ScalarEvolutionExpander.cpp revision 226633
1193323Sed//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This file contains the implementation of the scalar evolution expander,
11193323Sed// which is used to generate the code corresponding to a given scalar evolution
12193323Sed// expression.
13193323Sed//
14193323Sed//===----------------------------------------------------------------------===//
15193323Sed
16193323Sed#include "llvm/Analysis/ScalarEvolutionExpander.h"
17193323Sed#include "llvm/Analysis/LoopInfo.h"
18204792Srdivacky#include "llvm/IntrinsicInst.h"
19198090Srdivacky#include "llvm/LLVMContext.h"
20226633Sdim#include "llvm/Support/Debug.h"
21193323Sed#include "llvm/Target/TargetData.h"
22194178Sed#include "llvm/ADT/STLExtras.h"
23224145Sdim
24193323Sedusing namespace llvm;
25193323Sed
26210299Sed/// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
27210299Sed/// reusing an existing cast if a suitable one exists, moving an existing
28210299Sed/// cast if a suitable one exists but isn't in the right place, or
29210299Sed/// creating a new one.
30226633SdimValue *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
31210299Sed                                       Instruction::CastOps Op,
32210299Sed                                       BasicBlock::iterator IP) {
33210299Sed  // Check to see if there is already a cast!
34210299Sed  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
35210299Sed       UI != E; ++UI) {
36210299Sed    User *U = *UI;
37210299Sed    if (U->getType() == Ty)
38210299Sed      if (CastInst *CI = dyn_cast<CastInst>(U))
39210299Sed        if (CI->getOpcode() == Op) {
40210299Sed          // If the cast isn't where we want it, fix it.
41210299Sed          if (BasicBlock::iterator(CI) != IP) {
42210299Sed            // Create a new cast, and leave the old cast in place in case
43210299Sed            // it is being used as an insert point. Clear its operand
44210299Sed            // so that it doesn't hold anything live.
45210299Sed            Instruction *NewCI = CastInst::Create(Op, V, Ty, "", IP);
46210299Sed            NewCI->takeName(CI);
47210299Sed            CI->replaceAllUsesWith(NewCI);
48210299Sed            CI->setOperand(0, UndefValue::get(V->getType()));
49210299Sed            rememberInstruction(NewCI);
50210299Sed            return NewCI;
51210299Sed          }
52210299Sed          rememberInstruction(CI);
53210299Sed          return CI;
54210299Sed        }
55210299Sed  }
56210299Sed
57210299Sed  // Create a new cast.
58210299Sed  Instruction *I = CastInst::Create(Op, V, Ty, V->getName(), IP);
59210299Sed  rememberInstruction(I);
60210299Sed  return I;
61210299Sed}
62210299Sed
63195340Sed/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
64195340Sed/// which must be possible with a noop cast, doing what we can to share
65195340Sed/// the casts.
66226633SdimValue *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
67195340Sed  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
68195340Sed  assert((Op == Instruction::BitCast ||
69195340Sed          Op == Instruction::PtrToInt ||
70195340Sed          Op == Instruction::IntToPtr) &&
71195340Sed         "InsertNoopCastOfTo cannot perform non-noop casts!");
72195340Sed  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
73195340Sed         "InsertNoopCastOfTo cannot change sizes!");
74195340Sed
75193323Sed  // Short-circuit unnecessary bitcasts.
76195340Sed  if (Op == Instruction::BitCast && V->getType() == Ty)
77193323Sed    return V;
78193323Sed
79193323Sed  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
80195340Sed  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
81193323Sed      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
82193323Sed    if (CastInst *CI = dyn_cast<CastInst>(V))
83193323Sed      if ((CI->getOpcode() == Instruction::PtrToInt ||
84193323Sed           CI->getOpcode() == Instruction::IntToPtr) &&
85193323Sed          SE.getTypeSizeInBits(CI->getType()) ==
86193323Sed          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
87193323Sed        return CI->getOperand(0);
88193323Sed    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
89193323Sed      if ((CE->getOpcode() == Instruction::PtrToInt ||
90193323Sed           CE->getOpcode() == Instruction::IntToPtr) &&
91193323Sed          SE.getTypeSizeInBits(CE->getType()) ==
92193323Sed          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
93193323Sed        return CE->getOperand(0);
94193323Sed  }
95193323Sed
96210299Sed  // Fold a cast of a constant.
97193323Sed  if (Constant *C = dyn_cast<Constant>(V))
98195340Sed    return ConstantExpr::getCast(Op, C, Ty);
99198090Srdivacky
100210299Sed  // Cast the argument at the beginning of the entry block, after
101210299Sed  // any bitcasts of other arguments.
102193323Sed  if (Argument *A = dyn_cast<Argument>(V)) {
103210299Sed    BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
104210299Sed    while ((isa<BitCastInst>(IP) &&
105210299Sed            isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
106210299Sed            cast<BitCastInst>(IP)->getOperand(0) != A) ||
107226633Sdim           isa<DbgInfoIntrinsic>(IP) ||
108226633Sdim           isa<LandingPadInst>(IP))
109210299Sed      ++IP;
110210299Sed    return ReuseOrCreateCast(A, Ty, Op, IP);
111193323Sed  }
112193323Sed
113210299Sed  // Cast the instruction immediately after the instruction.
114193323Sed  Instruction *I = cast<Instruction>(V);
115193323Sed  BasicBlock::iterator IP = I; ++IP;
116193323Sed  if (InvokeInst *II = dyn_cast<InvokeInst>(I))
117193323Sed    IP = II->getNormalDest()->begin();
118226633Sdim  while (isa<PHINode>(IP) || isa<DbgInfoIntrinsic>(IP) ||
119226633Sdim         isa<LandingPadInst>(IP))
120226633Sdim    ++IP;
121210299Sed  return ReuseOrCreateCast(I, Ty, Op, IP);
122193323Sed}
123193323Sed
124193323Sed/// InsertBinop - Insert the specified binary operator, doing a small amount
125193323Sed/// of work to avoid inserting an obviously redundant operation.
126195340SedValue *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
127195340Sed                                 Value *LHS, Value *RHS) {
128193323Sed  // Fold a binop with constant operands.
129193323Sed  if (Constant *CLHS = dyn_cast<Constant>(LHS))
130193323Sed    if (Constant *CRHS = dyn_cast<Constant>(RHS))
131193323Sed      return ConstantExpr::get(Opcode, CLHS, CRHS);
132193323Sed
133193323Sed  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
134193323Sed  unsigned ScanLimit = 6;
135195340Sed  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
136195340Sed  // Scanning starts from the last instruction before the insertion point.
137195340Sed  BasicBlock::iterator IP = Builder.GetInsertPoint();
138195340Sed  if (IP != BlockBegin) {
139193323Sed    --IP;
140193323Sed    for (; ScanLimit; --IP, --ScanLimit) {
141204792Srdivacky      // Don't count dbg.value against the ScanLimit, to avoid perturbing the
142204792Srdivacky      // generated code.
143204792Srdivacky      if (isa<DbgInfoIntrinsic>(IP))
144204792Srdivacky        ScanLimit++;
145193323Sed      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
146193323Sed          IP->getOperand(1) == RHS)
147193323Sed        return IP;
148193323Sed      if (IP == BlockBegin) break;
149193323Sed    }
150193323Sed  }
151195340Sed
152204642Srdivacky  // Save the original insertion point so we can restore it when we're done.
153204642Srdivacky  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
154204642Srdivacky  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
155204642Srdivacky
156204642Srdivacky  // Move the insertion point out of as many loops as we can.
157204642Srdivacky  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
158204642Srdivacky    if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
159204642Srdivacky    BasicBlock *Preheader = L->getLoopPreheader();
160204642Srdivacky    if (!Preheader) break;
161204642Srdivacky
162204642Srdivacky    // Ok, move up a level.
163204642Srdivacky    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
164204642Srdivacky  }
165204642Srdivacky
166193323Sed  // If we haven't found this binop, insert it.
167226633Sdim  Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
168224145Sdim  BO->setDebugLoc(SaveInsertPt->getDebugLoc());
169202878Srdivacky  rememberInstruction(BO);
170204642Srdivacky
171204642Srdivacky  // Restore the original insert point.
172204642Srdivacky  if (SaveInsertBB)
173204642Srdivacky    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
174204642Srdivacky
175193323Sed  return BO;
176193323Sed}
177193323Sed
178193323Sed/// FactorOutConstant - Test if S is divisible by Factor, using signed
179193323Sed/// division. If so, update S with Factor divided out and return true.
180204642Srdivacky/// S need not be evenly divisible if a reasonable remainder can be
181193323Sed/// computed.
182193323Sed/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
183193323Sed/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
184193323Sed/// check to see if the divide was folded.
185198090Srdivackystatic bool FactorOutConstant(const SCEV *&S,
186198090Srdivacky                              const SCEV *&Remainder,
187198090Srdivacky                              const SCEV *Factor,
188198090Srdivacky                              ScalarEvolution &SE,
189198090Srdivacky                              const TargetData *TD) {
190193323Sed  // Everything is divisible by one.
191198090Srdivacky  if (Factor->isOne())
192193323Sed    return true;
193193323Sed
194198090Srdivacky  // x/x == 1.
195198090Srdivacky  if (S == Factor) {
196207618Srdivacky    S = SE.getConstant(S->getType(), 1);
197198090Srdivacky    return true;
198198090Srdivacky  }
199198090Srdivacky
200193323Sed  // For a Constant, check for a multiple of the given factor.
201193323Sed  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
202198090Srdivacky    // 0/x == 0.
203198090Srdivacky    if (C->isZero())
204193323Sed      return true;
205198090Srdivacky    // Check for divisibility.
206198090Srdivacky    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
207198090Srdivacky      ConstantInt *CI =
208198090Srdivacky        ConstantInt::get(SE.getContext(),
209198090Srdivacky                         C->getValue()->getValue().sdiv(
210198090Srdivacky                                                   FC->getValue()->getValue()));
211198090Srdivacky      // If the quotient is zero and the remainder is non-zero, reject
212198090Srdivacky      // the value at this scale. It will be considered for subsequent
213198090Srdivacky      // smaller scales.
214198090Srdivacky      if (!CI->isZero()) {
215198090Srdivacky        const SCEV *Div = SE.getConstant(CI);
216198090Srdivacky        S = Div;
217198090Srdivacky        Remainder =
218198090Srdivacky          SE.getAddExpr(Remainder,
219198090Srdivacky                        SE.getConstant(C->getValue()->getValue().srem(
220198090Srdivacky                                                  FC->getValue()->getValue())));
221198090Srdivacky        return true;
222198090Srdivacky      }
223193323Sed    }
224193323Sed  }
225193323Sed
226193323Sed  // In a Mul, check if there is a constant operand which is a multiple
227193323Sed  // of the given factor.
228198090Srdivacky  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
229198090Srdivacky    if (TD) {
230198090Srdivacky      // With TargetData, the size is known. Check if there is a constant
231198090Srdivacky      // operand which is a multiple of the given factor. If so, we can
232198090Srdivacky      // factor it.
233198090Srdivacky      const SCEVConstant *FC = cast<SCEVConstant>(Factor);
234198090Srdivacky      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
235198090Srdivacky        if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
236205407Srdivacky          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
237198090Srdivacky          NewMulOps[0] =
238198090Srdivacky            SE.getConstant(C->getValue()->getValue().sdiv(
239198090Srdivacky                                                   FC->getValue()->getValue()));
240198090Srdivacky          S = SE.getMulExpr(NewMulOps);
241198090Srdivacky          return true;
242198090Srdivacky        }
243198090Srdivacky    } else {
244198090Srdivacky      // Without TargetData, check if Factor can be factored out of any of the
245198090Srdivacky      // Mul's operands. If so, we can just remove it.
246198090Srdivacky      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
247198090Srdivacky        const SCEV *SOp = M->getOperand(i);
248207618Srdivacky        const SCEV *Remainder = SE.getConstant(SOp->getType(), 0);
249198090Srdivacky        if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
250198090Srdivacky            Remainder->isZero()) {
251205407Srdivacky          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
252198090Srdivacky          NewMulOps[i] = SOp;
253198090Srdivacky          S = SE.getMulExpr(NewMulOps);
254198090Srdivacky          return true;
255198090Srdivacky        }
256193323Sed      }
257198090Srdivacky    }
258198090Srdivacky  }
259193323Sed
260193323Sed  // In an AddRec, check if both start and step are divisible.
261193323Sed  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
262198090Srdivacky    const SCEV *Step = A->getStepRecurrence(SE);
263207618Srdivacky    const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
264198090Srdivacky    if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
265193323Sed      return false;
266193323Sed    if (!StepRem->isZero())
267193323Sed      return false;
268198090Srdivacky    const SCEV *Start = A->getStart();
269198090Srdivacky    if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
270193323Sed      return false;
271221345Sdim    // FIXME: can use A->getNoWrapFlags(FlagNW)
272221345Sdim    S = SE.getAddRecExpr(Start, Step, A->getLoop(), SCEV::FlagAnyWrap);
273193323Sed    return true;
274193323Sed  }
275193323Sed
276193323Sed  return false;
277193323Sed}
278193323Sed
279198090Srdivacky/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
280198090Srdivacky/// is the number of SCEVAddRecExprs present, which are kept at the end of
281198090Srdivacky/// the list.
282193323Sed///
283198090Srdivackystatic void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
284226633Sdim                                Type *Ty,
285198090Srdivacky                                ScalarEvolution &SE) {
286198090Srdivacky  unsigned NumAddRecs = 0;
287198090Srdivacky  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
288198090Srdivacky    ++NumAddRecs;
289198090Srdivacky  // Group Ops into non-addrecs and addrecs.
290198090Srdivacky  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
291198090Srdivacky  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
292198090Srdivacky  // Let ScalarEvolution sort and simplify the non-addrecs list.
293198090Srdivacky  const SCEV *Sum = NoAddRecs.empty() ?
294207618Srdivacky                    SE.getConstant(Ty, 0) :
295198090Srdivacky                    SE.getAddExpr(NoAddRecs);
296198090Srdivacky  // If it returned an add, use the operands. Otherwise it simplified
297198090Srdivacky  // the sum into a single value, so just use that.
298205407Srdivacky  Ops.clear();
299198090Srdivacky  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
300210299Sed    Ops.append(Add->op_begin(), Add->op_end());
301205407Srdivacky  else if (!Sum->isZero())
302205407Srdivacky    Ops.push_back(Sum);
303198090Srdivacky  // Then append the addrecs.
304210299Sed  Ops.append(AddRecs.begin(), AddRecs.end());
305198090Srdivacky}
306198090Srdivacky
307198090Srdivacky/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
308198090Srdivacky/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
309198090Srdivacky/// This helps expose more opportunities for folding parts of the expressions
310198090Srdivacky/// into GEP indices.
311198090Srdivacky///
312198090Srdivackystatic void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
313226633Sdim                         Type *Ty,
314198090Srdivacky                         ScalarEvolution &SE) {
315198090Srdivacky  // Find the addrecs.
316198090Srdivacky  SmallVector<const SCEV *, 8> AddRecs;
317198090Srdivacky  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
318198090Srdivacky    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
319198090Srdivacky      const SCEV *Start = A->getStart();
320198090Srdivacky      if (Start->isZero()) break;
321207618Srdivacky      const SCEV *Zero = SE.getConstant(Ty, 0);
322198090Srdivacky      AddRecs.push_back(SE.getAddRecExpr(Zero,
323198090Srdivacky                                         A->getStepRecurrence(SE),
324221345Sdim                                         A->getLoop(),
325221345Sdim                                         // FIXME: A->getNoWrapFlags(FlagNW)
326221345Sdim                                         SCEV::FlagAnyWrap));
327198090Srdivacky      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
328198090Srdivacky        Ops[i] = Zero;
329210299Sed        Ops.append(Add->op_begin(), Add->op_end());
330198090Srdivacky        e += Add->getNumOperands();
331198090Srdivacky      } else {
332198090Srdivacky        Ops[i] = Start;
333198090Srdivacky      }
334198090Srdivacky    }
335198090Srdivacky  if (!AddRecs.empty()) {
336198090Srdivacky    // Add the addrecs onto the end of the list.
337210299Sed    Ops.append(AddRecs.begin(), AddRecs.end());
338198090Srdivacky    // Resort the operand list, moving any constants to the front.
339198090Srdivacky    SimplifyAddOperands(Ops, Ty, SE);
340198090Srdivacky  }
341198090Srdivacky}
342198090Srdivacky
343198090Srdivacky/// expandAddToGEP - Expand an addition expression with a pointer type into
344198090Srdivacky/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
345198090Srdivacky/// BasicAliasAnalysis and other passes analyze the result. See the rules
346198090Srdivacky/// for getelementptr vs. inttoptr in
347198090Srdivacky/// http://llvm.org/docs/LangRef.html#pointeraliasing
348198090Srdivacky/// for details.
349198090Srdivacky///
350202878Srdivacky/// Design note: The correctness of using getelementptr here depends on
351198090Srdivacky/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
352198090Srdivacky/// they may introduce pointer arithmetic which may not be safely converted
353198090Srdivacky/// into getelementptr.
354198090Srdivacky///
355193323Sed/// Design note: It might seem desirable for this function to be more
356193323Sed/// loop-aware. If some of the indices are loop-invariant while others
357193323Sed/// aren't, it might seem desirable to emit multiple GEPs, keeping the
358193323Sed/// loop-invariant portions of the overall computation outside the loop.
359193323Sed/// However, there are a few reasons this is not done here. Hoisting simple
360193323Sed/// arithmetic is a low-level optimization that often isn't very
361193323Sed/// important until late in the optimization process. In fact, passes
362193323Sed/// like InstructionCombining will combine GEPs, even if it means
363193323Sed/// pushing loop-invariant computation down into loops, so even if the
364193323Sed/// GEPs were split here, the work would quickly be undone. The
365193323Sed/// LoopStrengthReduction pass, which is usually run quite late (and
366193323Sed/// after the last InstructionCombining pass), takes care of hoisting
367193323Sed/// loop-invariant portions of expressions, after considering what
368193323Sed/// can be folded using target addressing modes.
369193323Sed///
370198090SrdivackyValue *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
371198090Srdivacky                                    const SCEV *const *op_end,
372226633Sdim                                    PointerType *PTy,
373226633Sdim                                    Type *Ty,
374193323Sed                                    Value *V) {
375226633Sdim  Type *ElTy = PTy->getElementType();
376193323Sed  SmallVector<Value *, 4> GepIndices;
377198090Srdivacky  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
378193323Sed  bool AnyNonZeroIndices = false;
379193323Sed
380198090Srdivacky  // Split AddRecs up into parts as either of the parts may be usable
381198090Srdivacky  // without the other.
382198090Srdivacky  SplitAddRecs(Ops, Ty, SE);
383198090Srdivacky
384200581Srdivacky  // Descend down the pointer's type and attempt to convert the other
385193323Sed  // operands into GEP indices, at each level. The first index in a GEP
386193323Sed  // indexes into the array implied by the pointer operand; the rest of
387193323Sed  // the indices index into the element or field type selected by the
388193323Sed  // preceding index.
389193323Sed  for (;;) {
390198090Srdivacky    // If the scale size is not 0, attempt to factor out a scale for
391198090Srdivacky    // array indexing.
392198090Srdivacky    SmallVector<const SCEV *, 8> ScaledOps;
393203954Srdivacky    if (ElTy->isSized()) {
394203954Srdivacky      const SCEV *ElSize = SE.getSizeOfExpr(ElTy);
395203954Srdivacky      if (!ElSize->isZero()) {
396203954Srdivacky        SmallVector<const SCEV *, 8> NewOps;
397203954Srdivacky        for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
398203954Srdivacky          const SCEV *Op = Ops[i];
399207618Srdivacky          const SCEV *Remainder = SE.getConstant(Ty, 0);
400203954Srdivacky          if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
401203954Srdivacky            // Op now has ElSize factored out.
402203954Srdivacky            ScaledOps.push_back(Op);
403203954Srdivacky            if (!Remainder->isZero())
404203954Srdivacky              NewOps.push_back(Remainder);
405203954Srdivacky            AnyNonZeroIndices = true;
406203954Srdivacky          } else {
407203954Srdivacky            // The operand was not divisible, so add it to the list of operands
408203954Srdivacky            // we'll scan next iteration.
409203954Srdivacky            NewOps.push_back(Ops[i]);
410203954Srdivacky          }
411193323Sed        }
412203954Srdivacky        // If we made any changes, update Ops.
413203954Srdivacky        if (!ScaledOps.empty()) {
414203954Srdivacky          Ops = NewOps;
415203954Srdivacky          SimplifyAddOperands(Ops, Ty, SE);
416203954Srdivacky        }
417193323Sed      }
418193323Sed    }
419198090Srdivacky
420198090Srdivacky    // Record the scaled array index for this level of the type. If
421198090Srdivacky    // we didn't find any operands that could be factored, tentatively
422198090Srdivacky    // assume that element zero was selected (since the zero offset
423198090Srdivacky    // would obviously be folded away).
424193323Sed    Value *Scaled = ScaledOps.empty() ?
425193323Sed                    Constant::getNullValue(Ty) :
426193323Sed                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
427193323Sed    GepIndices.push_back(Scaled);
428193323Sed
429193323Sed    // Collect struct field index operands.
430226633Sdim    while (StructType *STy = dyn_cast<StructType>(ElTy)) {
431198090Srdivacky      bool FoundFieldNo = false;
432198090Srdivacky      // An empty struct has no fields.
433198090Srdivacky      if (STy->getNumElements() == 0) break;
434198090Srdivacky      if (SE.TD) {
435198090Srdivacky        // With TargetData, field offsets are known. See if a constant offset
436198090Srdivacky        // falls within any of the struct fields.
437198090Srdivacky        if (Ops.empty()) break;
438193323Sed        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
439193323Sed          if (SE.getTypeSizeInBits(C->getType()) <= 64) {
440193323Sed            const StructLayout &SL = *SE.TD->getStructLayout(STy);
441193323Sed            uint64_t FullOffset = C->getValue()->getZExtValue();
442193323Sed            if (FullOffset < SL.getSizeInBytes()) {
443193323Sed              unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
444198090Srdivacky              GepIndices.push_back(
445198090Srdivacky                  ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
446193323Sed              ElTy = STy->getTypeAtIndex(ElIdx);
447193323Sed              Ops[0] =
448194612Sed                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
449193323Sed              AnyNonZeroIndices = true;
450198090Srdivacky              FoundFieldNo = true;
451193323Sed            }
452193323Sed          }
453198090Srdivacky      } else {
454203954Srdivacky        // Without TargetData, just check for an offsetof expression of the
455198090Srdivacky        // appropriate struct type.
456198090Srdivacky        for (unsigned i = 0, e = Ops.size(); i != e; ++i)
457203954Srdivacky          if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
458226633Sdim            Type *CTy;
459203954Srdivacky            Constant *FieldNo;
460203954Srdivacky            if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
461203954Srdivacky              GepIndices.push_back(FieldNo);
462203954Srdivacky              ElTy =
463203954Srdivacky                STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
464198090Srdivacky              Ops[i] = SE.getConstant(Ty, 0);
465198090Srdivacky              AnyNonZeroIndices = true;
466198090Srdivacky              FoundFieldNo = true;
467198090Srdivacky              break;
468198090Srdivacky            }
469203954Srdivacky          }
470193323Sed      }
471198090Srdivacky      // If no struct field offsets were found, tentatively assume that
472198090Srdivacky      // field zero was selected (since the zero offset would obviously
473198090Srdivacky      // be folded away).
474198090Srdivacky      if (!FoundFieldNo) {
475198090Srdivacky        ElTy = STy->getTypeAtIndex(0u);
476198090Srdivacky        GepIndices.push_back(
477198090Srdivacky          Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
478198090Srdivacky      }
479198090Srdivacky    }
480193323Sed
481226633Sdim    if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
482193323Sed      ElTy = ATy->getElementType();
483198090Srdivacky    else
484198090Srdivacky      break;
485193323Sed  }
486193323Sed
487204642Srdivacky  // If none of the operands were convertible to proper GEP indices, cast
488193323Sed  // the base to i8* and do an ugly getelementptr with that. It's still
489193323Sed  // better than ptrtoint+arithmetic+inttoptr at least.
490193323Sed  if (!AnyNonZeroIndices) {
491198090Srdivacky    // Cast the base to i8*.
492193323Sed    V = InsertNoopCastOfTo(V,
493198090Srdivacky       Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
494198090Srdivacky
495198090Srdivacky    // Expand the operands for a plain byte offset.
496194178Sed    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
497193323Sed
498193323Sed    // Fold a GEP with constant operands.
499193323Sed    if (Constant *CLHS = dyn_cast<Constant>(V))
500193323Sed      if (Constant *CRHS = dyn_cast<Constant>(Idx))
501226633Sdim        return ConstantExpr::getGetElementPtr(CLHS, CRHS);
502193323Sed
503193323Sed    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
504193323Sed    unsigned ScanLimit = 6;
505195340Sed    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
506195340Sed    // Scanning starts from the last instruction before the insertion point.
507195340Sed    BasicBlock::iterator IP = Builder.GetInsertPoint();
508195340Sed    if (IP != BlockBegin) {
509193323Sed      --IP;
510193323Sed      for (; ScanLimit; --IP, --ScanLimit) {
511204792Srdivacky        // Don't count dbg.value against the ScanLimit, to avoid perturbing the
512204792Srdivacky        // generated code.
513204792Srdivacky        if (isa<DbgInfoIntrinsic>(IP))
514204792Srdivacky          ScanLimit++;
515193323Sed        if (IP->getOpcode() == Instruction::GetElementPtr &&
516193323Sed            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
517193323Sed          return IP;
518193323Sed        if (IP == BlockBegin) break;
519193323Sed      }
520193323Sed    }
521193323Sed
522204642Srdivacky    // Save the original insertion point so we can restore it when we're done.
523204642Srdivacky    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
524204642Srdivacky    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
525204642Srdivacky
526204642Srdivacky    // Move the insertion point out of as many loops as we can.
527204642Srdivacky    while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
528204642Srdivacky      if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
529204642Srdivacky      BasicBlock *Preheader = L->getLoopPreheader();
530204642Srdivacky      if (!Preheader) break;
531204642Srdivacky
532204642Srdivacky      // Ok, move up a level.
533204642Srdivacky      Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
534204642Srdivacky    }
535204642Srdivacky
536198090Srdivacky    // Emit a GEP.
537198090Srdivacky    Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
538202878Srdivacky    rememberInstruction(GEP);
539204642Srdivacky
540204642Srdivacky    // Restore the original insert point.
541204642Srdivacky    if (SaveInsertBB)
542204642Srdivacky      restoreInsertPoint(SaveInsertBB, SaveInsertPt);
543204642Srdivacky
544193323Sed    return GEP;
545193323Sed  }
546193323Sed
547204642Srdivacky  // Save the original insertion point so we can restore it when we're done.
548204642Srdivacky  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
549204642Srdivacky  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
550204642Srdivacky
551204642Srdivacky  // Move the insertion point out of as many loops as we can.
552204642Srdivacky  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
553204642Srdivacky    if (!L->isLoopInvariant(V)) break;
554204642Srdivacky
555204642Srdivacky    bool AnyIndexNotLoopInvariant = false;
556204642Srdivacky    for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
557204642Srdivacky         E = GepIndices.end(); I != E; ++I)
558204642Srdivacky      if (!L->isLoopInvariant(*I)) {
559204642Srdivacky        AnyIndexNotLoopInvariant = true;
560204642Srdivacky        break;
561204642Srdivacky      }
562204642Srdivacky    if (AnyIndexNotLoopInvariant)
563204642Srdivacky      break;
564204642Srdivacky
565204642Srdivacky    BasicBlock *Preheader = L->getLoopPreheader();
566204642Srdivacky    if (!Preheader) break;
567204642Srdivacky
568204642Srdivacky    // Ok, move up a level.
569204642Srdivacky    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
570204642Srdivacky  }
571204642Srdivacky
572198090Srdivacky  // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
573198090Srdivacky  // because ScalarEvolution may have changed the address arithmetic to
574198090Srdivacky  // compute a value which is beyond the end of the allocated object.
575202878Srdivacky  Value *Casted = V;
576202878Srdivacky  if (V->getType() != PTy)
577202878Srdivacky    Casted = InsertNoopCastOfTo(Casted, PTy);
578202878Srdivacky  Value *GEP = Builder.CreateGEP(Casted,
579226633Sdim                                 GepIndices,
580195340Sed                                 "scevgep");
581193323Sed  Ops.push_back(SE.getUnknown(GEP));
582202878Srdivacky  rememberInstruction(GEP);
583204642Srdivacky
584204642Srdivacky  // Restore the original insert point.
585204642Srdivacky  if (SaveInsertBB)
586204642Srdivacky    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
587204642Srdivacky
588193323Sed  return expand(SE.getAddExpr(Ops));
589193323Sed}
590193323Sed
591202878Srdivacky/// isNonConstantNegative - Return true if the specified scev is negated, but
592202878Srdivacky/// not a constant.
593202878Srdivackystatic bool isNonConstantNegative(const SCEV *F) {
594202878Srdivacky  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(F);
595202878Srdivacky  if (!Mul) return false;
596202878Srdivacky
597202878Srdivacky  // If there is a constant factor, it will be first.
598202878Srdivacky  const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
599202878Srdivacky  if (!SC) return false;
600202878Srdivacky
601202878Srdivacky  // Return true if the value is negative, this matches things like (-42 * V).
602202878Srdivacky  return SC->getValue()->getValue().isNegative();
603202878Srdivacky}
604202878Srdivacky
605204642Srdivacky/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
606204642Srdivacky/// SCEV expansion. If they are nested, this is the most nested. If they are
607204642Srdivacky/// neighboring, pick the later.
608204642Srdivackystatic const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
609204642Srdivacky                                        DominatorTree &DT) {
610204642Srdivacky  if (!A) return B;
611204642Srdivacky  if (!B) return A;
612204642Srdivacky  if (A->contains(B)) return B;
613204642Srdivacky  if (B->contains(A)) return A;
614204642Srdivacky  if (DT.dominates(A->getHeader(), B->getHeader())) return B;
615204642Srdivacky  if (DT.dominates(B->getHeader(), A->getHeader())) return A;
616204642Srdivacky  return A; // Arbitrarily break the tie.
617204642Srdivacky}
618193323Sed
619218893Sdim/// getRelevantLoop - Get the most relevant loop associated with the given
620204642Srdivacky/// expression, according to PickMostRelevantLoop.
621218893Sdimconst Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
622218893Sdim  // Test whether we've already computed the most relevant loop for this SCEV.
623218893Sdim  std::pair<DenseMap<const SCEV *, const Loop *>::iterator, bool> Pair =
624218893Sdim    RelevantLoops.insert(std::make_pair(S, static_cast<const Loop *>(0)));
625218893Sdim  if (!Pair.second)
626218893Sdim    return Pair.first->second;
627218893Sdim
628204642Srdivacky  if (isa<SCEVConstant>(S))
629218893Sdim    // A constant has no relevant loops.
630204642Srdivacky    return 0;
631204642Srdivacky  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
632204642Srdivacky    if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
633218893Sdim      return Pair.first->second = SE.LI->getLoopFor(I->getParent());
634218893Sdim    // A non-instruction has no relevant loops.
635204642Srdivacky    return 0;
636204642Srdivacky  }
637204642Srdivacky  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
638204642Srdivacky    const Loop *L = 0;
639204642Srdivacky    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
640204642Srdivacky      L = AR->getLoop();
641204642Srdivacky    for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
642204642Srdivacky         I != E; ++I)
643218893Sdim      L = PickMostRelevantLoop(L, getRelevantLoop(*I), *SE.DT);
644218893Sdim    return RelevantLoops[N] = L;
645204642Srdivacky  }
646218893Sdim  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
647218893Sdim    const Loop *Result = getRelevantLoop(C->getOperand());
648218893Sdim    return RelevantLoops[C] = Result;
649218893Sdim  }
650218893Sdim  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
651218893Sdim    const Loop *Result =
652218893Sdim      PickMostRelevantLoop(getRelevantLoop(D->getLHS()),
653218893Sdim                           getRelevantLoop(D->getRHS()),
654218893Sdim                           *SE.DT);
655218893Sdim    return RelevantLoops[D] = Result;
656218893Sdim  }
657204642Srdivacky  llvm_unreachable("Unexpected SCEV type!");
658218893Sdim  return 0;
659204642Srdivacky}
660198090Srdivacky
661207618Srdivackynamespace {
662207618Srdivacky
663204642Srdivacky/// LoopCompare - Compare loops by PickMostRelevantLoop.
664204642Srdivackyclass LoopCompare {
665204642Srdivacky  DominatorTree &DT;
666204642Srdivackypublic:
667204642Srdivacky  explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
668198090Srdivacky
669204642Srdivacky  bool operator()(std::pair<const Loop *, const SCEV *> LHS,
670204642Srdivacky                  std::pair<const Loop *, const SCEV *> RHS) const {
671212904Sdim    // Keep pointer operands sorted at the end.
672212904Sdim    if (LHS.second->getType()->isPointerTy() !=
673212904Sdim        RHS.second->getType()->isPointerTy())
674212904Sdim      return LHS.second->getType()->isPointerTy();
675212904Sdim
676204642Srdivacky    // Compare loops with PickMostRelevantLoop.
677204642Srdivacky    if (LHS.first != RHS.first)
678204642Srdivacky      return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
679204642Srdivacky
680204642Srdivacky    // If one operand is a non-constant negative and the other is not,
681204642Srdivacky    // put the non-constant negative on the right so that a sub can
682204642Srdivacky    // be used instead of a negate and add.
683204642Srdivacky    if (isNonConstantNegative(LHS.second)) {
684204642Srdivacky      if (!isNonConstantNegative(RHS.second))
685204642Srdivacky        return false;
686204642Srdivacky    } else if (isNonConstantNegative(RHS.second))
687204642Srdivacky      return true;
688204642Srdivacky
689204642Srdivacky    // Otherwise they are equivalent according to this comparison.
690204642Srdivacky    return false;
691198090Srdivacky  }
692204642Srdivacky};
693193323Sed
694207618Srdivacky}
695207618Srdivacky
696204642SrdivackyValue *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
697226633Sdim  Type *Ty = SE.getEffectiveSCEVType(S->getType());
698193323Sed
699204642Srdivacky  // Collect all the add operands in a loop, along with their associated loops.
700204642Srdivacky  // Iterate in reverse so that constants are emitted last, all else equal, and
701204642Srdivacky  // so that pointer operands are inserted first, which the code below relies on
702204642Srdivacky  // to form more involved GEPs.
703204642Srdivacky  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
704204642Srdivacky  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
705204642Srdivacky       E(S->op_begin()); I != E; ++I)
706218893Sdim    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
707204642Srdivacky
708204642Srdivacky  // Sort by loop. Use a stable sort so that constants follow non-constants and
709204642Srdivacky  // pointer operands precede non-pointer operands.
710204642Srdivacky  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
711204642Srdivacky
712204642Srdivacky  // Emit instructions to add all the operands. Hoist as much as possible
713204642Srdivacky  // out of loops, and form meaningful getelementptrs where possible.
714204642Srdivacky  Value *Sum = 0;
715204642Srdivacky  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
716204642Srdivacky       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
717204642Srdivacky    const Loop *CurLoop = I->first;
718204642Srdivacky    const SCEV *Op = I->second;
719204642Srdivacky    if (!Sum) {
720204642Srdivacky      // This is the first operand. Just expand it.
721204642Srdivacky      Sum = expand(Op);
722204642Srdivacky      ++I;
723226633Sdim    } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
724204642Srdivacky      // The running sum expression is a pointer. Try to form a getelementptr
725204642Srdivacky      // at this level with that as the base.
726204642Srdivacky      SmallVector<const SCEV *, 4> NewOps;
727212904Sdim      for (; I != E && I->first == CurLoop; ++I) {
728212904Sdim        // If the operand is SCEVUnknown and not instructions, peek through
729212904Sdim        // it, to enable more of it to be folded into the GEP.
730212904Sdim        const SCEV *X = I->second;
731212904Sdim        if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
732212904Sdim          if (!isa<Instruction>(U->getValue()))
733212904Sdim            X = SE.getSCEV(U->getValue());
734212904Sdim        NewOps.push_back(X);
735212904Sdim      }
736204642Srdivacky      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
737226633Sdim    } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
738204642Srdivacky      // The running sum is an integer, and there's a pointer at this level.
739207618Srdivacky      // Try to form a getelementptr. If the running sum is instructions,
740207618Srdivacky      // use a SCEVUnknown to avoid re-analyzing them.
741204642Srdivacky      SmallVector<const SCEV *, 4> NewOps;
742207618Srdivacky      NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
743207618Srdivacky                                               SE.getSCEV(Sum));
744204642Srdivacky      for (++I; I != E && I->first == CurLoop; ++I)
745204642Srdivacky        NewOps.push_back(I->second);
746204642Srdivacky      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
747204642Srdivacky    } else if (isNonConstantNegative(Op)) {
748204642Srdivacky      // Instead of doing a negate and add, just do a subtract.
749202878Srdivacky      Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
750204642Srdivacky      Sum = InsertNoopCastOfTo(Sum, Ty);
751204642Srdivacky      Sum = InsertBinop(Instruction::Sub, Sum, W);
752204642Srdivacky      ++I;
753202878Srdivacky    } else {
754204642Srdivacky      // A simple add.
755202878Srdivacky      Value *W = expandCodeFor(Op, Ty);
756204642Srdivacky      Sum = InsertNoopCastOfTo(Sum, Ty);
757204642Srdivacky      // Canonicalize a constant to the RHS.
758204642Srdivacky      if (isa<Constant>(Sum)) std::swap(Sum, W);
759204642Srdivacky      Sum = InsertBinop(Instruction::Add, Sum, W);
760204642Srdivacky      ++I;
761202878Srdivacky    }
762193323Sed  }
763204642Srdivacky
764204642Srdivacky  return Sum;
765193323Sed}
766193323Sed
767193323SedValue *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
768226633Sdim  Type *Ty = SE.getEffectiveSCEVType(S->getType());
769193323Sed
770204642Srdivacky  // Collect all the mul operands in a loop, along with their associated loops.
771204642Srdivacky  // Iterate in reverse so that constants are emitted last, all else equal.
772204642Srdivacky  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
773204642Srdivacky  for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
774204642Srdivacky       E(S->op_begin()); I != E; ++I)
775218893Sdim    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
776193323Sed
777204642Srdivacky  // Sort by loop. Use a stable sort so that constants follow non-constants.
778204642Srdivacky  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
779204642Srdivacky
780204642Srdivacky  // Emit instructions to mul all the operands. Hoist as much as possible
781204642Srdivacky  // out of loops.
782204642Srdivacky  Value *Prod = 0;
783204642Srdivacky  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
784204642Srdivacky       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
785204642Srdivacky    const SCEV *Op = I->second;
786204642Srdivacky    if (!Prod) {
787204642Srdivacky      // This is the first operand. Just expand it.
788204642Srdivacky      Prod = expand(Op);
789204642Srdivacky      ++I;
790204642Srdivacky    } else if (Op->isAllOnesValue()) {
791204642Srdivacky      // Instead of doing a multiply by negative one, just do a negate.
792204642Srdivacky      Prod = InsertNoopCastOfTo(Prod, Ty);
793204642Srdivacky      Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
794204642Srdivacky      ++I;
795204642Srdivacky    } else {
796204642Srdivacky      // A simple mul.
797204642Srdivacky      Value *W = expandCodeFor(Op, Ty);
798204642Srdivacky      Prod = InsertNoopCastOfTo(Prod, Ty);
799204642Srdivacky      // Canonicalize a constant to the RHS.
800204642Srdivacky      if (isa<Constant>(Prod)) std::swap(Prod, W);
801204642Srdivacky      Prod = InsertBinop(Instruction::Mul, Prod, W);
802204642Srdivacky      ++I;
803204642Srdivacky    }
804193323Sed  }
805193323Sed
806204642Srdivacky  return Prod;
807193323Sed}
808193323Sed
809193323SedValue *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
810226633Sdim  Type *Ty = SE.getEffectiveSCEVType(S->getType());
811193323Sed
812194178Sed  Value *LHS = expandCodeFor(S->getLHS(), Ty);
813193323Sed  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
814193323Sed    const APInt &RHS = SC->getValue()->getValue();
815193323Sed    if (RHS.isPowerOf2())
816193323Sed      return InsertBinop(Instruction::LShr, LHS,
817195340Sed                         ConstantInt::get(Ty, RHS.logBase2()));
818193323Sed  }
819193323Sed
820194178Sed  Value *RHS = expandCodeFor(S->getRHS(), Ty);
821195340Sed  return InsertBinop(Instruction::UDiv, LHS, RHS);
822193323Sed}
823193323Sed
824193323Sed/// Move parts of Base into Rest to leave Base with the minimal
825193323Sed/// expression that provides a pointer operand suitable for a
826193323Sed/// GEP expansion.
827198090Srdivackystatic void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
828193323Sed                              ScalarEvolution &SE) {
829193323Sed  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
830193323Sed    Base = A->getStart();
831193323Sed    Rest = SE.getAddExpr(Rest,
832207618Srdivacky                         SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
833193323Sed                                          A->getStepRecurrence(SE),
834221345Sdim                                          A->getLoop(),
835221345Sdim                                          // FIXME: A->getNoWrapFlags(FlagNW)
836221345Sdim                                          SCEV::FlagAnyWrap));
837193323Sed  }
838193323Sed  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
839193323Sed    Base = A->getOperand(A->getNumOperands()-1);
840198090Srdivacky    SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
841193323Sed    NewAddOps.back() = Rest;
842193323Sed    Rest = SE.getAddExpr(NewAddOps);
843193323Sed    ExposePointerBase(Base, Rest, SE);
844193323Sed  }
845193323Sed}
846193323Sed
847226633Sdim/// Determine if this is a well-behaved chain of instructions leading back to
848226633Sdim/// the PHI. If so, it may be reused by expanded expressions.
849226633Sdimbool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
850226633Sdim                                         const Loop *L) {
851226633Sdim  if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
852226633Sdim      (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
853226633Sdim    return false;
854226633Sdim  // If any of the operands don't dominate the insert position, bail.
855226633Sdim  // Addrec operands are always loop-invariant, so this can only happen
856226633Sdim  // if there are instructions which haven't been hoisted.
857226633Sdim  if (L == IVIncInsertLoop) {
858226633Sdim    for (User::op_iterator OI = IncV->op_begin()+1,
859226633Sdim           OE = IncV->op_end(); OI != OE; ++OI)
860226633Sdim      if (Instruction *OInst = dyn_cast<Instruction>(OI))
861226633Sdim        if (!SE.DT->dominates(OInst, IVIncInsertPos))
862226633Sdim          return false;
863226633Sdim  }
864226633Sdim  // Advance to the next instruction.
865226633Sdim  IncV = dyn_cast<Instruction>(IncV->getOperand(0));
866226633Sdim  if (!IncV)
867226633Sdim    return false;
868226633Sdim
869226633Sdim  if (IncV->mayHaveSideEffects())
870226633Sdim    return false;
871226633Sdim
872226633Sdim  if (IncV != PN)
873226633Sdim    return true;
874226633Sdim
875226633Sdim  return isNormalAddRecExprPHI(PN, IncV, L);
876226633Sdim}
877226633Sdim
878226633Sdim/// Determine if this cyclic phi is in a form that would have been generated by
879226633Sdim/// LSR. We don't care if the phi was actually expanded in this pass, as long
880226633Sdim/// as it is in a low-cost form, for example, no implied multiplication. This
881226633Sdim/// should match any patterns generated by getAddRecExprPHILiterally and
882226633Sdim/// expandAddtoGEP.
883226633Sdimbool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
884226633Sdim                                           const Loop *L) {
885226633Sdim  switch (IncV->getOpcode()) {
886226633Sdim  // Check for a simple Add/Sub or GEP of a loop invariant step.
887226633Sdim  case Instruction::Add:
888226633Sdim  case Instruction::Sub:
889226633Sdim    return IncV->getOperand(0) == PN
890226633Sdim      && L->isLoopInvariant(IncV->getOperand(1));
891226633Sdim  case Instruction::BitCast:
892226633Sdim    IncV = dyn_cast<GetElementPtrInst>(IncV->getOperand(0));
893226633Sdim    if (!IncV)
894226633Sdim      return false;
895226633Sdim    // fall-thru to GEP handling
896226633Sdim  case Instruction::GetElementPtr: {
897226633Sdim    // This must be a pointer addition of constants (pretty) or some number of
898226633Sdim    // address-size elements (ugly).
899226633Sdim    for (Instruction::op_iterator I = IncV->op_begin()+1, E = IncV->op_end();
900226633Sdim         I != E; ++I) {
901226633Sdim      if (isa<Constant>(*I))
902226633Sdim        continue;
903226633Sdim      // ugly geps have 2 operands.
904226633Sdim      // i1* is used by the expander to represent an address-size element.
905226633Sdim      if (IncV->getNumOperands() != 2)
906226633Sdim        return false;
907226633Sdim      unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
908226633Sdim      if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
909226633Sdim          && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
910226633Sdim        return false;
911226633Sdim      // Ensure the operands dominate the insertion point. I don't know of a
912226633Sdim      // case when this would not be true, so this is somewhat untested.
913226633Sdim      if (L == IVIncInsertLoop) {
914226633Sdim        for (User::op_iterator OI = IncV->op_begin()+1,
915226633Sdim               OE = IncV->op_end(); OI != OE; ++OI)
916226633Sdim          if (Instruction *OInst = dyn_cast<Instruction>(OI))
917226633Sdim            if (!SE.DT->dominates(OInst, IVIncInsertPos))
918226633Sdim              return false;
919226633Sdim      }
920226633Sdim      break;
921226633Sdim    }
922226633Sdim    IncV = dyn_cast<Instruction>(IncV->getOperand(0));
923226633Sdim    if (IncV && IncV->getOpcode() == Instruction::BitCast)
924226633Sdim      IncV = dyn_cast<Instruction>(IncV->getOperand(0));
925226633Sdim    return IncV == PN;
926226633Sdim  }
927226633Sdim  default:
928226633Sdim    return false;
929226633Sdim  }
930226633Sdim}
931226633Sdim
932202878Srdivacky/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
933202878Srdivacky/// the base addrec, which is the addrec without any non-loop-dominating
934202878Srdivacky/// values, and return the PHI.
935202878SrdivackyPHINode *
936202878SrdivackySCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
937202878Srdivacky                                        const Loop *L,
938226633Sdim                                        Type *ExpandTy,
939226633Sdim                                        Type *IntTy) {
940224145Sdim  assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
941224145Sdim
942202878Srdivacky  // Reuse a previously-inserted PHI, if present.
943226633Sdim  BasicBlock *LatchBlock = L->getLoopLatch();
944226633Sdim  if (LatchBlock) {
945226633Sdim    for (BasicBlock::iterator I = L->getHeader()->begin();
946226633Sdim         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
947226633Sdim      if (!SE.isSCEVable(PN->getType()) ||
948226633Sdim          (SE.getEffectiveSCEVType(PN->getType()) !=
949226633Sdim           SE.getEffectiveSCEVType(Normalized->getType())) ||
950226633Sdim          SE.getSCEV(PN) != Normalized)
951226633Sdim        continue;
952202878Srdivacky
953226633Sdim      Instruction *IncV =
954226633Sdim        cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
955226633Sdim
956226633Sdim      if (LSRMode) {
957226633Sdim        if (!isExpandedAddRecExprPHI(PN, IncV, L))
958226633Sdim          continue;
959226633Sdim      }
960226633Sdim      else {
961226633Sdim        if (!isNormalAddRecExprPHI(PN, IncV, L))
962226633Sdim          continue;
963226633Sdim      }
964226633Sdim      // Ok, the add recurrence looks usable.
965226633Sdim      // Remember this PHI, even in post-inc mode.
966226633Sdim      InsertedValues.insert(PN);
967226633Sdim      // Remember the increment.
968226633Sdim      rememberInstruction(IncV);
969226633Sdim      if (L == IVIncInsertLoop)
970203954Srdivacky        do {
971226633Sdim          if (SE.DT->dominates(IncV, IVIncInsertPos))
972203954Srdivacky            break;
973226633Sdim          // Make sure the increment is where we want it. But don't move it
974226633Sdim          // down past a potential existing post-inc user.
975226633Sdim          IncV->moveBefore(IVIncInsertPos);
976226633Sdim          IVIncInsertPos = IncV;
977226633Sdim          IncV = cast<Instruction>(IncV->getOperand(0));
978203954Srdivacky        } while (IncV != PN);
979226633Sdim      return PN;
980226633Sdim    }
981226633Sdim  }
982203954Srdivacky
983202878Srdivacky  // Save the original insertion point so we can restore it when we're done.
984202878Srdivacky  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
985202878Srdivacky  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
986202878Srdivacky
987202878Srdivacky  // Expand code for the start value.
988202878Srdivacky  Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
989202878Srdivacky                                L->getHeader()->begin());
990202878Srdivacky
991224145Sdim  // StartV must be hoisted into L's preheader to dominate the new phi.
992224145Sdim  assert(!isa<Instruction>(StartV) ||
993224145Sdim         SE.DT->properlyDominates(cast<Instruction>(StartV)->getParent(),
994224145Sdim                                  L->getHeader()));
995224145Sdim
996202878Srdivacky  // Expand code for the step value. Insert instructions right before the
997202878Srdivacky  // terminator corresponding to the back-edge. Do this before creating the PHI
998202878Srdivacky  // so that PHI reuse code doesn't see an incomplete PHI. If the stride is
999202878Srdivacky  // negative, insert a sub instead of an add for the increment (unless it's a
1000202878Srdivacky  // constant, because subtracts of constants are canonicalized to adds).
1001202878Srdivacky  const SCEV *Step = Normalized->getStepRecurrence(SE);
1002204642Srdivacky  bool isPointer = ExpandTy->isPointerTy();
1003202878Srdivacky  bool isNegative = !isPointer && isNonConstantNegative(Step);
1004202878Srdivacky  if (isNegative)
1005202878Srdivacky    Step = SE.getNegativeSCEV(Step);
1006202878Srdivacky  Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
1007202878Srdivacky
1008202878Srdivacky  // Create the PHI.
1009221345Sdim  BasicBlock *Header = L->getHeader();
1010221345Sdim  Builder.SetInsertPoint(Header, Header->begin());
1011221345Sdim  pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1012224145Sdim  PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1013224145Sdim                                  Twine(IVName) + ".iv");
1014202878Srdivacky  rememberInstruction(PN);
1015202878Srdivacky
1016202878Srdivacky  // Create the step instructions and populate the PHI.
1017221345Sdim  for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1018202878Srdivacky    BasicBlock *Pred = *HPI;
1019202878Srdivacky
1020202878Srdivacky    // Add a start value.
1021202878Srdivacky    if (!L->contains(Pred)) {
1022202878Srdivacky      PN->addIncoming(StartV, Pred);
1023202878Srdivacky      continue;
1024202878Srdivacky    }
1025202878Srdivacky
1026202878Srdivacky    // Create a step value and add it to the PHI. If IVIncInsertLoop is
1027202878Srdivacky    // non-null and equal to the addrec's loop, insert the instructions
1028202878Srdivacky    // at IVIncInsertPos.
1029202878Srdivacky    Instruction *InsertPos = L == IVIncInsertLoop ?
1030202878Srdivacky      IVIncInsertPos : Pred->getTerminator();
1031224145Sdim    Builder.SetInsertPoint(InsertPos);
1032202878Srdivacky    Value *IncV;
1033202878Srdivacky    // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1034202878Srdivacky    if (isPointer) {
1035226633Sdim      PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1036202878Srdivacky      // If the step isn't constant, don't use an implicitly scaled GEP, because
1037202878Srdivacky      // that would require a multiply inside the loop.
1038202878Srdivacky      if (!isa<ConstantInt>(StepV))
1039202878Srdivacky        GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1040202878Srdivacky                                    GEPPtrTy->getAddressSpace());
1041202878Srdivacky      const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
1042202878Srdivacky      IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
1043202878Srdivacky      if (IncV->getType() != PN->getType()) {
1044226633Sdim        IncV = Builder.CreateBitCast(IncV, PN->getType());
1045202878Srdivacky        rememberInstruction(IncV);
1046202878Srdivacky      }
1047202878Srdivacky    } else {
1048202878Srdivacky      IncV = isNegative ?
1049224145Sdim        Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1050224145Sdim        Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1051202878Srdivacky      rememberInstruction(IncV);
1052202878Srdivacky    }
1053202878Srdivacky    PN->addIncoming(IncV, Pred);
1054202878Srdivacky  }
1055202878Srdivacky
1056202878Srdivacky  // Restore the original insert point.
1057202878Srdivacky  if (SaveInsertBB)
1058203954Srdivacky    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1059202878Srdivacky
1060202878Srdivacky  // Remember this PHI, even in post-inc mode.
1061202878Srdivacky  InsertedValues.insert(PN);
1062202878Srdivacky
1063202878Srdivacky  return PN;
1064202878Srdivacky}
1065202878Srdivacky
1066202878SrdivackyValue *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1067226633Sdim  Type *STy = S->getType();
1068226633Sdim  Type *IntTy = SE.getEffectiveSCEVType(STy);
1069202878Srdivacky  const Loop *L = S->getLoop();
1070202878Srdivacky
1071202878Srdivacky  // Determine a normalized form of this expression, which is the expression
1072202878Srdivacky  // before any post-inc adjustment is made.
1073202878Srdivacky  const SCEVAddRecExpr *Normalized = S;
1074207618Srdivacky  if (PostIncLoops.count(L)) {
1075207618Srdivacky    PostIncLoopSet Loops;
1076207618Srdivacky    Loops.insert(L);
1077207618Srdivacky    Normalized =
1078207618Srdivacky      cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, 0, 0,
1079207618Srdivacky                                                  Loops, SE, *SE.DT));
1080202878Srdivacky  }
1081202878Srdivacky
1082202878Srdivacky  // Strip off any non-loop-dominating component from the addrec start.
1083202878Srdivacky  const SCEV *Start = Normalized->getStart();
1084202878Srdivacky  const SCEV *PostLoopOffset = 0;
1085218893Sdim  if (!SE.properlyDominates(Start, L->getHeader())) {
1086202878Srdivacky    PostLoopOffset = Start;
1087207618Srdivacky    Start = SE.getConstant(Normalized->getType(), 0);
1088221345Sdim    Normalized = cast<SCEVAddRecExpr>(
1089221345Sdim      SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1090221345Sdim                       Normalized->getLoop(),
1091221345Sdim                       // FIXME: Normalized->getNoWrapFlags(FlagNW)
1092221345Sdim                       SCEV::FlagAnyWrap));
1093202878Srdivacky  }
1094202878Srdivacky
1095202878Srdivacky  // Strip off any non-loop-dominating component from the addrec step.
1096202878Srdivacky  const SCEV *Step = Normalized->getStepRecurrence(SE);
1097202878Srdivacky  const SCEV *PostLoopScale = 0;
1098218893Sdim  if (!SE.dominates(Step, L->getHeader())) {
1099202878Srdivacky    PostLoopScale = Step;
1100207618Srdivacky    Step = SE.getConstant(Normalized->getType(), 1);
1101202878Srdivacky    Normalized =
1102202878Srdivacky      cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, Step,
1103221345Sdim                                            Normalized->getLoop(),
1104221345Sdim                                            // FIXME: Normalized
1105221345Sdim                                            // ->getNoWrapFlags(FlagNW)
1106221345Sdim                                            SCEV::FlagAnyWrap));
1107202878Srdivacky  }
1108202878Srdivacky
1109202878Srdivacky  // Expand the core addrec. If we need post-loop scaling, force it to
1110202878Srdivacky  // expand to an integer type to avoid the need for additional casting.
1111226633Sdim  Type *ExpandTy = PostLoopScale ? IntTy : STy;
1112202878Srdivacky  PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
1113202878Srdivacky
1114204642Srdivacky  // Accommodate post-inc mode, if necessary.
1115202878Srdivacky  Value *Result;
1116207618Srdivacky  if (!PostIncLoops.count(L))
1117202878Srdivacky    Result = PN;
1118202878Srdivacky  else {
1119202878Srdivacky    // In PostInc mode, use the post-incremented value.
1120202878Srdivacky    BasicBlock *LatchBlock = L->getLoopLatch();
1121202878Srdivacky    assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1122202878Srdivacky    Result = PN->getIncomingValueForBlock(LatchBlock);
1123226633Sdim
1124226633Sdim    // For an expansion to use the postinc form, the client must call
1125226633Sdim    // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1126226633Sdim    // or dominated by IVIncInsertPos.
1127226633Sdim    assert((!isa<Instruction>(Result) ||
1128226633Sdim            SE.DT->dominates(cast<Instruction>(Result),
1129226633Sdim                             Builder.GetInsertPoint())) &&
1130226633Sdim           "postinc expansion does not dominate use");
1131202878Srdivacky  }
1132202878Srdivacky
1133202878Srdivacky  // Re-apply any non-loop-dominating scale.
1134202878Srdivacky  if (PostLoopScale) {
1135203954Srdivacky    Result = InsertNoopCastOfTo(Result, IntTy);
1136202878Srdivacky    Result = Builder.CreateMul(Result,
1137202878Srdivacky                               expandCodeFor(PostLoopScale, IntTy));
1138202878Srdivacky    rememberInstruction(Result);
1139202878Srdivacky  }
1140202878Srdivacky
1141202878Srdivacky  // Re-apply any non-loop-dominating offset.
1142202878Srdivacky  if (PostLoopOffset) {
1143226633Sdim    if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1144202878Srdivacky      const SCEV *const OffsetArray[1] = { PostLoopOffset };
1145202878Srdivacky      Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
1146202878Srdivacky    } else {
1147203954Srdivacky      Result = InsertNoopCastOfTo(Result, IntTy);
1148202878Srdivacky      Result = Builder.CreateAdd(Result,
1149202878Srdivacky                                 expandCodeFor(PostLoopOffset, IntTy));
1150202878Srdivacky      rememberInstruction(Result);
1151202878Srdivacky    }
1152202878Srdivacky  }
1153202878Srdivacky
1154202878Srdivacky  return Result;
1155202878Srdivacky}
1156202878Srdivacky
1157193323SedValue *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1158202878Srdivacky  if (!CanonicalMode) return expandAddRecExprLiterally(S);
1159202878Srdivacky
1160226633Sdim  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1161193323Sed  const Loop *L = S->getLoop();
1162193323Sed
1163194178Sed  // First check for an existing canonical IV in a suitable type.
1164194178Sed  PHINode *CanonicalIV = 0;
1165194178Sed  if (PHINode *PN = L->getCanonicalInductionVariable())
1166212904Sdim    if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1167194178Sed      CanonicalIV = PN;
1168194178Sed
1169194178Sed  // Rewrite an AddRec in terms of the canonical induction variable, if
1170194178Sed  // its type is more narrow.
1171194178Sed  if (CanonicalIV &&
1172194178Sed      SE.getTypeSizeInBits(CanonicalIV->getType()) >
1173194178Sed      SE.getTypeSizeInBits(Ty)) {
1174205407Srdivacky    SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1175205407Srdivacky    for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1176205407Srdivacky      NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1177221345Sdim    Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1178221345Sdim                                       // FIXME: S->getNoWrapFlags(FlagNW)
1179221345Sdim                                       SCEV::FlagAnyWrap));
1180195340Sed    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1181195340Sed    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1182194178Sed    BasicBlock::iterator NewInsertPt =
1183200581Srdivacky      llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
1184226633Sdim    while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt) ||
1185226633Sdim           isa<LandingPadInst>(NewInsertPt))
1186210299Sed      ++NewInsertPt;
1187194178Sed    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
1188194178Sed                      NewInsertPt);
1189203954Srdivacky    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1190194178Sed    return V;
1191194178Sed  }
1192194178Sed
1193193323Sed  // {X,+,F} --> X + {0,+,F}
1194193323Sed  if (!S->getStart()->isZero()) {
1195205407Srdivacky    SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1196207618Srdivacky    NewOps[0] = SE.getConstant(Ty, 0);
1197221345Sdim    // FIXME: can use S->getNoWrapFlags()
1198221345Sdim    const SCEV *Rest = SE.getAddRecExpr(NewOps, L, SCEV::FlagAnyWrap);
1199193323Sed
1200193323Sed    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1201193323Sed    // comments on expandAddToGEP for details.
1202198090Srdivacky    const SCEV *Base = S->getStart();
1203198090Srdivacky    const SCEV *RestArray[1] = { Rest };
1204198090Srdivacky    // Dig into the expression to find the pointer base for a GEP.
1205198090Srdivacky    ExposePointerBase(Base, RestArray[0], SE);
1206198090Srdivacky    // If we found a pointer, expand the AddRec with a GEP.
1207226633Sdim    if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1208198090Srdivacky      // Make sure the Base isn't something exotic, such as a multiplied
1209198090Srdivacky      // or divided pointer value. In those cases, the result type isn't
1210198090Srdivacky      // actually a pointer type.
1211198090Srdivacky      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1212198090Srdivacky        Value *StartV = expand(Base);
1213198090Srdivacky        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1214198090Srdivacky        return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
1215193323Sed      }
1216193323Sed    }
1217193323Sed
1218195098Sed    // Just do a normal add. Pre-expand the operands to suppress folding.
1219195098Sed    return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
1220195098Sed                                SE.getUnknown(expand(Rest))));
1221193323Sed  }
1222193323Sed
1223212904Sdim  // If we don't yet have a canonical IV, create one.
1224212904Sdim  if (!CanonicalIV) {
1225193323Sed    // Create and insert the PHI node for the induction variable in the
1226193323Sed    // specified loop.
1227193323Sed    BasicBlock *Header = L->getHeader();
1228221345Sdim    pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1229221345Sdim    CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1230221345Sdim                                  Header->begin());
1231212904Sdim    rememberInstruction(CanonicalIV);
1232193323Sed
1233193323Sed    Constant *One = ConstantInt::get(Ty, 1);
1234221345Sdim    for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1235210299Sed      BasicBlock *HP = *HPI;
1236210299Sed      if (L->contains(HP)) {
1237202878Srdivacky        // Insert a unit add instruction right before the terminator
1238202878Srdivacky        // corresponding to the back-edge.
1239212904Sdim        Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1240212904Sdim                                                     "indvar.next",
1241212904Sdim                                                     HP->getTerminator());
1242224145Sdim        Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1243202878Srdivacky        rememberInstruction(Add);
1244212904Sdim        CanonicalIV->addIncoming(Add, HP);
1245198090Srdivacky      } else {
1246212904Sdim        CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1247198090Srdivacky      }
1248210299Sed    }
1249193323Sed  }
1250193323Sed
1251212904Sdim  // {0,+,1} --> Insert a canonical induction variable into the loop!
1252212904Sdim  if (S->isAffine() && S->getOperand(1)->isOne()) {
1253212904Sdim    assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1254212904Sdim           "IVs with types different from the canonical IV should "
1255212904Sdim           "already have been handled!");
1256212904Sdim    return CanonicalIV;
1257212904Sdim  }
1258212904Sdim
1259194178Sed  // {0,+,F} --> {0,+,1} * F
1260193323Sed
1261193323Sed  // If this is a simple linear addrec, emit it now as a special case.
1262195098Sed  if (S->isAffine())    // {0,+,F} --> i*F
1263195098Sed    return
1264195098Sed      expand(SE.getTruncateOrNoop(
1265212904Sdim        SE.getMulExpr(SE.getUnknown(CanonicalIV),
1266195098Sed                      SE.getNoopOrAnyExtend(S->getOperand(1),
1267212904Sdim                                            CanonicalIV->getType())),
1268195098Sed        Ty));
1269194178Sed
1270193323Sed  // If this is a chain of recurrences, turn it into a closed form, using the
1271193323Sed  // folders, then expandCodeFor the closed form.  This allows the folders to
1272193323Sed  // simplify the expression without having to build a bunch of special code
1273193323Sed  // into this folder.
1274212904Sdim  const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1275193323Sed
1276194178Sed  // Promote S up to the canonical IV type, if the cast is foldable.
1277198090Srdivacky  const SCEV *NewS = S;
1278212904Sdim  const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1279194178Sed  if (isa<SCEVAddRecExpr>(Ext))
1280194178Sed    NewS = Ext;
1281194178Sed
1282198090Srdivacky  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1283193323Sed  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1284193323Sed
1285194178Sed  // Truncate the result down to the original type, if needed.
1286198090Srdivacky  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1287194710Sed  return expand(T);
1288193323Sed}
1289193323Sed
1290193323SedValue *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1291226633Sdim  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1292194178Sed  Value *V = expandCodeFor(S->getOperand(),
1293194178Sed                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1294226633Sdim  Value *I = Builder.CreateTrunc(V, Ty);
1295202878Srdivacky  rememberInstruction(I);
1296193323Sed  return I;
1297193323Sed}
1298193323Sed
1299193323SedValue *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1300226633Sdim  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1301194178Sed  Value *V = expandCodeFor(S->getOperand(),
1302194178Sed                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1303226633Sdim  Value *I = Builder.CreateZExt(V, Ty);
1304202878Srdivacky  rememberInstruction(I);
1305193323Sed  return I;
1306193323Sed}
1307193323Sed
1308193323SedValue *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1309226633Sdim  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1310194178Sed  Value *V = expandCodeFor(S->getOperand(),
1311194178Sed                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1312226633Sdim  Value *I = Builder.CreateSExt(V, Ty);
1313202878Srdivacky  rememberInstruction(I);
1314193323Sed  return I;
1315193323Sed}
1316193323Sed
1317193323SedValue *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1318198090Srdivacky  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1319226633Sdim  Type *Ty = LHS->getType();
1320198090Srdivacky  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1321198090Srdivacky    // In the case of mixed integer and pointer types, do the
1322198090Srdivacky    // rest of the comparisons as integer.
1323198090Srdivacky    if (S->getOperand(i)->getType() != Ty) {
1324198090Srdivacky      Ty = SE.getEffectiveSCEVType(Ty);
1325198090Srdivacky      LHS = InsertNoopCastOfTo(LHS, Ty);
1326198090Srdivacky    }
1327194178Sed    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1328226633Sdim    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1329202878Srdivacky    rememberInstruction(ICmp);
1330195340Sed    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1331202878Srdivacky    rememberInstruction(Sel);
1332193323Sed    LHS = Sel;
1333193323Sed  }
1334198090Srdivacky  // In the case of mixed integer and pointer types, cast the
1335198090Srdivacky  // final result back to the pointer type.
1336198090Srdivacky  if (LHS->getType() != S->getType())
1337198090Srdivacky    LHS = InsertNoopCastOfTo(LHS, S->getType());
1338193323Sed  return LHS;
1339193323Sed}
1340193323Sed
1341193323SedValue *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1342198090Srdivacky  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1343226633Sdim  Type *Ty = LHS->getType();
1344198090Srdivacky  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1345198090Srdivacky    // In the case of mixed integer and pointer types, do the
1346198090Srdivacky    // rest of the comparisons as integer.
1347198090Srdivacky    if (S->getOperand(i)->getType() != Ty) {
1348198090Srdivacky      Ty = SE.getEffectiveSCEVType(Ty);
1349198090Srdivacky      LHS = InsertNoopCastOfTo(LHS, Ty);
1350198090Srdivacky    }
1351194178Sed    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1352226633Sdim    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1353202878Srdivacky    rememberInstruction(ICmp);
1354195340Sed    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1355202878Srdivacky    rememberInstruction(Sel);
1356193323Sed    LHS = Sel;
1357193323Sed  }
1358198090Srdivacky  // In the case of mixed integer and pointer types, cast the
1359198090Srdivacky  // final result back to the pointer type.
1360198090Srdivacky  if (LHS->getType() != S->getType())
1361198090Srdivacky    LHS = InsertNoopCastOfTo(LHS, S->getType());
1362193323Sed  return LHS;
1363193323Sed}
1364193323Sed
1365226633SdimValue *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1366205407Srdivacky                                   Instruction *I) {
1367205407Srdivacky  BasicBlock::iterator IP = I;
1368205407Srdivacky  while (isInsertedInstruction(IP) || isa<DbgInfoIntrinsic>(IP))
1369205407Srdivacky    ++IP;
1370205407Srdivacky  Builder.SetInsertPoint(IP->getParent(), IP);
1371205407Srdivacky  return expandCodeFor(SH, Ty);
1372205407Srdivacky}
1373205407Srdivacky
1374226633SdimValue *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1375193323Sed  // Expand the code for this SCEV.
1376193323Sed  Value *V = expand(SH);
1377193323Sed  if (Ty) {
1378193323Sed    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1379193323Sed           "non-trivial casts should be done with the SCEVs directly!");
1380193323Sed    V = InsertNoopCastOfTo(V, Ty);
1381193323Sed  }
1382193323Sed  return V;
1383193323Sed}
1384193323Sed
1385193323SedValue *SCEVExpander::expand(const SCEV *S) {
1386195098Sed  // Compute an insertion point for this SCEV object. Hoist the instructions
1387195098Sed  // as far out in the loop nest as possible.
1388195340Sed  Instruction *InsertPt = Builder.GetInsertPoint();
1389195340Sed  for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
1390195098Sed       L = L->getParentLoop())
1391218893Sdim    if (SE.isLoopInvariant(S, L)) {
1392195098Sed      if (!L) break;
1393206083Srdivacky      if (BasicBlock *Preheader = L->getLoopPreheader())
1394195098Sed        InsertPt = Preheader->getTerminator();
1395195098Sed    } else {
1396195098Sed      // If the SCEV is computable at this level, insert it into the header
1397195098Sed      // after the PHIs (and after any other instructions that we've inserted
1398195098Sed      // there) so that it is guaranteed to dominate any user inside the loop.
1399218893Sdim      if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1400226633Sdim        InsertPt = L->getHeader()->getFirstInsertionPt();
1401205407Srdivacky      while (isInsertedInstruction(InsertPt) || isa<DbgInfoIntrinsic>(InsertPt))
1402204961Srdivacky        InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
1403195098Sed      break;
1404195098Sed    }
1405195098Sed
1406195098Sed  // Check to see if we already expanded this here.
1407195098Sed  std::map<std::pair<const SCEV *, Instruction *>,
1408195098Sed           AssertingVH<Value> >::iterator I =
1409195098Sed    InsertedExpressions.find(std::make_pair(S, InsertPt));
1410195340Sed  if (I != InsertedExpressions.end())
1411193323Sed    return I->second;
1412195098Sed
1413195340Sed  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1414195340Sed  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1415195340Sed  Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1416195340Sed
1417195098Sed  // Expand the expression into instructions.
1418193323Sed  Value *V = visit(S);
1419195098Sed
1420195098Sed  // Remember the expanded value for this SCEV at this location.
1421226633Sdim  //
1422226633Sdim  // This is independent of PostIncLoops. The mapped value simply materializes
1423226633Sdim  // the expression at this insertion point. If the mapped value happened to be
1424226633Sdim  // a postinc expansion, it could be reused by a non postinc user, but only if
1425226633Sdim  // its insertion point was already at the head of the loop.
1426226633Sdim  InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1427195098Sed
1428203954Srdivacky  restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1429193323Sed  return V;
1430193323Sed}
1431193574Sed
1432203954Srdivackyvoid SCEVExpander::rememberInstruction(Value *I) {
1433210299Sed  if (!PostIncLoops.empty())
1434210299Sed    InsertedPostIncValues.insert(I);
1435210299Sed  else
1436203954Srdivacky    InsertedValues.insert(I);
1437203954Srdivacky
1438203954Srdivacky  // If we just claimed an existing instruction and that instruction had
1439221345Sdim  // been the insert point, adjust the insert point forward so that
1440203954Srdivacky  // subsequently inserted code will be dominated.
1441203954Srdivacky  if (Builder.GetInsertPoint() == I) {
1442203954Srdivacky    BasicBlock::iterator It = cast<Instruction>(I);
1443205407Srdivacky    do { ++It; } while (isInsertedInstruction(It) ||
1444205407Srdivacky                        isa<DbgInfoIntrinsic>(It));
1445203954Srdivacky    Builder.SetInsertPoint(Builder.GetInsertBlock(), It);
1446203954Srdivacky  }
1447203954Srdivacky}
1448203954Srdivacky
1449203954Srdivackyvoid SCEVExpander::restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I) {
1450204642Srdivacky  // If we acquired more instructions since the old insert point was saved,
1451203954Srdivacky  // advance past them.
1452205407Srdivacky  while (isInsertedInstruction(I) || isa<DbgInfoIntrinsic>(I)) ++I;
1453203954Srdivacky
1454203954Srdivacky  Builder.SetInsertPoint(BB, I);
1455203954Srdivacky}
1456203954Srdivacky
1457193574Sed/// getOrInsertCanonicalInductionVariable - This method returns the
1458193574Sed/// canonical induction variable of the specified type for the specified
1459193574Sed/// loop (inserting one if there is none).  A canonical induction variable
1460193574Sed/// starts at zero and steps by one on each iteration.
1461212904SdimPHINode *
1462193574SedSCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1463226633Sdim                                                    Type *Ty) {
1464203954Srdivacky  assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1465212904Sdim
1466212904Sdim  // Build a SCEV for {0,+,1}<L>.
1467221345Sdim  // Conservatively use FlagAnyWrap for now.
1468207618Srdivacky  const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1469221345Sdim                                   SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
1470212904Sdim
1471212904Sdim  // Emit code for it.
1472195340Sed  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1473195340Sed  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1474212904Sdim  PHINode *V = cast<PHINode>(expandCodeFor(H, 0, L->getHeader()->begin()));
1475195340Sed  if (SaveInsertBB)
1476203954Srdivacky    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1477212904Sdim
1478195098Sed  return V;
1479193574Sed}
1480226633Sdim
1481226633Sdim/// hoistStep - Attempt to hoist an IV increment above a potential use.
1482226633Sdim///
1483226633Sdim/// To successfully hoist, two criteria must be met:
1484226633Sdim/// - IncV operands dominate InsertPos and
1485226633Sdim/// - InsertPos dominates IncV
1486226633Sdim///
1487226633Sdim/// Meeting the second condition means that we don't need to check all of IncV's
1488226633Sdim/// existing uses (it's moving up in the domtree).
1489226633Sdim///
1490226633Sdim/// This does not yet recursively hoist the operands, although that would
1491226633Sdim/// not be difficult.
1492226633Sdim///
1493226633Sdim/// This does not require a SCEVExpander instance and could be replaced by a
1494226633Sdim/// general code-insertion helper.
1495226633Sdimbool SCEVExpander::hoistStep(Instruction *IncV, Instruction *InsertPos,
1496226633Sdim                             const DominatorTree *DT) {
1497226633Sdim  if (DT->dominates(IncV, InsertPos))
1498226633Sdim    return true;
1499226633Sdim
1500226633Sdim  if (!DT->dominates(InsertPos->getParent(), IncV->getParent()))
1501226633Sdim    return false;
1502226633Sdim
1503226633Sdim  if (IncV->mayHaveSideEffects())
1504226633Sdim    return false;
1505226633Sdim
1506226633Sdim  // Attempt to hoist IncV
1507226633Sdim  for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end();
1508226633Sdim       OI != OE; ++OI) {
1509226633Sdim    Instruction *OInst = dyn_cast<Instruction>(OI);
1510226633Sdim    if (OInst && !DT->dominates(OInst, InsertPos))
1511226633Sdim      return false;
1512226633Sdim  }
1513226633Sdim  IncV->moveBefore(InsertPos);
1514226633Sdim  return true;
1515226633Sdim}
1516226633Sdim
1517226633Sdim/// replaceCongruentIVs - Check for congruent phis in this loop header and
1518226633Sdim/// replace them with their most canonical representative. Return the number of
1519226633Sdim/// phis eliminated.
1520226633Sdim///
1521226633Sdim/// This does not depend on any SCEVExpander state but should be used in
1522226633Sdim/// the same context that SCEVExpander is used.
1523226633Sdimunsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1524226633Sdim                                           SmallVectorImpl<WeakVH> &DeadInsts) {
1525226633Sdim  unsigned NumElim = 0;
1526226633Sdim  DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1527226633Sdim  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1528226633Sdim    PHINode *Phi = cast<PHINode>(I);
1529226633Sdim    if (!SE.isSCEVable(Phi->getType()))
1530226633Sdim      continue;
1531226633Sdim
1532226633Sdim    PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1533226633Sdim    if (!OrigPhiRef) {
1534226633Sdim      OrigPhiRef = Phi;
1535226633Sdim      continue;
1536226633Sdim    }
1537226633Sdim
1538226633Sdim    // If one phi derives from the other via GEPs, types may differ.
1539226633Sdim    // We could consider adding a bitcast here to handle it.
1540226633Sdim    if (OrigPhiRef->getType() != Phi->getType())
1541226633Sdim      continue;
1542226633Sdim
1543226633Sdim    if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1544226633Sdim      Instruction *OrigInc =
1545226633Sdim        cast<Instruction>(OrigPhiRef->getIncomingValueForBlock(LatchBlock));
1546226633Sdim      Instruction *IsomorphicInc =
1547226633Sdim        cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1548226633Sdim
1549226633Sdim      // If this phi is more canonical, swap it with the original.
1550226633Sdim      if (!isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)
1551226633Sdim          && isExpandedAddRecExprPHI(Phi, IsomorphicInc, L)) {
1552226633Sdim        std::swap(OrigPhiRef, Phi);
1553226633Sdim        std::swap(OrigInc, IsomorphicInc);
1554226633Sdim      }
1555226633Sdim      // Replacing the congruent phi is sufficient because acyclic redundancy
1556226633Sdim      // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
1557226633Sdim      // that a phi is congruent, it's often the head of an IV user cycle that
1558226633Sdim      // is isomorphic with the original phi. So it's worth eagerly cleaning up
1559226633Sdim      // the common case of a single IV increment.
1560226633Sdim      if (OrigInc != IsomorphicInc &&
1561226633Sdim          OrigInc->getType() == IsomorphicInc->getType() &&
1562226633Sdim          SE.getSCEV(OrigInc) == SE.getSCEV(IsomorphicInc) &&
1563226633Sdim          hoistStep(OrigInc, IsomorphicInc, DT)) {
1564226633Sdim        DEBUG_WITH_TYPE(DebugType, dbgs()
1565226633Sdim                        << "INDVARS: Eliminated congruent iv.inc: "
1566226633Sdim                        << *IsomorphicInc << '\n');
1567226633Sdim        IsomorphicInc->replaceAllUsesWith(OrigInc);
1568226633Sdim        DeadInsts.push_back(IsomorphicInc);
1569226633Sdim      }
1570226633Sdim    }
1571226633Sdim    DEBUG_WITH_TYPE(DebugType, dbgs()
1572226633Sdim                    << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
1573226633Sdim    ++NumElim;
1574226633Sdim    Phi->replaceAllUsesWith(OrigPhiRef);
1575226633Sdim    DeadInsts.push_back(Phi);
1576226633Sdim  }
1577226633Sdim  return NumElim;
1578226633Sdim}
1579