ScalarEvolutionExpander.cpp revision 327952
1//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution expander,
11// which is used to generate the code corresponding to a given scalar evolution
12// expression.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/ScalarEvolutionExpander.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Analysis/LoopInfo.h"
21#include "llvm/Analysis/TargetTransformInfo.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/Dominators.h"
24#include "llvm/IR/IntrinsicInst.h"
25#include "llvm/IR/LLVMContext.h"
26#include "llvm/IR/Module.h"
27#include "llvm/IR/PatternMatch.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/raw_ostream.h"
30
31using namespace llvm;
32using namespace PatternMatch;
33
34/// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
35/// reusing an existing cast if a suitable one exists, moving an existing
36/// cast if a suitable one exists but isn't in the right place, or
37/// creating a new one.
38Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
39                                       Instruction::CastOps Op,
40                                       BasicBlock::iterator IP) {
41  // This function must be called with the builder having a valid insertion
42  // point. It doesn't need to be the actual IP where the uses of the returned
43  // cast will be added, but it must dominate such IP.
44  // We use this precondition to produce a cast that will dominate all its
45  // uses. In particular, this is crucial for the case where the builder's
46  // insertion point *is* the point where we were asked to put the cast.
47  // Since we don't know the builder's insertion point is actually
48  // where the uses will be added (only that it dominates it), we are
49  // not allowed to move it.
50  BasicBlock::iterator BIP = Builder.GetInsertPoint();
51
52  Instruction *Ret = nullptr;
53
54  // Check to see if there is already a cast!
55  for (User *U : V->users())
56    if (U->getType() == Ty)
57      if (CastInst *CI = dyn_cast<CastInst>(U))
58        if (CI->getOpcode() == Op) {
59          // If the cast isn't where we want it, create a new cast at IP.
60          // Likewise, do not reuse a cast at BIP because it must dominate
61          // instructions that might be inserted before BIP.
62          if (BasicBlock::iterator(CI) != IP || BIP == IP) {
63            // Create a new cast, and leave the old cast in place in case
64            // it is being used as an insert point. Clear its operand
65            // so that it doesn't hold anything live.
66            Ret = CastInst::Create(Op, V, Ty, "", &*IP);
67            Ret->takeName(CI);
68            CI->replaceAllUsesWith(Ret);
69            CI->setOperand(0, UndefValue::get(V->getType()));
70            break;
71          }
72          Ret = CI;
73          break;
74        }
75
76  // Create a new cast.
77  if (!Ret)
78    Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP);
79
80  // We assert at the end of the function since IP might point to an
81  // instruction with different dominance properties than a cast
82  // (an invoke for example) and not dominate BIP (but the cast does).
83  assert(SE.DT.dominates(Ret, &*BIP));
84
85  rememberInstruction(Ret);
86  return Ret;
87}
88
89static BasicBlock::iterator findInsertPointAfter(Instruction *I,
90                                                 BasicBlock *MustDominate) {
91  BasicBlock::iterator IP = ++I->getIterator();
92  if (auto *II = dyn_cast<InvokeInst>(I))
93    IP = II->getNormalDest()->begin();
94
95  while (isa<PHINode>(IP))
96    ++IP;
97
98  if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
99    ++IP;
100  } else if (isa<CatchSwitchInst>(IP)) {
101    IP = MustDominate->getFirstInsertionPt();
102  } else {
103    assert(!IP->isEHPad() && "unexpected eh pad!");
104  }
105
106  return IP;
107}
108
109/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
110/// which must be possible with a noop cast, doing what we can to share
111/// the casts.
112Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
113  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
114  assert((Op == Instruction::BitCast ||
115          Op == Instruction::PtrToInt ||
116          Op == Instruction::IntToPtr) &&
117         "InsertNoopCastOfTo cannot perform non-noop casts!");
118  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
119         "InsertNoopCastOfTo cannot change sizes!");
120
121  // Short-circuit unnecessary bitcasts.
122  if (Op == Instruction::BitCast) {
123    if (V->getType() == Ty)
124      return V;
125    if (CastInst *CI = dyn_cast<CastInst>(V)) {
126      if (CI->getOperand(0)->getType() == Ty)
127        return CI->getOperand(0);
128    }
129  }
130  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
131  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
132      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
133    if (CastInst *CI = dyn_cast<CastInst>(V))
134      if ((CI->getOpcode() == Instruction::PtrToInt ||
135           CI->getOpcode() == Instruction::IntToPtr) &&
136          SE.getTypeSizeInBits(CI->getType()) ==
137          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
138        return CI->getOperand(0);
139    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
140      if ((CE->getOpcode() == Instruction::PtrToInt ||
141           CE->getOpcode() == Instruction::IntToPtr) &&
142          SE.getTypeSizeInBits(CE->getType()) ==
143          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
144        return CE->getOperand(0);
145  }
146
147  // Fold a cast of a constant.
148  if (Constant *C = dyn_cast<Constant>(V))
149    return ConstantExpr::getCast(Op, C, Ty);
150
151  // Cast the argument at the beginning of the entry block, after
152  // any bitcasts of other arguments.
153  if (Argument *A = dyn_cast<Argument>(V)) {
154    BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
155    while ((isa<BitCastInst>(IP) &&
156            isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
157            cast<BitCastInst>(IP)->getOperand(0) != A) ||
158           isa<DbgInfoIntrinsic>(IP))
159      ++IP;
160    return ReuseOrCreateCast(A, Ty, Op, IP);
161  }
162
163  // Cast the instruction immediately after the instruction.
164  Instruction *I = cast<Instruction>(V);
165  BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock());
166  return ReuseOrCreateCast(I, Ty, Op, IP);
167}
168
169/// InsertBinop - Insert the specified binary operator, doing a small amount
170/// of work to avoid inserting an obviously redundant operation.
171Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
172                                 Value *LHS, Value *RHS) {
173  // Fold a binop with constant operands.
174  if (Constant *CLHS = dyn_cast<Constant>(LHS))
175    if (Constant *CRHS = dyn_cast<Constant>(RHS))
176      return ConstantExpr::get(Opcode, CLHS, CRHS);
177
178  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
179  unsigned ScanLimit = 6;
180  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
181  // Scanning starts from the last instruction before the insertion point.
182  BasicBlock::iterator IP = Builder.GetInsertPoint();
183  if (IP != BlockBegin) {
184    --IP;
185    for (; ScanLimit; --IP, --ScanLimit) {
186      // Don't count dbg.value against the ScanLimit, to avoid perturbing the
187      // generated code.
188      if (isa<DbgInfoIntrinsic>(IP))
189        ScanLimit++;
190
191      // Conservatively, do not use any instruction which has any of wrap/exact
192      // flags installed.
193      // TODO: Instead of simply disable poison instructions we can be clever
194      //       here and match SCEV to this instruction.
195      auto canGeneratePoison = [](Instruction *I) {
196        if (isa<OverflowingBinaryOperator>(I) &&
197            (I->hasNoSignedWrap() || I->hasNoUnsignedWrap()))
198          return true;
199        if (isa<PossiblyExactOperator>(I) && I->isExact())
200          return true;
201        return false;
202      };
203      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
204          IP->getOperand(1) == RHS && !canGeneratePoison(&*IP))
205        return &*IP;
206      if (IP == BlockBegin) break;
207    }
208  }
209
210  // Save the original insertion point so we can restore it when we're done.
211  DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
212  SCEVInsertPointGuard Guard(Builder, this);
213
214  // Move the insertion point out of as many loops as we can.
215  while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
216    if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
217    BasicBlock *Preheader = L->getLoopPreheader();
218    if (!Preheader) break;
219
220    // Ok, move up a level.
221    Builder.SetInsertPoint(Preheader->getTerminator());
222  }
223
224  // If we haven't found this binop, insert it.
225  Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
226  BO->setDebugLoc(Loc);
227  rememberInstruction(BO);
228
229  return BO;
230}
231
232/// FactorOutConstant - Test if S is divisible by Factor, using signed
233/// division. If so, update S with Factor divided out and return true.
234/// S need not be evenly divisible if a reasonable remainder can be
235/// computed.
236/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
237/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
238/// check to see if the divide was folded.
239static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
240                              const SCEV *Factor, ScalarEvolution &SE,
241                              const DataLayout &DL) {
242  // Everything is divisible by one.
243  if (Factor->isOne())
244    return true;
245
246  // x/x == 1.
247  if (S == Factor) {
248    S = SE.getConstant(S->getType(), 1);
249    return true;
250  }
251
252  // For a Constant, check for a multiple of the given factor.
253  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
254    // 0/x == 0.
255    if (C->isZero())
256      return true;
257    // Check for divisibility.
258    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
259      ConstantInt *CI =
260          ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
261      // If the quotient is zero and the remainder is non-zero, reject
262      // the value at this scale. It will be considered for subsequent
263      // smaller scales.
264      if (!CI->isZero()) {
265        const SCEV *Div = SE.getConstant(CI);
266        S = Div;
267        Remainder = SE.getAddExpr(
268            Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
269        return true;
270      }
271    }
272  }
273
274  // In a Mul, check if there is a constant operand which is a multiple
275  // of the given factor.
276  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
277    // Size is known, check if there is a constant operand which is a multiple
278    // of the given factor. If so, we can factor it.
279    const SCEVConstant *FC = cast<SCEVConstant>(Factor);
280    if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
281      if (!C->getAPInt().srem(FC->getAPInt())) {
282        SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
283        NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
284        S = SE.getMulExpr(NewMulOps);
285        return true;
286      }
287  }
288
289  // In an AddRec, check if both start and step are divisible.
290  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
291    const SCEV *Step = A->getStepRecurrence(SE);
292    const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
293    if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
294      return false;
295    if (!StepRem->isZero())
296      return false;
297    const SCEV *Start = A->getStart();
298    if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
299      return false;
300    S = SE.getAddRecExpr(Start, Step, A->getLoop(),
301                         A->getNoWrapFlags(SCEV::FlagNW));
302    return true;
303  }
304
305  return false;
306}
307
308/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
309/// is the number of SCEVAddRecExprs present, which are kept at the end of
310/// the list.
311///
312static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
313                                Type *Ty,
314                                ScalarEvolution &SE) {
315  unsigned NumAddRecs = 0;
316  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
317    ++NumAddRecs;
318  // Group Ops into non-addrecs and addrecs.
319  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
320  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
321  // Let ScalarEvolution sort and simplify the non-addrecs list.
322  const SCEV *Sum = NoAddRecs.empty() ?
323                    SE.getConstant(Ty, 0) :
324                    SE.getAddExpr(NoAddRecs);
325  // If it returned an add, use the operands. Otherwise it simplified
326  // the sum into a single value, so just use that.
327  Ops.clear();
328  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
329    Ops.append(Add->op_begin(), Add->op_end());
330  else if (!Sum->isZero())
331    Ops.push_back(Sum);
332  // Then append the addrecs.
333  Ops.append(AddRecs.begin(), AddRecs.end());
334}
335
336/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
337/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
338/// This helps expose more opportunities for folding parts of the expressions
339/// into GEP indices.
340///
341static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
342                         Type *Ty,
343                         ScalarEvolution &SE) {
344  // Find the addrecs.
345  SmallVector<const SCEV *, 8> AddRecs;
346  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
347    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
348      const SCEV *Start = A->getStart();
349      if (Start->isZero()) break;
350      const SCEV *Zero = SE.getConstant(Ty, 0);
351      AddRecs.push_back(SE.getAddRecExpr(Zero,
352                                         A->getStepRecurrence(SE),
353                                         A->getLoop(),
354                                         A->getNoWrapFlags(SCEV::FlagNW)));
355      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
356        Ops[i] = Zero;
357        Ops.append(Add->op_begin(), Add->op_end());
358        e += Add->getNumOperands();
359      } else {
360        Ops[i] = Start;
361      }
362    }
363  if (!AddRecs.empty()) {
364    // Add the addrecs onto the end of the list.
365    Ops.append(AddRecs.begin(), AddRecs.end());
366    // Resort the operand list, moving any constants to the front.
367    SimplifyAddOperands(Ops, Ty, SE);
368  }
369}
370
371/// expandAddToGEP - Expand an addition expression with a pointer type into
372/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
373/// BasicAliasAnalysis and other passes analyze the result. See the rules
374/// for getelementptr vs. inttoptr in
375/// http://llvm.org/docs/LangRef.html#pointeraliasing
376/// for details.
377///
378/// Design note: The correctness of using getelementptr here depends on
379/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
380/// they may introduce pointer arithmetic which may not be safely converted
381/// into getelementptr.
382///
383/// Design note: It might seem desirable for this function to be more
384/// loop-aware. If some of the indices are loop-invariant while others
385/// aren't, it might seem desirable to emit multiple GEPs, keeping the
386/// loop-invariant portions of the overall computation outside the loop.
387/// However, there are a few reasons this is not done here. Hoisting simple
388/// arithmetic is a low-level optimization that often isn't very
389/// important until late in the optimization process. In fact, passes
390/// like InstructionCombining will combine GEPs, even if it means
391/// pushing loop-invariant computation down into loops, so even if the
392/// GEPs were split here, the work would quickly be undone. The
393/// LoopStrengthReduction pass, which is usually run quite late (and
394/// after the last InstructionCombining pass), takes care of hoisting
395/// loop-invariant portions of expressions, after considering what
396/// can be folded using target addressing modes.
397///
398Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
399                                    const SCEV *const *op_end,
400                                    PointerType *PTy,
401                                    Type *Ty,
402                                    Value *V) {
403  Type *OriginalElTy = PTy->getElementType();
404  Type *ElTy = OriginalElTy;
405  SmallVector<Value *, 4> GepIndices;
406  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
407  bool AnyNonZeroIndices = false;
408
409  // Split AddRecs up into parts as either of the parts may be usable
410  // without the other.
411  SplitAddRecs(Ops, Ty, SE);
412
413  Type *IntPtrTy = DL.getIntPtrType(PTy);
414
415  // Descend down the pointer's type and attempt to convert the other
416  // operands into GEP indices, at each level. The first index in a GEP
417  // indexes into the array implied by the pointer operand; the rest of
418  // the indices index into the element or field type selected by the
419  // preceding index.
420  for (;;) {
421    // If the scale size is not 0, attempt to factor out a scale for
422    // array indexing.
423    SmallVector<const SCEV *, 8> ScaledOps;
424    if (ElTy->isSized()) {
425      const SCEV *ElSize = SE.getSizeOfExpr(IntPtrTy, ElTy);
426      if (!ElSize->isZero()) {
427        SmallVector<const SCEV *, 8> NewOps;
428        for (const SCEV *Op : Ops) {
429          const SCEV *Remainder = SE.getConstant(Ty, 0);
430          if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
431            // Op now has ElSize factored out.
432            ScaledOps.push_back(Op);
433            if (!Remainder->isZero())
434              NewOps.push_back(Remainder);
435            AnyNonZeroIndices = true;
436          } else {
437            // The operand was not divisible, so add it to the list of operands
438            // we'll scan next iteration.
439            NewOps.push_back(Op);
440          }
441        }
442        // If we made any changes, update Ops.
443        if (!ScaledOps.empty()) {
444          Ops = NewOps;
445          SimplifyAddOperands(Ops, Ty, SE);
446        }
447      }
448    }
449
450    // Record the scaled array index for this level of the type. If
451    // we didn't find any operands that could be factored, tentatively
452    // assume that element zero was selected (since the zero offset
453    // would obviously be folded away).
454    Value *Scaled = ScaledOps.empty() ?
455                    Constant::getNullValue(Ty) :
456                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
457    GepIndices.push_back(Scaled);
458
459    // Collect struct field index operands.
460    while (StructType *STy = dyn_cast<StructType>(ElTy)) {
461      bool FoundFieldNo = false;
462      // An empty struct has no fields.
463      if (STy->getNumElements() == 0) break;
464      // Field offsets are known. See if a constant offset falls within any of
465      // the struct fields.
466      if (Ops.empty())
467        break;
468      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
469        if (SE.getTypeSizeInBits(C->getType()) <= 64) {
470          const StructLayout &SL = *DL.getStructLayout(STy);
471          uint64_t FullOffset = C->getValue()->getZExtValue();
472          if (FullOffset < SL.getSizeInBytes()) {
473            unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
474            GepIndices.push_back(
475                ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
476            ElTy = STy->getTypeAtIndex(ElIdx);
477            Ops[0] =
478                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
479            AnyNonZeroIndices = true;
480            FoundFieldNo = true;
481          }
482        }
483      // If no struct field offsets were found, tentatively assume that
484      // field zero was selected (since the zero offset would obviously
485      // be folded away).
486      if (!FoundFieldNo) {
487        ElTy = STy->getTypeAtIndex(0u);
488        GepIndices.push_back(
489          Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
490      }
491    }
492
493    if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
494      ElTy = ATy->getElementType();
495    else
496      break;
497  }
498
499  // If none of the operands were convertible to proper GEP indices, cast
500  // the base to i8* and do an ugly getelementptr with that. It's still
501  // better than ptrtoint+arithmetic+inttoptr at least.
502  if (!AnyNonZeroIndices) {
503    // Cast the base to i8*.
504    V = InsertNoopCastOfTo(V,
505       Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
506
507    assert(!isa<Instruction>(V) ||
508           SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
509
510    // Expand the operands for a plain byte offset.
511    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
512
513    // Fold a GEP with constant operands.
514    if (Constant *CLHS = dyn_cast<Constant>(V))
515      if (Constant *CRHS = dyn_cast<Constant>(Idx))
516        return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
517                                              CLHS, CRHS);
518
519    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
520    unsigned ScanLimit = 6;
521    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
522    // Scanning starts from the last instruction before the insertion point.
523    BasicBlock::iterator IP = Builder.GetInsertPoint();
524    if (IP != BlockBegin) {
525      --IP;
526      for (; ScanLimit; --IP, --ScanLimit) {
527        // Don't count dbg.value against the ScanLimit, to avoid perturbing the
528        // generated code.
529        if (isa<DbgInfoIntrinsic>(IP))
530          ScanLimit++;
531        if (IP->getOpcode() == Instruction::GetElementPtr &&
532            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
533          return &*IP;
534        if (IP == BlockBegin) break;
535      }
536    }
537
538    // Save the original insertion point so we can restore it when we're done.
539    SCEVInsertPointGuard Guard(Builder, this);
540
541    // Move the insertion point out of as many loops as we can.
542    while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
543      if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
544      BasicBlock *Preheader = L->getLoopPreheader();
545      if (!Preheader) break;
546
547      // Ok, move up a level.
548      Builder.SetInsertPoint(Preheader->getTerminator());
549    }
550
551    // Emit a GEP.
552    Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
553    rememberInstruction(GEP);
554
555    return GEP;
556  }
557
558  {
559    SCEVInsertPointGuard Guard(Builder, this);
560
561    // Move the insertion point out of as many loops as we can.
562    while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
563      if (!L->isLoopInvariant(V)) break;
564
565      bool AnyIndexNotLoopInvariant = any_of(
566          GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
567
568      if (AnyIndexNotLoopInvariant)
569        break;
570
571      BasicBlock *Preheader = L->getLoopPreheader();
572      if (!Preheader) break;
573
574      // Ok, move up a level.
575      Builder.SetInsertPoint(Preheader->getTerminator());
576    }
577
578    // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
579    // because ScalarEvolution may have changed the address arithmetic to
580    // compute a value which is beyond the end of the allocated object.
581    Value *Casted = V;
582    if (V->getType() != PTy)
583      Casted = InsertNoopCastOfTo(Casted, PTy);
584    Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep");
585    Ops.push_back(SE.getUnknown(GEP));
586    rememberInstruction(GEP);
587  }
588
589  return expand(SE.getAddExpr(Ops));
590}
591
592/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
593/// SCEV expansion. If they are nested, this is the most nested. If they are
594/// neighboring, pick the later.
595static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
596                                        DominatorTree &DT) {
597  if (!A) return B;
598  if (!B) return A;
599  if (A->contains(B)) return B;
600  if (B->contains(A)) return A;
601  if (DT.dominates(A->getHeader(), B->getHeader())) return B;
602  if (DT.dominates(B->getHeader(), A->getHeader())) return A;
603  return A; // Arbitrarily break the tie.
604}
605
606/// getRelevantLoop - Get the most relevant loop associated with the given
607/// expression, according to PickMostRelevantLoop.
608const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
609  // Test whether we've already computed the most relevant loop for this SCEV.
610  auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
611  if (!Pair.second)
612    return Pair.first->second;
613
614  if (isa<SCEVConstant>(S))
615    // A constant has no relevant loops.
616    return nullptr;
617  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
618    if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
619      return Pair.first->second = SE.LI.getLoopFor(I->getParent());
620    // A non-instruction has no relevant loops.
621    return nullptr;
622  }
623  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
624    const Loop *L = nullptr;
625    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
626      L = AR->getLoop();
627    for (const SCEV *Op : N->operands())
628      L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
629    return RelevantLoops[N] = L;
630  }
631  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
632    const Loop *Result = getRelevantLoop(C->getOperand());
633    return RelevantLoops[C] = Result;
634  }
635  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
636    const Loop *Result = PickMostRelevantLoop(
637        getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
638    return RelevantLoops[D] = Result;
639  }
640  llvm_unreachable("Unexpected SCEV type!");
641}
642
643namespace {
644
645/// LoopCompare - Compare loops by PickMostRelevantLoop.
646class LoopCompare {
647  DominatorTree &DT;
648public:
649  explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
650
651  bool operator()(std::pair<const Loop *, const SCEV *> LHS,
652                  std::pair<const Loop *, const SCEV *> RHS) const {
653    // Keep pointer operands sorted at the end.
654    if (LHS.second->getType()->isPointerTy() !=
655        RHS.second->getType()->isPointerTy())
656      return LHS.second->getType()->isPointerTy();
657
658    // Compare loops with PickMostRelevantLoop.
659    if (LHS.first != RHS.first)
660      return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
661
662    // If one operand is a non-constant negative and the other is not,
663    // put the non-constant negative on the right so that a sub can
664    // be used instead of a negate and add.
665    if (LHS.second->isNonConstantNegative()) {
666      if (!RHS.second->isNonConstantNegative())
667        return false;
668    } else if (RHS.second->isNonConstantNegative())
669      return true;
670
671    // Otherwise they are equivalent according to this comparison.
672    return false;
673  }
674};
675
676}
677
678Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
679  Type *Ty = SE.getEffectiveSCEVType(S->getType());
680
681  // Collect all the add operands in a loop, along with their associated loops.
682  // Iterate in reverse so that constants are emitted last, all else equal, and
683  // so that pointer operands are inserted first, which the code below relies on
684  // to form more involved GEPs.
685  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
686  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
687       E(S->op_begin()); I != E; ++I)
688    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
689
690  // Sort by loop. Use a stable sort so that constants follow non-constants and
691  // pointer operands precede non-pointer operands.
692  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT));
693
694  // Emit instructions to add all the operands. Hoist as much as possible
695  // out of loops, and form meaningful getelementptrs where possible.
696  Value *Sum = nullptr;
697  for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
698    const Loop *CurLoop = I->first;
699    const SCEV *Op = I->second;
700    if (!Sum) {
701      // This is the first operand. Just expand it.
702      Sum = expand(Op);
703      ++I;
704    } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
705      // The running sum expression is a pointer. Try to form a getelementptr
706      // at this level with that as the base.
707      SmallVector<const SCEV *, 4> NewOps;
708      for (; I != E && I->first == CurLoop; ++I) {
709        // If the operand is SCEVUnknown and not instructions, peek through
710        // it, to enable more of it to be folded into the GEP.
711        const SCEV *X = I->second;
712        if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
713          if (!isa<Instruction>(U->getValue()))
714            X = SE.getSCEV(U->getValue());
715        NewOps.push_back(X);
716      }
717      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
718    } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
719      // The running sum is an integer, and there's a pointer at this level.
720      // Try to form a getelementptr. If the running sum is instructions,
721      // use a SCEVUnknown to avoid re-analyzing them.
722      SmallVector<const SCEV *, 4> NewOps;
723      NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
724                                               SE.getSCEV(Sum));
725      for (++I; I != E && I->first == CurLoop; ++I)
726        NewOps.push_back(I->second);
727      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
728    } else if (Op->isNonConstantNegative()) {
729      // Instead of doing a negate and add, just do a subtract.
730      Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
731      Sum = InsertNoopCastOfTo(Sum, Ty);
732      Sum = InsertBinop(Instruction::Sub, Sum, W);
733      ++I;
734    } else {
735      // A simple add.
736      Value *W = expandCodeFor(Op, Ty);
737      Sum = InsertNoopCastOfTo(Sum, Ty);
738      // Canonicalize a constant to the RHS.
739      if (isa<Constant>(Sum)) std::swap(Sum, W);
740      Sum = InsertBinop(Instruction::Add, Sum, W);
741      ++I;
742    }
743  }
744
745  return Sum;
746}
747
748Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
749  Type *Ty = SE.getEffectiveSCEVType(S->getType());
750
751  // Collect all the mul operands in a loop, along with their associated loops.
752  // Iterate in reverse so that constants are emitted last, all else equal.
753  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
754  for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
755       E(S->op_begin()); I != E; ++I)
756    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
757
758  // Sort by loop. Use a stable sort so that constants follow non-constants.
759  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT));
760
761  // Emit instructions to mul all the operands. Hoist as much as possible
762  // out of loops.
763  Value *Prod = nullptr;
764  auto I = OpsAndLoops.begin();
765
766  // Expand the calculation of X pow N in the following manner:
767  // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
768  // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
769  const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
770    auto E = I;
771    // Calculate how many times the same operand from the same loop is included
772    // into this power.
773    uint64_t Exponent = 0;
774    const uint64_t MaxExponent = UINT64_MAX >> 1;
775    // No one sane will ever try to calculate such huge exponents, but if we
776    // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
777    // below when the power of 2 exceeds our Exponent, and we want it to be
778    // 1u << 31 at most to not deal with unsigned overflow.
779    while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
780      ++Exponent;
781      ++E;
782    }
783    assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
784
785    // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
786    // that are needed into the result.
787    Value *P = expandCodeFor(I->second, Ty);
788    Value *Result = nullptr;
789    if (Exponent & 1)
790      Result = P;
791    for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
792      P = InsertBinop(Instruction::Mul, P, P);
793      if (Exponent & BinExp)
794        Result = Result ? InsertBinop(Instruction::Mul, Result, P) : P;
795    }
796
797    I = E;
798    assert(Result && "Nothing was expanded?");
799    return Result;
800  };
801
802  while (I != OpsAndLoops.end()) {
803    if (!Prod) {
804      // This is the first operand. Just expand it.
805      Prod = ExpandOpBinPowN();
806    } else if (I->second->isAllOnesValue()) {
807      // Instead of doing a multiply by negative one, just do a negate.
808      Prod = InsertNoopCastOfTo(Prod, Ty);
809      Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
810      ++I;
811    } else {
812      // A simple mul.
813      Value *W = ExpandOpBinPowN();
814      Prod = InsertNoopCastOfTo(Prod, Ty);
815      // Canonicalize a constant to the RHS.
816      if (isa<Constant>(Prod)) std::swap(Prod, W);
817      const APInt *RHS;
818      if (match(W, m_Power2(RHS))) {
819        // Canonicalize Prod*(1<<C) to Prod<<C.
820        assert(!Ty->isVectorTy() && "vector types are not SCEVable");
821        Prod = InsertBinop(Instruction::Shl, Prod,
822                           ConstantInt::get(Ty, RHS->logBase2()));
823      } else {
824        Prod = InsertBinop(Instruction::Mul, Prod, W);
825      }
826    }
827  }
828
829  return Prod;
830}
831
832Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
833  Type *Ty = SE.getEffectiveSCEVType(S->getType());
834
835  Value *LHS = expandCodeFor(S->getLHS(), Ty);
836  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
837    const APInt &RHS = SC->getAPInt();
838    if (RHS.isPowerOf2())
839      return InsertBinop(Instruction::LShr, LHS,
840                         ConstantInt::get(Ty, RHS.logBase2()));
841  }
842
843  Value *RHS = expandCodeFor(S->getRHS(), Ty);
844  return InsertBinop(Instruction::UDiv, LHS, RHS);
845}
846
847/// Move parts of Base into Rest to leave Base with the minimal
848/// expression that provides a pointer operand suitable for a
849/// GEP expansion.
850static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
851                              ScalarEvolution &SE) {
852  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
853    Base = A->getStart();
854    Rest = SE.getAddExpr(Rest,
855                         SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
856                                          A->getStepRecurrence(SE),
857                                          A->getLoop(),
858                                          A->getNoWrapFlags(SCEV::FlagNW)));
859  }
860  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
861    Base = A->getOperand(A->getNumOperands()-1);
862    SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
863    NewAddOps.back() = Rest;
864    Rest = SE.getAddExpr(NewAddOps);
865    ExposePointerBase(Base, Rest, SE);
866  }
867}
868
869/// Determine if this is a well-behaved chain of instructions leading back to
870/// the PHI. If so, it may be reused by expanded expressions.
871bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
872                                         const Loop *L) {
873  if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
874      (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
875    return false;
876  // If any of the operands don't dominate the insert position, bail.
877  // Addrec operands are always loop-invariant, so this can only happen
878  // if there are instructions which haven't been hoisted.
879  if (L == IVIncInsertLoop) {
880    for (User::op_iterator OI = IncV->op_begin()+1,
881           OE = IncV->op_end(); OI != OE; ++OI)
882      if (Instruction *OInst = dyn_cast<Instruction>(OI))
883        if (!SE.DT.dominates(OInst, IVIncInsertPos))
884          return false;
885  }
886  // Advance to the next instruction.
887  IncV = dyn_cast<Instruction>(IncV->getOperand(0));
888  if (!IncV)
889    return false;
890
891  if (IncV->mayHaveSideEffects())
892    return false;
893
894  if (IncV == PN)
895    return true;
896
897  return isNormalAddRecExprPHI(PN, IncV, L);
898}
899
900/// getIVIncOperand returns an induction variable increment's induction
901/// variable operand.
902///
903/// If allowScale is set, any type of GEP is allowed as long as the nonIV
904/// operands dominate InsertPos.
905///
906/// If allowScale is not set, ensure that a GEP increment conforms to one of the
907/// simple patterns generated by getAddRecExprPHILiterally and
908/// expandAddtoGEP. If the pattern isn't recognized, return NULL.
909Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
910                                           Instruction *InsertPos,
911                                           bool allowScale) {
912  if (IncV == InsertPos)
913    return nullptr;
914
915  switch (IncV->getOpcode()) {
916  default:
917    return nullptr;
918  // Check for a simple Add/Sub or GEP of a loop invariant step.
919  case Instruction::Add:
920  case Instruction::Sub: {
921    Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
922    if (!OInst || SE.DT.dominates(OInst, InsertPos))
923      return dyn_cast<Instruction>(IncV->getOperand(0));
924    return nullptr;
925  }
926  case Instruction::BitCast:
927    return dyn_cast<Instruction>(IncV->getOperand(0));
928  case Instruction::GetElementPtr:
929    for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) {
930      if (isa<Constant>(*I))
931        continue;
932      if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
933        if (!SE.DT.dominates(OInst, InsertPos))
934          return nullptr;
935      }
936      if (allowScale) {
937        // allow any kind of GEP as long as it can be hoisted.
938        continue;
939      }
940      // This must be a pointer addition of constants (pretty), which is already
941      // handled, or some number of address-size elements (ugly). Ugly geps
942      // have 2 operands. i1* is used by the expander to represent an
943      // address-size element.
944      if (IncV->getNumOperands() != 2)
945        return nullptr;
946      unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
947      if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
948          && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
949        return nullptr;
950      break;
951    }
952    return dyn_cast<Instruction>(IncV->getOperand(0));
953  }
954}
955
956/// If the insert point of the current builder or any of the builders on the
957/// stack of saved builders has 'I' as its insert point, update it to point to
958/// the instruction after 'I'.  This is intended to be used when the instruction
959/// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
960/// different block, the inconsistent insert point (with a mismatched
961/// Instruction and Block) can lead to an instruction being inserted in a block
962/// other than its parent.
963void SCEVExpander::fixupInsertPoints(Instruction *I) {
964  BasicBlock::iterator It(*I);
965  BasicBlock::iterator NewInsertPt = std::next(It);
966  if (Builder.GetInsertPoint() == It)
967    Builder.SetInsertPoint(&*NewInsertPt);
968  for (auto *InsertPtGuard : InsertPointGuards)
969    if (InsertPtGuard->GetInsertPoint() == It)
970      InsertPtGuard->SetInsertPoint(NewInsertPt);
971}
972
973/// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
974/// it available to other uses in this loop. Recursively hoist any operands,
975/// until we reach a value that dominates InsertPos.
976bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
977  if (SE.DT.dominates(IncV, InsertPos))
978      return true;
979
980  // InsertPos must itself dominate IncV so that IncV's new position satisfies
981  // its existing users.
982  if (isa<PHINode>(InsertPos) ||
983      !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
984    return false;
985
986  if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
987    return false;
988
989  // Check that the chain of IV operands leading back to Phi can be hoisted.
990  SmallVector<Instruction*, 4> IVIncs;
991  for(;;) {
992    Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
993    if (!Oper)
994      return false;
995    // IncV is safe to hoist.
996    IVIncs.push_back(IncV);
997    IncV = Oper;
998    if (SE.DT.dominates(IncV, InsertPos))
999      break;
1000  }
1001  for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
1002    fixupInsertPoints(*I);
1003    (*I)->moveBefore(InsertPos);
1004  }
1005  return true;
1006}
1007
1008/// Determine if this cyclic phi is in a form that would have been generated by
1009/// LSR. We don't care if the phi was actually expanded in this pass, as long
1010/// as it is in a low-cost form, for example, no implied multiplication. This
1011/// should match any patterns generated by getAddRecExprPHILiterally and
1012/// expandAddtoGEP.
1013bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
1014                                           const Loop *L) {
1015  for(Instruction *IVOper = IncV;
1016      (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
1017                                /*allowScale=*/false));) {
1018    if (IVOper == PN)
1019      return true;
1020  }
1021  return false;
1022}
1023
1024/// expandIVInc - Expand an IV increment at Builder's current InsertPos.
1025/// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
1026/// need to materialize IV increments elsewhere to handle difficult situations.
1027Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
1028                                 Type *ExpandTy, Type *IntTy,
1029                                 bool useSubtract) {
1030  Value *IncV;
1031  // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1032  if (ExpandTy->isPointerTy()) {
1033    PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1034    // If the step isn't constant, don't use an implicitly scaled GEP, because
1035    // that would require a multiply inside the loop.
1036    if (!isa<ConstantInt>(StepV))
1037      GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1038                                  GEPPtrTy->getAddressSpace());
1039    const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
1040    IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
1041    if (IncV->getType() != PN->getType()) {
1042      IncV = Builder.CreateBitCast(IncV, PN->getType());
1043      rememberInstruction(IncV);
1044    }
1045  } else {
1046    IncV = useSubtract ?
1047      Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1048      Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1049    rememberInstruction(IncV);
1050  }
1051  return IncV;
1052}
1053
1054/// \brief Hoist the addrec instruction chain rooted in the loop phi above the
1055/// position. This routine assumes that this is possible (has been checked).
1056void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
1057                                  Instruction *Pos, PHINode *LoopPhi) {
1058  do {
1059    if (DT->dominates(InstToHoist, Pos))
1060      break;
1061    // Make sure the increment is where we want it. But don't move it
1062    // down past a potential existing post-inc user.
1063    fixupInsertPoints(InstToHoist);
1064    InstToHoist->moveBefore(Pos);
1065    Pos = InstToHoist;
1066    InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
1067  } while (InstToHoist != LoopPhi);
1068}
1069
1070/// \brief Check whether we can cheaply express the requested SCEV in terms of
1071/// the available PHI SCEV by truncation and/or inversion of the step.
1072static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1073                                    const SCEVAddRecExpr *Phi,
1074                                    const SCEVAddRecExpr *Requested,
1075                                    bool &InvertStep) {
1076  Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1077  Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1078
1079  if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1080    return false;
1081
1082  // Try truncate it if necessary.
1083  Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1084  if (!Phi)
1085    return false;
1086
1087  // Check whether truncation will help.
1088  if (Phi == Requested) {
1089    InvertStep = false;
1090    return true;
1091  }
1092
1093  // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1094  if (SE.getAddExpr(Requested->getStart(),
1095                    SE.getNegativeSCEV(Requested)) == Phi) {
1096    InvertStep = true;
1097    return true;
1098  }
1099
1100  return false;
1101}
1102
1103static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1104  if (!isa<IntegerType>(AR->getType()))
1105    return false;
1106
1107  unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1108  Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1109  const SCEV *Step = AR->getStepRecurrence(SE);
1110  const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1111                                            SE.getSignExtendExpr(AR, WideTy));
1112  const SCEV *ExtendAfterOp =
1113    SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1114  return ExtendAfterOp == OpAfterExtend;
1115}
1116
1117static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1118  if (!isa<IntegerType>(AR->getType()))
1119    return false;
1120
1121  unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1122  Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1123  const SCEV *Step = AR->getStepRecurrence(SE);
1124  const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1125                                            SE.getZeroExtendExpr(AR, WideTy));
1126  const SCEV *ExtendAfterOp =
1127    SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1128  return ExtendAfterOp == OpAfterExtend;
1129}
1130
1131/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1132/// the base addrec, which is the addrec without any non-loop-dominating
1133/// values, and return the PHI.
1134PHINode *
1135SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1136                                        const Loop *L,
1137                                        Type *ExpandTy,
1138                                        Type *IntTy,
1139                                        Type *&TruncTy,
1140                                        bool &InvertStep) {
1141  assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1142
1143  // Reuse a previously-inserted PHI, if present.
1144  BasicBlock *LatchBlock = L->getLoopLatch();
1145  if (LatchBlock) {
1146    PHINode *AddRecPhiMatch = nullptr;
1147    Instruction *IncV = nullptr;
1148    TruncTy = nullptr;
1149    InvertStep = false;
1150
1151    // Only try partially matching scevs that need truncation and/or
1152    // step-inversion if we know this loop is outside the current loop.
1153    bool TryNonMatchingSCEV =
1154        IVIncInsertLoop &&
1155        SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1156
1157    for (PHINode &PN : L->getHeader()->phis()) {
1158      if (!SE.isSCEVable(PN.getType()))
1159        continue;
1160
1161      const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
1162      if (!PhiSCEV)
1163        continue;
1164
1165      bool IsMatchingSCEV = PhiSCEV == Normalized;
1166      // We only handle truncation and inversion of phi recurrences for the
1167      // expanded expression if the expanded expression's loop dominates the
1168      // loop we insert to. Check now, so we can bail out early.
1169      if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1170          continue;
1171
1172      Instruction *TempIncV =
1173          cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
1174
1175      // Check whether we can reuse this PHI node.
1176      if (LSRMode) {
1177        if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
1178          continue;
1179        if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
1180          continue;
1181      } else {
1182        if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
1183          continue;
1184      }
1185
1186      // Stop if we have found an exact match SCEV.
1187      if (IsMatchingSCEV) {
1188        IncV = TempIncV;
1189        TruncTy = nullptr;
1190        InvertStep = false;
1191        AddRecPhiMatch = &PN;
1192        break;
1193      }
1194
1195      // Try whether the phi can be translated into the requested form
1196      // (truncated and/or offset by a constant).
1197      if ((!TruncTy || InvertStep) &&
1198          canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1199        // Record the phi node. But don't stop we might find an exact match
1200        // later.
1201        AddRecPhiMatch = &PN;
1202        IncV = TempIncV;
1203        TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1204      }
1205    }
1206
1207    if (AddRecPhiMatch) {
1208      // Potentially, move the increment. We have made sure in
1209      // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
1210      if (L == IVIncInsertLoop)
1211        hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
1212
1213      // Ok, the add recurrence looks usable.
1214      // Remember this PHI, even in post-inc mode.
1215      InsertedValues.insert(AddRecPhiMatch);
1216      // Remember the increment.
1217      rememberInstruction(IncV);
1218      return AddRecPhiMatch;
1219    }
1220  }
1221
1222  // Save the original insertion point so we can restore it when we're done.
1223  SCEVInsertPointGuard Guard(Builder, this);
1224
1225  // Another AddRec may need to be recursively expanded below. For example, if
1226  // this AddRec is quadratic, the StepV may itself be an AddRec in this
1227  // loop. Remove this loop from the PostIncLoops set before expanding such
1228  // AddRecs. Otherwise, we cannot find a valid position for the step
1229  // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1230  // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1231  // so it's not worth implementing SmallPtrSet::swap.
1232  PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1233  PostIncLoops.clear();
1234
1235  // Expand code for the start value into the loop preheader.
1236  assert(L->getLoopPreheader() &&
1237         "Can't expand add recurrences without a loop preheader!");
1238  Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
1239                                L->getLoopPreheader()->getTerminator());
1240
1241  // StartV must have been be inserted into L's preheader to dominate the new
1242  // phi.
1243  assert(!isa<Instruction>(StartV) ||
1244         SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1245                                 L->getHeader()));
1246
1247  // Expand code for the step value. Do this before creating the PHI so that PHI
1248  // reuse code doesn't see an incomplete PHI.
1249  const SCEV *Step = Normalized->getStepRecurrence(SE);
1250  // If the stride is negative, insert a sub instead of an add for the increment
1251  // (unless it's a constant, because subtracts of constants are canonicalized
1252  // to adds).
1253  bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1254  if (useSubtract)
1255    Step = SE.getNegativeSCEV(Step);
1256  // Expand the step somewhere that dominates the loop header.
1257  Value *StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
1258
1259  // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1260  // we actually do emit an addition.  It does not apply if we emit a
1261  // subtraction.
1262  bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1263  bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1264
1265  // Create the PHI.
1266  BasicBlock *Header = L->getHeader();
1267  Builder.SetInsertPoint(Header, Header->begin());
1268  pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1269  PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1270                                  Twine(IVName) + ".iv");
1271  rememberInstruction(PN);
1272
1273  // Create the step instructions and populate the PHI.
1274  for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1275    BasicBlock *Pred = *HPI;
1276
1277    // Add a start value.
1278    if (!L->contains(Pred)) {
1279      PN->addIncoming(StartV, Pred);
1280      continue;
1281    }
1282
1283    // Create a step value and add it to the PHI.
1284    // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1285    // instructions at IVIncInsertPos.
1286    Instruction *InsertPos = L == IVIncInsertLoop ?
1287      IVIncInsertPos : Pred->getTerminator();
1288    Builder.SetInsertPoint(InsertPos);
1289    Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1290
1291    if (isa<OverflowingBinaryOperator>(IncV)) {
1292      if (IncrementIsNUW)
1293        cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1294      if (IncrementIsNSW)
1295        cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1296    }
1297    PN->addIncoming(IncV, Pred);
1298  }
1299
1300  // After expanding subexpressions, restore the PostIncLoops set so the caller
1301  // can ensure that IVIncrement dominates the current uses.
1302  PostIncLoops = SavedPostIncLoops;
1303
1304  // Remember this PHI, even in post-inc mode.
1305  InsertedValues.insert(PN);
1306
1307  return PN;
1308}
1309
1310Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1311  Type *STy = S->getType();
1312  Type *IntTy = SE.getEffectiveSCEVType(STy);
1313  const Loop *L = S->getLoop();
1314
1315  // Determine a normalized form of this expression, which is the expression
1316  // before any post-inc adjustment is made.
1317  const SCEVAddRecExpr *Normalized = S;
1318  if (PostIncLoops.count(L)) {
1319    PostIncLoopSet Loops;
1320    Loops.insert(L);
1321    Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
1322  }
1323
1324  // Strip off any non-loop-dominating component from the addrec start.
1325  const SCEV *Start = Normalized->getStart();
1326  const SCEV *PostLoopOffset = nullptr;
1327  if (!SE.properlyDominates(Start, L->getHeader())) {
1328    PostLoopOffset = Start;
1329    Start = SE.getConstant(Normalized->getType(), 0);
1330    Normalized = cast<SCEVAddRecExpr>(
1331      SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1332                       Normalized->getLoop(),
1333                       Normalized->getNoWrapFlags(SCEV::FlagNW)));
1334  }
1335
1336  // Strip off any non-loop-dominating component from the addrec step.
1337  const SCEV *Step = Normalized->getStepRecurrence(SE);
1338  const SCEV *PostLoopScale = nullptr;
1339  if (!SE.dominates(Step, L->getHeader())) {
1340    PostLoopScale = Step;
1341    Step = SE.getConstant(Normalized->getType(), 1);
1342    if (!Start->isZero()) {
1343        // The normalization below assumes that Start is constant zero, so if
1344        // it isn't re-associate Start to PostLoopOffset.
1345        assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1346        PostLoopOffset = Start;
1347        Start = SE.getConstant(Normalized->getType(), 0);
1348    }
1349    Normalized =
1350      cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1351                             Start, Step, Normalized->getLoop(),
1352                             Normalized->getNoWrapFlags(SCEV::FlagNW)));
1353  }
1354
1355  // Expand the core addrec. If we need post-loop scaling, force it to
1356  // expand to an integer type to avoid the need for additional casting.
1357  Type *ExpandTy = PostLoopScale ? IntTy : STy;
1358  // We can't use a pointer type for the addrec if the pointer type is
1359  // non-integral.
1360  Type *AddRecPHIExpandTy =
1361      DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1362
1363  // In some cases, we decide to reuse an existing phi node but need to truncate
1364  // it and/or invert the step.
1365  Type *TruncTy = nullptr;
1366  bool InvertStep = false;
1367  PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1368                                          IntTy, TruncTy, InvertStep);
1369
1370  // Accommodate post-inc mode, if necessary.
1371  Value *Result;
1372  if (!PostIncLoops.count(L))
1373    Result = PN;
1374  else {
1375    // In PostInc mode, use the post-incremented value.
1376    BasicBlock *LatchBlock = L->getLoopLatch();
1377    assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1378    Result = PN->getIncomingValueForBlock(LatchBlock);
1379
1380    // For an expansion to use the postinc form, the client must call
1381    // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1382    // or dominated by IVIncInsertPos.
1383    if (isa<Instruction>(Result) &&
1384        !SE.DT.dominates(cast<Instruction>(Result),
1385                         &*Builder.GetInsertPoint())) {
1386      // The induction variable's postinc expansion does not dominate this use.
1387      // IVUsers tries to prevent this case, so it is rare. However, it can
1388      // happen when an IVUser outside the loop is not dominated by the latch
1389      // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1390      // all cases. Consider a phi outide whose operand is replaced during
1391      // expansion with the value of the postinc user. Without fundamentally
1392      // changing the way postinc users are tracked, the only remedy is
1393      // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1394      // but hopefully expandCodeFor handles that.
1395      bool useSubtract =
1396        !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1397      if (useSubtract)
1398        Step = SE.getNegativeSCEV(Step);
1399      Value *StepV;
1400      {
1401        // Expand the step somewhere that dominates the loop header.
1402        SCEVInsertPointGuard Guard(Builder, this);
1403        StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
1404      }
1405      Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1406    }
1407  }
1408
1409  // We have decided to reuse an induction variable of a dominating loop. Apply
1410  // truncation and/or invertion of the step.
1411  if (TruncTy) {
1412    Type *ResTy = Result->getType();
1413    // Normalize the result type.
1414    if (ResTy != SE.getEffectiveSCEVType(ResTy))
1415      Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1416    // Truncate the result.
1417    if (TruncTy != Result->getType()) {
1418      Result = Builder.CreateTrunc(Result, TruncTy);
1419      rememberInstruction(Result);
1420    }
1421    // Invert the result.
1422    if (InvertStep) {
1423      Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
1424                                 Result);
1425      rememberInstruction(Result);
1426    }
1427  }
1428
1429  // Re-apply any non-loop-dominating scale.
1430  if (PostLoopScale) {
1431    assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1432    Result = InsertNoopCastOfTo(Result, IntTy);
1433    Result = Builder.CreateMul(Result,
1434                               expandCodeFor(PostLoopScale, IntTy));
1435    rememberInstruction(Result);
1436  }
1437
1438  // Re-apply any non-loop-dominating offset.
1439  if (PostLoopOffset) {
1440    if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1441      if (Result->getType()->isIntegerTy()) {
1442        Value *Base = expandCodeFor(PostLoopOffset, ExpandTy);
1443        const SCEV *const OffsetArray[1] = {SE.getUnknown(Result)};
1444        Result = expandAddToGEP(OffsetArray, OffsetArray + 1, PTy, IntTy, Base);
1445      } else {
1446        const SCEV *const OffsetArray[1] = {PostLoopOffset};
1447        Result =
1448            expandAddToGEP(OffsetArray, OffsetArray + 1, PTy, IntTy, Result);
1449      }
1450    } else {
1451      Result = InsertNoopCastOfTo(Result, IntTy);
1452      Result = Builder.CreateAdd(Result,
1453                                 expandCodeFor(PostLoopOffset, IntTy));
1454      rememberInstruction(Result);
1455    }
1456  }
1457
1458  return Result;
1459}
1460
1461Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1462  if (!CanonicalMode) return expandAddRecExprLiterally(S);
1463
1464  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1465  const Loop *L = S->getLoop();
1466
1467  // First check for an existing canonical IV in a suitable type.
1468  PHINode *CanonicalIV = nullptr;
1469  if (PHINode *PN = L->getCanonicalInductionVariable())
1470    if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1471      CanonicalIV = PN;
1472
1473  // Rewrite an AddRec in terms of the canonical induction variable, if
1474  // its type is more narrow.
1475  if (CanonicalIV &&
1476      SE.getTypeSizeInBits(CanonicalIV->getType()) >
1477      SE.getTypeSizeInBits(Ty)) {
1478    SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1479    for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1480      NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1481    Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1482                                       S->getNoWrapFlags(SCEV::FlagNW)));
1483    BasicBlock::iterator NewInsertPt =
1484        findInsertPointAfter(cast<Instruction>(V), Builder.GetInsertBlock());
1485    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1486                      &*NewInsertPt);
1487    return V;
1488  }
1489
1490  // {X,+,F} --> X + {0,+,F}
1491  if (!S->getStart()->isZero()) {
1492    SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1493    NewOps[0] = SE.getConstant(Ty, 0);
1494    const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1495                                        S->getNoWrapFlags(SCEV::FlagNW));
1496
1497    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1498    // comments on expandAddToGEP for details.
1499    const SCEV *Base = S->getStart();
1500    const SCEV *RestArray[1] = { Rest };
1501    // Dig into the expression to find the pointer base for a GEP.
1502    ExposePointerBase(Base, RestArray[0], SE);
1503    // If we found a pointer, expand the AddRec with a GEP.
1504    if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1505      // Make sure the Base isn't something exotic, such as a multiplied
1506      // or divided pointer value. In those cases, the result type isn't
1507      // actually a pointer type.
1508      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1509        Value *StartV = expand(Base);
1510        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1511        return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
1512      }
1513    }
1514
1515    // Just do a normal add. Pre-expand the operands to suppress folding.
1516    //
1517    // The LHS and RHS values are factored out of the expand call to make the
1518    // output independent of the argument evaluation order.
1519    const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1520    const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1521    return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1522  }
1523
1524  // If we don't yet have a canonical IV, create one.
1525  if (!CanonicalIV) {
1526    // Create and insert the PHI node for the induction variable in the
1527    // specified loop.
1528    BasicBlock *Header = L->getHeader();
1529    pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1530    CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1531                                  &Header->front());
1532    rememberInstruction(CanonicalIV);
1533
1534    SmallSet<BasicBlock *, 4> PredSeen;
1535    Constant *One = ConstantInt::get(Ty, 1);
1536    for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1537      BasicBlock *HP = *HPI;
1538      if (!PredSeen.insert(HP).second) {
1539        // There must be an incoming value for each predecessor, even the
1540        // duplicates!
1541        CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1542        continue;
1543      }
1544
1545      if (L->contains(HP)) {
1546        // Insert a unit add instruction right before the terminator
1547        // corresponding to the back-edge.
1548        Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1549                                                     "indvar.next",
1550                                                     HP->getTerminator());
1551        Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1552        rememberInstruction(Add);
1553        CanonicalIV->addIncoming(Add, HP);
1554      } else {
1555        CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1556      }
1557    }
1558  }
1559
1560  // {0,+,1} --> Insert a canonical induction variable into the loop!
1561  if (S->isAffine() && S->getOperand(1)->isOne()) {
1562    assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1563           "IVs with types different from the canonical IV should "
1564           "already have been handled!");
1565    return CanonicalIV;
1566  }
1567
1568  // {0,+,F} --> {0,+,1} * F
1569
1570  // If this is a simple linear addrec, emit it now as a special case.
1571  if (S->isAffine())    // {0,+,F} --> i*F
1572    return
1573      expand(SE.getTruncateOrNoop(
1574        SE.getMulExpr(SE.getUnknown(CanonicalIV),
1575                      SE.getNoopOrAnyExtend(S->getOperand(1),
1576                                            CanonicalIV->getType())),
1577        Ty));
1578
1579  // If this is a chain of recurrences, turn it into a closed form, using the
1580  // folders, then expandCodeFor the closed form.  This allows the folders to
1581  // simplify the expression without having to build a bunch of special code
1582  // into this folder.
1583  const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1584
1585  // Promote S up to the canonical IV type, if the cast is foldable.
1586  const SCEV *NewS = S;
1587  const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1588  if (isa<SCEVAddRecExpr>(Ext))
1589    NewS = Ext;
1590
1591  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1592  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1593
1594  // Truncate the result down to the original type, if needed.
1595  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1596  return expand(T);
1597}
1598
1599Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1600  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1601  Value *V = expandCodeFor(S->getOperand(),
1602                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1603  Value *I = Builder.CreateTrunc(V, Ty);
1604  rememberInstruction(I);
1605  return I;
1606}
1607
1608Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1609  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1610  Value *V = expandCodeFor(S->getOperand(),
1611                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1612  Value *I = Builder.CreateZExt(V, Ty);
1613  rememberInstruction(I);
1614  return I;
1615}
1616
1617Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1618  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1619  Value *V = expandCodeFor(S->getOperand(),
1620                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1621  Value *I = Builder.CreateSExt(V, Ty);
1622  rememberInstruction(I);
1623  return I;
1624}
1625
1626Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1627  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1628  Type *Ty = LHS->getType();
1629  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1630    // In the case of mixed integer and pointer types, do the
1631    // rest of the comparisons as integer.
1632    if (S->getOperand(i)->getType() != Ty) {
1633      Ty = SE.getEffectiveSCEVType(Ty);
1634      LHS = InsertNoopCastOfTo(LHS, Ty);
1635    }
1636    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1637    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1638    rememberInstruction(ICmp);
1639    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1640    rememberInstruction(Sel);
1641    LHS = Sel;
1642  }
1643  // In the case of mixed integer and pointer types, cast the
1644  // final result back to the pointer type.
1645  if (LHS->getType() != S->getType())
1646    LHS = InsertNoopCastOfTo(LHS, S->getType());
1647  return LHS;
1648}
1649
1650Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1651  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1652  Type *Ty = LHS->getType();
1653  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1654    // In the case of mixed integer and pointer types, do the
1655    // rest of the comparisons as integer.
1656    if (S->getOperand(i)->getType() != Ty) {
1657      Ty = SE.getEffectiveSCEVType(Ty);
1658      LHS = InsertNoopCastOfTo(LHS, Ty);
1659    }
1660    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1661    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1662    rememberInstruction(ICmp);
1663    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1664    rememberInstruction(Sel);
1665    LHS = Sel;
1666  }
1667  // In the case of mixed integer and pointer types, cast the
1668  // final result back to the pointer type.
1669  if (LHS->getType() != S->getType())
1670    LHS = InsertNoopCastOfTo(LHS, S->getType());
1671  return LHS;
1672}
1673
1674Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1675                                   Instruction *IP) {
1676  setInsertPoint(IP);
1677  return expandCodeFor(SH, Ty);
1678}
1679
1680Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1681  // Expand the code for this SCEV.
1682  Value *V = expand(SH);
1683  if (Ty) {
1684    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1685           "non-trivial casts should be done with the SCEVs directly!");
1686    V = InsertNoopCastOfTo(V, Ty);
1687  }
1688  return V;
1689}
1690
1691ScalarEvolution::ValueOffsetPair
1692SCEVExpander::FindValueInExprValueMap(const SCEV *S,
1693                                      const Instruction *InsertPt) {
1694  SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S);
1695  // If the expansion is not in CanonicalMode, and the SCEV contains any
1696  // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1697  if (CanonicalMode || !SE.containsAddRecurrence(S)) {
1698    // If S is scConstant, it may be worse to reuse an existing Value.
1699    if (S->getSCEVType() != scConstant && Set) {
1700      // Choose a Value from the set which dominates the insertPt.
1701      // insertPt should be inside the Value's parent loop so as not to break
1702      // the LCSSA form.
1703      for (auto const &VOPair : *Set) {
1704        Value *V = VOPair.first;
1705        ConstantInt *Offset = VOPair.second;
1706        Instruction *EntInst = nullptr;
1707        if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) &&
1708            S->getType() == V->getType() &&
1709            EntInst->getFunction() == InsertPt->getFunction() &&
1710            SE.DT.dominates(EntInst, InsertPt) &&
1711            (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1712             SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1713          return {V, Offset};
1714      }
1715    }
1716  }
1717  return {nullptr, nullptr};
1718}
1719
1720// The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1721// or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1722// and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1723// literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1724// the expansion will try to reuse Value from ExprValueMap, and only when it
1725// fails, expand the SCEV literally.
1726Value *SCEVExpander::expand(const SCEV *S) {
1727  // Compute an insertion point for this SCEV object. Hoist the instructions
1728  // as far out in the loop nest as possible.
1729  Instruction *InsertPt = &*Builder.GetInsertPoint();
1730  for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1731       L = L->getParentLoop())
1732    if (SE.isLoopInvariant(S, L)) {
1733      if (!L) break;
1734      if (BasicBlock *Preheader = L->getLoopPreheader())
1735        InsertPt = Preheader->getTerminator();
1736      else {
1737        // LSR sets the insertion point for AddRec start/step values to the
1738        // block start to simplify value reuse, even though it's an invalid
1739        // position. SCEVExpander must correct for this in all cases.
1740        InsertPt = &*L->getHeader()->getFirstInsertionPt();
1741      }
1742    } else {
1743      // We can move insertion point only if there is no div or rem operations
1744      // otherwise we are risky to move it over the check for zero denominator.
1745      auto SafeToHoist = [](const SCEV *S) {
1746        return !SCEVExprContains(S, [](const SCEV *S) {
1747                  if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1748                    if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1749                      // Division by non-zero constants can be hoisted.
1750                      return SC->getValue()->isZero();
1751                    // All other divisions should not be moved as they may be
1752                    // divisions by zero and should be kept within the
1753                    // conditions of the surrounding loops that guard their
1754                    // execution (see PR35406).
1755                    return true;
1756                  }
1757                  return false;
1758                });
1759      };
1760      // If the SCEV is computable at this level, insert it into the header
1761      // after the PHIs (and after any other instructions that we've inserted
1762      // there) so that it is guaranteed to dominate any user inside the loop.
1763      if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L) &&
1764          SafeToHoist(S))
1765        InsertPt = &*L->getHeader()->getFirstInsertionPt();
1766      while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1767             (isInsertedInstruction(InsertPt) ||
1768              isa<DbgInfoIntrinsic>(InsertPt))) {
1769        InsertPt = &*std::next(InsertPt->getIterator());
1770      }
1771      break;
1772    }
1773
1774  // Check to see if we already expanded this here.
1775  auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1776  if (I != InsertedExpressions.end())
1777    return I->second;
1778
1779  SCEVInsertPointGuard Guard(Builder, this);
1780  Builder.SetInsertPoint(InsertPt);
1781
1782  // Expand the expression into instructions.
1783  ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt);
1784  Value *V = VO.first;
1785
1786  if (!V)
1787    V = visit(S);
1788  else if (VO.second) {
1789    if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) {
1790      Type *Ety = Vty->getPointerElementType();
1791      int64_t Offset = VO.second->getSExtValue();
1792      int64_t ESize = SE.getTypeSizeInBits(Ety);
1793      if ((Offset * 8) % ESize == 0) {
1794        ConstantInt *Idx =
1795            ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize);
1796        V = Builder.CreateGEP(Ety, V, Idx, "scevgep");
1797      } else {
1798        ConstantInt *Idx =
1799            ConstantInt::getSigned(VO.second->getType(), -Offset);
1800        unsigned AS = Vty->getAddressSpace();
1801        V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS));
1802        V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx,
1803                              "uglygep");
1804        V = Builder.CreateBitCast(V, Vty);
1805      }
1806    } else {
1807      V = Builder.CreateSub(V, VO.second);
1808    }
1809  }
1810  // Remember the expanded value for this SCEV at this location.
1811  //
1812  // This is independent of PostIncLoops. The mapped value simply materializes
1813  // the expression at this insertion point. If the mapped value happened to be
1814  // a postinc expansion, it could be reused by a non-postinc user, but only if
1815  // its insertion point was already at the head of the loop.
1816  InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1817  return V;
1818}
1819
1820void SCEVExpander::rememberInstruction(Value *I) {
1821  if (!PostIncLoops.empty())
1822    InsertedPostIncValues.insert(I);
1823  else
1824    InsertedValues.insert(I);
1825}
1826
1827/// getOrInsertCanonicalInductionVariable - This method returns the
1828/// canonical induction variable of the specified type for the specified
1829/// loop (inserting one if there is none).  A canonical induction variable
1830/// starts at zero and steps by one on each iteration.
1831PHINode *
1832SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1833                                                    Type *Ty) {
1834  assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1835
1836  // Build a SCEV for {0,+,1}<L>.
1837  // Conservatively use FlagAnyWrap for now.
1838  const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1839                                   SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
1840
1841  // Emit code for it.
1842  SCEVInsertPointGuard Guard(Builder, this);
1843  PHINode *V =
1844      cast<PHINode>(expandCodeFor(H, nullptr, &L->getHeader()->front()));
1845
1846  return V;
1847}
1848
1849/// replaceCongruentIVs - Check for congruent phis in this loop header and
1850/// replace them with their most canonical representative. Return the number of
1851/// phis eliminated.
1852///
1853/// This does not depend on any SCEVExpander state but should be used in
1854/// the same context that SCEVExpander is used.
1855unsigned
1856SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1857                                  SmallVectorImpl<WeakTrackingVH> &DeadInsts,
1858                                  const TargetTransformInfo *TTI) {
1859  // Find integer phis in order of increasing width.
1860  SmallVector<PHINode*, 8> Phis;
1861  for (PHINode &PN : L->getHeader()->phis())
1862    Phis.push_back(&PN);
1863
1864  if (TTI)
1865    std::sort(Phis.begin(), Phis.end(), [](Value *LHS, Value *RHS) {
1866      // Put pointers at the back and make sure pointer < pointer = false.
1867      if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
1868        return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1869      return RHS->getType()->getPrimitiveSizeInBits() <
1870             LHS->getType()->getPrimitiveSizeInBits();
1871    });
1872
1873  unsigned NumElim = 0;
1874  DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1875  // Process phis from wide to narrow. Map wide phis to their truncation
1876  // so narrow phis can reuse them.
1877  for (PHINode *Phi : Phis) {
1878    auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
1879      if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
1880        return V;
1881      if (!SE.isSCEVable(PN->getType()))
1882        return nullptr;
1883      auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
1884      if (!Const)
1885        return nullptr;
1886      return Const->getValue();
1887    };
1888
1889    // Fold constant phis. They may be congruent to other constant phis and
1890    // would confuse the logic below that expects proper IVs.
1891    if (Value *V = SimplifyPHINode(Phi)) {
1892      if (V->getType() != Phi->getType())
1893        continue;
1894      Phi->replaceAllUsesWith(V);
1895      DeadInsts.emplace_back(Phi);
1896      ++NumElim;
1897      DEBUG_WITH_TYPE(DebugType, dbgs()
1898                      << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
1899      continue;
1900    }
1901
1902    if (!SE.isSCEVable(Phi->getType()))
1903      continue;
1904
1905    PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1906    if (!OrigPhiRef) {
1907      OrigPhiRef = Phi;
1908      if (Phi->getType()->isIntegerTy() && TTI &&
1909          TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1910        // This phi can be freely truncated to the narrowest phi type. Map the
1911        // truncated expression to it so it will be reused for narrow types.
1912        const SCEV *TruncExpr =
1913          SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
1914        ExprToIVMap[TruncExpr] = Phi;
1915      }
1916      continue;
1917    }
1918
1919    // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1920    // sense.
1921    if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1922      continue;
1923
1924    if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1925      Instruction *OrigInc = dyn_cast<Instruction>(
1926          OrigPhiRef->getIncomingValueForBlock(LatchBlock));
1927      Instruction *IsomorphicInc =
1928          dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1929
1930      if (OrigInc && IsomorphicInc) {
1931        // If this phi has the same width but is more canonical, replace the
1932        // original with it. As part of the "more canonical" determination,
1933        // respect a prior decision to use an IV chain.
1934        if (OrigPhiRef->getType() == Phi->getType() &&
1935            !(ChainedPhis.count(Phi) ||
1936              isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
1937            (ChainedPhis.count(Phi) ||
1938             isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
1939          std::swap(OrigPhiRef, Phi);
1940          std::swap(OrigInc, IsomorphicInc);
1941        }
1942        // Replacing the congruent phi is sufficient because acyclic
1943        // redundancy elimination, CSE/GVN, should handle the
1944        // rest. However, once SCEV proves that a phi is congruent,
1945        // it's often the head of an IV user cycle that is isomorphic
1946        // with the original phi. It's worth eagerly cleaning up the
1947        // common case of a single IV increment so that DeleteDeadPHIs
1948        // can remove cycles that had postinc uses.
1949        const SCEV *TruncExpr =
1950            SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
1951        if (OrigInc != IsomorphicInc &&
1952            TruncExpr == SE.getSCEV(IsomorphicInc) &&
1953            SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
1954            hoistIVInc(OrigInc, IsomorphicInc)) {
1955          DEBUG_WITH_TYPE(DebugType,
1956                          dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1957                                 << *IsomorphicInc << '\n');
1958          Value *NewInc = OrigInc;
1959          if (OrigInc->getType() != IsomorphicInc->getType()) {
1960            Instruction *IP = nullptr;
1961            if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
1962              IP = &*PN->getParent()->getFirstInsertionPt();
1963            else
1964              IP = OrigInc->getNextNode();
1965
1966            IRBuilder<> Builder(IP);
1967            Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
1968            NewInc = Builder.CreateTruncOrBitCast(
1969                OrigInc, IsomorphicInc->getType(), IVName);
1970          }
1971          IsomorphicInc->replaceAllUsesWith(NewInc);
1972          DeadInsts.emplace_back(IsomorphicInc);
1973        }
1974      }
1975    }
1976    DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: "
1977                                      << *Phi << '\n');
1978    ++NumElim;
1979    Value *NewIV = OrigPhiRef;
1980    if (OrigPhiRef->getType() != Phi->getType()) {
1981      IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
1982      Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
1983      NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
1984    }
1985    Phi->replaceAllUsesWith(NewIV);
1986    DeadInsts.emplace_back(Phi);
1987  }
1988  return NumElim;
1989}
1990
1991Value *SCEVExpander::getExactExistingExpansion(const SCEV *S,
1992                                               const Instruction *At, Loop *L) {
1993  Optional<ScalarEvolution::ValueOffsetPair> VO =
1994      getRelatedExistingExpansion(S, At, L);
1995  if (VO && VO.getValue().second == nullptr)
1996    return VO.getValue().first;
1997  return nullptr;
1998}
1999
2000Optional<ScalarEvolution::ValueOffsetPair>
2001SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
2002                                          Loop *L) {
2003  using namespace llvm::PatternMatch;
2004
2005  SmallVector<BasicBlock *, 4> ExitingBlocks;
2006  L->getExitingBlocks(ExitingBlocks);
2007
2008  // Look for suitable value in simple conditions at the loop exits.
2009  for (BasicBlock *BB : ExitingBlocks) {
2010    ICmpInst::Predicate Pred;
2011    Instruction *LHS, *RHS;
2012    BasicBlock *TrueBB, *FalseBB;
2013
2014    if (!match(BB->getTerminator(),
2015               m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
2016                    TrueBB, FalseBB)))
2017      continue;
2018
2019    if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
2020      return ScalarEvolution::ValueOffsetPair(LHS, nullptr);
2021
2022    if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
2023      return ScalarEvolution::ValueOffsetPair(RHS, nullptr);
2024  }
2025
2026  // Use expand's logic which is used for reusing a previous Value in
2027  // ExprValueMap.
2028  ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At);
2029  if (VO.first)
2030    return VO;
2031
2032  // There is potential to make this significantly smarter, but this simple
2033  // heuristic already gets some interesting cases.
2034
2035  // Can not find suitable value.
2036  return None;
2037}
2038
2039bool SCEVExpander::isHighCostExpansionHelper(
2040    const SCEV *S, Loop *L, const Instruction *At,
2041    SmallPtrSetImpl<const SCEV *> &Processed) {
2042
2043  // If we can find an existing value for this scev available at the point "At"
2044  // then consider the expression cheap.
2045  if (At && getRelatedExistingExpansion(S, At, L))
2046    return false;
2047
2048  // Zero/One operand expressions
2049  switch (S->getSCEVType()) {
2050  case scUnknown:
2051  case scConstant:
2052    return false;
2053  case scTruncate:
2054    return isHighCostExpansionHelper(cast<SCEVTruncateExpr>(S)->getOperand(),
2055                                     L, At, Processed);
2056  case scZeroExtend:
2057    return isHighCostExpansionHelper(cast<SCEVZeroExtendExpr>(S)->getOperand(),
2058                                     L, At, Processed);
2059  case scSignExtend:
2060    return isHighCostExpansionHelper(cast<SCEVSignExtendExpr>(S)->getOperand(),
2061                                     L, At, Processed);
2062  }
2063
2064  if (!Processed.insert(S).second)
2065    return false;
2066
2067  if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) {
2068    // If the divisor is a power of two and the SCEV type fits in a native
2069    // integer, consider the division cheap irrespective of whether it occurs in
2070    // the user code since it can be lowered into a right shift.
2071    if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS()))
2072      if (SC->getAPInt().isPowerOf2()) {
2073        const DataLayout &DL =
2074            L->getHeader()->getParent()->getParent()->getDataLayout();
2075        unsigned Width = cast<IntegerType>(UDivExpr->getType())->getBitWidth();
2076        return DL.isIllegalInteger(Width);
2077      }
2078
2079    // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2080    // HowManyLessThans produced to compute a precise expression, rather than a
2081    // UDiv from the user's code. If we can't find a UDiv in the code with some
2082    // simple searching, assume the former consider UDivExpr expensive to
2083    // compute.
2084    BasicBlock *ExitingBB = L->getExitingBlock();
2085    if (!ExitingBB)
2086      return true;
2087
2088    // At the beginning of this function we already tried to find existing value
2089    // for plain 'S'. Now try to lookup 'S + 1' since it is common pattern
2090    // involving division. This is just a simple search heuristic.
2091    if (!At)
2092      At = &ExitingBB->back();
2093    if (!getRelatedExistingExpansion(
2094            SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), At, L))
2095      return true;
2096  }
2097
2098  // HowManyLessThans uses a Max expression whenever the loop is not guarded by
2099  // the exit condition.
2100  if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
2101    return true;
2102
2103  // Recurse past nary expressions, which commonly occur in the
2104  // BackedgeTakenCount. They may already exist in program code, and if not,
2105  // they are not too expensive rematerialize.
2106  if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) {
2107    for (auto *Op : NAry->operands())
2108      if (isHighCostExpansionHelper(Op, L, At, Processed))
2109        return true;
2110  }
2111
2112  // If we haven't recognized an expensive SCEV pattern, assume it's an
2113  // expression produced by program code.
2114  return false;
2115}
2116
2117Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2118                                            Instruction *IP) {
2119  assert(IP);
2120  switch (Pred->getKind()) {
2121  case SCEVPredicate::P_Union:
2122    return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2123  case SCEVPredicate::P_Equal:
2124    return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
2125  case SCEVPredicate::P_Wrap: {
2126    auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2127    return expandWrapPredicate(AddRecPred, IP);
2128  }
2129  }
2130  llvm_unreachable("Unknown SCEV predicate type");
2131}
2132
2133Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
2134                                          Instruction *IP) {
2135  Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP);
2136  Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP);
2137
2138  Builder.SetInsertPoint(IP);
2139  auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
2140  return I;
2141}
2142
2143Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2144                                           Instruction *Loc, bool Signed) {
2145  assert(AR->isAffine() && "Cannot generate RT check for "
2146                           "non-affine expression");
2147
2148  SCEVUnionPredicate Pred;
2149  const SCEV *ExitCount =
2150      SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2151
2152  assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count");
2153
2154  const SCEV *Step = AR->getStepRecurrence(SE);
2155  const SCEV *Start = AR->getStart();
2156
2157  unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2158  unsigned DstBits = SE.getTypeSizeInBits(AR->getType());
2159
2160  // The expression {Start,+,Step} has nusw/nssw if
2161  //   Step < 0, Start - |Step| * Backedge <= Start
2162  //   Step >= 0, Start + |Step| * Backedge > Start
2163  // and |Step| * Backedge doesn't unsigned overflow.
2164
2165  IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2166  Builder.SetInsertPoint(Loc);
2167  Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc);
2168
2169  IntegerType *Ty =
2170      IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(AR->getType()));
2171
2172  Value *StepValue = expandCodeFor(Step, Ty, Loc);
2173  Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc);
2174  Value *StartValue = expandCodeFor(Start, Ty, Loc);
2175
2176  ConstantInt *Zero =
2177      ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits));
2178
2179  Builder.SetInsertPoint(Loc);
2180  // Compute |Step|
2181  Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2182  Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2183
2184  // Get the backedge taken count and truncate or extended to the AR type.
2185  Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2186  auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2187                                         Intrinsic::umul_with_overflow, Ty);
2188
2189  // Compute |Step| * Backedge
2190  CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2191  Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2192  Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2193
2194  // Compute:
2195  //   Start + |Step| * Backedge < Start
2196  //   Start - |Step| * Backedge > Start
2197  Value *Add = Builder.CreateAdd(StartValue, MulV);
2198  Value *Sub = Builder.CreateSub(StartValue, MulV);
2199
2200  Value *EndCompareGT = Builder.CreateICmp(
2201      Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2202
2203  Value *EndCompareLT = Builder.CreateICmp(
2204      Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2205
2206  // Select the answer based on the sign of Step.
2207  Value *EndCheck =
2208      Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2209
2210  // If the backedge taken count type is larger than the AR type,
2211  // check that we don't drop any bits by truncating it. If we are
2212  // droping bits, then we have overflow (unless the step is zero).
2213  if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2214    auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2215    auto *BackedgeCheck =
2216        Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2217                           ConstantInt::get(Loc->getContext(), MaxVal));
2218    BackedgeCheck = Builder.CreateAnd(
2219        BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2220
2221    EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2222  }
2223
2224  EndCheck = Builder.CreateOr(EndCheck, OfMul);
2225  return EndCheck;
2226}
2227
2228Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2229                                         Instruction *IP) {
2230  const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2231  Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2232
2233  // Add a check for NUSW
2234  if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2235    NUSWCheck = generateOverflowCheck(A, IP, false);
2236
2237  // Add a check for NSSW
2238  if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2239    NSSWCheck = generateOverflowCheck(A, IP, true);
2240
2241  if (NUSWCheck && NSSWCheck)
2242    return Builder.CreateOr(NUSWCheck, NSSWCheck);
2243
2244  if (NUSWCheck)
2245    return NUSWCheck;
2246
2247  if (NSSWCheck)
2248    return NSSWCheck;
2249
2250  return ConstantInt::getFalse(IP->getContext());
2251}
2252
2253Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2254                                          Instruction *IP) {
2255  auto *BoolType = IntegerType::get(IP->getContext(), 1);
2256  Value *Check = ConstantInt::getNullValue(BoolType);
2257
2258  // Loop over all checks in this set.
2259  for (auto Pred : Union->getPredicates()) {
2260    auto *NextCheck = expandCodeForPredicate(Pred, IP);
2261    Builder.SetInsertPoint(IP);
2262    Check = Builder.CreateOr(Check, NextCheck);
2263  }
2264
2265  return Check;
2266}
2267
2268namespace {
2269// Search for a SCEV subexpression that is not safe to expand.  Any expression
2270// that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2271// UDiv expressions. We don't know if the UDiv is derived from an IR divide
2272// instruction, but the important thing is that we prove the denominator is
2273// nonzero before expansion.
2274//
2275// IVUsers already checks that IV-derived expressions are safe. So this check is
2276// only needed when the expression includes some subexpression that is not IV
2277// derived.
2278//
2279// Currently, we only allow division by a nonzero constant here. If this is
2280// inadequate, we could easily allow division by SCEVUnknown by using
2281// ValueTracking to check isKnownNonZero().
2282//
2283// We cannot generally expand recurrences unless the step dominates the loop
2284// header. The expander handles the special case of affine recurrences by
2285// scaling the recurrence outside the loop, but this technique isn't generally
2286// applicable. Expanding a nested recurrence outside a loop requires computing
2287// binomial coefficients. This could be done, but the recurrence has to be in a
2288// perfectly reduced form, which can't be guaranteed.
2289struct SCEVFindUnsafe {
2290  ScalarEvolution &SE;
2291  bool IsUnsafe;
2292
2293  SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
2294
2295  bool follow(const SCEV *S) {
2296    if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2297      const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
2298      if (!SC || SC->getValue()->isZero()) {
2299        IsUnsafe = true;
2300        return false;
2301      }
2302    }
2303    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2304      const SCEV *Step = AR->getStepRecurrence(SE);
2305      if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2306        IsUnsafe = true;
2307        return false;
2308      }
2309    }
2310    return true;
2311  }
2312  bool isDone() const { return IsUnsafe; }
2313};
2314}
2315
2316namespace llvm {
2317bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
2318  SCEVFindUnsafe Search(SE);
2319  visitAll(S, Search);
2320  return !Search.IsUnsafe;
2321}
2322
2323bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
2324                      ScalarEvolution &SE) {
2325  return isSafeToExpand(S, SE) && SE.dominates(S, InsertionPoint->getParent());
2326}
2327}
2328