStructType() == STy) {
434              unsigned FieldNo = FO->getFieldNo();
435              GepIndices.push_back(
436                  ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
437                                   FieldNo));
438              ElTy = STy->getTypeAtIndex(FieldNo);
439              Ops[i] = SE.getConstant(Ty, 0);
440              AnyNonZeroIndices = true;
441              FoundFieldNo = true;
442              break;
443            }
444      }
445      // If no struct field offsets were found, tentatively assume that
446      // field zero was selected (since the zero offset would obviously
447      // be folded away).
448      if (!FoundFieldNo) {
449        ElTy = STy->getTypeAtIndex(0u);
450        GepIndices.push_back(
451          Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
452      }
453    }
454
455    if (const ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
456      ElTy = ATy->getElementType();
457    else
458      break;
459  }
460
461  // If none of the operands were convertable to proper GEP indices, cast
462  // the base to i8* and do an ugly getelementptr with that. It's still
463  // better than ptrtoint+arithmetic+inttoptr at least.
464  if (!AnyNonZeroIndices) {
465    // Cast the base to i8*.
466    V = InsertNoopCastOfTo(V,
467       Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
468
469    // Expand the operands for a plain byte offset.
470    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
471
472    // Fold a GEP with constant operands.
473    if (Constant *CLHS = dyn_cast<Constant>(V))
474      if (Constant *CRHS = dyn_cast<Constant>(Idx))
475        return ConstantExpr::getGetElementPtr(CLHS, &CRHS, 1);
476
477    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
478    unsigned ScanLimit = 6;
479    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
480    // Scanning starts from the last instruction before the insertion point.
481    BasicBlock::iterator IP = Builder.GetInsertPoint();
482    if (IP != BlockBegin) {
483      --IP;
484      for (; ScanLimit; --IP, --ScanLimit) {
485        if (IP->getOpcode() == Instruction::GetElementPtr &&
486            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
487          return IP;
488        if (IP == BlockBegin) break;
489      }
490    }
491
492    // Emit a GEP.
493    Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
494    InsertedValues.insert(GEP);
495    return GEP;
496  }
497
498  // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
499  // because ScalarEvolution may have changed the address arithmetic to
500  // compute a value which is beyond the end of the allocated object.
501  Value *GEP = Builder.CreateGEP(V,
502                                 GepIndices.begin(),
503                                 GepIndices.end(),
504                                 "scevgep");
505  Ops.push_back(SE.getUnknown(GEP));
506  InsertedValues.insert(GEP);
507  return expand(SE.getAddExpr(Ops));
508}
509
510Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
511  int NumOperands = S->getNumOperands();
512  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
513
514  // Find the index of an operand to start with. Choose the operand with
515  // pointer type, if there is one, or the last operand otherwise.
516  int PIdx = 0;
517  for (; PIdx != NumOperands - 1; ++PIdx)
518    if (isa<PointerType>(S->getOperand(PIdx)->getType())) break;
519
520  // Expand code for the operand that we chose.
521  Value *V = expand(S->getOperand(PIdx));
522
523  // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
524  // comments on expandAddToGEP for details.
525  if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) {
526    // Take the operand at PIdx out of the list.
527    const SmallVectorImpl<const SCEV *> &Ops = S->getOperands();
528    SmallVector<const SCEV *, 8> NewOps;
529    NewOps.insert(NewOps.end(), Ops.begin(), Ops.begin() + PIdx);
530    NewOps.insert(NewOps.end(), Ops.begin() + PIdx + 1, Ops.end());
531    // Make a GEP.
532    return expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, V);
533  }
534
535  // Otherwise, we'll expand the rest of the SCEVAddExpr as plain integer
536  // arithmetic.
537  V = InsertNoopCastOfTo(V, Ty);
538
539  // Emit a bunch of add instructions
540  for (int i = NumOperands-1; i >= 0; --i) {
541    if (i == PIdx) continue;
542    Value *W = expandCodeFor(S->getOperand(i), Ty);
543    V = InsertBinop(Instruction::Add, V, W);
544  }
545  return V;
546}
547
548Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
549  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
550  int FirstOp = 0;  // Set if we should emit a subtract.
551  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
552    if (SC->getValue()->isAllOnesValue())
553      FirstOp = 1;
554
555  int i = S->getNumOperands()-2;
556  Value *V = expandCodeFor(S->getOperand(i+1), Ty);
557
558  // Emit a bunch of multiply instructions
559  for (; i >= FirstOp; --i) {
560    Value *W = expandCodeFor(S->getOperand(i), Ty);
561    V = InsertBinop(Instruction::Mul, V, W);
562  }
563
564  // -1 * ...  --->  0 - ...
565  if (FirstOp == 1)
566    V = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), V);
567  return V;
568}
569
570Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
571  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
572
573  Value *LHS = expandCodeFor(S->getLHS(), Ty);
574  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
575    const APInt &RHS = SC->getValue()->getValue();
576    if (RHS.isPowerOf2())
577      return InsertBinop(Instruction::LShr, LHS,
578                         ConstantInt::get(Ty, RHS.logBase2()));
579  }
580
581  Value *RHS = expandCodeFor(S->getRHS(), Ty);
582  return InsertBinop(Instruction::UDiv, LHS, RHS);
583}
584
585/// Move parts of Base into Rest to leave Base with the minimal
586/// expression that provides a pointer operand suitable for a
587/// GEP expansion.
588static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
589                              ScalarEvolution &SE) {
590  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
591    Base = A->getStart();
592    Rest = SE.getAddExpr(Rest,
593                         SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()),
594                                          A->getStepRecurrence(SE),
595                                          A->getLoop()));
596  }
597  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
598    Base = A->getOperand(A->getNumOperands()-1);
599    SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
600    NewAddOps.back() = Rest;
601    Rest = SE.getAddExpr(NewAddOps);
602    ExposePointerBase(Base, Rest, SE);
603  }
604}
605
606Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
607  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
608  const Loop *L = S->getLoop();
609
610  // First check for an existing canonical IV in a suitable type.
611  PHINode *CanonicalIV = 0;
612  if (PHINode *PN = L->getCanonicalInductionVariable())
613    if (SE.isSCEVable(PN->getType()) &&
614        isa<IntegerType>(SE.getEffectiveSCEVType(PN->getType())) &&
615        SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
616      CanonicalIV = PN;
617
618  // Rewrite an AddRec in terms of the canonical induction variable, if
619  // its type is more narrow.
620  if (CanonicalIV &&
621      SE.getTypeSizeInBits(CanonicalIV->getType()) >
622      SE.getTypeSizeInBits(Ty)) {
623    const SmallVectorImpl<const SCEV *> &Ops = S->getOperands();
624    SmallVector<const SCEV *, 4> NewOps(Ops.size());
625    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
626      NewOps[i] = SE.getAnyExtendExpr(Ops[i], CanonicalIV->getType());
627    Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop()));
628    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
629    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
630    BasicBlock::iterator NewInsertPt =
631      next(BasicBlock::iterator(cast<Instruction>(V)));
632    while (isa<PHINode>(NewInsertPt)) ++NewInsertPt;
633    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
634                      NewInsertPt);
635    Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
636    return V;
637  }
638
639  // {X,+,F} --> X + {0,+,F}
640  if (!S->getStart()->isZero()) {
641    const SmallVectorImpl<const SCEV *> &SOperands = S->getOperands();
642    SmallVector<const SCEV *, 4> NewOps(SOperands.begin(), SOperands.end());
643    NewOps[0] = SE.getIntegerSCEV(0, Ty);
644    const SCEV *Rest = SE.getAddRecExpr(NewOps, L);
645
646    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
647    // comments on expandAddToGEP for details.
648    const SCEV *Base = S->getStart();
649    const SCEV *RestArray[1] = { Rest };
650    // Dig into the expression to find the pointer base for a GEP.
651    ExposePointerBase(Base, RestArray[0], SE);
652    // If we found a pointer, expand the AddRec with a GEP.
653    if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
654      // Make sure the Base isn't something exotic, such as a multiplied
655      // or divided pointer value. In those cases, the result type isn't
656      // actually a pointer type.
657      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
658        Value *StartV = expand(Base);
659        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
660        return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
661      }
662    }
663
664    // Just do a normal add. Pre-expand the operands to suppress folding.
665    return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
666                                SE.getUnknown(expand(Rest))));
667  }
668
669  // {0,+,1} --> Insert a canonical induction variable into the loop!
670  if (S->isAffine() &&
671      S->getOperand(1) == SE.getIntegerSCEV(1, Ty)) {
672    // If there's a canonical IV, just use it.
673    if (CanonicalIV) {
674      assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
675             "IVs with types different from the canonical IV should "
676             "already have been handled!");
677      return CanonicalIV;
678    }
679
680    // Create and insert the PHI node for the induction variable in the
681    // specified loop.
682    BasicBlock *Header = L->getHeader();
683    PHINode *PN = PHINode::Create(Ty, "indvar", Header->begin());
684    InsertedValues.insert(PN);
685
686    Constant *One = ConstantInt::get(Ty, 1);
687    for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header);
688         HPI != HPE; ++HPI)
689      if (L->contains(*HPI)) {
690        // Insert a unit add instruction right before the terminator corresponding
691        // to the back-edge.
692        Instruction *Add = BinaryOperator::CreateAdd(PN, One, "indvar.next",
693                                                     (*HPI)->getTerminator());
694        InsertedValues.insert(Add);
695        PN->addIncoming(Add, *HPI);
696      } else {
697        PN->addIncoming(Constant::getNullValue(Ty), *HPI);
698      }
699  }
700
701  // {0,+,F} --> {0,+,1} * F
702  // Get the canonical induction variable I for this loop.
703  Value *I = CanonicalIV ?
704             CanonicalIV :
705             getOrInsertCanonicalInductionVariable(L, Ty);
706
707  // If this is a simple linear addrec, emit it now as a special case.
708  if (S->isAffine())    // {0,+,F} --> i*F
709    return
710      expand(SE.getTruncateOrNoop(
711        SE.getMulExpr(SE.getUnknown(I),
712                      SE.getNoopOrAnyExtend(S->getOperand(1),
713                                            I->getType())),
714        Ty));
715
716  // If this is a chain of recurrences, turn it into a closed form, using the
717  // folders, then expandCodeFor the closed form.  This allows the folders to
718  // simplify the expression without having to build a bunch of special code
719  // into this folder.
720  const SCEV *IH = SE.getUnknown(I);   // Get I as a "symbolic" SCEV.
721
722  // Promote S up to the canonical IV type, if the cast is foldable.
723  const SCEV *NewS = S;
724  const SCEV *Ext = SE.getNoopOrAnyExtend(S, I->getType());
725  if (isa<SCEVAddRecExpr>(Ext))
726    NewS = Ext;
727
728  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
729  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
730
731  // Truncate the result down to the original type, if needed.
732  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
733  return expand(T);
734}
735
736Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
737  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
738  Value *V = expandCodeFor(S->getOperand(),
739                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
740  Value *I = Builder.CreateTrunc(V, Ty, "tmp");
741  InsertedValues.insert(I);
742  return I;
743}
744
745Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
746  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
747  Value *V = expandCodeFor(S->getOperand(),
748                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
749  Value *I = Builder.CreateZExt(V, Ty, "tmp");
750  InsertedValues.insert(I);
751  return I;
752}
753
754Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
755  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
756  Value *V = expandCodeFor(S->getOperand(),
757                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
758  Value *I = Builder.CreateSExt(V, Ty, "tmp");
759  InsertedValues.insert(I);
760  return I;
761}
762
763Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
764  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
765  const Type *Ty = LHS->getType();
766  for (int i = S->getNumOperands()-2; i >= 0; --i) {
767    // In the case of mixed integer and pointer types, do the
768    // rest of the comparisons as integer.
769    if (S->getOperand(i)->getType() != Ty) {
770      Ty = SE.getEffectiveSCEVType(Ty);
771      LHS = InsertNoopCastOfTo(LHS, Ty);
772    }
773    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
774    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS, "tmp");
775    InsertedValues.insert(ICmp);
776    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
777    InsertedValues.insert(Sel);
778    LHS = Sel;
779  }
780  // In the case of mixed integer and pointer types, cast the
781  // final result back to the pointer type.
782  if (LHS->getType() != S->getType())
783    LHS = InsertNoopCastOfTo(LHS, S->getType());
784  return LHS;
785}
786
787Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
788  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
789  const Type *Ty = LHS->getType();
790  for (int i = S->getNumOperands()-2; i >= 0; --i) {
791    // In the case of mixed integer and pointer types, do the
792    // rest of the comparisons as integer.
793    if (S->getOperand(i)->getType() != Ty) {
794      Ty = SE.getEffectiveSCEVType(Ty);
795      LHS = InsertNoopCastOfTo(LHS, Ty);
796    }
797    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
798    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS, "tmp");
799    InsertedValues.insert(ICmp);
800    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
801    InsertedValues.insert(Sel);
802    LHS = Sel;
803  }
804  // In the case of mixed integer and pointer types, cast the
805  // final result back to the pointer type.
806  if (LHS->getType() != S->getType())
807    LHS = InsertNoopCastOfTo(LHS, S->getType());
808  return LHS;
809}
810
811Value *SCEVExpander::visitFieldOffsetExpr(const SCEVFieldOffsetExpr *S) {
812  return ConstantExpr::getOffsetOf(S->getStructType(), S->getFieldNo());
813}
814
815Value *SCEVExpander::visitAllocSizeExpr(const SCEVAllocSizeExpr *S) {
816  return ConstantExpr::getSizeOf(S->getAllocType());
817}
818
819Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty) {
820  // Expand the code for this SCEV.
821  Value *V = expand(SH);
822  if (Ty) {
823    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
824           "non-trivial casts should be done with the SCEVs directly!");
825    V = InsertNoopCastOfTo(V, Ty);
826  }
827  return V;
828}
829
830Value *SCEVExpander::expand(const SCEV *S) {
831  // Compute an insertion point for this SCEV object. Hoist the instructions
832  // as far out in the loop nest as possible.
833  Instruction *InsertPt = Builder.GetInsertPoint();
834  for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
835       L = L->getParentLoop())
836    if (S->isLoopInvariant(L)) {
837      if (!L) break;
838      if (BasicBlock *Preheader = L->getLoopPreheader())
839        InsertPt = Preheader->getTerminator();
840    } else {
841      // If the SCEV is computable at this level, insert it into the header
842      // after the PHIs (and after any other instructions that we've inserted
843      // there) so that it is guaranteed to dominate any user inside the loop.
844      if (L && S->hasComputableLoopEvolution(L))
845        InsertPt = L->getHeader()->getFirstNonPHI();
846      while (isInsertedInstruction(InsertPt))
847        InsertPt = next(BasicBlock::iterator(InsertPt));
848      break;
849    }
850
851  // Check to see if we already expanded this here.
852  std::map<std::pair<const SCEV *, Instruction *>,
853           AssertingVH<Value> >::iterator I =
854    InsertedExpressions.find(std::make_pair(S, InsertPt));
855  if (I != InsertedExpressions.end())
856    return I->second;
857
858  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
859  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
860  Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
861
862  // Expand the expression into instructions.
863  Value *V = visit(S);
864
865  // Remember the expanded value for this SCEV at this location.
866  InsertedExpressions[std::make_pair(S, InsertPt)] = V;
867
868  Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
869  return V;
870}
871
872/// getOrInsertCanonicalInductionVariable - This method returns the
873/// canonical induction variable of the specified type for the specified
874/// loop (inserting one if there is none).  A canonical induction variable
875/// starts at zero and steps by one on each iteration.
876Value *
877SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
878                                                    const Type *Ty) {
879  assert(Ty->isInteger() && "Can only insert integer induction variables!");
880  const SCEV *H = SE.getAddRecExpr(SE.getIntegerSCEV(0, Ty),
881                                   SE.getIntegerSCEV(1, Ty), L);
882  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
883  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
884  Value *V = expandCodeFor(H, 0, L->getHeader()->begin());
885  if (SaveInsertBB)
886    Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
887  return V;
888}
889