ScalarEvolutionExpander.cpp revision 204642
1234313Sbapt//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2234313Sbapt//
3234313Sbapt//                     The LLVM Compiler Infrastructure
4247841Sbapt//
5257573Sbdrewery// This file is distributed under the University of Illinois Open Source
6234313Sbapt// License. See LICENSE.TXT for details.
7256998Sbdrewery//
8256998Sbdrewery//===----------------------------------------------------------------------===//
9257353Sbdrewery//
10257353Sbdrewery// This file contains the implementation of the scalar evolution expander,
11257353Sbdrewery// which is used to generate the code corresponding to a given scalar evolution
12256998Sbdrewery// expression.
13234313Sbapt//
14234313Sbapt//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/ScalarEvolutionExpander.h"
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/LLVMContext.h"
19#include "llvm/Target/TargetData.h"
20#include "llvm/ADT/STLExtras.h"
21using namespace llvm;
22
23/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
24/// which must be possible with a noop cast, doing what we can to share
25/// the casts.
26Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
27  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
28  assert((Op == Instruction::BitCast ||
29          Op == Instruction::PtrToInt ||
30          Op == Instruction::IntToPtr) &&
31         "InsertNoopCastOfTo cannot perform non-noop casts!");
32  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
33         "InsertNoopCastOfTo cannot change sizes!");
34
35  // Short-circuit unnecessary bitcasts.
36  if (Op == Instruction::BitCast && V->getType() == Ty)
37    return V;
38
39  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
40  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
41      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
42    if (CastInst *CI = dyn_cast<CastInst>(V))
43      if ((CI->getOpcode() == Instruction::PtrToInt ||
44           CI->getOpcode() == Instruction::IntToPtr) &&
45          SE.getTypeSizeInBits(CI->getType()) ==
46          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
47        return CI->getOperand(0);
48    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
49      if ((CE->getOpcode() == Instruction::PtrToInt ||
50           CE->getOpcode() == Instruction::IntToPtr) &&
51          SE.getTypeSizeInBits(CE->getType()) ==
52          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
53        return CE->getOperand(0);
54  }
55
56  if (Constant *C = dyn_cast<Constant>(V))
57    return ConstantExpr::getCast(Op, C, Ty);
58
59  if (Argument *A = dyn_cast<Argument>(V)) {
60    // Check to see if there is already a cast!
61    for (Value::use_iterator UI = A->use_begin(), E = A->use_end();
62         UI != E; ++UI)
63      if ((*UI)->getType() == Ty)
64        if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
65          if (CI->getOpcode() == Op) {
66            // If the cast isn't the first instruction of the function, move it.
67            if (BasicBlock::iterator(CI) !=
68                A->getParent()->getEntryBlock().begin()) {
69              // Recreate the cast at the beginning of the entry block.
70              // The old cast is left in place in case it is being used
71              // as an insert point.
72              Instruction *NewCI =
73                CastInst::Create(Op, V, Ty, "",
74                                 A->getParent()->getEntryBlock().begin());
75              NewCI->takeName(CI);
76              CI->replaceAllUsesWith(NewCI);
77              return NewCI;
78            }
79            return CI;
80          }
81
82    Instruction *I = CastInst::Create(Op, V, Ty, V->getName(),
83                                      A->getParent()->getEntryBlock().begin());
84    rememberInstruction(I);
85    return I;
86  }
87
88  Instruction *I = cast<Instruction>(V);
89
90  // Check to see if there is already a cast.  If there is, use it.
91  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
92       UI != E; ++UI) {
93    if ((*UI)->getType() == Ty)
94      if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
95        if (CI->getOpcode() == Op) {
96          BasicBlock::iterator It = I; ++It;
97          if (isa<InvokeInst>(I))
98            It = cast<InvokeInst>(I)->getNormalDest()->begin();
99          while (isa<PHINode>(It)) ++It;
100          if (It != BasicBlock::iterator(CI)) {
101            // Recreate the cast after the user.
102            // The old cast is left in place in case it is being used
103            // as an insert point.
104            Instruction *NewCI = CastInst::Create(Op, V, Ty, "", It);
105            NewCI->takeName(CI);
106            CI->replaceAllUsesWith(NewCI);
107            rememberInstruction(NewCI);
108            return NewCI;
109          }
110          rememberInstruction(CI);
111          return CI;
112        }
113  }
114  BasicBlock::iterator IP = I; ++IP;
115  if (InvokeInst *II = dyn_cast<InvokeInst>(I))
116    IP = II->getNormalDest()->begin();
117  while (isa<PHINode>(IP)) ++IP;
118  Instruction *CI = CastInst::Create(Op, V, Ty, V->getName(), IP);
119  rememberInstruction(CI);
120  return CI;
121}
122
123/// InsertBinop - Insert the specified binary operator, doing a small amount
124/// of work to avoid inserting an obviously redundant operation.
125Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
126                                 Value *LHS, Value *RHS) {
127  // Fold a binop with constant operands.
128  if (Constant *CLHS = dyn_cast<Constant>(LHS))
129    if (Constant *CRHS = dyn_cast<Constant>(RHS))
130      return ConstantExpr::get(Opcode, CLHS, CRHS);
131
132  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
133  unsigned ScanLimit = 6;
134  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
135  // Scanning starts from the last instruction before the insertion point.
136  BasicBlock::iterator IP = Builder.GetInsertPoint();
137  if (IP != BlockBegin) {
138    --IP;
139    for (; ScanLimit; --IP, --ScanLimit) {
140      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
141          IP->getOperand(1) == RHS)
142        return IP;
143      if (IP == BlockBegin) break;
144    }
145  }
146
147  // Save the original insertion point so we can restore it when we're done.
148  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
149  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
150
151  // Move the insertion point out of as many loops as we can.
152  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
153    if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
154    BasicBlock *Preheader = L->getLoopPreheader();
155    if (!Preheader) break;
156
157    // Ok, move up a level.
158    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
159  }
160
161  // If we haven't found this binop, insert it.
162  Value *BO = Builder.CreateBinOp(Opcode, LHS, RHS, "tmp");
163  rememberInstruction(BO);
164
165  // Restore the original insert point.
166  if (SaveInsertBB)
167    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
168
169  return BO;
170}
171
172/// FactorOutConstant - Test if S is divisible by Factor, using signed
173/// division. If so, update S with Factor divided out and return true.
174/// S need not be evenly divisible if a reasonable remainder can be
175/// computed.
176/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
177/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
178/// check to see if the divide was folded.
179static bool FactorOutConstant(const SCEV *&S,
180                              const SCEV *&Remainder,
181                              const SCEV *Factor,
182                              ScalarEvolution &SE,
183                              const TargetData *TD) {
184  // Everything is divisible by one.
185  if (Factor->isOne())
186    return true;
187
188  // x/x == 1.
189  if (S == Factor) {
190    S = SE.getIntegerSCEV(1, S->getType());
191    return true;
192  }
193
194  // For a Constant, check for a multiple of the given factor.
195  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
196    // 0/x == 0.
197    if (C->isZero())
198      return true;
199    // Check for divisibility.
200    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
201      ConstantInt *CI =
202        ConstantInt::get(SE.getContext(),
203                         C->getValue()->getValue().sdiv(
204                                                   FC->getValue()->getValue()));
205      // If the quotient is zero and the remainder is non-zero, reject
206      // the value at this scale. It will be considered for subsequent
207      // smaller scales.
208      if (!CI->isZero()) {
209        const SCEV *Div = SE.getConstant(CI);
210        S = Div;
211        Remainder =
212          SE.getAddExpr(Remainder,
213                        SE.getConstant(C->getValue()->getValue().srem(
214                                                  FC->getValue()->getValue())));
215        return true;
216      }
217    }
218  }
219
220  // In a Mul, check if there is a constant operand which is a multiple
221  // of the given factor.
222  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
223    if (TD) {
224      // With TargetData, the size is known. Check if there is a constant
225      // operand which is a multiple of the given factor. If so, we can
226      // factor it.
227      const SCEVConstant *FC = cast<SCEVConstant>(Factor);
228      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
229        if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
230          const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
231          SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
232                                                 MOperands.end());
233          NewMulOps[0] =
234            SE.getConstant(C->getValue()->getValue().sdiv(
235                                                   FC->getValue()->getValue()));
236          S = SE.getMulExpr(NewMulOps);
237          return true;
238        }
239    } else {
240      // Without TargetData, check if Factor can be factored out of any of the
241      // Mul's operands. If so, we can just remove it.
242      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
243        const SCEV *SOp = M->getOperand(i);
244        const SCEV *Remainder = SE.getIntegerSCEV(0, SOp->getType());
245        if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
246            Remainder->isZero()) {
247          const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
248          SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
249                                                 MOperands.end());
250          NewMulOps[i] = SOp;
251          S = SE.getMulExpr(NewMulOps);
252          return true;
253        }
254      }
255    }
256  }
257
258  // In an AddRec, check if both start and step are divisible.
259  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
260    const SCEV *Step = A->getStepRecurrence(SE);
261    const SCEV *StepRem = SE.getIntegerSCEV(0, Step->getType());
262    if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
263      return false;
264    if (!StepRem->isZero())
265      return false;
266    const SCEV *Start = A->getStart();
267    if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
268      return false;
269    S = SE.getAddRecExpr(Start, Step, A->getLoop());
270    return true;
271  }
272
273  return false;
274}
275
276/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
277/// is the number of SCEVAddRecExprs present, which are kept at the end of
278/// the list.
279///
280static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
281                                const Type *Ty,
282                                ScalarEvolution &SE) {
283  unsigned NumAddRecs = 0;
284  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
285    ++NumAddRecs;
286  // Group Ops into non-addrecs and addrecs.
287  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
288  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
289  // Let ScalarEvolution sort and simplify the non-addrecs list.
290  const SCEV *Sum = NoAddRecs.empty() ?
291                    SE.getIntegerSCEV(0, Ty) :
292                    SE.getAddExpr(NoAddRecs);
293  // If it returned an add, use the operands. Otherwise it simplified
294  // the sum into a single value, so just use that.
295  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
296    Ops = Add->getOperands();
297  else {
298    Ops.clear();
299    if (!Sum->isZero())
300      Ops.push_back(Sum);
301  }
302  // Then append the addrecs.
303  Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
304}
305
306/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
307/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
308/// This helps expose more opportunities for folding parts of the expressions
309/// into GEP indices.
310///
311static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
312                         const Type *Ty,
313                         ScalarEvolution &SE) {
314  // Find the addrecs.
315  SmallVector<const SCEV *, 8> AddRecs;
316  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
317    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
318      const SCEV *Start = A->getStart();
319      if (Start->isZero()) break;
320      const SCEV *Zero = SE.getIntegerSCEV(0, Ty);
321      AddRecs.push_back(SE.getAddRecExpr(Zero,
322                                         A->getStepRecurrence(SE),
323                                         A->getLoop()));
324      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
325        Ops[i] = Zero;
326        Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
327        e += Add->getNumOperands();
328      } else {
329        Ops[i] = Start;
330      }
331    }
332  if (!AddRecs.empty()) {
333    // Add the addrecs onto the end of the list.
334    Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
335    // Resort the operand list, moving any constants to the front.
336    SimplifyAddOperands(Ops, Ty, SE);
337  }
338}
339
340/// expandAddToGEP - Expand an addition expression with a pointer type into
341/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
342/// BasicAliasAnalysis and other passes analyze the result. See the rules
343/// for getelementptr vs. inttoptr in
344/// http://llvm.org/docs/LangRef.html#pointeraliasing
345/// for details.
346///
347/// Design note: The correctness of using getelementptr here depends on
348/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
349/// they may introduce pointer arithmetic which may not be safely converted
350/// into getelementptr.
351///
352/// Design note: It might seem desirable for this function to be more
353/// loop-aware. If some of the indices are loop-invariant while others
354/// aren't, it might seem desirable to emit multiple GEPs, keeping the
355/// loop-invariant portions of the overall computation outside the loop.
356/// However, there are a few reasons this is not done here. Hoisting simple
357/// arithmetic is a low-level optimization that often isn't very
358/// important until late in the optimization process. In fact, passes
359/// like InstructionCombining will combine GEPs, even if it means
360/// pushing loop-invariant computation down into loops, so even if the
361/// GEPs were split here, the work would quickly be undone. The
362/// LoopStrengthReduction pass, which is usually run quite late (and
363/// after the last InstructionCombining pass), takes care of hoisting
364/// loop-invariant portions of expressions, after considering what
365/// can be folded using target addressing modes.
366///
367Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
368                                    const SCEV *const *op_end,
369                                    const PointerType *PTy,
370                                    const Type *Ty,
371                                    Value *V) {
372  const Type *ElTy = PTy->getElementType();
373  SmallVector<Value *, 4> GepIndices;
374  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
375  bool AnyNonZeroIndices = false;
376
377  // Split AddRecs up into parts as either of the parts may be usable
378  // without the other.
379  SplitAddRecs(Ops, Ty, SE);
380
381  // Descend down the pointer's type and attempt to convert the other
382  // operands into GEP indices, at each level. The first index in a GEP
383  // indexes into the array implied by the pointer operand; the rest of
384  // the indices index into the element or field type selected by the
385  // preceding index.
386  for (;;) {
387    // If the scale size is not 0, attempt to factor out a scale for
388    // array indexing.
389    SmallVector<const SCEV *, 8> ScaledOps;
390    if (ElTy->isSized()) {
391      const SCEV *ElSize = SE.getSizeOfExpr(ElTy);
392      if (!ElSize->isZero()) {
393        SmallVector<const SCEV *, 8> NewOps;
394        for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
395          const SCEV *Op = Ops[i];
396          const SCEV *Remainder = SE.getIntegerSCEV(0, Ty);
397          if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
398            // Op now has ElSize factored out.
399            ScaledOps.push_back(Op);
400            if (!Remainder->isZero())
401              NewOps.push_back(Remainder);
402            AnyNonZeroIndices = true;
403          } else {
404            // The operand was not divisible, so add it to the list of operands
405            // we'll scan next iteration.
406            NewOps.push_back(Ops[i]);
407          }
408        }
409        // If we made any changes, update Ops.
410        if (!ScaledOps.empty()) {
411          Ops = NewOps;
412          SimplifyAddOperands(Ops, Ty, SE);
413        }
414      }
415    }
416
417    // Record the scaled array index for this level of the type. If
418    // we didn't find any operands that could be factored, tentatively
419    // assume that element zero was selected (since the zero offset
420    // would obviously be folded away).
421    Value *Scaled = ScaledOps.empty() ?
422                    Constant::getNullValue(Ty) :
423                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
424    GepIndices.push_back(Scaled);
425
426    // Collect struct field index operands.
427    while (const StructType *STy = dyn_cast<StructType>(ElTy)) {
428      bool FoundFieldNo = false;
429      // An empty struct has no fields.
430      if (STy->getNumElements() == 0) break;
431      if (SE.TD) {
432        // With TargetData, field offsets are known. See if a constant offset
433        // falls within any of the struct fields.
434        if (Ops.empty()) break;
435        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
436          if (SE.getTypeSizeInBits(C->getType()) <= 64) {
437            const StructLayout &SL = *SE.TD->getStructLayout(STy);
438            uint64_t FullOffset = C->getValue()->getZExtValue();
439            if (FullOffset < SL.getSizeInBytes()) {
440              unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
441              GepIndices.push_back(
442                  ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
443              ElTy = STy->getTypeAtIndex(ElIdx);
444              Ops[0] =
445                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
446              AnyNonZeroIndices = true;
447              FoundFieldNo = true;
448            }
449          }
450      } else {
451        // Without TargetData, just check for an offsetof expression of the
452        // appropriate struct type.
453        for (unsigned i = 0, e = Ops.size(); i != e; ++i)
454          if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
455            const Type *CTy;
456            Constant *FieldNo;
457            if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
458              GepIndices.push_back(FieldNo);
459              ElTy =
460                STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
461              Ops[i] = SE.getConstant(Ty, 0);
462              AnyNonZeroIndices = true;
463              FoundFieldNo = true;
464              break;
465            }
466          }
467      }
468      // If no struct field offsets were found, tentatively assume that
469      // field zero was selected (since the zero offset would obviously
470      // be folded away).
471      if (!FoundFieldNo) {
472        ElTy = STy->getTypeAtIndex(0u);
473        GepIndices.push_back(
474          Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
475      }
476    }
477
478    if (const ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
479      ElTy = ATy->getElementType();
480    else
481      break;
482  }
483
484  // If none of the operands were convertible to proper GEP indices, cast
485  // the base to i8* and do an ugly getelementptr with that. It's still
486  // better than ptrtoint+arithmetic+inttoptr at least.
487  if (!AnyNonZeroIndices) {
488    // Cast the base to i8*.
489    V = InsertNoopCastOfTo(V,
490       Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
491
492    // Expand the operands for a plain byte offset.
493    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
494
495    // Fold a GEP with constant operands.
496    if (Constant *CLHS = dyn_cast<Constant>(V))
497      if (Constant *CRHS = dyn_cast<Constant>(Idx))
498        return ConstantExpr::getGetElementPtr(CLHS, &CRHS, 1);
499
500    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
501    unsigned ScanLimit = 6;
502    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
503    // Scanning starts from the last instruction before the insertion point.
504    BasicBlock::iterator IP = Builder.GetInsertPoint();
505    if (IP != BlockBegin) {
506      --IP;
507      for (; ScanLimit; --IP, --ScanLimit) {
508        if (IP->getOpcode() == Instruction::GetElementPtr &&
509            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
510          return IP;
511        if (IP == BlockBegin) break;
512      }
513    }
514
515    // Save the original insertion point so we can restore it when we're done.
516    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
517    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
518
519    // Move the insertion point out of as many loops as we can.
520    while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
521      if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
522      BasicBlock *Preheader = L->getLoopPreheader();
523      if (!Preheader) break;
524
525      // Ok, move up a level.
526      Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
527    }
528
529    // Emit a GEP.
530    Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
531    rememberInstruction(GEP);
532
533    // Restore the original insert point.
534    if (SaveInsertBB)
535      restoreInsertPoint(SaveInsertBB, SaveInsertPt);
536
537    return GEP;
538  }
539
540  // Save the original insertion point so we can restore it when we're done.
541  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
542  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
543
544  // Move the insertion point out of as many loops as we can.
545  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
546    if (!L->isLoopInvariant(V)) break;
547
548    bool AnyIndexNotLoopInvariant = false;
549    for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
550         E = GepIndices.end(); I != E; ++I)
551      if (!L->isLoopInvariant(*I)) {
552        AnyIndexNotLoopInvariant = true;
553        break;
554      }
555    if (AnyIndexNotLoopInvariant)
556      break;
557
558    BasicBlock *Preheader = L->getLoopPreheader();
559    if (!Preheader) break;
560
561    // Ok, move up a level.
562    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
563  }
564
565  // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
566  // because ScalarEvolution may have changed the address arithmetic to
567  // compute a value which is beyond the end of the allocated object.
568  Value *Casted = V;
569  if (V->getType() != PTy)
570    Casted = InsertNoopCastOfTo(Casted, PTy);
571  Value *GEP = Builder.CreateGEP(Casted,
572                                 GepIndices.begin(),
573                                 GepIndices.end(),
574                                 "scevgep");
575  Ops.push_back(SE.getUnknown(GEP));
576  rememberInstruction(GEP);
577
578  // Restore the original insert point.
579  if (SaveInsertBB)
580    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
581
582  return expand(SE.getAddExpr(Ops));
583}
584
585/// isNonConstantNegative - Return true if the specified scev is negated, but
586/// not a constant.
587static bool isNonConstantNegative(const SCEV *F) {
588  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(F);
589  if (!Mul) return false;
590
591  // If there is a constant factor, it will be first.
592  const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
593  if (!SC) return false;
594
595  // Return true if the value is negative, this matches things like (-42 * V).
596  return SC->getValue()->getValue().isNegative();
597}
598
599/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
600/// SCEV expansion. If they are nested, this is the most nested. If they are
601/// neighboring, pick the later.
602static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
603                                        DominatorTree &DT) {
604  if (!A) return B;
605  if (!B) return A;
606  if (A->contains(B)) return B;
607  if (B->contains(A)) return A;
608  if (DT.dominates(A->getHeader(), B->getHeader())) return B;
609  if (DT.dominates(B->getHeader(), A->getHeader())) return A;
610  return A; // Arbitrarily break the tie.
611}
612
613/// GetRelevantLoop - Get the most relevant loop associated with the given
614/// expression, according to PickMostRelevantLoop.
615static const Loop *GetRelevantLoop(const SCEV *S, LoopInfo &LI,
616                                   DominatorTree &DT) {
617  if (isa<SCEVConstant>(S))
618    return 0;
619  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
620    if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
621      return LI.getLoopFor(I->getParent());
622    return 0;
623  }
624  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
625    const Loop *L = 0;
626    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
627      L = AR->getLoop();
628    for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
629         I != E; ++I)
630      L = PickMostRelevantLoop(L, GetRelevantLoop(*I, LI, DT), DT);
631    return L;
632  }
633  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
634    return GetRelevantLoop(C->getOperand(), LI, DT);
635  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S))
636    return PickMostRelevantLoop(GetRelevantLoop(D->getLHS(), LI, DT),
637                                GetRelevantLoop(D->getRHS(), LI, DT),
638                                DT);
639  llvm_unreachable("Unexpected SCEV type!");
640}
641
642/// LoopCompare - Compare loops by PickMostRelevantLoop.
643class LoopCompare {
644  DominatorTree &DT;
645public:
646  explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
647
648  bool operator()(std::pair<const Loop *, const SCEV *> LHS,
649                  std::pair<const Loop *, const SCEV *> RHS) const {
650    // Compare loops with PickMostRelevantLoop.
651    if (LHS.first != RHS.first)
652      return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
653
654    // If one operand is a non-constant negative and the other is not,
655    // put the non-constant negative on the right so that a sub can
656    // be used instead of a negate and add.
657    if (isNonConstantNegative(LHS.second)) {
658      if (!isNonConstantNegative(RHS.second))
659        return false;
660    } else if (isNonConstantNegative(RHS.second))
661      return true;
662
663    // Otherwise they are equivalent according to this comparison.
664    return false;
665  }
666};
667
668Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
669  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
670
671  // Collect all the add operands in a loop, along with their associated loops.
672  // Iterate in reverse so that constants are emitted last, all else equal, and
673  // so that pointer operands are inserted first, which the code below relies on
674  // to form more involved GEPs.
675  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
676  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
677       E(S->op_begin()); I != E; ++I)
678    OpsAndLoops.push_back(std::make_pair(GetRelevantLoop(*I, *SE.LI, *SE.DT),
679                                         *I));
680
681  // Sort by loop. Use a stable sort so that constants follow non-constants and
682  // pointer operands precede non-pointer operands.
683  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
684
685  // Emit instructions to add all the operands. Hoist as much as possible
686  // out of loops, and form meaningful getelementptrs where possible.
687  Value *Sum = 0;
688  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
689       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
690    const Loop *CurLoop = I->first;
691    const SCEV *Op = I->second;
692    if (!Sum) {
693      // This is the first operand. Just expand it.
694      Sum = expand(Op);
695      ++I;
696    } else if (const PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
697      // The running sum expression is a pointer. Try to form a getelementptr
698      // at this level with that as the base.
699      SmallVector<const SCEV *, 4> NewOps;
700      for (; I != E && I->first == CurLoop; ++I)
701        NewOps.push_back(I->second);
702      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
703    } else if (const PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
704      // The running sum is an integer, and there's a pointer at this level.
705      // Try to form a getelementptr.
706      SmallVector<const SCEV *, 4> NewOps;
707      NewOps.push_back(SE.getUnknown(Sum));
708      for (++I; I != E && I->first == CurLoop; ++I)
709        NewOps.push_back(I->second);
710      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
711    } else if (isNonConstantNegative(Op)) {
712      // Instead of doing a negate and add, just do a subtract.
713      Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
714      Sum = InsertNoopCastOfTo(Sum, Ty);
715      Sum = InsertBinop(Instruction::Sub, Sum, W);
716      ++I;
717    } else {
718      // A simple add.
719      Value *W = expandCodeFor(Op, Ty);
720      Sum = InsertNoopCastOfTo(Sum, Ty);
721      // Canonicalize a constant to the RHS.
722      if (isa<Constant>(Sum)) std::swap(Sum, W);
723      Sum = InsertBinop(Instruction::Add, Sum, W);
724      ++I;
725    }
726  }
727
728  return Sum;
729}
730
731Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
732  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
733
734  // Collect all the mul operands in a loop, along with their associated loops.
735  // Iterate in reverse so that constants are emitted last, all else equal.
736  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
737  for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
738       E(S->op_begin()); I != E; ++I)
739    OpsAndLoops.push_back(std::make_pair(GetRelevantLoop(*I, *SE.LI, *SE.DT),
740                                         *I));
741
742  // Sort by loop. Use a stable sort so that constants follow non-constants.
743  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
744
745  // Emit instructions to mul all the operands. Hoist as much as possible
746  // out of loops.
747  Value *Prod = 0;
748  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
749       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
750    const SCEV *Op = I->second;
751    if (!Prod) {
752      // This is the first operand. Just expand it.
753      Prod = expand(Op);
754      ++I;
755    } else if (Op->isAllOnesValue()) {
756      // Instead of doing a multiply by negative one, just do a negate.
757      Prod = InsertNoopCastOfTo(Prod, Ty);
758      Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
759      ++I;
760    } else {
761      // A simple mul.
762      Value *W = expandCodeFor(Op, Ty);
763      Prod = InsertNoopCastOfTo(Prod, Ty);
764      // Canonicalize a constant to the RHS.
765      if (isa<Constant>(Prod)) std::swap(Prod, W);
766      Prod = InsertBinop(Instruction::Mul, Prod, W);
767      ++I;
768    }
769  }
770
771  return Prod;
772}
773
774Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
775  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
776
777  Value *LHS = expandCodeFor(S->getLHS(), Ty);
778  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
779    const APInt &RHS = SC->getValue()->getValue();
780    if (RHS.isPowerOf2())
781      return InsertBinop(Instruction::LShr, LHS,
782                         ConstantInt::get(Ty, RHS.logBase2()));
783  }
784
785  Value *RHS = expandCodeFor(S->getRHS(), Ty);
786  return InsertBinop(Instruction::UDiv, LHS, RHS);
787}
788
789/// Move parts of Base into Rest to leave Base with the minimal
790/// expression that provides a pointer operand suitable for a
791/// GEP expansion.
792static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
793                              ScalarEvolution &SE) {
794  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
795    Base = A->getStart();
796    Rest = SE.getAddExpr(Rest,
797                         SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()),
798                                          A->getStepRecurrence(SE),
799                                          A->getLoop()));
800  }
801  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
802    Base = A->getOperand(A->getNumOperands()-1);
803    SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
804    NewAddOps.back() = Rest;
805    Rest = SE.getAddExpr(NewAddOps);
806    ExposePointerBase(Base, Rest, SE);
807  }
808}
809
810/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
811/// the base addrec, which is the addrec without any non-loop-dominating
812/// values, and return the PHI.
813PHINode *
814SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
815                                        const Loop *L,
816                                        const Type *ExpandTy,
817                                        const Type *IntTy) {
818  // Reuse a previously-inserted PHI, if present.
819  for (BasicBlock::iterator I = L->getHeader()->begin();
820       PHINode *PN = dyn_cast<PHINode>(I); ++I)
821    if (SE.isSCEVable(PN->getType()) &&
822        (SE.getEffectiveSCEVType(PN->getType()) ==
823         SE.getEffectiveSCEVType(Normalized->getType())) &&
824        SE.getSCEV(PN) == Normalized)
825      if (BasicBlock *LatchBlock = L->getLoopLatch()) {
826        Instruction *IncV =
827          cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
828
829        // Determine if this is a well-behaved chain of instructions leading
830        // back to the PHI. It probably will be, if we're scanning an inner
831        // loop already visited by LSR for example, but it wouldn't have
832        // to be.
833        do {
834          if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV)) {
835            IncV = 0;
836            break;
837          }
838          // If any of the operands don't dominate the insert position, bail.
839          // Addrec operands are always loop-invariant, so this can only happen
840          // if there are instructions which haven't been hoisted.
841          for (User::op_iterator OI = IncV->op_begin()+1,
842               OE = IncV->op_end(); OI != OE; ++OI)
843            if (Instruction *OInst = dyn_cast<Instruction>(OI))
844              if (!SE.DT->dominates(OInst, IVIncInsertPos)) {
845                IncV = 0;
846                break;
847              }
848          if (!IncV)
849            break;
850          // Advance to the next instruction.
851          IncV = dyn_cast<Instruction>(IncV->getOperand(0));
852          if (!IncV)
853            break;
854          if (IncV->mayHaveSideEffects()) {
855            IncV = 0;
856            break;
857          }
858        } while (IncV != PN);
859
860        if (IncV) {
861          // Ok, the add recurrence looks usable.
862          // Remember this PHI, even in post-inc mode.
863          InsertedValues.insert(PN);
864          // Remember the increment.
865          IncV = cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
866          rememberInstruction(IncV);
867          if (L == IVIncInsertLoop)
868            do {
869              if (SE.DT->dominates(IncV, IVIncInsertPos))
870                break;
871              // Make sure the increment is where we want it. But don't move it
872              // down past a potential existing post-inc user.
873              IncV->moveBefore(IVIncInsertPos);
874              IVIncInsertPos = IncV;
875              IncV = cast<Instruction>(IncV->getOperand(0));
876            } while (IncV != PN);
877          return PN;
878        }
879      }
880
881  // Save the original insertion point so we can restore it when we're done.
882  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
883  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
884
885  // Expand code for the start value.
886  Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
887                                L->getHeader()->begin());
888
889  // Expand code for the step value. Insert instructions right before the
890  // terminator corresponding to the back-edge. Do this before creating the PHI
891  // so that PHI reuse code doesn't see an incomplete PHI. If the stride is
892  // negative, insert a sub instead of an add for the increment (unless it's a
893  // constant, because subtracts of constants are canonicalized to adds).
894  const SCEV *Step = Normalized->getStepRecurrence(SE);
895  bool isPointer = ExpandTy->isPointerTy();
896  bool isNegative = !isPointer && isNonConstantNegative(Step);
897  if (isNegative)
898    Step = SE.getNegativeSCEV(Step);
899  Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
900
901  // Create the PHI.
902  Builder.SetInsertPoint(L->getHeader(), L->getHeader()->begin());
903  PHINode *PN = Builder.CreatePHI(ExpandTy, "lsr.iv");
904  rememberInstruction(PN);
905
906  // Create the step instructions and populate the PHI.
907  BasicBlock *Header = L->getHeader();
908  for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header);
909       HPI != HPE; ++HPI) {
910    BasicBlock *Pred = *HPI;
911
912    // Add a start value.
913    if (!L->contains(Pred)) {
914      PN->addIncoming(StartV, Pred);
915      continue;
916    }
917
918    // Create a step value and add it to the PHI. If IVIncInsertLoop is
919    // non-null and equal to the addrec's loop, insert the instructions
920    // at IVIncInsertPos.
921    Instruction *InsertPos = L == IVIncInsertLoop ?
922      IVIncInsertPos : Pred->getTerminator();
923    Builder.SetInsertPoint(InsertPos->getParent(), InsertPos);
924    Value *IncV;
925    // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
926    if (isPointer) {
927      const PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
928      // If the step isn't constant, don't use an implicitly scaled GEP, because
929      // that would require a multiply inside the loop.
930      if (!isa<ConstantInt>(StepV))
931        GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
932                                    GEPPtrTy->getAddressSpace());
933      const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
934      IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
935      if (IncV->getType() != PN->getType()) {
936        IncV = Builder.CreateBitCast(IncV, PN->getType(), "tmp");
937        rememberInstruction(IncV);
938      }
939    } else {
940      IncV = isNegative ?
941        Builder.CreateSub(PN, StepV, "lsr.iv.next") :
942        Builder.CreateAdd(PN, StepV, "lsr.iv.next");
943      rememberInstruction(IncV);
944    }
945    PN->addIncoming(IncV, Pred);
946  }
947
948  // Restore the original insert point.
949  if (SaveInsertBB)
950    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
951
952  // Remember this PHI, even in post-inc mode.
953  InsertedValues.insert(PN);
954
955  return PN;
956}
957
958Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
959  const Type *STy = S->getType();
960  const Type *IntTy = SE.getEffectiveSCEVType(STy);
961  const Loop *L = S->getLoop();
962
963  // Determine a normalized form of this expression, which is the expression
964  // before any post-inc adjustment is made.
965  const SCEVAddRecExpr *Normalized = S;
966  if (L == PostIncLoop) {
967    const SCEV *Step = S->getStepRecurrence(SE);
968    Normalized = cast<SCEVAddRecExpr>(SE.getMinusSCEV(S, Step));
969  }
970
971  // Strip off any non-loop-dominating component from the addrec start.
972  const SCEV *Start = Normalized->getStart();
973  const SCEV *PostLoopOffset = 0;
974  if (!Start->properlyDominates(L->getHeader(), SE.DT)) {
975    PostLoopOffset = Start;
976    Start = SE.getIntegerSCEV(0, Normalized->getType());
977    Normalized =
978      cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start,
979                                            Normalized->getStepRecurrence(SE),
980                                            Normalized->getLoop()));
981  }
982
983  // Strip off any non-loop-dominating component from the addrec step.
984  const SCEV *Step = Normalized->getStepRecurrence(SE);
985  const SCEV *PostLoopScale = 0;
986  if (!Step->hasComputableLoopEvolution(L) &&
987      !Step->dominates(L->getHeader(), SE.DT)) {
988    PostLoopScale = Step;
989    Step = SE.getIntegerSCEV(1, Normalized->getType());
990    Normalized =
991      cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, Step,
992                                            Normalized->getLoop()));
993  }
994
995  // Expand the core addrec. If we need post-loop scaling, force it to
996  // expand to an integer type to avoid the need for additional casting.
997  const Type *ExpandTy = PostLoopScale ? IntTy : STy;
998  PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
999
1000  // Accommodate post-inc mode, if necessary.
1001  Value *Result;
1002  if (L != PostIncLoop)
1003    Result = PN;
1004  else {
1005    // In PostInc mode, use the post-incremented value.
1006    BasicBlock *LatchBlock = L->getLoopLatch();
1007    assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1008    Result = PN->getIncomingValueForBlock(LatchBlock);
1009  }
1010
1011  // Re-apply any non-loop-dominating scale.
1012  if (PostLoopScale) {
1013    Result = InsertNoopCastOfTo(Result, IntTy);
1014    Result = Builder.CreateMul(Result,
1015                               expandCodeFor(PostLoopScale, IntTy));
1016    rememberInstruction(Result);
1017  }
1018
1019  // Re-apply any non-loop-dominating offset.
1020  if (PostLoopOffset) {
1021    if (const PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1022      const SCEV *const OffsetArray[1] = { PostLoopOffset };
1023      Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
1024    } else {
1025      Result = InsertNoopCastOfTo(Result, IntTy);
1026      Result = Builder.CreateAdd(Result,
1027                                 expandCodeFor(PostLoopOffset, IntTy));
1028      rememberInstruction(Result);
1029    }
1030  }
1031
1032  return Result;
1033}
1034
1035Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1036  if (!CanonicalMode) return expandAddRecExprLiterally(S);
1037
1038  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
1039  const Loop *L = S->getLoop();
1040
1041  // First check for an existing canonical IV in a suitable type.
1042  PHINode *CanonicalIV = 0;
1043  if (PHINode *PN = L->getCanonicalInductionVariable())
1044    if (SE.isSCEVable(PN->getType()) &&
1045        SE.getEffectiveSCEVType(PN->getType())->isIntegerTy() &&
1046        SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1047      CanonicalIV = PN;
1048
1049  // Rewrite an AddRec in terms of the canonical induction variable, if
1050  // its type is more narrow.
1051  if (CanonicalIV &&
1052      SE.getTypeSizeInBits(CanonicalIV->getType()) >
1053      SE.getTypeSizeInBits(Ty)) {
1054    const SmallVectorImpl<const SCEV *> &Ops = S->getOperands();
1055    SmallVector<const SCEV *, 4> NewOps(Ops.size());
1056    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1057      NewOps[i] = SE.getAnyExtendExpr(Ops[i], CanonicalIV->getType());
1058    Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop()));
1059    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1060    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1061    BasicBlock::iterator NewInsertPt =
1062      llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
1063    while (isa<PHINode>(NewInsertPt)) ++NewInsertPt;
1064    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
1065                      NewInsertPt);
1066    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1067    return V;
1068  }
1069
1070  // {X,+,F} --> X + {0,+,F}
1071  if (!S->getStart()->isZero()) {
1072    const SmallVectorImpl<const SCEV *> &SOperands = S->getOperands();
1073    SmallVector<const SCEV *, 4> NewOps(SOperands.begin(), SOperands.end());
1074    NewOps[0] = SE.getIntegerSCEV(0, Ty);
1075    const SCEV *Rest = SE.getAddRecExpr(NewOps, L);
1076
1077    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1078    // comments on expandAddToGEP for details.
1079    const SCEV *Base = S->getStart();
1080    const SCEV *RestArray[1] = { Rest };
1081    // Dig into the expression to find the pointer base for a GEP.
1082    ExposePointerBase(Base, RestArray[0], SE);
1083    // If we found a pointer, expand the AddRec with a GEP.
1084    if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1085      // Make sure the Base isn't something exotic, such as a multiplied
1086      // or divided pointer value. In those cases, the result type isn't
1087      // actually a pointer type.
1088      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1089        Value *StartV = expand(Base);
1090        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1091        return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
1092      }
1093    }
1094
1095    // Just do a normal add. Pre-expand the operands to suppress folding.
1096    return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
1097                                SE.getUnknown(expand(Rest))));
1098  }
1099
1100  // {0,+,1} --> Insert a canonical induction variable into the loop!
1101  if (S->isAffine() &&
1102      S->getOperand(1) == SE.getIntegerSCEV(1, Ty)) {
1103    // If there's a canonical IV, just use it.
1104    if (CanonicalIV) {
1105      assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1106             "IVs with types different from the canonical IV should "
1107             "already have been handled!");
1108      return CanonicalIV;
1109    }
1110
1111    // Create and insert the PHI node for the induction variable in the
1112    // specified loop.
1113    BasicBlock *Header = L->getHeader();
1114    PHINode *PN = PHINode::Create(Ty, "indvar", Header->begin());
1115    rememberInstruction(PN);
1116
1117    Constant *One = ConstantInt::get(Ty, 1);
1118    for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header);
1119         HPI != HPE; ++HPI)
1120      if (L->contains(*HPI)) {
1121        // Insert a unit add instruction right before the terminator
1122        // corresponding to the back-edge.
1123        Instruction *Add = BinaryOperator::CreateAdd(PN, One, "indvar.next",
1124                                                     (*HPI)->getTerminator());
1125        rememberInstruction(Add);
1126        PN->addIncoming(Add, *HPI);
1127      } else {
1128        PN->addIncoming(Constant::getNullValue(Ty), *HPI);
1129      }
1130  }
1131
1132  // {0,+,F} --> {0,+,1} * F
1133  // Get the canonical induction variable I for this loop.
1134  Value *I = CanonicalIV ?
1135             CanonicalIV :
1136             getOrInsertCanonicalInductionVariable(L, Ty);
1137
1138  // If this is a simple linear addrec, emit it now as a special case.
1139  if (S->isAffine())    // {0,+,F} --> i*F
1140    return
1141      expand(SE.getTruncateOrNoop(
1142        SE.getMulExpr(SE.getUnknown(I),
1143                      SE.getNoopOrAnyExtend(S->getOperand(1),
1144                                            I->getType())),
1145        Ty));
1146
1147  // If this is a chain of recurrences, turn it into a closed form, using the
1148  // folders, then expandCodeFor the closed form.  This allows the folders to
1149  // simplify the expression without having to build a bunch of special code
1150  // into this folder.
1151  const SCEV *IH = SE.getUnknown(I);   // Get I as a "symbolic" SCEV.
1152
1153  // Promote S up to the canonical IV type, if the cast is foldable.
1154  const SCEV *NewS = S;
1155  const SCEV *Ext = SE.getNoopOrAnyExtend(S, I->getType());
1156  if (isa<SCEVAddRecExpr>(Ext))
1157    NewS = Ext;
1158
1159  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1160  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1161
1162  // Truncate the result down to the original type, if needed.
1163  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1164  return expand(T);
1165}
1166
1167Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1168  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
1169  Value *V = expandCodeFor(S->getOperand(),
1170                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1171  Value *I = Builder.CreateTrunc(V, Ty, "tmp");
1172  rememberInstruction(I);
1173  return I;
1174}
1175
1176Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1177  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
1178  Value *V = expandCodeFor(S->getOperand(),
1179                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1180  Value *I = Builder.CreateZExt(V, Ty, "tmp");
1181  rememberInstruction(I);
1182  return I;
1183}
1184
1185Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1186  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
1187  Value *V = expandCodeFor(S->getOperand(),
1188                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1189  Value *I = Builder.CreateSExt(V, Ty, "tmp");
1190  rememberInstruction(I);
1191  return I;
1192}
1193
1194Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1195  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1196  const Type *Ty = LHS->getType();
1197  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1198    // In the case of mixed integer and pointer types, do the
1199    // rest of the comparisons as integer.
1200    if (S->getOperand(i)->getType() != Ty) {
1201      Ty = SE.getEffectiveSCEVType(Ty);
1202      LHS = InsertNoopCastOfTo(LHS, Ty);
1203    }
1204    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1205    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS, "tmp");
1206    rememberInstruction(ICmp);
1207    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1208    rememberInstruction(Sel);
1209    LHS = Sel;
1210  }
1211  // In the case of mixed integer and pointer types, cast the
1212  // final result back to the pointer type.
1213  if (LHS->getType() != S->getType())
1214    LHS = InsertNoopCastOfTo(LHS, S->getType());
1215  return LHS;
1216}
1217
1218Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1219  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1220  const Type *Ty = LHS->getType();
1221  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1222    // In the case of mixed integer and pointer types, do the
1223    // rest of the comparisons as integer.
1224    if (S->getOperand(i)->getType() != Ty) {
1225      Ty = SE.getEffectiveSCEVType(Ty);
1226      LHS = InsertNoopCastOfTo(LHS, Ty);
1227    }
1228    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1229    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS, "tmp");
1230    rememberInstruction(ICmp);
1231    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1232    rememberInstruction(Sel);
1233    LHS = Sel;
1234  }
1235  // In the case of mixed integer and pointer types, cast the
1236  // final result back to the pointer type.
1237  if (LHS->getType() != S->getType())
1238    LHS = InsertNoopCastOfTo(LHS, S->getType());
1239  return LHS;
1240}
1241
1242Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty) {
1243  // Expand the code for this SCEV.
1244  Value *V = expand(SH);
1245  if (Ty) {
1246    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1247           "non-trivial casts should be done with the SCEVs directly!");
1248    V = InsertNoopCastOfTo(V, Ty);
1249  }
1250  return V;
1251}
1252
1253Value *SCEVExpander::expand(const SCEV *S) {
1254  // Compute an insertion point for this SCEV object. Hoist the instructions
1255  // as far out in the loop nest as possible.
1256  Instruction *InsertPt = Builder.GetInsertPoint();
1257  for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
1258       L = L->getParentLoop())
1259    if (S->isLoopInvariant(L)) {
1260      if (!L) break;
1261      if (BasicBlock *Preheader = L->getLoopPreheader())
1262        InsertPt = Preheader->getTerminator();
1263    } else {
1264      // If the SCEV is computable at this level, insert it into the header
1265      // after the PHIs (and after any other instructions that we've inserted
1266      // there) so that it is guaranteed to dominate any user inside the loop.
1267      if (L && S->hasComputableLoopEvolution(L) && L != PostIncLoop)
1268        InsertPt = L->getHeader()->getFirstNonPHI();
1269      while (isInsertedInstruction(InsertPt))
1270        InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
1271      break;
1272    }
1273
1274  // Check to see if we already expanded this here.
1275  std::map<std::pair<const SCEV *, Instruction *>,
1276           AssertingVH<Value> >::iterator I =
1277    InsertedExpressions.find(std::make_pair(S, InsertPt));
1278  if (I != InsertedExpressions.end())
1279    return I->second;
1280
1281  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1282  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1283  Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1284
1285  // Expand the expression into instructions.
1286  Value *V = visit(S);
1287
1288  // Remember the expanded value for this SCEV at this location.
1289  if (!PostIncLoop)
1290    InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1291
1292  restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1293  return V;
1294}
1295
1296void SCEVExpander::rememberInstruction(Value *I) {
1297  if (!PostIncLoop)
1298    InsertedValues.insert(I);
1299
1300  // If we just claimed an existing instruction and that instruction had
1301  // been the insert point, adjust the insert point forward so that
1302  // subsequently inserted code will be dominated.
1303  if (Builder.GetInsertPoint() == I) {
1304    BasicBlock::iterator It = cast<Instruction>(I);
1305    do { ++It; } while (isInsertedInstruction(It));
1306    Builder.SetInsertPoint(Builder.GetInsertBlock(), It);
1307  }
1308}
1309
1310void SCEVExpander::restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I) {
1311  // If we acquired more instructions since the old insert point was saved,
1312  // advance past them.
1313  while (isInsertedInstruction(I)) ++I;
1314
1315  Builder.SetInsertPoint(BB, I);
1316}
1317
1318/// getOrInsertCanonicalInductionVariable - This method returns the
1319/// canonical induction variable of the specified type for the specified
1320/// loop (inserting one if there is none).  A canonical induction variable
1321/// starts at zero and steps by one on each iteration.
1322Value *
1323SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1324                                                    const Type *Ty) {
1325  assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1326  const SCEV *H = SE.getAddRecExpr(SE.getIntegerSCEV(0, Ty),
1327                                   SE.getIntegerSCEV(1, Ty), L);
1328  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1329  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1330  Value *V = expandCodeFor(H, 0, L->getHeader()->begin());
1331  if (SaveInsertBB)
1332    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1333  return V;
1334}
1335