ScalarEvolutionExpander.cpp revision 344779
1//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution expander,
11// which is used to generate the code corresponding to a given scalar evolution
12// expression.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/ScalarEvolutionExpander.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Analysis/LoopInfo.h"
21#include "llvm/Analysis/TargetTransformInfo.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/Dominators.h"
24#include "llvm/IR/IntrinsicInst.h"
25#include "llvm/IR/LLVMContext.h"
26#include "llvm/IR/Module.h"
27#include "llvm/IR/PatternMatch.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/raw_ostream.h"
30
31using namespace llvm;
32using namespace PatternMatch;
33
34/// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
35/// reusing an existing cast if a suitable one exists, moving an existing
36/// cast if a suitable one exists but isn't in the right place, or
37/// creating a new one.
38Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
39                                       Instruction::CastOps Op,
40                                       BasicBlock::iterator IP) {
41  // This function must be called with the builder having a valid insertion
42  // point. It doesn't need to be the actual IP where the uses of the returned
43  // cast will be added, but it must dominate such IP.
44  // We use this precondition to produce a cast that will dominate all its
45  // uses. In particular, this is crucial for the case where the builder's
46  // insertion point *is* the point where we were asked to put the cast.
47  // Since we don't know the builder's insertion point is actually
48  // where the uses will be added (only that it dominates it), we are
49  // not allowed to move it.
50  BasicBlock::iterator BIP = Builder.GetInsertPoint();
51
52  Instruction *Ret = nullptr;
53
54  // Check to see if there is already a cast!
55  for (User *U : V->users())
56    if (U->getType() == Ty)
57      if (CastInst *CI = dyn_cast<CastInst>(U))
58        if (CI->getOpcode() == Op) {
59          // If the cast isn't where we want it, create a new cast at IP.
60          // Likewise, do not reuse a cast at BIP because it must dominate
61          // instructions that might be inserted before BIP.
62          if (BasicBlock::iterator(CI) != IP || BIP == IP) {
63            // Create a new cast, and leave the old cast in place in case
64            // it is being used as an insert point. Clear its operand
65            // so that it doesn't hold anything live.
66            Ret = CastInst::Create(Op, V, Ty, "", &*IP);
67            Ret->takeName(CI);
68            CI->replaceAllUsesWith(Ret);
69            CI->setOperand(0, UndefValue::get(V->getType()));
70            break;
71          }
72          Ret = CI;
73          break;
74        }
75
76  // Create a new cast.
77  if (!Ret)
78    Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP);
79
80  // We assert at the end of the function since IP might point to an
81  // instruction with different dominance properties than a cast
82  // (an invoke for example) and not dominate BIP (but the cast does).
83  assert(SE.DT.dominates(Ret, &*BIP));
84
85  rememberInstruction(Ret);
86  return Ret;
87}
88
89static BasicBlock::iterator findInsertPointAfter(Instruction *I,
90                                                 BasicBlock *MustDominate) {
91  BasicBlock::iterator IP = ++I->getIterator();
92  if (auto *II = dyn_cast<InvokeInst>(I))
93    IP = II->getNormalDest()->begin();
94
95  while (isa<PHINode>(IP))
96    ++IP;
97
98  if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
99    ++IP;
100  } else if (isa<CatchSwitchInst>(IP)) {
101    IP = MustDominate->getFirstInsertionPt();
102  } else {
103    assert(!IP->isEHPad() && "unexpected eh pad!");
104  }
105
106  return IP;
107}
108
109/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
110/// which must be possible with a noop cast, doing what we can to share
111/// the casts.
112Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
113  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
114  assert((Op == Instruction::BitCast ||
115          Op == Instruction::PtrToInt ||
116          Op == Instruction::IntToPtr) &&
117         "InsertNoopCastOfTo cannot perform non-noop casts!");
118  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
119         "InsertNoopCastOfTo cannot change sizes!");
120
121  // Short-circuit unnecessary bitcasts.
122  if (Op == Instruction::BitCast) {
123    if (V->getType() == Ty)
124      return V;
125    if (CastInst *CI = dyn_cast<CastInst>(V)) {
126      if (CI->getOperand(0)->getType() == Ty)
127        return CI->getOperand(0);
128    }
129  }
130  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
131  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
132      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
133    if (CastInst *CI = dyn_cast<CastInst>(V))
134      if ((CI->getOpcode() == Instruction::PtrToInt ||
135           CI->getOpcode() == Instruction::IntToPtr) &&
136          SE.getTypeSizeInBits(CI->getType()) ==
137          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
138        return CI->getOperand(0);
139    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
140      if ((CE->getOpcode() == Instruction::PtrToInt ||
141           CE->getOpcode() == Instruction::IntToPtr) &&
142          SE.getTypeSizeInBits(CE->getType()) ==
143          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
144        return CE->getOperand(0);
145  }
146
147  // Fold a cast of a constant.
148  if (Constant *C = dyn_cast<Constant>(V))
149    return ConstantExpr::getCast(Op, C, Ty);
150
151  // Cast the argument at the beginning of the entry block, after
152  // any bitcasts of other arguments.
153  if (Argument *A = dyn_cast<Argument>(V)) {
154    BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
155    while ((isa<BitCastInst>(IP) &&
156            isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
157            cast<BitCastInst>(IP)->getOperand(0) != A) ||
158           isa<DbgInfoIntrinsic>(IP))
159      ++IP;
160    return ReuseOrCreateCast(A, Ty, Op, IP);
161  }
162
163  // Cast the instruction immediately after the instruction.
164  Instruction *I = cast<Instruction>(V);
165  BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock());
166  return ReuseOrCreateCast(I, Ty, Op, IP);
167}
168
169/// InsertBinop - Insert the specified binary operator, doing a small amount
170/// of work to avoid inserting an obviously redundant operation.
171Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
172                                 Value *LHS, Value *RHS) {
173  // Fold a binop with constant operands.
174  if (Constant *CLHS = dyn_cast<Constant>(LHS))
175    if (Constant *CRHS = dyn_cast<Constant>(RHS))
176      return ConstantExpr::get(Opcode, CLHS, CRHS);
177
178  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
179  unsigned ScanLimit = 6;
180  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
181  // Scanning starts from the last instruction before the insertion point.
182  BasicBlock::iterator IP = Builder.GetInsertPoint();
183  if (IP != BlockBegin) {
184    --IP;
185    for (; ScanLimit; --IP, --ScanLimit) {
186      // Don't count dbg.value against the ScanLimit, to avoid perturbing the
187      // generated code.
188      if (isa<DbgInfoIntrinsic>(IP))
189        ScanLimit++;
190
191      // Conservatively, do not use any instruction which has any of wrap/exact
192      // flags installed.
193      // TODO: Instead of simply disable poison instructions we can be clever
194      //       here and match SCEV to this instruction.
195      auto canGeneratePoison = [](Instruction *I) {
196        if (isa<OverflowingBinaryOperator>(I) &&
197            (I->hasNoSignedWrap() || I->hasNoUnsignedWrap()))
198          return true;
199        if (isa<PossiblyExactOperator>(I) && I->isExact())
200          return true;
201        return false;
202      };
203      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
204          IP->getOperand(1) == RHS && !canGeneratePoison(&*IP))
205        return &*IP;
206      if (IP == BlockBegin) break;
207    }
208  }
209
210  // Save the original insertion point so we can restore it when we're done.
211  DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
212  SCEVInsertPointGuard Guard(Builder, this);
213
214  // Move the insertion point out of as many loops as we can.
215  while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
216    if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
217    BasicBlock *Preheader = L->getLoopPreheader();
218    if (!Preheader) break;
219
220    // Ok, move up a level.
221    Builder.SetInsertPoint(Preheader->getTerminator());
222  }
223
224  // If we haven't found this binop, insert it.
225  Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
226  BO->setDebugLoc(Loc);
227  rememberInstruction(BO);
228
229  return BO;
230}
231
232/// FactorOutConstant - Test if S is divisible by Factor, using signed
233/// division. If so, update S with Factor divided out and return true.
234/// S need not be evenly divisible if a reasonable remainder can be
235/// computed.
236/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
237/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
238/// check to see if the divide was folded.
239static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
240                              const SCEV *Factor, ScalarEvolution &SE,
241                              const DataLayout &DL) {
242  // Everything is divisible by one.
243  if (Factor->isOne())
244    return true;
245
246  // x/x == 1.
247  if (S == Factor) {
248    S = SE.getConstant(S->getType(), 1);
249    return true;
250  }
251
252  // For a Constant, check for a multiple of the given factor.
253  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
254    // 0/x == 0.
255    if (C->isZero())
256      return true;
257    // Check for divisibility.
258    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
259      ConstantInt *CI =
260          ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
261      // If the quotient is zero and the remainder is non-zero, reject
262      // the value at this scale. It will be considered for subsequent
263      // smaller scales.
264      if (!CI->isZero()) {
265        const SCEV *Div = SE.getConstant(CI);
266        S = Div;
267        Remainder = SE.getAddExpr(
268            Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
269        return true;
270      }
271    }
272  }
273
274  // In a Mul, check if there is a constant operand which is a multiple
275  // of the given factor.
276  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
277    // Size is known, check if there is a constant operand which is a multiple
278    // of the given factor. If so, we can factor it.
279    const SCEVConstant *FC = cast<SCEVConstant>(Factor);
280    if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
281      if (!C->getAPInt().srem(FC->getAPInt())) {
282        SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
283        NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
284        S = SE.getMulExpr(NewMulOps);
285        return true;
286      }
287  }
288
289  // In an AddRec, check if both start and step are divisible.
290  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
291    const SCEV *Step = A->getStepRecurrence(SE);
292    const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
293    if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
294      return false;
295    if (!StepRem->isZero())
296      return false;
297    const SCEV *Start = A->getStart();
298    if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
299      return false;
300    S = SE.getAddRecExpr(Start, Step, A->getLoop(),
301                         A->getNoWrapFlags(SCEV::FlagNW));
302    return true;
303  }
304
305  return false;
306}
307
308/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
309/// is the number of SCEVAddRecExprs present, which are kept at the end of
310/// the list.
311///
312static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
313                                Type *Ty,
314                                ScalarEvolution &SE) {
315  unsigned NumAddRecs = 0;
316  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
317    ++NumAddRecs;
318  // Group Ops into non-addrecs and addrecs.
319  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
320  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
321  // Let ScalarEvolution sort and simplify the non-addrecs list.
322  const SCEV *Sum = NoAddRecs.empty() ?
323                    SE.getConstant(Ty, 0) :
324                    SE.getAddExpr(NoAddRecs);
325  // If it returned an add, use the operands. Otherwise it simplified
326  // the sum into a single value, so just use that.
327  Ops.clear();
328  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
329    Ops.append(Add->op_begin(), Add->op_end());
330  else if (!Sum->isZero())
331    Ops.push_back(Sum);
332  // Then append the addrecs.
333  Ops.append(AddRecs.begin(), AddRecs.end());
334}
335
336/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
337/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
338/// This helps expose more opportunities for folding parts of the expressions
339/// into GEP indices.
340///
341static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
342                         Type *Ty,
343                         ScalarEvolution &SE) {
344  // Find the addrecs.
345  SmallVector<const SCEV *, 8> AddRecs;
346  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
347    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
348      const SCEV *Start = A->getStart();
349      if (Start->isZero()) break;
350      const SCEV *Zero = SE.getConstant(Ty, 0);
351      AddRecs.push_back(SE.getAddRecExpr(Zero,
352                                         A->getStepRecurrence(SE),
353                                         A->getLoop(),
354                                         A->getNoWrapFlags(SCEV::FlagNW)));
355      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
356        Ops[i] = Zero;
357        Ops.append(Add->op_begin(), Add->op_end());
358        e += Add->getNumOperands();
359      } else {
360        Ops[i] = Start;
361      }
362    }
363  if (!AddRecs.empty()) {
364    // Add the addrecs onto the end of the list.
365    Ops.append(AddRecs.begin(), AddRecs.end());
366    // Resort the operand list, moving any constants to the front.
367    SimplifyAddOperands(Ops, Ty, SE);
368  }
369}
370
371/// expandAddToGEP - Expand an addition expression with a pointer type into
372/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
373/// BasicAliasAnalysis and other passes analyze the result. See the rules
374/// for getelementptr vs. inttoptr in
375/// http://llvm.org/docs/LangRef.html#pointeraliasing
376/// for details.
377///
378/// Design note: The correctness of using getelementptr here depends on
379/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
380/// they may introduce pointer arithmetic which may not be safely converted
381/// into getelementptr.
382///
383/// Design note: It might seem desirable for this function to be more
384/// loop-aware. If some of the indices are loop-invariant while others
385/// aren't, it might seem desirable to emit multiple GEPs, keeping the
386/// loop-invariant portions of the overall computation outside the loop.
387/// However, there are a few reasons this is not done here. Hoisting simple
388/// arithmetic is a low-level optimization that often isn't very
389/// important until late in the optimization process. In fact, passes
390/// like InstructionCombining will combine GEPs, even if it means
391/// pushing loop-invariant computation down into loops, so even if the
392/// GEPs were split here, the work would quickly be undone. The
393/// LoopStrengthReduction pass, which is usually run quite late (and
394/// after the last InstructionCombining pass), takes care of hoisting
395/// loop-invariant portions of expressions, after considering what
396/// can be folded using target addressing modes.
397///
398Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
399                                    const SCEV *const *op_end,
400                                    PointerType *PTy,
401                                    Type *Ty,
402                                    Value *V) {
403  Type *OriginalElTy = PTy->getElementType();
404  Type *ElTy = OriginalElTy;
405  SmallVector<Value *, 4> GepIndices;
406  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
407  bool AnyNonZeroIndices = false;
408
409  // Split AddRecs up into parts as either of the parts may be usable
410  // without the other.
411  SplitAddRecs(Ops, Ty, SE);
412
413  Type *IntPtrTy = DL.getIntPtrType(PTy);
414
415  // Descend down the pointer's type and attempt to convert the other
416  // operands into GEP indices, at each level. The first index in a GEP
417  // indexes into the array implied by the pointer operand; the rest of
418  // the indices index into the element or field type selected by the
419  // preceding index.
420  for (;;) {
421    // If the scale size is not 0, attempt to factor out a scale for
422    // array indexing.
423    SmallVector<const SCEV *, 8> ScaledOps;
424    if (ElTy->isSized()) {
425      const SCEV *ElSize = SE.getSizeOfExpr(IntPtrTy, ElTy);
426      if (!ElSize->isZero()) {
427        SmallVector<const SCEV *, 8> NewOps;
428        for (const SCEV *Op : Ops) {
429          const SCEV *Remainder = SE.getConstant(Ty, 0);
430          if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
431            // Op now has ElSize factored out.
432            ScaledOps.push_back(Op);
433            if (!Remainder->isZero())
434              NewOps.push_back(Remainder);
435            AnyNonZeroIndices = true;
436          } else {
437            // The operand was not divisible, so add it to the list of operands
438            // we'll scan next iteration.
439            NewOps.push_back(Op);
440          }
441        }
442        // If we made any changes, update Ops.
443        if (!ScaledOps.empty()) {
444          Ops = NewOps;
445          SimplifyAddOperands(Ops, Ty, SE);
446        }
447      }
448    }
449
450    // Record the scaled array index for this level of the type. If
451    // we didn't find any operands that could be factored, tentatively
452    // assume that element zero was selected (since the zero offset
453    // would obviously be folded away).
454    Value *Scaled = ScaledOps.empty() ?
455                    Constant::getNullValue(Ty) :
456                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
457    GepIndices.push_back(Scaled);
458
459    // Collect struct field index operands.
460    while (StructType *STy = dyn_cast<StructType>(ElTy)) {
461      bool FoundFieldNo = false;
462      // An empty struct has no fields.
463      if (STy->getNumElements() == 0) break;
464      // Field offsets are known. See if a constant offset falls within any of
465      // the struct fields.
466      if (Ops.empty())
467        break;
468      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
469        if (SE.getTypeSizeInBits(C->getType()) <= 64) {
470          const StructLayout &SL = *DL.getStructLayout(STy);
471          uint64_t FullOffset = C->getValue()->getZExtValue();
472          if (FullOffset < SL.getSizeInBytes()) {
473            unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
474            GepIndices.push_back(
475                ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
476            ElTy = STy->getTypeAtIndex(ElIdx);
477            Ops[0] =
478                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
479            AnyNonZeroIndices = true;
480            FoundFieldNo = true;
481          }
482        }
483      // If no struct field offsets were found, tentatively assume that
484      // field zero was selected (since the zero offset would obviously
485      // be folded away).
486      if (!FoundFieldNo) {
487        ElTy = STy->getTypeAtIndex(0u);
488        GepIndices.push_back(
489          Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
490      }
491    }
492
493    if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
494      ElTy = ATy->getElementType();
495    else
496      break;
497  }
498
499  // If none of the operands were convertible to proper GEP indices, cast
500  // the base to i8* and do an ugly getelementptr with that. It's still
501  // better than ptrtoint+arithmetic+inttoptr at least.
502  if (!AnyNonZeroIndices) {
503    // Cast the base to i8*.
504    V = InsertNoopCastOfTo(V,
505       Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
506
507    assert(!isa<Instruction>(V) ||
508           SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
509
510    // Expand the operands for a plain byte offset.
511    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
512
513    // Fold a GEP with constant operands.
514    if (Constant *CLHS = dyn_cast<Constant>(V))
515      if (Constant *CRHS = dyn_cast<Constant>(Idx))
516        return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
517                                              CLHS, CRHS);
518
519    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
520    unsigned ScanLimit = 6;
521    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
522    // Scanning starts from the last instruction before the insertion point.
523    BasicBlock::iterator IP = Builder.GetInsertPoint();
524    if (IP != BlockBegin) {
525      --IP;
526      for (; ScanLimit; --IP, --ScanLimit) {
527        // Don't count dbg.value against the ScanLimit, to avoid perturbing the
528        // generated code.
529        if (isa<DbgInfoIntrinsic>(IP))
530          ScanLimit++;
531        if (IP->getOpcode() == Instruction::GetElementPtr &&
532            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
533          return &*IP;
534        if (IP == BlockBegin) break;
535      }
536    }
537
538    // Save the original insertion point so we can restore it when we're done.
539    SCEVInsertPointGuard Guard(Builder, this);
540
541    // Move the insertion point out of as many loops as we can.
542    while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
543      if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
544      BasicBlock *Preheader = L->getLoopPreheader();
545      if (!Preheader) break;
546
547      // Ok, move up a level.
548      Builder.SetInsertPoint(Preheader->getTerminator());
549    }
550
551    // Emit a GEP.
552    Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
553    rememberInstruction(GEP);
554
555    return GEP;
556  }
557
558  {
559    SCEVInsertPointGuard Guard(Builder, this);
560
561    // Move the insertion point out of as many loops as we can.
562    while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
563      if (!L->isLoopInvariant(V)) break;
564
565      bool AnyIndexNotLoopInvariant = any_of(
566          GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
567
568      if (AnyIndexNotLoopInvariant)
569        break;
570
571      BasicBlock *Preheader = L->getLoopPreheader();
572      if (!Preheader) break;
573
574      // Ok, move up a level.
575      Builder.SetInsertPoint(Preheader->getTerminator());
576    }
577
578    // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
579    // because ScalarEvolution may have changed the address arithmetic to
580    // compute a value which is beyond the end of the allocated object.
581    Value *Casted = V;
582    if (V->getType() != PTy)
583      Casted = InsertNoopCastOfTo(Casted, PTy);
584    Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep");
585    Ops.push_back(SE.getUnknown(GEP));
586    rememberInstruction(GEP);
587  }
588
589  return expand(SE.getAddExpr(Ops));
590}
591
592Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
593                                    Value *V) {
594  const SCEV *const Ops[1] = {Op};
595  return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
596}
597
598/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
599/// SCEV expansion. If they are nested, this is the most nested. If they are
600/// neighboring, pick the later.
601static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
602                                        DominatorTree &DT) {
603  if (!A) return B;
604  if (!B) return A;
605  if (A->contains(B)) return B;
606  if (B->contains(A)) return A;
607  if (DT.dominates(A->getHeader(), B->getHeader())) return B;
608  if (DT.dominates(B->getHeader(), A->getHeader())) return A;
609  return A; // Arbitrarily break the tie.
610}
611
612/// getRelevantLoop - Get the most relevant loop associated with the given
613/// expression, according to PickMostRelevantLoop.
614const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
615  // Test whether we've already computed the most relevant loop for this SCEV.
616  auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
617  if (!Pair.second)
618    return Pair.first->second;
619
620  if (isa<SCEVConstant>(S))
621    // A constant has no relevant loops.
622    return nullptr;
623  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
624    if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
625      return Pair.first->second = SE.LI.getLoopFor(I->getParent());
626    // A non-instruction has no relevant loops.
627    return nullptr;
628  }
629  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
630    const Loop *L = nullptr;
631    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
632      L = AR->getLoop();
633    for (const SCEV *Op : N->operands())
634      L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
635    return RelevantLoops[N] = L;
636  }
637  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
638    const Loop *Result = getRelevantLoop(C->getOperand());
639    return RelevantLoops[C] = Result;
640  }
641  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
642    const Loop *Result = PickMostRelevantLoop(
643        getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
644    return RelevantLoops[D] = Result;
645  }
646  llvm_unreachable("Unexpected SCEV type!");
647}
648
649namespace {
650
651/// LoopCompare - Compare loops by PickMostRelevantLoop.
652class LoopCompare {
653  DominatorTree &DT;
654public:
655  explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
656
657  bool operator()(std::pair<const Loop *, const SCEV *> LHS,
658                  std::pair<const Loop *, const SCEV *> RHS) const {
659    // Keep pointer operands sorted at the end.
660    if (LHS.second->getType()->isPointerTy() !=
661        RHS.second->getType()->isPointerTy())
662      return LHS.second->getType()->isPointerTy();
663
664    // Compare loops with PickMostRelevantLoop.
665    if (LHS.first != RHS.first)
666      return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
667
668    // If one operand is a non-constant negative and the other is not,
669    // put the non-constant negative on the right so that a sub can
670    // be used instead of a negate and add.
671    if (LHS.second->isNonConstantNegative()) {
672      if (!RHS.second->isNonConstantNegative())
673        return false;
674    } else if (RHS.second->isNonConstantNegative())
675      return true;
676
677    // Otherwise they are equivalent according to this comparison.
678    return false;
679  }
680};
681
682}
683
684Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
685  Type *Ty = SE.getEffectiveSCEVType(S->getType());
686
687  // Collect all the add operands in a loop, along with their associated loops.
688  // Iterate in reverse so that constants are emitted last, all else equal, and
689  // so that pointer operands are inserted first, which the code below relies on
690  // to form more involved GEPs.
691  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
692  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
693       E(S->op_begin()); I != E; ++I)
694    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
695
696  // Sort by loop. Use a stable sort so that constants follow non-constants and
697  // pointer operands precede non-pointer operands.
698  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT));
699
700  // Emit instructions to add all the operands. Hoist as much as possible
701  // out of loops, and form meaningful getelementptrs where possible.
702  Value *Sum = nullptr;
703  for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
704    const Loop *CurLoop = I->first;
705    const SCEV *Op = I->second;
706    if (!Sum) {
707      // This is the first operand. Just expand it.
708      Sum = expand(Op);
709      ++I;
710    } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
711      // The running sum expression is a pointer. Try to form a getelementptr
712      // at this level with that as the base.
713      SmallVector<const SCEV *, 4> NewOps;
714      for (; I != E && I->first == CurLoop; ++I) {
715        // If the operand is SCEVUnknown and not instructions, peek through
716        // it, to enable more of it to be folded into the GEP.
717        const SCEV *X = I->second;
718        if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
719          if (!isa<Instruction>(U->getValue()))
720            X = SE.getSCEV(U->getValue());
721        NewOps.push_back(X);
722      }
723      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
724    } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
725      // The running sum is an integer, and there's a pointer at this level.
726      // Try to form a getelementptr. If the running sum is instructions,
727      // use a SCEVUnknown to avoid re-analyzing them.
728      SmallVector<const SCEV *, 4> NewOps;
729      NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
730                                               SE.getSCEV(Sum));
731      for (++I; I != E && I->first == CurLoop; ++I)
732        NewOps.push_back(I->second);
733      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
734    } else if (Op->isNonConstantNegative()) {
735      // Instead of doing a negate and add, just do a subtract.
736      Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
737      Sum = InsertNoopCastOfTo(Sum, Ty);
738      Sum = InsertBinop(Instruction::Sub, Sum, W);
739      ++I;
740    } else {
741      // A simple add.
742      Value *W = expandCodeFor(Op, Ty);
743      Sum = InsertNoopCastOfTo(Sum, Ty);
744      // Canonicalize a constant to the RHS.
745      if (isa<Constant>(Sum)) std::swap(Sum, W);
746      Sum = InsertBinop(Instruction::Add, Sum, W);
747      ++I;
748    }
749  }
750
751  return Sum;
752}
753
754Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
755  Type *Ty = SE.getEffectiveSCEVType(S->getType());
756
757  // Collect all the mul operands in a loop, along with their associated loops.
758  // Iterate in reverse so that constants are emitted last, all else equal.
759  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
760  for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
761       E(S->op_begin()); I != E; ++I)
762    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
763
764  // Sort by loop. Use a stable sort so that constants follow non-constants.
765  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT));
766
767  // Emit instructions to mul all the operands. Hoist as much as possible
768  // out of loops.
769  Value *Prod = nullptr;
770  auto I = OpsAndLoops.begin();
771
772  // Expand the calculation of X pow N in the following manner:
773  // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
774  // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
775  const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
776    auto E = I;
777    // Calculate how many times the same operand from the same loop is included
778    // into this power.
779    uint64_t Exponent = 0;
780    const uint64_t MaxExponent = UINT64_MAX >> 1;
781    // No one sane will ever try to calculate such huge exponents, but if we
782    // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
783    // below when the power of 2 exceeds our Exponent, and we want it to be
784    // 1u << 31 at most to not deal with unsigned overflow.
785    while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
786      ++Exponent;
787      ++E;
788    }
789    assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
790
791    // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
792    // that are needed into the result.
793    Value *P = expandCodeFor(I->second, Ty);
794    Value *Result = nullptr;
795    if (Exponent & 1)
796      Result = P;
797    for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
798      P = InsertBinop(Instruction::Mul, P, P);
799      if (Exponent & BinExp)
800        Result = Result ? InsertBinop(Instruction::Mul, Result, P) : P;
801    }
802
803    I = E;
804    assert(Result && "Nothing was expanded?");
805    return Result;
806  };
807
808  while (I != OpsAndLoops.end()) {
809    if (!Prod) {
810      // This is the first operand. Just expand it.
811      Prod = ExpandOpBinPowN();
812    } else if (I->second->isAllOnesValue()) {
813      // Instead of doing a multiply by negative one, just do a negate.
814      Prod = InsertNoopCastOfTo(Prod, Ty);
815      Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
816      ++I;
817    } else {
818      // A simple mul.
819      Value *W = ExpandOpBinPowN();
820      Prod = InsertNoopCastOfTo(Prod, Ty);
821      // Canonicalize a constant to the RHS.
822      if (isa<Constant>(Prod)) std::swap(Prod, W);
823      const APInt *RHS;
824      if (match(W, m_Power2(RHS))) {
825        // Canonicalize Prod*(1<<C) to Prod<<C.
826        assert(!Ty->isVectorTy() && "vector types are not SCEVable");
827        Prod = InsertBinop(Instruction::Shl, Prod,
828                           ConstantInt::get(Ty, RHS->logBase2()));
829      } else {
830        Prod = InsertBinop(Instruction::Mul, Prod, W);
831      }
832    }
833  }
834
835  return Prod;
836}
837
838Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
839  Type *Ty = SE.getEffectiveSCEVType(S->getType());
840
841  Value *LHS = expandCodeFor(S->getLHS(), Ty);
842  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
843    const APInt &RHS = SC->getAPInt();
844    if (RHS.isPowerOf2())
845      return InsertBinop(Instruction::LShr, LHS,
846                         ConstantInt::get(Ty, RHS.logBase2()));
847  }
848
849  Value *RHS = expandCodeFor(S->getRHS(), Ty);
850  return InsertBinop(Instruction::UDiv, LHS, RHS);
851}
852
853/// Move parts of Base into Rest to leave Base with the minimal
854/// expression that provides a pointer operand suitable for a
855/// GEP expansion.
856static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
857                              ScalarEvolution &SE) {
858  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
859    Base = A->getStart();
860    Rest = SE.getAddExpr(Rest,
861                         SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
862                                          A->getStepRecurrence(SE),
863                                          A->getLoop(),
864                                          A->getNoWrapFlags(SCEV::FlagNW)));
865  }
866  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
867    Base = A->getOperand(A->getNumOperands()-1);
868    SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
869    NewAddOps.back() = Rest;
870    Rest = SE.getAddExpr(NewAddOps);
871    ExposePointerBase(Base, Rest, SE);
872  }
873}
874
875/// Determine if this is a well-behaved chain of instructions leading back to
876/// the PHI. If so, it may be reused by expanded expressions.
877bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
878                                         const Loop *L) {
879  if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
880      (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
881    return false;
882  // If any of the operands don't dominate the insert position, bail.
883  // Addrec operands are always loop-invariant, so this can only happen
884  // if there are instructions which haven't been hoisted.
885  if (L == IVIncInsertLoop) {
886    for (User::op_iterator OI = IncV->op_begin()+1,
887           OE = IncV->op_end(); OI != OE; ++OI)
888      if (Instruction *OInst = dyn_cast<Instruction>(OI))
889        if (!SE.DT.dominates(OInst, IVIncInsertPos))
890          return false;
891  }
892  // Advance to the next instruction.
893  IncV = dyn_cast<Instruction>(IncV->getOperand(0));
894  if (!IncV)
895    return false;
896
897  if (IncV->mayHaveSideEffects())
898    return false;
899
900  if (IncV == PN)
901    return true;
902
903  return isNormalAddRecExprPHI(PN, IncV, L);
904}
905
906/// getIVIncOperand returns an induction variable increment's induction
907/// variable operand.
908///
909/// If allowScale is set, any type of GEP is allowed as long as the nonIV
910/// operands dominate InsertPos.
911///
912/// If allowScale is not set, ensure that a GEP increment conforms to one of the
913/// simple patterns generated by getAddRecExprPHILiterally and
914/// expandAddtoGEP. If the pattern isn't recognized, return NULL.
915Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
916                                           Instruction *InsertPos,
917                                           bool allowScale) {
918  if (IncV == InsertPos)
919    return nullptr;
920
921  switch (IncV->getOpcode()) {
922  default:
923    return nullptr;
924  // Check for a simple Add/Sub or GEP of a loop invariant step.
925  case Instruction::Add:
926  case Instruction::Sub: {
927    Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
928    if (!OInst || SE.DT.dominates(OInst, InsertPos))
929      return dyn_cast<Instruction>(IncV->getOperand(0));
930    return nullptr;
931  }
932  case Instruction::BitCast:
933    return dyn_cast<Instruction>(IncV->getOperand(0));
934  case Instruction::GetElementPtr:
935    for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) {
936      if (isa<Constant>(*I))
937        continue;
938      if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
939        if (!SE.DT.dominates(OInst, InsertPos))
940          return nullptr;
941      }
942      if (allowScale) {
943        // allow any kind of GEP as long as it can be hoisted.
944        continue;
945      }
946      // This must be a pointer addition of constants (pretty), which is already
947      // handled, or some number of address-size elements (ugly). Ugly geps
948      // have 2 operands. i1* is used by the expander to represent an
949      // address-size element.
950      if (IncV->getNumOperands() != 2)
951        return nullptr;
952      unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
953      if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
954          && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
955        return nullptr;
956      break;
957    }
958    return dyn_cast<Instruction>(IncV->getOperand(0));
959  }
960}
961
962/// If the insert point of the current builder or any of the builders on the
963/// stack of saved builders has 'I' as its insert point, update it to point to
964/// the instruction after 'I'.  This is intended to be used when the instruction
965/// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
966/// different block, the inconsistent insert point (with a mismatched
967/// Instruction and Block) can lead to an instruction being inserted in a block
968/// other than its parent.
969void SCEVExpander::fixupInsertPoints(Instruction *I) {
970  BasicBlock::iterator It(*I);
971  BasicBlock::iterator NewInsertPt = std::next(It);
972  if (Builder.GetInsertPoint() == It)
973    Builder.SetInsertPoint(&*NewInsertPt);
974  for (auto *InsertPtGuard : InsertPointGuards)
975    if (InsertPtGuard->GetInsertPoint() == It)
976      InsertPtGuard->SetInsertPoint(NewInsertPt);
977}
978
979/// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
980/// it available to other uses in this loop. Recursively hoist any operands,
981/// until we reach a value that dominates InsertPos.
982bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
983  if (SE.DT.dominates(IncV, InsertPos))
984      return true;
985
986  // InsertPos must itself dominate IncV so that IncV's new position satisfies
987  // its existing users.
988  if (isa<PHINode>(InsertPos) ||
989      !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
990    return false;
991
992  if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
993    return false;
994
995  // Check that the chain of IV operands leading back to Phi can be hoisted.
996  SmallVector<Instruction*, 4> IVIncs;
997  for(;;) {
998    Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
999    if (!Oper)
1000      return false;
1001    // IncV is safe to hoist.
1002    IVIncs.push_back(IncV);
1003    IncV = Oper;
1004    if (SE.DT.dominates(IncV, InsertPos))
1005      break;
1006  }
1007  for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
1008    fixupInsertPoints(*I);
1009    (*I)->moveBefore(InsertPos);
1010  }
1011  return true;
1012}
1013
1014/// Determine if this cyclic phi is in a form that would have been generated by
1015/// LSR. We don't care if the phi was actually expanded in this pass, as long
1016/// as it is in a low-cost form, for example, no implied multiplication. This
1017/// should match any patterns generated by getAddRecExprPHILiterally and
1018/// expandAddtoGEP.
1019bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
1020                                           const Loop *L) {
1021  for(Instruction *IVOper = IncV;
1022      (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
1023                                /*allowScale=*/false));) {
1024    if (IVOper == PN)
1025      return true;
1026  }
1027  return false;
1028}
1029
1030/// expandIVInc - Expand an IV increment at Builder's current InsertPos.
1031/// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
1032/// need to materialize IV increments elsewhere to handle difficult situations.
1033Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
1034                                 Type *ExpandTy, Type *IntTy,
1035                                 bool useSubtract) {
1036  Value *IncV;
1037  // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1038  if (ExpandTy->isPointerTy()) {
1039    PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1040    // If the step isn't constant, don't use an implicitly scaled GEP, because
1041    // that would require a multiply inside the loop.
1042    if (!isa<ConstantInt>(StepV))
1043      GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1044                                  GEPPtrTy->getAddressSpace());
1045    IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
1046    if (IncV->getType() != PN->getType()) {
1047      IncV = Builder.CreateBitCast(IncV, PN->getType());
1048      rememberInstruction(IncV);
1049    }
1050  } else {
1051    IncV = useSubtract ?
1052      Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1053      Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1054    rememberInstruction(IncV);
1055  }
1056  return IncV;
1057}
1058
1059/// Hoist the addrec instruction chain rooted in the loop phi above the
1060/// position. This routine assumes that this is possible (has been checked).
1061void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
1062                                  Instruction *Pos, PHINode *LoopPhi) {
1063  do {
1064    if (DT->dominates(InstToHoist, Pos))
1065      break;
1066    // Make sure the increment is where we want it. But don't move it
1067    // down past a potential existing post-inc user.
1068    fixupInsertPoints(InstToHoist);
1069    InstToHoist->moveBefore(Pos);
1070    Pos = InstToHoist;
1071    InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
1072  } while (InstToHoist != LoopPhi);
1073}
1074
1075/// Check whether we can cheaply express the requested SCEV in terms of
1076/// the available PHI SCEV by truncation and/or inversion of the step.
1077static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1078                                    const SCEVAddRecExpr *Phi,
1079                                    const SCEVAddRecExpr *Requested,
1080                                    bool &InvertStep) {
1081  Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1082  Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1083
1084  if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1085    return false;
1086
1087  // Try truncate it if necessary.
1088  Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1089  if (!Phi)
1090    return false;
1091
1092  // Check whether truncation will help.
1093  if (Phi == Requested) {
1094    InvertStep = false;
1095    return true;
1096  }
1097
1098  // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1099  if (SE.getAddExpr(Requested->getStart(),
1100                    SE.getNegativeSCEV(Requested)) == Phi) {
1101    InvertStep = true;
1102    return true;
1103  }
1104
1105  return false;
1106}
1107
1108static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1109  if (!isa<IntegerType>(AR->getType()))
1110    return false;
1111
1112  unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1113  Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1114  const SCEV *Step = AR->getStepRecurrence(SE);
1115  const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1116                                            SE.getSignExtendExpr(AR, WideTy));
1117  const SCEV *ExtendAfterOp =
1118    SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1119  return ExtendAfterOp == OpAfterExtend;
1120}
1121
1122static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1123  if (!isa<IntegerType>(AR->getType()))
1124    return false;
1125
1126  unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1127  Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1128  const SCEV *Step = AR->getStepRecurrence(SE);
1129  const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1130                                            SE.getZeroExtendExpr(AR, WideTy));
1131  const SCEV *ExtendAfterOp =
1132    SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1133  return ExtendAfterOp == OpAfterExtend;
1134}
1135
1136/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1137/// the base addrec, which is the addrec without any non-loop-dominating
1138/// values, and return the PHI.
1139PHINode *
1140SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1141                                        const Loop *L,
1142                                        Type *ExpandTy,
1143                                        Type *IntTy,
1144                                        Type *&TruncTy,
1145                                        bool &InvertStep) {
1146  assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1147
1148  // Reuse a previously-inserted PHI, if present.
1149  BasicBlock *LatchBlock = L->getLoopLatch();
1150  if (LatchBlock) {
1151    PHINode *AddRecPhiMatch = nullptr;
1152    Instruction *IncV = nullptr;
1153    TruncTy = nullptr;
1154    InvertStep = false;
1155
1156    // Only try partially matching scevs that need truncation and/or
1157    // step-inversion if we know this loop is outside the current loop.
1158    bool TryNonMatchingSCEV =
1159        IVIncInsertLoop &&
1160        SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1161
1162    for (PHINode &PN : L->getHeader()->phis()) {
1163      if (!SE.isSCEVable(PN.getType()))
1164        continue;
1165
1166      const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
1167      if (!PhiSCEV)
1168        continue;
1169
1170      bool IsMatchingSCEV = PhiSCEV == Normalized;
1171      // We only handle truncation and inversion of phi recurrences for the
1172      // expanded expression if the expanded expression's loop dominates the
1173      // loop we insert to. Check now, so we can bail out early.
1174      if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1175          continue;
1176
1177      // TODO: this possibly can be reworked to avoid this cast at all.
1178      Instruction *TempIncV =
1179          dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
1180      if (!TempIncV)
1181        continue;
1182
1183      // Check whether we can reuse this PHI node.
1184      if (LSRMode) {
1185        if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
1186          continue;
1187        if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
1188          continue;
1189      } else {
1190        if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
1191          continue;
1192      }
1193
1194      // Stop if we have found an exact match SCEV.
1195      if (IsMatchingSCEV) {
1196        IncV = TempIncV;
1197        TruncTy = nullptr;
1198        InvertStep = false;
1199        AddRecPhiMatch = &PN;
1200        break;
1201      }
1202
1203      // Try whether the phi can be translated into the requested form
1204      // (truncated and/or offset by a constant).
1205      if ((!TruncTy || InvertStep) &&
1206          canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1207        // Record the phi node. But don't stop we might find an exact match
1208        // later.
1209        AddRecPhiMatch = &PN;
1210        IncV = TempIncV;
1211        TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1212      }
1213    }
1214
1215    if (AddRecPhiMatch) {
1216      // Potentially, move the increment. We have made sure in
1217      // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
1218      if (L == IVIncInsertLoop)
1219        hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
1220
1221      // Ok, the add recurrence looks usable.
1222      // Remember this PHI, even in post-inc mode.
1223      InsertedValues.insert(AddRecPhiMatch);
1224      // Remember the increment.
1225      rememberInstruction(IncV);
1226      return AddRecPhiMatch;
1227    }
1228  }
1229
1230  // Save the original insertion point so we can restore it when we're done.
1231  SCEVInsertPointGuard Guard(Builder, this);
1232
1233  // Another AddRec may need to be recursively expanded below. For example, if
1234  // this AddRec is quadratic, the StepV may itself be an AddRec in this
1235  // loop. Remove this loop from the PostIncLoops set before expanding such
1236  // AddRecs. Otherwise, we cannot find a valid position for the step
1237  // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1238  // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1239  // so it's not worth implementing SmallPtrSet::swap.
1240  PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1241  PostIncLoops.clear();
1242
1243  // Expand code for the start value into the loop preheader.
1244  assert(L->getLoopPreheader() &&
1245         "Can't expand add recurrences without a loop preheader!");
1246  Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
1247                                L->getLoopPreheader()->getTerminator());
1248
1249  // StartV must have been be inserted into L's preheader to dominate the new
1250  // phi.
1251  assert(!isa<Instruction>(StartV) ||
1252         SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1253                                 L->getHeader()));
1254
1255  // Expand code for the step value. Do this before creating the PHI so that PHI
1256  // reuse code doesn't see an incomplete PHI.
1257  const SCEV *Step = Normalized->getStepRecurrence(SE);
1258  // If the stride is negative, insert a sub instead of an add for the increment
1259  // (unless it's a constant, because subtracts of constants are canonicalized
1260  // to adds).
1261  bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1262  if (useSubtract)
1263    Step = SE.getNegativeSCEV(Step);
1264  // Expand the step somewhere that dominates the loop header.
1265  Value *StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
1266
1267  // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1268  // we actually do emit an addition.  It does not apply if we emit a
1269  // subtraction.
1270  bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1271  bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1272
1273  // Create the PHI.
1274  BasicBlock *Header = L->getHeader();
1275  Builder.SetInsertPoint(Header, Header->begin());
1276  pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1277  PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1278                                  Twine(IVName) + ".iv");
1279  rememberInstruction(PN);
1280
1281  // Create the step instructions and populate the PHI.
1282  for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1283    BasicBlock *Pred = *HPI;
1284
1285    // Add a start value.
1286    if (!L->contains(Pred)) {
1287      PN->addIncoming(StartV, Pred);
1288      continue;
1289    }
1290
1291    // Create a step value and add it to the PHI.
1292    // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1293    // instructions at IVIncInsertPos.
1294    Instruction *InsertPos = L == IVIncInsertLoop ?
1295      IVIncInsertPos : Pred->getTerminator();
1296    Builder.SetInsertPoint(InsertPos);
1297    Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1298
1299    if (isa<OverflowingBinaryOperator>(IncV)) {
1300      if (IncrementIsNUW)
1301        cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1302      if (IncrementIsNSW)
1303        cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1304    }
1305    PN->addIncoming(IncV, Pred);
1306  }
1307
1308  // After expanding subexpressions, restore the PostIncLoops set so the caller
1309  // can ensure that IVIncrement dominates the current uses.
1310  PostIncLoops = SavedPostIncLoops;
1311
1312  // Remember this PHI, even in post-inc mode.
1313  InsertedValues.insert(PN);
1314
1315  return PN;
1316}
1317
1318Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1319  Type *STy = S->getType();
1320  Type *IntTy = SE.getEffectiveSCEVType(STy);
1321  const Loop *L = S->getLoop();
1322
1323  // Determine a normalized form of this expression, which is the expression
1324  // before any post-inc adjustment is made.
1325  const SCEVAddRecExpr *Normalized = S;
1326  if (PostIncLoops.count(L)) {
1327    PostIncLoopSet Loops;
1328    Loops.insert(L);
1329    Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
1330  }
1331
1332  // Strip off any non-loop-dominating component from the addrec start.
1333  const SCEV *Start = Normalized->getStart();
1334  const SCEV *PostLoopOffset = nullptr;
1335  if (!SE.properlyDominates(Start, L->getHeader())) {
1336    PostLoopOffset = Start;
1337    Start = SE.getConstant(Normalized->getType(), 0);
1338    Normalized = cast<SCEVAddRecExpr>(
1339      SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1340                       Normalized->getLoop(),
1341                       Normalized->getNoWrapFlags(SCEV::FlagNW)));
1342  }
1343
1344  // Strip off any non-loop-dominating component from the addrec step.
1345  const SCEV *Step = Normalized->getStepRecurrence(SE);
1346  const SCEV *PostLoopScale = nullptr;
1347  if (!SE.dominates(Step, L->getHeader())) {
1348    PostLoopScale = Step;
1349    Step = SE.getConstant(Normalized->getType(), 1);
1350    if (!Start->isZero()) {
1351        // The normalization below assumes that Start is constant zero, so if
1352        // it isn't re-associate Start to PostLoopOffset.
1353        assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1354        PostLoopOffset = Start;
1355        Start = SE.getConstant(Normalized->getType(), 0);
1356    }
1357    Normalized =
1358      cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1359                             Start, Step, Normalized->getLoop(),
1360                             Normalized->getNoWrapFlags(SCEV::FlagNW)));
1361  }
1362
1363  // Expand the core addrec. If we need post-loop scaling, force it to
1364  // expand to an integer type to avoid the need for additional casting.
1365  Type *ExpandTy = PostLoopScale ? IntTy : STy;
1366  // We can't use a pointer type for the addrec if the pointer type is
1367  // non-integral.
1368  Type *AddRecPHIExpandTy =
1369      DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1370
1371  // In some cases, we decide to reuse an existing phi node but need to truncate
1372  // it and/or invert the step.
1373  Type *TruncTy = nullptr;
1374  bool InvertStep = false;
1375  PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1376                                          IntTy, TruncTy, InvertStep);
1377
1378  // Accommodate post-inc mode, if necessary.
1379  Value *Result;
1380  if (!PostIncLoops.count(L))
1381    Result = PN;
1382  else {
1383    // In PostInc mode, use the post-incremented value.
1384    BasicBlock *LatchBlock = L->getLoopLatch();
1385    assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1386    Result = PN->getIncomingValueForBlock(LatchBlock);
1387
1388    // For an expansion to use the postinc form, the client must call
1389    // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1390    // or dominated by IVIncInsertPos.
1391    if (isa<Instruction>(Result) &&
1392        !SE.DT.dominates(cast<Instruction>(Result),
1393                         &*Builder.GetInsertPoint())) {
1394      // The induction variable's postinc expansion does not dominate this use.
1395      // IVUsers tries to prevent this case, so it is rare. However, it can
1396      // happen when an IVUser outside the loop is not dominated by the latch
1397      // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1398      // all cases. Consider a phi outside whose operand is replaced during
1399      // expansion with the value of the postinc user. Without fundamentally
1400      // changing the way postinc users are tracked, the only remedy is
1401      // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1402      // but hopefully expandCodeFor handles that.
1403      bool useSubtract =
1404        !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1405      if (useSubtract)
1406        Step = SE.getNegativeSCEV(Step);
1407      Value *StepV;
1408      {
1409        // Expand the step somewhere that dominates the loop header.
1410        SCEVInsertPointGuard Guard(Builder, this);
1411        StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
1412      }
1413      Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1414    }
1415  }
1416
1417  // We have decided to reuse an induction variable of a dominating loop. Apply
1418  // truncation and/or inversion of the step.
1419  if (TruncTy) {
1420    Type *ResTy = Result->getType();
1421    // Normalize the result type.
1422    if (ResTy != SE.getEffectiveSCEVType(ResTy))
1423      Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1424    // Truncate the result.
1425    if (TruncTy != Result->getType()) {
1426      Result = Builder.CreateTrunc(Result, TruncTy);
1427      rememberInstruction(Result);
1428    }
1429    // Invert the result.
1430    if (InvertStep) {
1431      Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
1432                                 Result);
1433      rememberInstruction(Result);
1434    }
1435  }
1436
1437  // Re-apply any non-loop-dominating scale.
1438  if (PostLoopScale) {
1439    assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1440    Result = InsertNoopCastOfTo(Result, IntTy);
1441    Result = Builder.CreateMul(Result,
1442                               expandCodeFor(PostLoopScale, IntTy));
1443    rememberInstruction(Result);
1444  }
1445
1446  // Re-apply any non-loop-dominating offset.
1447  if (PostLoopOffset) {
1448    if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1449      if (Result->getType()->isIntegerTy()) {
1450        Value *Base = expandCodeFor(PostLoopOffset, ExpandTy);
1451        Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
1452      } else {
1453        Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
1454      }
1455    } else {
1456      Result = InsertNoopCastOfTo(Result, IntTy);
1457      Result = Builder.CreateAdd(Result,
1458                                 expandCodeFor(PostLoopOffset, IntTy));
1459      rememberInstruction(Result);
1460    }
1461  }
1462
1463  return Result;
1464}
1465
1466Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1467  if (!CanonicalMode) return expandAddRecExprLiterally(S);
1468
1469  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1470  const Loop *L = S->getLoop();
1471
1472  // First check for an existing canonical IV in a suitable type.
1473  PHINode *CanonicalIV = nullptr;
1474  if (PHINode *PN = L->getCanonicalInductionVariable())
1475    if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1476      CanonicalIV = PN;
1477
1478  // Rewrite an AddRec in terms of the canonical induction variable, if
1479  // its type is more narrow.
1480  if (CanonicalIV &&
1481      SE.getTypeSizeInBits(CanonicalIV->getType()) >
1482      SE.getTypeSizeInBits(Ty)) {
1483    SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1484    for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1485      NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1486    Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1487                                       S->getNoWrapFlags(SCEV::FlagNW)));
1488    BasicBlock::iterator NewInsertPt =
1489        findInsertPointAfter(cast<Instruction>(V), Builder.GetInsertBlock());
1490    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1491                      &*NewInsertPt);
1492    return V;
1493  }
1494
1495  // {X,+,F} --> X + {0,+,F}
1496  if (!S->getStart()->isZero()) {
1497    SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1498    NewOps[0] = SE.getConstant(Ty, 0);
1499    const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1500                                        S->getNoWrapFlags(SCEV::FlagNW));
1501
1502    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1503    // comments on expandAddToGEP for details.
1504    const SCEV *Base = S->getStart();
1505    // Dig into the expression to find the pointer base for a GEP.
1506    const SCEV *ExposedRest = Rest;
1507    ExposePointerBase(Base, ExposedRest, SE);
1508    // If we found a pointer, expand the AddRec with a GEP.
1509    if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1510      // Make sure the Base isn't something exotic, such as a multiplied
1511      // or divided pointer value. In those cases, the result type isn't
1512      // actually a pointer type.
1513      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1514        Value *StartV = expand(Base);
1515        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1516        return expandAddToGEP(ExposedRest, PTy, Ty, StartV);
1517      }
1518    }
1519
1520    // Just do a normal add. Pre-expand the operands to suppress folding.
1521    //
1522    // The LHS and RHS values are factored out of the expand call to make the
1523    // output independent of the argument evaluation order.
1524    const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1525    const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1526    return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1527  }
1528
1529  // If we don't yet have a canonical IV, create one.
1530  if (!CanonicalIV) {
1531    // Create and insert the PHI node for the induction variable in the
1532    // specified loop.
1533    BasicBlock *Header = L->getHeader();
1534    pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1535    CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1536                                  &Header->front());
1537    rememberInstruction(CanonicalIV);
1538
1539    SmallSet<BasicBlock *, 4> PredSeen;
1540    Constant *One = ConstantInt::get(Ty, 1);
1541    for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1542      BasicBlock *HP = *HPI;
1543      if (!PredSeen.insert(HP).second) {
1544        // There must be an incoming value for each predecessor, even the
1545        // duplicates!
1546        CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1547        continue;
1548      }
1549
1550      if (L->contains(HP)) {
1551        // Insert a unit add instruction right before the terminator
1552        // corresponding to the back-edge.
1553        Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1554                                                     "indvar.next",
1555                                                     HP->getTerminator());
1556        Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1557        rememberInstruction(Add);
1558        CanonicalIV->addIncoming(Add, HP);
1559      } else {
1560        CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1561      }
1562    }
1563  }
1564
1565  // {0,+,1} --> Insert a canonical induction variable into the loop!
1566  if (S->isAffine() && S->getOperand(1)->isOne()) {
1567    assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1568           "IVs with types different from the canonical IV should "
1569           "already have been handled!");
1570    return CanonicalIV;
1571  }
1572
1573  // {0,+,F} --> {0,+,1} * F
1574
1575  // If this is a simple linear addrec, emit it now as a special case.
1576  if (S->isAffine())    // {0,+,F} --> i*F
1577    return
1578      expand(SE.getTruncateOrNoop(
1579        SE.getMulExpr(SE.getUnknown(CanonicalIV),
1580                      SE.getNoopOrAnyExtend(S->getOperand(1),
1581                                            CanonicalIV->getType())),
1582        Ty));
1583
1584  // If this is a chain of recurrences, turn it into a closed form, using the
1585  // folders, then expandCodeFor the closed form.  This allows the folders to
1586  // simplify the expression without having to build a bunch of special code
1587  // into this folder.
1588  const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1589
1590  // Promote S up to the canonical IV type, if the cast is foldable.
1591  const SCEV *NewS = S;
1592  const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1593  if (isa<SCEVAddRecExpr>(Ext))
1594    NewS = Ext;
1595
1596  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1597  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1598
1599  // Truncate the result down to the original type, if needed.
1600  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1601  return expand(T);
1602}
1603
1604Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1605  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1606  Value *V = expandCodeFor(S->getOperand(),
1607                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1608  Value *I = Builder.CreateTrunc(V, Ty);
1609  rememberInstruction(I);
1610  return I;
1611}
1612
1613Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1614  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1615  Value *V = expandCodeFor(S->getOperand(),
1616                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1617  Value *I = Builder.CreateZExt(V, Ty);
1618  rememberInstruction(I);
1619  return I;
1620}
1621
1622Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1623  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1624  Value *V = expandCodeFor(S->getOperand(),
1625                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1626  Value *I = Builder.CreateSExt(V, Ty);
1627  rememberInstruction(I);
1628  return I;
1629}
1630
1631Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1632  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1633  Type *Ty = LHS->getType();
1634  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1635    // In the case of mixed integer and pointer types, do the
1636    // rest of the comparisons as integer.
1637    if (S->getOperand(i)->getType() != Ty) {
1638      Ty = SE.getEffectiveSCEVType(Ty);
1639      LHS = InsertNoopCastOfTo(LHS, Ty);
1640    }
1641    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1642    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1643    rememberInstruction(ICmp);
1644    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1645    rememberInstruction(Sel);
1646    LHS = Sel;
1647  }
1648  // In the case of mixed integer and pointer types, cast the
1649  // final result back to the pointer type.
1650  if (LHS->getType() != S->getType())
1651    LHS = InsertNoopCastOfTo(LHS, S->getType());
1652  return LHS;
1653}
1654
1655Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1656  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1657  Type *Ty = LHS->getType();
1658  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1659    // In the case of mixed integer and pointer types, do the
1660    // rest of the comparisons as integer.
1661    if (S->getOperand(i)->getType() != Ty) {
1662      Ty = SE.getEffectiveSCEVType(Ty);
1663      LHS = InsertNoopCastOfTo(LHS, Ty);
1664    }
1665    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1666    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1667    rememberInstruction(ICmp);
1668    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1669    rememberInstruction(Sel);
1670    LHS = Sel;
1671  }
1672  // In the case of mixed integer and pointer types, cast the
1673  // final result back to the pointer type.
1674  if (LHS->getType() != S->getType())
1675    LHS = InsertNoopCastOfTo(LHS, S->getType());
1676  return LHS;
1677}
1678
1679Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1680                                   Instruction *IP) {
1681  setInsertPoint(IP);
1682  return expandCodeFor(SH, Ty);
1683}
1684
1685Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1686  // Expand the code for this SCEV.
1687  Value *V = expand(SH);
1688  if (Ty) {
1689    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1690           "non-trivial casts should be done with the SCEVs directly!");
1691    V = InsertNoopCastOfTo(V, Ty);
1692  }
1693  return V;
1694}
1695
1696ScalarEvolution::ValueOffsetPair
1697SCEVExpander::FindValueInExprValueMap(const SCEV *S,
1698                                      const Instruction *InsertPt) {
1699  SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S);
1700  // If the expansion is not in CanonicalMode, and the SCEV contains any
1701  // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1702  if (CanonicalMode || !SE.containsAddRecurrence(S)) {
1703    // If S is scConstant, it may be worse to reuse an existing Value.
1704    if (S->getSCEVType() != scConstant && Set) {
1705      // Choose a Value from the set which dominates the insertPt.
1706      // insertPt should be inside the Value's parent loop so as not to break
1707      // the LCSSA form.
1708      for (auto const &VOPair : *Set) {
1709        Value *V = VOPair.first;
1710        ConstantInt *Offset = VOPair.second;
1711        Instruction *EntInst = nullptr;
1712        if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) &&
1713            S->getType() == V->getType() &&
1714            EntInst->getFunction() == InsertPt->getFunction() &&
1715            SE.DT.dominates(EntInst, InsertPt) &&
1716            (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1717             SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1718          return {V, Offset};
1719      }
1720    }
1721  }
1722  return {nullptr, nullptr};
1723}
1724
1725// The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1726// or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1727// and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1728// literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1729// the expansion will try to reuse Value from ExprValueMap, and only when it
1730// fails, expand the SCEV literally.
1731Value *SCEVExpander::expand(const SCEV *S) {
1732  // Compute an insertion point for this SCEV object. Hoist the instructions
1733  // as far out in the loop nest as possible.
1734  Instruction *InsertPt = &*Builder.GetInsertPoint();
1735  for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1736       L = L->getParentLoop())
1737    if (SE.isLoopInvariant(S, L)) {
1738      if (!L) break;
1739      if (BasicBlock *Preheader = L->getLoopPreheader())
1740        InsertPt = Preheader->getTerminator();
1741      else {
1742        // LSR sets the insertion point for AddRec start/step values to the
1743        // block start to simplify value reuse, even though it's an invalid
1744        // position. SCEVExpander must correct for this in all cases.
1745        InsertPt = &*L->getHeader()->getFirstInsertionPt();
1746      }
1747    } else {
1748      // We can move insertion point only if there is no div or rem operations
1749      // otherwise we are risky to move it over the check for zero denominator.
1750      auto SafeToHoist = [](const SCEV *S) {
1751        return !SCEVExprContains(S, [](const SCEV *S) {
1752                  if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1753                    if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1754                      // Division by non-zero constants can be hoisted.
1755                      return SC->getValue()->isZero();
1756                    // All other divisions should not be moved as they may be
1757                    // divisions by zero and should be kept within the
1758                    // conditions of the surrounding loops that guard their
1759                    // execution (see PR35406).
1760                    return true;
1761                  }
1762                  return false;
1763                });
1764      };
1765      // If the SCEV is computable at this level, insert it into the header
1766      // after the PHIs (and after any other instructions that we've inserted
1767      // there) so that it is guaranteed to dominate any user inside the loop.
1768      if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L) &&
1769          SafeToHoist(S))
1770        InsertPt = &*L->getHeader()->getFirstInsertionPt();
1771      while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1772             (isInsertedInstruction(InsertPt) ||
1773              isa<DbgInfoIntrinsic>(InsertPt))) {
1774        InsertPt = &*std::next(InsertPt->getIterator());
1775      }
1776      break;
1777    }
1778
1779  // Check to see if we already expanded this here.
1780  auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1781  if (I != InsertedExpressions.end())
1782    return I->second;
1783
1784  SCEVInsertPointGuard Guard(Builder, this);
1785  Builder.SetInsertPoint(InsertPt);
1786
1787  // Expand the expression into instructions.
1788  ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt);
1789  Value *V = VO.first;
1790
1791  if (!V)
1792    V = visit(S);
1793  else if (VO.second) {
1794    if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) {
1795      Type *Ety = Vty->getPointerElementType();
1796      int64_t Offset = VO.second->getSExtValue();
1797      int64_t ESize = SE.getTypeSizeInBits(Ety);
1798      if ((Offset * 8) % ESize == 0) {
1799        ConstantInt *Idx =
1800            ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize);
1801        V = Builder.CreateGEP(Ety, V, Idx, "scevgep");
1802      } else {
1803        ConstantInt *Idx =
1804            ConstantInt::getSigned(VO.second->getType(), -Offset);
1805        unsigned AS = Vty->getAddressSpace();
1806        V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS));
1807        V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx,
1808                              "uglygep");
1809        V = Builder.CreateBitCast(V, Vty);
1810      }
1811    } else {
1812      V = Builder.CreateSub(V, VO.second);
1813    }
1814  }
1815  // Remember the expanded value for this SCEV at this location.
1816  //
1817  // This is independent of PostIncLoops. The mapped value simply materializes
1818  // the expression at this insertion point. If the mapped value happened to be
1819  // a postinc expansion, it could be reused by a non-postinc user, but only if
1820  // its insertion point was already at the head of the loop.
1821  InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1822  return V;
1823}
1824
1825void SCEVExpander::rememberInstruction(Value *I) {
1826  if (!PostIncLoops.empty())
1827    InsertedPostIncValues.insert(I);
1828  else
1829    InsertedValues.insert(I);
1830}
1831
1832/// getOrInsertCanonicalInductionVariable - This method returns the
1833/// canonical induction variable of the specified type for the specified
1834/// loop (inserting one if there is none).  A canonical induction variable
1835/// starts at zero and steps by one on each iteration.
1836PHINode *
1837SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1838                                                    Type *Ty) {
1839  assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1840
1841  // Build a SCEV for {0,+,1}<L>.
1842  // Conservatively use FlagAnyWrap for now.
1843  const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1844                                   SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
1845
1846  // Emit code for it.
1847  SCEVInsertPointGuard Guard(Builder, this);
1848  PHINode *V =
1849      cast<PHINode>(expandCodeFor(H, nullptr, &L->getHeader()->front()));
1850
1851  return V;
1852}
1853
1854/// replaceCongruentIVs - Check for congruent phis in this loop header and
1855/// replace them with their most canonical representative. Return the number of
1856/// phis eliminated.
1857///
1858/// This does not depend on any SCEVExpander state but should be used in
1859/// the same context that SCEVExpander is used.
1860unsigned
1861SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1862                                  SmallVectorImpl<WeakTrackingVH> &DeadInsts,
1863                                  const TargetTransformInfo *TTI) {
1864  // Find integer phis in order of increasing width.
1865  SmallVector<PHINode*, 8> Phis;
1866  for (PHINode &PN : L->getHeader()->phis())
1867    Phis.push_back(&PN);
1868
1869  if (TTI)
1870    llvm::sort(Phis, [](Value *LHS, Value *RHS) {
1871      // Put pointers at the back and make sure pointer < pointer = false.
1872      if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
1873        return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1874      return RHS->getType()->getPrimitiveSizeInBits() <
1875             LHS->getType()->getPrimitiveSizeInBits();
1876    });
1877
1878  unsigned NumElim = 0;
1879  DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1880  // Process phis from wide to narrow. Map wide phis to their truncation
1881  // so narrow phis can reuse them.
1882  for (PHINode *Phi : Phis) {
1883    auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
1884      if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
1885        return V;
1886      if (!SE.isSCEVable(PN->getType()))
1887        return nullptr;
1888      auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
1889      if (!Const)
1890        return nullptr;
1891      return Const->getValue();
1892    };
1893
1894    // Fold constant phis. They may be congruent to other constant phis and
1895    // would confuse the logic below that expects proper IVs.
1896    if (Value *V = SimplifyPHINode(Phi)) {
1897      if (V->getType() != Phi->getType())
1898        continue;
1899      Phi->replaceAllUsesWith(V);
1900      DeadInsts.emplace_back(Phi);
1901      ++NumElim;
1902      DEBUG_WITH_TYPE(DebugType, dbgs()
1903                      << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
1904      continue;
1905    }
1906
1907    if (!SE.isSCEVable(Phi->getType()))
1908      continue;
1909
1910    PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1911    if (!OrigPhiRef) {
1912      OrigPhiRef = Phi;
1913      if (Phi->getType()->isIntegerTy() && TTI &&
1914          TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1915        // This phi can be freely truncated to the narrowest phi type. Map the
1916        // truncated expression to it so it will be reused for narrow types.
1917        const SCEV *TruncExpr =
1918          SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
1919        ExprToIVMap[TruncExpr] = Phi;
1920      }
1921      continue;
1922    }
1923
1924    // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1925    // sense.
1926    if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1927      continue;
1928
1929    if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1930      Instruction *OrigInc = dyn_cast<Instruction>(
1931          OrigPhiRef->getIncomingValueForBlock(LatchBlock));
1932      Instruction *IsomorphicInc =
1933          dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1934
1935      if (OrigInc && IsomorphicInc) {
1936        // If this phi has the same width but is more canonical, replace the
1937        // original with it. As part of the "more canonical" determination,
1938        // respect a prior decision to use an IV chain.
1939        if (OrigPhiRef->getType() == Phi->getType() &&
1940            !(ChainedPhis.count(Phi) ||
1941              isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
1942            (ChainedPhis.count(Phi) ||
1943             isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
1944          std::swap(OrigPhiRef, Phi);
1945          std::swap(OrigInc, IsomorphicInc);
1946        }
1947        // Replacing the congruent phi is sufficient because acyclic
1948        // redundancy elimination, CSE/GVN, should handle the
1949        // rest. However, once SCEV proves that a phi is congruent,
1950        // it's often the head of an IV user cycle that is isomorphic
1951        // with the original phi. It's worth eagerly cleaning up the
1952        // common case of a single IV increment so that DeleteDeadPHIs
1953        // can remove cycles that had postinc uses.
1954        const SCEV *TruncExpr =
1955            SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
1956        if (OrigInc != IsomorphicInc &&
1957            TruncExpr == SE.getSCEV(IsomorphicInc) &&
1958            SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
1959            hoistIVInc(OrigInc, IsomorphicInc)) {
1960          DEBUG_WITH_TYPE(DebugType,
1961                          dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1962                                 << *IsomorphicInc << '\n');
1963          Value *NewInc = OrigInc;
1964          if (OrigInc->getType() != IsomorphicInc->getType()) {
1965            Instruction *IP = nullptr;
1966            if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
1967              IP = &*PN->getParent()->getFirstInsertionPt();
1968            else
1969              IP = OrigInc->getNextNode();
1970
1971            IRBuilder<> Builder(IP);
1972            Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
1973            NewInc = Builder.CreateTruncOrBitCast(
1974                OrigInc, IsomorphicInc->getType(), IVName);
1975          }
1976          IsomorphicInc->replaceAllUsesWith(NewInc);
1977          DeadInsts.emplace_back(IsomorphicInc);
1978        }
1979      }
1980    }
1981    DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: "
1982                                      << *Phi << '\n');
1983    ++NumElim;
1984    Value *NewIV = OrigPhiRef;
1985    if (OrigPhiRef->getType() != Phi->getType()) {
1986      IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
1987      Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
1988      NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
1989    }
1990    Phi->replaceAllUsesWith(NewIV);
1991    DeadInsts.emplace_back(Phi);
1992  }
1993  return NumElim;
1994}
1995
1996Value *SCEVExpander::getExactExistingExpansion(const SCEV *S,
1997                                               const Instruction *At, Loop *L) {
1998  Optional<ScalarEvolution::ValueOffsetPair> VO =
1999      getRelatedExistingExpansion(S, At, L);
2000  if (VO && VO.getValue().second == nullptr)
2001    return VO.getValue().first;
2002  return nullptr;
2003}
2004
2005Optional<ScalarEvolution::ValueOffsetPair>
2006SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
2007                                          Loop *L) {
2008  using namespace llvm::PatternMatch;
2009
2010  SmallVector<BasicBlock *, 4> ExitingBlocks;
2011  L->getExitingBlocks(ExitingBlocks);
2012
2013  // Look for suitable value in simple conditions at the loop exits.
2014  for (BasicBlock *BB : ExitingBlocks) {
2015    ICmpInst::Predicate Pred;
2016    Instruction *LHS, *RHS;
2017    BasicBlock *TrueBB, *FalseBB;
2018
2019    if (!match(BB->getTerminator(),
2020               m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
2021                    TrueBB, FalseBB)))
2022      continue;
2023
2024    if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
2025      return ScalarEvolution::ValueOffsetPair(LHS, nullptr);
2026
2027    if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
2028      return ScalarEvolution::ValueOffsetPair(RHS, nullptr);
2029  }
2030
2031  // Use expand's logic which is used for reusing a previous Value in
2032  // ExprValueMap.
2033  ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At);
2034  if (VO.first)
2035    return VO;
2036
2037  // There is potential to make this significantly smarter, but this simple
2038  // heuristic already gets some interesting cases.
2039
2040  // Can not find suitable value.
2041  return None;
2042}
2043
2044bool SCEVExpander::isHighCostExpansionHelper(
2045    const SCEV *S, Loop *L, const Instruction *At,
2046    SmallPtrSetImpl<const SCEV *> &Processed) {
2047
2048  // If we can find an existing value for this scev available at the point "At"
2049  // then consider the expression cheap.
2050  if (At && getRelatedExistingExpansion(S, At, L))
2051    return false;
2052
2053  // Zero/One operand expressions
2054  switch (S->getSCEVType()) {
2055  case scUnknown:
2056  case scConstant:
2057    return false;
2058  case scTruncate:
2059    return isHighCostExpansionHelper(cast<SCEVTruncateExpr>(S)->getOperand(),
2060                                     L, At, Processed);
2061  case scZeroExtend:
2062    return isHighCostExpansionHelper(cast<SCEVZeroExtendExpr>(S)->getOperand(),
2063                                     L, At, Processed);
2064  case scSignExtend:
2065    return isHighCostExpansionHelper(cast<SCEVSignExtendExpr>(S)->getOperand(),
2066                                     L, At, Processed);
2067  }
2068
2069  if (!Processed.insert(S).second)
2070    return false;
2071
2072  if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) {
2073    // If the divisor is a power of two and the SCEV type fits in a native
2074    // integer, consider the division cheap irrespective of whether it occurs in
2075    // the user code since it can be lowered into a right shift.
2076    if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS()))
2077      if (SC->getAPInt().isPowerOf2()) {
2078        const DataLayout &DL =
2079            L->getHeader()->getParent()->getParent()->getDataLayout();
2080        unsigned Width = cast<IntegerType>(UDivExpr->getType())->getBitWidth();
2081        return DL.isIllegalInteger(Width);
2082      }
2083
2084    // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2085    // HowManyLessThans produced to compute a precise expression, rather than a
2086    // UDiv from the user's code. If we can't find a UDiv in the code with some
2087    // simple searching, assume the former consider UDivExpr expensive to
2088    // compute.
2089    BasicBlock *ExitingBB = L->getExitingBlock();
2090    if (!ExitingBB)
2091      return true;
2092
2093    // At the beginning of this function we already tried to find existing value
2094    // for plain 'S'. Now try to lookup 'S + 1' since it is common pattern
2095    // involving division. This is just a simple search heuristic.
2096    if (!At)
2097      At = &ExitingBB->back();
2098    if (!getRelatedExistingExpansion(
2099            SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), At, L))
2100      return true;
2101  }
2102
2103  // HowManyLessThans uses a Max expression whenever the loop is not guarded by
2104  // the exit condition.
2105  if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
2106    return true;
2107
2108  // Recurse past nary expressions, which commonly occur in the
2109  // BackedgeTakenCount. They may already exist in program code, and if not,
2110  // they are not too expensive rematerialize.
2111  if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) {
2112    for (auto *Op : NAry->operands())
2113      if (isHighCostExpansionHelper(Op, L, At, Processed))
2114        return true;
2115  }
2116
2117  // If we haven't recognized an expensive SCEV pattern, assume it's an
2118  // expression produced by program code.
2119  return false;
2120}
2121
2122Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2123                                            Instruction *IP) {
2124  assert(IP);
2125  switch (Pred->getKind()) {
2126  case SCEVPredicate::P_Union:
2127    return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2128  case SCEVPredicate::P_Equal:
2129    return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
2130  case SCEVPredicate::P_Wrap: {
2131    auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2132    return expandWrapPredicate(AddRecPred, IP);
2133  }
2134  }
2135  llvm_unreachable("Unknown SCEV predicate type");
2136}
2137
2138Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
2139                                          Instruction *IP) {
2140  Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP);
2141  Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP);
2142
2143  Builder.SetInsertPoint(IP);
2144  auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
2145  return I;
2146}
2147
2148Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2149                                           Instruction *Loc, bool Signed) {
2150  assert(AR->isAffine() && "Cannot generate RT check for "
2151                           "non-affine expression");
2152
2153  SCEVUnionPredicate Pred;
2154  const SCEV *ExitCount =
2155      SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2156
2157  assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count");
2158
2159  const SCEV *Step = AR->getStepRecurrence(SE);
2160  const SCEV *Start = AR->getStart();
2161
2162  Type *ARTy = AR->getType();
2163  unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2164  unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2165
2166  // The expression {Start,+,Step} has nusw/nssw if
2167  //   Step < 0, Start - |Step| * Backedge <= Start
2168  //   Step >= 0, Start + |Step| * Backedge > Start
2169  // and |Step| * Backedge doesn't unsigned overflow.
2170
2171  IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2172  Builder.SetInsertPoint(Loc);
2173  Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc);
2174
2175  IntegerType *Ty =
2176      IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2177  Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty;
2178
2179  Value *StepValue = expandCodeFor(Step, Ty, Loc);
2180  Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc);
2181  Value *StartValue = expandCodeFor(Start, ARExpandTy, Loc);
2182
2183  ConstantInt *Zero =
2184      ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits));
2185
2186  Builder.SetInsertPoint(Loc);
2187  // Compute |Step|
2188  Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2189  Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2190
2191  // Get the backedge taken count and truncate or extended to the AR type.
2192  Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2193  auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2194                                         Intrinsic::umul_with_overflow, Ty);
2195
2196  // Compute |Step| * Backedge
2197  CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2198  Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2199  Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2200
2201  // Compute:
2202  //   Start + |Step| * Backedge < Start
2203  //   Start - |Step| * Backedge > Start
2204  Value *Add = nullptr, *Sub = nullptr;
2205  if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) {
2206    const SCEV *MulS = SE.getSCEV(MulV);
2207    const SCEV *NegMulS = SE.getNegativeSCEV(MulS);
2208    Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue),
2209                                ARPtrTy);
2210    Sub = Builder.CreateBitCast(
2211        expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy);
2212  } else {
2213    Add = Builder.CreateAdd(StartValue, MulV);
2214    Sub = Builder.CreateSub(StartValue, MulV);
2215  }
2216
2217  Value *EndCompareGT = Builder.CreateICmp(
2218      Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2219
2220  Value *EndCompareLT = Builder.CreateICmp(
2221      Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2222
2223  // Select the answer based on the sign of Step.
2224  Value *EndCheck =
2225      Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2226
2227  // If the backedge taken count type is larger than the AR type,
2228  // check that we don't drop any bits by truncating it. If we are
2229  // dropping bits, then we have overflow (unless the step is zero).
2230  if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2231    auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2232    auto *BackedgeCheck =
2233        Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2234                           ConstantInt::get(Loc->getContext(), MaxVal));
2235    BackedgeCheck = Builder.CreateAnd(
2236        BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2237
2238    EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2239  }
2240
2241  EndCheck = Builder.CreateOr(EndCheck, OfMul);
2242  return EndCheck;
2243}
2244
2245Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2246                                         Instruction *IP) {
2247  const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2248  Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2249
2250  // Add a check for NUSW
2251  if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2252    NUSWCheck = generateOverflowCheck(A, IP, false);
2253
2254  // Add a check for NSSW
2255  if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2256    NSSWCheck = generateOverflowCheck(A, IP, true);
2257
2258  if (NUSWCheck && NSSWCheck)
2259    return Builder.CreateOr(NUSWCheck, NSSWCheck);
2260
2261  if (NUSWCheck)
2262    return NUSWCheck;
2263
2264  if (NSSWCheck)
2265    return NSSWCheck;
2266
2267  return ConstantInt::getFalse(IP->getContext());
2268}
2269
2270Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2271                                          Instruction *IP) {
2272  auto *BoolType = IntegerType::get(IP->getContext(), 1);
2273  Value *Check = ConstantInt::getNullValue(BoolType);
2274
2275  // Loop over all checks in this set.
2276  for (auto Pred : Union->getPredicates()) {
2277    auto *NextCheck = expandCodeForPredicate(Pred, IP);
2278    Builder.SetInsertPoint(IP);
2279    Check = Builder.CreateOr(Check, NextCheck);
2280  }
2281
2282  return Check;
2283}
2284
2285namespace {
2286// Search for a SCEV subexpression that is not safe to expand.  Any expression
2287// that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2288// UDiv expressions. We don't know if the UDiv is derived from an IR divide
2289// instruction, but the important thing is that we prove the denominator is
2290// nonzero before expansion.
2291//
2292// IVUsers already checks that IV-derived expressions are safe. So this check is
2293// only needed when the expression includes some subexpression that is not IV
2294// derived.
2295//
2296// Currently, we only allow division by a nonzero constant here. If this is
2297// inadequate, we could easily allow division by SCEVUnknown by using
2298// ValueTracking to check isKnownNonZero().
2299//
2300// We cannot generally expand recurrences unless the step dominates the loop
2301// header. The expander handles the special case of affine recurrences by
2302// scaling the recurrence outside the loop, but this technique isn't generally
2303// applicable. Expanding a nested recurrence outside a loop requires computing
2304// binomial coefficients. This could be done, but the recurrence has to be in a
2305// perfectly reduced form, which can't be guaranteed.
2306struct SCEVFindUnsafe {
2307  ScalarEvolution &SE;
2308  bool IsUnsafe;
2309
2310  SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
2311
2312  bool follow(const SCEV *S) {
2313    if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2314      const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
2315      if (!SC || SC->getValue()->isZero()) {
2316        IsUnsafe = true;
2317        return false;
2318      }
2319    }
2320    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2321      const SCEV *Step = AR->getStepRecurrence(SE);
2322      if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2323        IsUnsafe = true;
2324        return false;
2325      }
2326    }
2327    return true;
2328  }
2329  bool isDone() const { return IsUnsafe; }
2330};
2331}
2332
2333namespace llvm {
2334bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
2335  SCEVFindUnsafe Search(SE);
2336  visitAll(S, Search);
2337  return !Search.IsUnsafe;
2338}
2339
2340bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
2341                      ScalarEvolution &SE) {
2342  return isSafeToExpand(S, SE) && SE.dominates(S, InsertionPoint->getParent());
2343}
2344}
2345