MemorySSA.cpp revision 341825
1//===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the MemorySSA class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/MemorySSA.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/DenseMapInfo.h"
17#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/DepthFirstIterator.h"
19#include "llvm/ADT/Hashing.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/Optional.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/iterator_range.h"
27#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/Analysis/IteratedDominanceFrontier.h"
29#include "llvm/Analysis/MemoryLocation.h"
30#include "llvm/Config/llvm-config.h"
31#include "llvm/IR/AssemblyAnnotationWriter.h"
32#include "llvm/IR/BasicBlock.h"
33#include "llvm/IR/CallSite.h"
34#include "llvm/IR/Dominators.h"
35#include "llvm/IR/Function.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/IR/Instructions.h"
38#include "llvm/IR/IntrinsicInst.h"
39#include "llvm/IR/Intrinsics.h"
40#include "llvm/IR/LLVMContext.h"
41#include "llvm/IR/PassManager.h"
42#include "llvm/IR/Use.h"
43#include "llvm/Pass.h"
44#include "llvm/Support/AtomicOrdering.h"
45#include "llvm/Support/Casting.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Compiler.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/FormattedStream.h"
51#include "llvm/Support/raw_ostream.h"
52#include <algorithm>
53#include <cassert>
54#include <iterator>
55#include <memory>
56#include <utility>
57
58using namespace llvm;
59
60#define DEBUG_TYPE "memoryssa"
61
62INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
63                      true)
64INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
65INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
66INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
67                    true)
68
69INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
70                      "Memory SSA Printer", false, false)
71INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
72INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
73                    "Memory SSA Printer", false, false)
74
75static cl::opt<unsigned> MaxCheckLimit(
76    "memssa-check-limit", cl::Hidden, cl::init(100),
77    cl::desc("The maximum number of stores/phis MemorySSA"
78             "will consider trying to walk past (default = 100)"));
79
80static cl::opt<bool>
81    VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden,
82                    cl::desc("Verify MemorySSA in legacy printer pass."));
83
84namespace llvm {
85
86/// An assembly annotator class to print Memory SSA information in
87/// comments.
88class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
89  friend class MemorySSA;
90
91  const MemorySSA *MSSA;
92
93public:
94  MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
95
96  void emitBasicBlockStartAnnot(const BasicBlock *BB,
97                                formatted_raw_ostream &OS) override {
98    if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
99      OS << "; " << *MA << "\n";
100  }
101
102  void emitInstructionAnnot(const Instruction *I,
103                            formatted_raw_ostream &OS) override {
104    if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
105      OS << "; " << *MA << "\n";
106  }
107};
108
109} // end namespace llvm
110
111namespace {
112
113/// Our current alias analysis API differentiates heavily between calls and
114/// non-calls, and functions called on one usually assert on the other.
115/// This class encapsulates the distinction to simplify other code that wants
116/// "Memory affecting instructions and related data" to use as a key.
117/// For example, this class is used as a densemap key in the use optimizer.
118class MemoryLocOrCall {
119public:
120  bool IsCall = false;
121
122  MemoryLocOrCall(MemoryUseOrDef *MUD)
123      : MemoryLocOrCall(MUD->getMemoryInst()) {}
124  MemoryLocOrCall(const MemoryUseOrDef *MUD)
125      : MemoryLocOrCall(MUD->getMemoryInst()) {}
126
127  MemoryLocOrCall(Instruction *Inst) {
128    if (ImmutableCallSite(Inst)) {
129      IsCall = true;
130      CS = ImmutableCallSite(Inst);
131    } else {
132      IsCall = false;
133      // There is no such thing as a memorylocation for a fence inst, and it is
134      // unique in that regard.
135      if (!isa<FenceInst>(Inst))
136        Loc = MemoryLocation::get(Inst);
137    }
138  }
139
140  explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
141
142  ImmutableCallSite getCS() const {
143    assert(IsCall);
144    return CS;
145  }
146
147  MemoryLocation getLoc() const {
148    assert(!IsCall);
149    return Loc;
150  }
151
152  bool operator==(const MemoryLocOrCall &Other) const {
153    if (IsCall != Other.IsCall)
154      return false;
155
156    if (!IsCall)
157      return Loc == Other.Loc;
158
159    if (CS.getCalledValue() != Other.CS.getCalledValue())
160      return false;
161
162    return CS.arg_size() == Other.CS.arg_size() &&
163           std::equal(CS.arg_begin(), CS.arg_end(), Other.CS.arg_begin());
164  }
165
166private:
167  union {
168    ImmutableCallSite CS;
169    MemoryLocation Loc;
170  };
171};
172
173} // end anonymous namespace
174
175namespace llvm {
176
177template <> struct DenseMapInfo<MemoryLocOrCall> {
178  static inline MemoryLocOrCall getEmptyKey() {
179    return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
180  }
181
182  static inline MemoryLocOrCall getTombstoneKey() {
183    return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
184  }
185
186  static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
187    if (!MLOC.IsCall)
188      return hash_combine(
189          MLOC.IsCall,
190          DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
191
192    hash_code hash =
193        hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
194                                      MLOC.getCS().getCalledValue()));
195
196    for (const Value *Arg : MLOC.getCS().args())
197      hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
198    return hash;
199  }
200
201  static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
202    return LHS == RHS;
203  }
204};
205
206} // end namespace llvm
207
208/// This does one-way checks to see if Use could theoretically be hoisted above
209/// MayClobber. This will not check the other way around.
210///
211/// This assumes that, for the purposes of MemorySSA, Use comes directly after
212/// MayClobber, with no potentially clobbering operations in between them.
213/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
214static bool areLoadsReorderable(const LoadInst *Use,
215                                const LoadInst *MayClobber) {
216  bool VolatileUse = Use->isVolatile();
217  bool VolatileClobber = MayClobber->isVolatile();
218  // Volatile operations may never be reordered with other volatile operations.
219  if (VolatileUse && VolatileClobber)
220    return false;
221  // Otherwise, volatile doesn't matter here. From the language reference:
222  // 'optimizers may change the order of volatile operations relative to
223  // non-volatile operations.'"
224
225  // If a load is seq_cst, it cannot be moved above other loads. If its ordering
226  // is weaker, it can be moved above other loads. We just need to be sure that
227  // MayClobber isn't an acquire load, because loads can't be moved above
228  // acquire loads.
229  //
230  // Note that this explicitly *does* allow the free reordering of monotonic (or
231  // weaker) loads of the same address.
232  bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
233  bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
234                                                     AtomicOrdering::Acquire);
235  return !(SeqCstUse || MayClobberIsAcquire);
236}
237
238namespace {
239
240struct ClobberAlias {
241  bool IsClobber;
242  Optional<AliasResult> AR;
243};
244
245} // end anonymous namespace
246
247// Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
248// ignored if IsClobber = false.
249static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
250                                             const MemoryLocation &UseLoc,
251                                             const Instruction *UseInst,
252                                             AliasAnalysis &AA) {
253  Instruction *DefInst = MD->getMemoryInst();
254  assert(DefInst && "Defining instruction not actually an instruction");
255  ImmutableCallSite UseCS(UseInst);
256  Optional<AliasResult> AR;
257
258  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
259    // These intrinsics will show up as affecting memory, but they are just
260    // markers, mostly.
261    //
262    // FIXME: We probably don't actually want MemorySSA to model these at all
263    // (including creating MemoryAccesses for them): we just end up inventing
264    // clobbers where they don't really exist at all. Please see D43269 for
265    // context.
266    switch (II->getIntrinsicID()) {
267    case Intrinsic::lifetime_start:
268      if (UseCS)
269        return {false, NoAlias};
270      AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
271      return {AR != NoAlias, AR};
272    case Intrinsic::lifetime_end:
273    case Intrinsic::invariant_start:
274    case Intrinsic::invariant_end:
275    case Intrinsic::assume:
276      return {false, NoAlias};
277    default:
278      break;
279    }
280  }
281
282  if (UseCS) {
283    ModRefInfo I = AA.getModRefInfo(DefInst, UseCS);
284    AR = isMustSet(I) ? MustAlias : MayAlias;
285    return {isModOrRefSet(I), AR};
286  }
287
288  if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
289    if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
290      return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
291
292  ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
293  AR = isMustSet(I) ? MustAlias : MayAlias;
294  return {isModSet(I), AR};
295}
296
297static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
298                                             const MemoryUseOrDef *MU,
299                                             const MemoryLocOrCall &UseMLOC,
300                                             AliasAnalysis &AA) {
301  // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
302  // to exist while MemoryLocOrCall is pushed through places.
303  if (UseMLOC.IsCall)
304    return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
305                                    AA);
306  return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
307                                  AA);
308}
309
310// Return true when MD may alias MU, return false otherwise.
311bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
312                                        AliasAnalysis &AA) {
313  return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
314}
315
316namespace {
317
318struct UpwardsMemoryQuery {
319  // True if our original query started off as a call
320  bool IsCall = false;
321  // The pointer location we started the query with. This will be empty if
322  // IsCall is true.
323  MemoryLocation StartingLoc;
324  // This is the instruction we were querying about.
325  const Instruction *Inst = nullptr;
326  // The MemoryAccess we actually got called with, used to test local domination
327  const MemoryAccess *OriginalAccess = nullptr;
328  Optional<AliasResult> AR = MayAlias;
329
330  UpwardsMemoryQuery() = default;
331
332  UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
333      : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) {
334    if (!IsCall)
335      StartingLoc = MemoryLocation::get(Inst);
336  }
337};
338
339} // end anonymous namespace
340
341static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
342                           AliasAnalysis &AA) {
343  Instruction *Inst = MD->getMemoryInst();
344  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
345    switch (II->getIntrinsicID()) {
346    case Intrinsic::lifetime_end:
347      return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
348    default:
349      return false;
350    }
351  }
352  return false;
353}
354
355static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
356                                                   const Instruction *I) {
357  // If the memory can't be changed, then loads of the memory can't be
358  // clobbered.
359  return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
360                              AA.pointsToConstantMemory(cast<LoadInst>(I)->
361                                                          getPointerOperand()));
362}
363
364/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
365/// inbetween `Start` and `ClobberAt` can clobbers `Start`.
366///
367/// This is meant to be as simple and self-contained as possible. Because it
368/// uses no cache, etc., it can be relatively expensive.
369///
370/// \param Start     The MemoryAccess that we want to walk from.
371/// \param ClobberAt A clobber for Start.
372/// \param StartLoc  The MemoryLocation for Start.
373/// \param MSSA      The MemorySSA isntance that Start and ClobberAt belong to.
374/// \param Query     The UpwardsMemoryQuery we used for our search.
375/// \param AA        The AliasAnalysis we used for our search.
376static void LLVM_ATTRIBUTE_UNUSED
377checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt,
378                   const MemoryLocation &StartLoc, const MemorySSA &MSSA,
379                   const UpwardsMemoryQuery &Query, AliasAnalysis &AA) {
380  assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
381
382  if (MSSA.isLiveOnEntryDef(Start)) {
383    assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
384           "liveOnEntry must clobber itself");
385    return;
386  }
387
388  bool FoundClobber = false;
389  DenseSet<MemoryAccessPair> VisitedPhis;
390  SmallVector<MemoryAccessPair, 8> Worklist;
391  Worklist.emplace_back(Start, StartLoc);
392  // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
393  // is found, complain.
394  while (!Worklist.empty()) {
395    MemoryAccessPair MAP = Worklist.pop_back_val();
396    // All we care about is that nothing from Start to ClobberAt clobbers Start.
397    // We learn nothing from revisiting nodes.
398    if (!VisitedPhis.insert(MAP).second)
399      continue;
400
401    for (MemoryAccess *MA : def_chain(MAP.first)) {
402      if (MA == ClobberAt) {
403        if (auto *MD = dyn_cast<MemoryDef>(MA)) {
404          // instructionClobbersQuery isn't essentially free, so don't use `|=`,
405          // since it won't let us short-circuit.
406          //
407          // Also, note that this can't be hoisted out of the `Worklist` loop,
408          // since MD may only act as a clobber for 1 of N MemoryLocations.
409          FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
410          if (!FoundClobber) {
411            ClobberAlias CA =
412                instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
413            if (CA.IsClobber) {
414              FoundClobber = true;
415              // Not used: CA.AR;
416            }
417          }
418        }
419        break;
420      }
421
422      // We should never hit liveOnEntry, unless it's the clobber.
423      assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
424
425      if (auto *MD = dyn_cast<MemoryDef>(MA)) {
426        (void)MD;
427        assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
428                    .IsClobber &&
429               "Found clobber before reaching ClobberAt!");
430        continue;
431      }
432
433      assert(isa<MemoryPhi>(MA));
434      Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end());
435    }
436  }
437
438  // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
439  // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
440  assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
441         "ClobberAt never acted as a clobber");
442}
443
444namespace {
445
446/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
447/// in one class.
448class ClobberWalker {
449  /// Save a few bytes by using unsigned instead of size_t.
450  using ListIndex = unsigned;
451
452  /// Represents a span of contiguous MemoryDefs, potentially ending in a
453  /// MemoryPhi.
454  struct DefPath {
455    MemoryLocation Loc;
456    // Note that, because we always walk in reverse, Last will always dominate
457    // First. Also note that First and Last are inclusive.
458    MemoryAccess *First;
459    MemoryAccess *Last;
460    Optional<ListIndex> Previous;
461
462    DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
463            Optional<ListIndex> Previous)
464        : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
465
466    DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
467            Optional<ListIndex> Previous)
468        : DefPath(Loc, Init, Init, Previous) {}
469  };
470
471  const MemorySSA &MSSA;
472  AliasAnalysis &AA;
473  DominatorTree &DT;
474  UpwardsMemoryQuery *Query;
475
476  // Phi optimization bookkeeping
477  SmallVector<DefPath, 32> Paths;
478  DenseSet<ConstMemoryAccessPair> VisitedPhis;
479
480  /// Find the nearest def or phi that `From` can legally be optimized to.
481  const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
482    assert(From->getNumOperands() && "Phi with no operands?");
483
484    BasicBlock *BB = From->getBlock();
485    MemoryAccess *Result = MSSA.getLiveOnEntryDef();
486    DomTreeNode *Node = DT.getNode(BB);
487    while ((Node = Node->getIDom())) {
488      auto *Defs = MSSA.getBlockDefs(Node->getBlock());
489      if (Defs)
490        return &*Defs->rbegin();
491    }
492    return Result;
493  }
494
495  /// Result of calling walkToPhiOrClobber.
496  struct UpwardsWalkResult {
497    /// The "Result" of the walk. Either a clobber, the last thing we walked, or
498    /// both. Include alias info when clobber found.
499    MemoryAccess *Result;
500    bool IsKnownClobber;
501    Optional<AliasResult> AR;
502  };
503
504  /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
505  /// This will update Desc.Last as it walks. It will (optionally) also stop at
506  /// StopAt.
507  ///
508  /// This does not test for whether StopAt is a clobber
509  UpwardsWalkResult
510  walkToPhiOrClobber(DefPath &Desc,
511                     const MemoryAccess *StopAt = nullptr) const {
512    assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
513
514    for (MemoryAccess *Current : def_chain(Desc.Last)) {
515      Desc.Last = Current;
516      if (Current == StopAt)
517        return {Current, false, MayAlias};
518
519      if (auto *MD = dyn_cast<MemoryDef>(Current)) {
520        if (MSSA.isLiveOnEntryDef(MD))
521          return {MD, true, MustAlias};
522        ClobberAlias CA =
523            instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
524        if (CA.IsClobber)
525          return {MD, true, CA.AR};
526      }
527    }
528
529    assert(isa<MemoryPhi>(Desc.Last) &&
530           "Ended at a non-clobber that's not a phi?");
531    return {Desc.Last, false, MayAlias};
532  }
533
534  void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
535                   ListIndex PriorNode) {
536    auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
537                                 upward_defs_end());
538    for (const MemoryAccessPair &P : UpwardDefs) {
539      PausedSearches.push_back(Paths.size());
540      Paths.emplace_back(P.second, P.first, PriorNode);
541    }
542  }
543
544  /// Represents a search that terminated after finding a clobber. This clobber
545  /// may or may not be present in the path of defs from LastNode..SearchStart,
546  /// since it may have been retrieved from cache.
547  struct TerminatedPath {
548    MemoryAccess *Clobber;
549    ListIndex LastNode;
550  };
551
552  /// Get an access that keeps us from optimizing to the given phi.
553  ///
554  /// PausedSearches is an array of indices into the Paths array. Its incoming
555  /// value is the indices of searches that stopped at the last phi optimization
556  /// target. It's left in an unspecified state.
557  ///
558  /// If this returns None, NewPaused is a vector of searches that terminated
559  /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
560  Optional<TerminatedPath>
561  getBlockingAccess(const MemoryAccess *StopWhere,
562                    SmallVectorImpl<ListIndex> &PausedSearches,
563                    SmallVectorImpl<ListIndex> &NewPaused,
564                    SmallVectorImpl<TerminatedPath> &Terminated) {
565    assert(!PausedSearches.empty() && "No searches to continue?");
566
567    // BFS vs DFS really doesn't make a difference here, so just do a DFS with
568    // PausedSearches as our stack.
569    while (!PausedSearches.empty()) {
570      ListIndex PathIndex = PausedSearches.pop_back_val();
571      DefPath &Node = Paths[PathIndex];
572
573      // If we've already visited this path with this MemoryLocation, we don't
574      // need to do so again.
575      //
576      // NOTE: That we just drop these paths on the ground makes caching
577      // behavior sporadic. e.g. given a diamond:
578      //  A
579      // B C
580      //  D
581      //
582      // ...If we walk D, B, A, C, we'll only cache the result of phi
583      // optimization for A, B, and D; C will be skipped because it dies here.
584      // This arguably isn't the worst thing ever, since:
585      //   - We generally query things in a top-down order, so if we got below D
586      //     without needing cache entries for {C, MemLoc}, then chances are
587      //     that those cache entries would end up ultimately unused.
588      //   - We still cache things for A, so C only needs to walk up a bit.
589      // If this behavior becomes problematic, we can fix without a ton of extra
590      // work.
591      if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
592        continue;
593
594      UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere);
595      if (Res.IsKnownClobber) {
596        assert(Res.Result != StopWhere);
597        // If this wasn't a cache hit, we hit a clobber when walking. That's a
598        // failure.
599        TerminatedPath Term{Res.Result, PathIndex};
600        if (!MSSA.dominates(Res.Result, StopWhere))
601          return Term;
602
603        // Otherwise, it's a valid thing to potentially optimize to.
604        Terminated.push_back(Term);
605        continue;
606      }
607
608      if (Res.Result == StopWhere) {
609        // We've hit our target. Save this path off for if we want to continue
610        // walking.
611        NewPaused.push_back(PathIndex);
612        continue;
613      }
614
615      assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
616      addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
617    }
618
619    return None;
620  }
621
622  template <typename T, typename Walker>
623  struct generic_def_path_iterator
624      : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
625                                    std::forward_iterator_tag, T *> {
626    generic_def_path_iterator() = default;
627    generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
628
629    T &operator*() const { return curNode(); }
630
631    generic_def_path_iterator &operator++() {
632      N = curNode().Previous;
633      return *this;
634    }
635
636    bool operator==(const generic_def_path_iterator &O) const {
637      if (N.hasValue() != O.N.hasValue())
638        return false;
639      return !N.hasValue() || *N == *O.N;
640    }
641
642  private:
643    T &curNode() const { return W->Paths[*N]; }
644
645    Walker *W = nullptr;
646    Optional<ListIndex> N = None;
647  };
648
649  using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
650  using const_def_path_iterator =
651      generic_def_path_iterator<const DefPath, const ClobberWalker>;
652
653  iterator_range<def_path_iterator> def_path(ListIndex From) {
654    return make_range(def_path_iterator(this, From), def_path_iterator());
655  }
656
657  iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
658    return make_range(const_def_path_iterator(this, From),
659                      const_def_path_iterator());
660  }
661
662  struct OptznResult {
663    /// The path that contains our result.
664    TerminatedPath PrimaryClobber;
665    /// The paths that we can legally cache back from, but that aren't
666    /// necessarily the result of the Phi optimization.
667    SmallVector<TerminatedPath, 4> OtherClobbers;
668  };
669
670  ListIndex defPathIndex(const DefPath &N) const {
671    // The assert looks nicer if we don't need to do &N
672    const DefPath *NP = &N;
673    assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
674           "Out of bounds DefPath!");
675    return NP - &Paths.front();
676  }
677
678  /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
679  /// that act as legal clobbers. Note that this won't return *all* clobbers.
680  ///
681  /// Phi optimization algorithm tl;dr:
682  ///   - Find the earliest def/phi, A, we can optimize to
683  ///   - Find if all paths from the starting memory access ultimately reach A
684  ///     - If not, optimization isn't possible.
685  ///     - Otherwise, walk from A to another clobber or phi, A'.
686  ///       - If A' is a def, we're done.
687  ///       - If A' is a phi, try to optimize it.
688  ///
689  /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
690  /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
691  OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
692                             const MemoryLocation &Loc) {
693    assert(Paths.empty() && VisitedPhis.empty() &&
694           "Reset the optimization state.");
695
696    Paths.emplace_back(Loc, Start, Phi, None);
697    // Stores how many "valid" optimization nodes we had prior to calling
698    // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
699    auto PriorPathsSize = Paths.size();
700
701    SmallVector<ListIndex, 16> PausedSearches;
702    SmallVector<ListIndex, 8> NewPaused;
703    SmallVector<TerminatedPath, 4> TerminatedPaths;
704
705    addSearches(Phi, PausedSearches, 0);
706
707    // Moves the TerminatedPath with the "most dominated" Clobber to the end of
708    // Paths.
709    auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
710      assert(!Paths.empty() && "Need a path to move");
711      auto Dom = Paths.begin();
712      for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
713        if (!MSSA.dominates(I->Clobber, Dom->Clobber))
714          Dom = I;
715      auto Last = Paths.end() - 1;
716      if (Last != Dom)
717        std::iter_swap(Last, Dom);
718    };
719
720    MemoryPhi *Current = Phi;
721    while (true) {
722      assert(!MSSA.isLiveOnEntryDef(Current) &&
723             "liveOnEntry wasn't treated as a clobber?");
724
725      const auto *Target = getWalkTarget(Current);
726      // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
727      // optimization for the prior phi.
728      assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
729        return MSSA.dominates(P.Clobber, Target);
730      }));
731
732      // FIXME: This is broken, because the Blocker may be reported to be
733      // liveOnEntry, and we'll happily wait for that to disappear (read: never)
734      // For the moment, this is fine, since we do nothing with blocker info.
735      if (Optional<TerminatedPath> Blocker = getBlockingAccess(
736              Target, PausedSearches, NewPaused, TerminatedPaths)) {
737
738        // Find the node we started at. We can't search based on N->Last, since
739        // we may have gone around a loop with a different MemoryLocation.
740        auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
741          return defPathIndex(N) < PriorPathsSize;
742        });
743        assert(Iter != def_path_iterator());
744
745        DefPath &CurNode = *Iter;
746        assert(CurNode.Last == Current);
747
748        // Two things:
749        // A. We can't reliably cache all of NewPaused back. Consider a case
750        //    where we have two paths in NewPaused; one of which can't optimize
751        //    above this phi, whereas the other can. If we cache the second path
752        //    back, we'll end up with suboptimal cache entries. We can handle
753        //    cases like this a bit better when we either try to find all
754        //    clobbers that block phi optimization, or when our cache starts
755        //    supporting unfinished searches.
756        // B. We can't reliably cache TerminatedPaths back here without doing
757        //    extra checks; consider a case like:
758        //       T
759        //      / \
760        //     D   C
761        //      \ /
762        //       S
763        //    Where T is our target, C is a node with a clobber on it, D is a
764        //    diamond (with a clobber *only* on the left or right node, N), and
765        //    S is our start. Say we walk to D, through the node opposite N
766        //    (read: ignoring the clobber), and see a cache entry in the top
767        //    node of D. That cache entry gets put into TerminatedPaths. We then
768        //    walk up to C (N is later in our worklist), find the clobber, and
769        //    quit. If we append TerminatedPaths to OtherClobbers, we'll cache
770        //    the bottom part of D to the cached clobber, ignoring the clobber
771        //    in N. Again, this problem goes away if we start tracking all
772        //    blockers for a given phi optimization.
773        TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
774        return {Result, {}};
775      }
776
777      // If there's nothing left to search, then all paths led to valid clobbers
778      // that we got from our cache; pick the nearest to the start, and allow
779      // the rest to be cached back.
780      if (NewPaused.empty()) {
781        MoveDominatedPathToEnd(TerminatedPaths);
782        TerminatedPath Result = TerminatedPaths.pop_back_val();
783        return {Result, std::move(TerminatedPaths)};
784      }
785
786      MemoryAccess *DefChainEnd = nullptr;
787      SmallVector<TerminatedPath, 4> Clobbers;
788      for (ListIndex Paused : NewPaused) {
789        UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
790        if (WR.IsKnownClobber)
791          Clobbers.push_back({WR.Result, Paused});
792        else
793          // Micro-opt: If we hit the end of the chain, save it.
794          DefChainEnd = WR.Result;
795      }
796
797      if (!TerminatedPaths.empty()) {
798        // If we couldn't find the dominating phi/liveOnEntry in the above loop,
799        // do it now.
800        if (!DefChainEnd)
801          for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
802            DefChainEnd = MA;
803
804        // If any of the terminated paths don't dominate the phi we'll try to
805        // optimize, we need to figure out what they are and quit.
806        const BasicBlock *ChainBB = DefChainEnd->getBlock();
807        for (const TerminatedPath &TP : TerminatedPaths) {
808          // Because we know that DefChainEnd is as "high" as we can go, we
809          // don't need local dominance checks; BB dominance is sufficient.
810          if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
811            Clobbers.push_back(TP);
812        }
813      }
814
815      // If we have clobbers in the def chain, find the one closest to Current
816      // and quit.
817      if (!Clobbers.empty()) {
818        MoveDominatedPathToEnd(Clobbers);
819        TerminatedPath Result = Clobbers.pop_back_val();
820        return {Result, std::move(Clobbers)};
821      }
822
823      assert(all_of(NewPaused,
824                    [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
825
826      // Because liveOnEntry is a clobber, this must be a phi.
827      auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
828
829      PriorPathsSize = Paths.size();
830      PausedSearches.clear();
831      for (ListIndex I : NewPaused)
832        addSearches(DefChainPhi, PausedSearches, I);
833      NewPaused.clear();
834
835      Current = DefChainPhi;
836    }
837  }
838
839  void verifyOptResult(const OptznResult &R) const {
840    assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
841      return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
842    }));
843  }
844
845  void resetPhiOptznState() {
846    Paths.clear();
847    VisitedPhis.clear();
848  }
849
850public:
851  ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
852      : MSSA(MSSA), AA(AA), DT(DT) {}
853
854  /// Finds the nearest clobber for the given query, optimizing phis if
855  /// possible.
856  MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
857    Query = &Q;
858
859    MemoryAccess *Current = Start;
860    // This walker pretends uses don't exist. If we're handed one, silently grab
861    // its def. (This has the nice side-effect of ensuring we never cache uses)
862    if (auto *MU = dyn_cast<MemoryUse>(Start))
863      Current = MU->getDefiningAccess();
864
865    DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
866    // Fast path for the overly-common case (no crazy phi optimization
867    // necessary)
868    UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
869    MemoryAccess *Result;
870    if (WalkResult.IsKnownClobber) {
871      Result = WalkResult.Result;
872      Q.AR = WalkResult.AR;
873    } else {
874      OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
875                                          Current, Q.StartingLoc);
876      verifyOptResult(OptRes);
877      resetPhiOptznState();
878      Result = OptRes.PrimaryClobber.Clobber;
879    }
880
881#ifdef EXPENSIVE_CHECKS
882    checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
883#endif
884    return Result;
885  }
886
887  void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
888};
889
890struct RenamePassData {
891  DomTreeNode *DTN;
892  DomTreeNode::const_iterator ChildIt;
893  MemoryAccess *IncomingVal;
894
895  RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
896                 MemoryAccess *M)
897      : DTN(D), ChildIt(It), IncomingVal(M) {}
898
899  void swap(RenamePassData &RHS) {
900    std::swap(DTN, RHS.DTN);
901    std::swap(ChildIt, RHS.ChildIt);
902    std::swap(IncomingVal, RHS.IncomingVal);
903  }
904};
905
906} // end anonymous namespace
907
908namespace llvm {
909
910/// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
911/// longer does caching on its own, but the name has been retained for the
912/// moment.
913class MemorySSA::CachingWalker final : public MemorySSAWalker {
914  ClobberWalker Walker;
915
916  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &);
917
918public:
919  CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *);
920  ~CachingWalker() override = default;
921
922  using MemorySSAWalker::getClobberingMemoryAccess;
923
924  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
925  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
926                                          const MemoryLocation &) override;
927  void invalidateInfo(MemoryAccess *) override;
928
929  void verify(const MemorySSA *MSSA) override {
930    MemorySSAWalker::verify(MSSA);
931    Walker.verify(MSSA);
932  }
933};
934
935} // end namespace llvm
936
937void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
938                                    bool RenameAllUses) {
939  // Pass through values to our successors
940  for (const BasicBlock *S : successors(BB)) {
941    auto It = PerBlockAccesses.find(S);
942    // Rename the phi nodes in our successor block
943    if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
944      continue;
945    AccessList *Accesses = It->second.get();
946    auto *Phi = cast<MemoryPhi>(&Accesses->front());
947    if (RenameAllUses) {
948      int PhiIndex = Phi->getBasicBlockIndex(BB);
949      assert(PhiIndex != -1 && "Incomplete phi during partial rename");
950      Phi->setIncomingValue(PhiIndex, IncomingVal);
951    } else
952      Phi->addIncoming(IncomingVal, BB);
953  }
954}
955
956/// Rename a single basic block into MemorySSA form.
957/// Uses the standard SSA renaming algorithm.
958/// \returns The new incoming value.
959MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
960                                     bool RenameAllUses) {
961  auto It = PerBlockAccesses.find(BB);
962  // Skip most processing if the list is empty.
963  if (It != PerBlockAccesses.end()) {
964    AccessList *Accesses = It->second.get();
965    for (MemoryAccess &L : *Accesses) {
966      if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
967        if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
968          MUD->setDefiningAccess(IncomingVal);
969        if (isa<MemoryDef>(&L))
970          IncomingVal = &L;
971      } else {
972        IncomingVal = &L;
973      }
974    }
975  }
976  return IncomingVal;
977}
978
979/// This is the standard SSA renaming algorithm.
980///
981/// We walk the dominator tree in preorder, renaming accesses, and then filling
982/// in phi nodes in our successors.
983void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
984                           SmallPtrSetImpl<BasicBlock *> &Visited,
985                           bool SkipVisited, bool RenameAllUses) {
986  SmallVector<RenamePassData, 32> WorkStack;
987  // Skip everything if we already renamed this block and we are skipping.
988  // Note: You can't sink this into the if, because we need it to occur
989  // regardless of whether we skip blocks or not.
990  bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
991  if (SkipVisited && AlreadyVisited)
992    return;
993
994  IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
995  renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
996  WorkStack.push_back({Root, Root->begin(), IncomingVal});
997
998  while (!WorkStack.empty()) {
999    DomTreeNode *Node = WorkStack.back().DTN;
1000    DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1001    IncomingVal = WorkStack.back().IncomingVal;
1002
1003    if (ChildIt == Node->end()) {
1004      WorkStack.pop_back();
1005    } else {
1006      DomTreeNode *Child = *ChildIt;
1007      ++WorkStack.back().ChildIt;
1008      BasicBlock *BB = Child->getBlock();
1009      // Note: You can't sink this into the if, because we need it to occur
1010      // regardless of whether we skip blocks or not.
1011      AlreadyVisited = !Visited.insert(BB).second;
1012      if (SkipVisited && AlreadyVisited) {
1013        // We already visited this during our renaming, which can happen when
1014        // being asked to rename multiple blocks. Figure out the incoming val,
1015        // which is the last def.
1016        // Incoming value can only change if there is a block def, and in that
1017        // case, it's the last block def in the list.
1018        if (auto *BlockDefs = getWritableBlockDefs(BB))
1019          IncomingVal = &*BlockDefs->rbegin();
1020      } else
1021        IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1022      renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
1023      WorkStack.push_back({Child, Child->begin(), IncomingVal});
1024    }
1025  }
1026}
1027
1028/// This handles unreachable block accesses by deleting phi nodes in
1029/// unreachable blocks, and marking all other unreachable MemoryAccess's as
1030/// being uses of the live on entry definition.
1031void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1032  assert(!DT->isReachableFromEntry(BB) &&
1033         "Reachable block found while handling unreachable blocks");
1034
1035  // Make sure phi nodes in our reachable successors end up with a
1036  // LiveOnEntryDef for our incoming edge, even though our block is forward
1037  // unreachable.  We could just disconnect these blocks from the CFG fully,
1038  // but we do not right now.
1039  for (const BasicBlock *S : successors(BB)) {
1040    if (!DT->isReachableFromEntry(S))
1041      continue;
1042    auto It = PerBlockAccesses.find(S);
1043    // Rename the phi nodes in our successor block
1044    if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1045      continue;
1046    AccessList *Accesses = It->second.get();
1047    auto *Phi = cast<MemoryPhi>(&Accesses->front());
1048    Phi->addIncoming(LiveOnEntryDef.get(), BB);
1049  }
1050
1051  auto It = PerBlockAccesses.find(BB);
1052  if (It == PerBlockAccesses.end())
1053    return;
1054
1055  auto &Accesses = It->second;
1056  for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1057    auto Next = std::next(AI);
1058    // If we have a phi, just remove it. We are going to replace all
1059    // users with live on entry.
1060    if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1061      UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1062    else
1063      Accesses->erase(AI);
1064    AI = Next;
1065  }
1066}
1067
1068MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1069    : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
1070      NextID(0) {
1071  buildMemorySSA();
1072}
1073
1074MemorySSA::~MemorySSA() {
1075  // Drop all our references
1076  for (const auto &Pair : PerBlockAccesses)
1077    for (MemoryAccess &MA : *Pair.second)
1078      MA.dropAllReferences();
1079}
1080
1081MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
1082  auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1083
1084  if (Res.second)
1085    Res.first->second = llvm::make_unique<AccessList>();
1086  return Res.first->second.get();
1087}
1088
1089MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1090  auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1091
1092  if (Res.second)
1093    Res.first->second = llvm::make_unique<DefsList>();
1094  return Res.first->second.get();
1095}
1096
1097namespace llvm {
1098
1099/// This class is a batch walker of all MemoryUse's in the program, and points
1100/// their defining access at the thing that actually clobbers them.  Because it
1101/// is a batch walker that touches everything, it does not operate like the
1102/// other walkers.  This walker is basically performing a top-down SSA renaming
1103/// pass, where the version stack is used as the cache.  This enables it to be
1104/// significantly more time and memory efficient than using the regular walker,
1105/// which is walking bottom-up.
1106class MemorySSA::OptimizeUses {
1107public:
1108  OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
1109               DominatorTree *DT)
1110      : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
1111    Walker = MSSA->getWalker();
1112  }
1113
1114  void optimizeUses();
1115
1116private:
1117  /// This represents where a given memorylocation is in the stack.
1118  struct MemlocStackInfo {
1119    // This essentially is keeping track of versions of the stack. Whenever
1120    // the stack changes due to pushes or pops, these versions increase.
1121    unsigned long StackEpoch;
1122    unsigned long PopEpoch;
1123    // This is the lower bound of places on the stack to check. It is equal to
1124    // the place the last stack walk ended.
1125    // Note: Correctness depends on this being initialized to 0, which densemap
1126    // does
1127    unsigned long LowerBound;
1128    const BasicBlock *LowerBoundBlock;
1129    // This is where the last walk for this memory location ended.
1130    unsigned long LastKill;
1131    bool LastKillValid;
1132    Optional<AliasResult> AR;
1133  };
1134
1135  void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1136                           SmallVectorImpl<MemoryAccess *> &,
1137                           DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
1138
1139  MemorySSA *MSSA;
1140  MemorySSAWalker *Walker;
1141  AliasAnalysis *AA;
1142  DominatorTree *DT;
1143};
1144
1145} // end namespace llvm
1146
1147/// Optimize the uses in a given block This is basically the SSA renaming
1148/// algorithm, with one caveat: We are able to use a single stack for all
1149/// MemoryUses.  This is because the set of *possible* reaching MemoryDefs is
1150/// the same for every MemoryUse.  The *actual* clobbering MemoryDef is just
1151/// going to be some position in that stack of possible ones.
1152///
1153/// We track the stack positions that each MemoryLocation needs
1154/// to check, and last ended at.  This is because we only want to check the
1155/// things that changed since last time.  The same MemoryLocation should
1156/// get clobbered by the same store (getModRefInfo does not use invariantness or
1157/// things like this, and if they start, we can modify MemoryLocOrCall to
1158/// include relevant data)
1159void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1160    const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1161    SmallVectorImpl<MemoryAccess *> &VersionStack,
1162    DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1163
1164  /// If no accesses, nothing to do.
1165  MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1166  if (Accesses == nullptr)
1167    return;
1168
1169  // Pop everything that doesn't dominate the current block off the stack,
1170  // increment the PopEpoch to account for this.
1171  while (true) {
1172    assert(
1173        !VersionStack.empty() &&
1174        "Version stack should have liveOnEntry sentinel dominating everything");
1175    BasicBlock *BackBlock = VersionStack.back()->getBlock();
1176    if (DT->dominates(BackBlock, BB))
1177      break;
1178    while (VersionStack.back()->getBlock() == BackBlock)
1179      VersionStack.pop_back();
1180    ++PopEpoch;
1181  }
1182
1183  for (MemoryAccess &MA : *Accesses) {
1184    auto *MU = dyn_cast<MemoryUse>(&MA);
1185    if (!MU) {
1186      VersionStack.push_back(&MA);
1187      ++StackEpoch;
1188      continue;
1189    }
1190
1191    if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
1192      MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
1193      continue;
1194    }
1195
1196    MemoryLocOrCall UseMLOC(MU);
1197    auto &LocInfo = LocStackInfo[UseMLOC];
1198    // If the pop epoch changed, it means we've removed stuff from top of
1199    // stack due to changing blocks. We may have to reset the lower bound or
1200    // last kill info.
1201    if (LocInfo.PopEpoch != PopEpoch) {
1202      LocInfo.PopEpoch = PopEpoch;
1203      LocInfo.StackEpoch = StackEpoch;
1204      // If the lower bound was in something that no longer dominates us, we
1205      // have to reset it.
1206      // We can't simply track stack size, because the stack may have had
1207      // pushes/pops in the meantime.
1208      // XXX: This is non-optimal, but only is slower cases with heavily
1209      // branching dominator trees.  To get the optimal number of queries would
1210      // be to make lowerbound and lastkill a per-loc stack, and pop it until
1211      // the top of that stack dominates us.  This does not seem worth it ATM.
1212      // A much cheaper optimization would be to always explore the deepest
1213      // branch of the dominator tree first. This will guarantee this resets on
1214      // the smallest set of blocks.
1215      if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
1216          !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
1217        // Reset the lower bound of things to check.
1218        // TODO: Some day we should be able to reset to last kill, rather than
1219        // 0.
1220        LocInfo.LowerBound = 0;
1221        LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
1222        LocInfo.LastKillValid = false;
1223      }
1224    } else if (LocInfo.StackEpoch != StackEpoch) {
1225      // If all that has changed is the StackEpoch, we only have to check the
1226      // new things on the stack, because we've checked everything before.  In
1227      // this case, the lower bound of things to check remains the same.
1228      LocInfo.PopEpoch = PopEpoch;
1229      LocInfo.StackEpoch = StackEpoch;
1230    }
1231    if (!LocInfo.LastKillValid) {
1232      LocInfo.LastKill = VersionStack.size() - 1;
1233      LocInfo.LastKillValid = true;
1234      LocInfo.AR = MayAlias;
1235    }
1236
1237    // At this point, we should have corrected last kill and LowerBound to be
1238    // in bounds.
1239    assert(LocInfo.LowerBound < VersionStack.size() &&
1240           "Lower bound out of range");
1241    assert(LocInfo.LastKill < VersionStack.size() &&
1242           "Last kill info out of range");
1243    // In any case, the new upper bound is the top of the stack.
1244    unsigned long UpperBound = VersionStack.size() - 1;
1245
1246    if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
1247      LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1248                        << *(MU->getMemoryInst()) << ")"
1249                        << " because there are "
1250                        << UpperBound - LocInfo.LowerBound
1251                        << " stores to disambiguate\n");
1252      // Because we did not walk, LastKill is no longer valid, as this may
1253      // have been a kill.
1254      LocInfo.LastKillValid = false;
1255      continue;
1256    }
1257    bool FoundClobberResult = false;
1258    while (UpperBound > LocInfo.LowerBound) {
1259      if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1260        // For phis, use the walker, see where we ended up, go there
1261        Instruction *UseInst = MU->getMemoryInst();
1262        MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
1263        // We are guaranteed to find it or something is wrong
1264        while (VersionStack[UpperBound] != Result) {
1265          assert(UpperBound != 0);
1266          --UpperBound;
1267        }
1268        FoundClobberResult = true;
1269        break;
1270      }
1271
1272      MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
1273      // If the lifetime of the pointer ends at this instruction, it's live on
1274      // entry.
1275      if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1276        // Reset UpperBound to liveOnEntryDef's place in the stack
1277        UpperBound = 0;
1278        FoundClobberResult = true;
1279        LocInfo.AR = MustAlias;
1280        break;
1281      }
1282      ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1283      if (CA.IsClobber) {
1284        FoundClobberResult = true;
1285        LocInfo.AR = CA.AR;
1286        break;
1287      }
1288      --UpperBound;
1289    }
1290
1291    // Note: Phis always have AliasResult AR set to MayAlias ATM.
1292
1293    // At the end of this loop, UpperBound is either a clobber, or lower bound
1294    // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1295    if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
1296      // We were last killed now by where we got to
1297      if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1298        LocInfo.AR = None;
1299      MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
1300      LocInfo.LastKill = UpperBound;
1301    } else {
1302      // Otherwise, we checked all the new ones, and now we know we can get to
1303      // LastKill.
1304      MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
1305    }
1306    LocInfo.LowerBound = VersionStack.size() - 1;
1307    LocInfo.LowerBoundBlock = BB;
1308  }
1309}
1310
1311/// Optimize uses to point to their actual clobbering definitions.
1312void MemorySSA::OptimizeUses::optimizeUses() {
1313  SmallVector<MemoryAccess *, 16> VersionStack;
1314  DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
1315  VersionStack.push_back(MSSA->getLiveOnEntryDef());
1316
1317  unsigned long StackEpoch = 1;
1318  unsigned long PopEpoch = 1;
1319  // We perform a non-recursive top-down dominator tree walk.
1320  for (const auto *DomNode : depth_first(DT->getRootNode()))
1321    optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1322                        LocStackInfo);
1323}
1324
1325void MemorySSA::placePHINodes(
1326    const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
1327  // Determine where our MemoryPhi's should go
1328  ForwardIDFCalculator IDFs(*DT);
1329  IDFs.setDefiningBlocks(DefiningBlocks);
1330  SmallVector<BasicBlock *, 32> IDFBlocks;
1331  IDFs.calculate(IDFBlocks);
1332
1333  // Now place MemoryPhi nodes.
1334  for (auto &BB : IDFBlocks)
1335    createMemoryPhi(BB);
1336}
1337
1338void MemorySSA::buildMemorySSA() {
1339  // We create an access to represent "live on entry", for things like
1340  // arguments or users of globals, where the memory they use is defined before
1341  // the beginning of the function. We do not actually insert it into the IR.
1342  // We do not define a live on exit for the immediate uses, and thus our
1343  // semantics do *not* imply that something with no immediate uses can simply
1344  // be removed.
1345  BasicBlock &StartingPoint = F.getEntryBlock();
1346  LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1347                                     &StartingPoint, NextID++));
1348
1349  // We maintain lists of memory accesses per-block, trading memory for time. We
1350  // could just look up the memory access for every possible instruction in the
1351  // stream.
1352  SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
1353  // Go through each block, figure out where defs occur, and chain together all
1354  // the accesses.
1355  for (BasicBlock &B : F) {
1356    bool InsertIntoDef = false;
1357    AccessList *Accesses = nullptr;
1358    DefsList *Defs = nullptr;
1359    for (Instruction &I : B) {
1360      MemoryUseOrDef *MUD = createNewAccess(&I);
1361      if (!MUD)
1362        continue;
1363
1364      if (!Accesses)
1365        Accesses = getOrCreateAccessList(&B);
1366      Accesses->push_back(MUD);
1367      if (isa<MemoryDef>(MUD)) {
1368        InsertIntoDef = true;
1369        if (!Defs)
1370          Defs = getOrCreateDefsList(&B);
1371        Defs->push_back(*MUD);
1372      }
1373    }
1374    if (InsertIntoDef)
1375      DefiningBlocks.insert(&B);
1376  }
1377  placePHINodes(DefiningBlocks);
1378
1379  // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1380  // filled in with all blocks.
1381  SmallPtrSet<BasicBlock *, 16> Visited;
1382  renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1383
1384  CachingWalker *Walker = getWalkerImpl();
1385
1386  OptimizeUses(this, Walker, AA, DT).optimizeUses();
1387
1388  // Mark the uses in unreachable blocks as live on entry, so that they go
1389  // somewhere.
1390  for (auto &BB : F)
1391    if (!Visited.count(&BB))
1392      markUnreachableAsLiveOnEntry(&BB);
1393}
1394
1395MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1396
1397MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
1398  if (Walker)
1399    return Walker.get();
1400
1401  Walker = llvm::make_unique<CachingWalker>(this, AA, DT);
1402  return Walker.get();
1403}
1404
1405// This is a helper function used by the creation routines. It places NewAccess
1406// into the access and defs lists for a given basic block, at the given
1407// insertion point.
1408void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1409                                        const BasicBlock *BB,
1410                                        InsertionPlace Point) {
1411  auto *Accesses = getOrCreateAccessList(BB);
1412  if (Point == Beginning) {
1413    // If it's a phi node, it goes first, otherwise, it goes after any phi
1414    // nodes.
1415    if (isa<MemoryPhi>(NewAccess)) {
1416      Accesses->push_front(NewAccess);
1417      auto *Defs = getOrCreateDefsList(BB);
1418      Defs->push_front(*NewAccess);
1419    } else {
1420      auto AI = find_if_not(
1421          *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1422      Accesses->insert(AI, NewAccess);
1423      if (!isa<MemoryUse>(NewAccess)) {
1424        auto *Defs = getOrCreateDefsList(BB);
1425        auto DI = find_if_not(
1426            *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1427        Defs->insert(DI, *NewAccess);
1428      }
1429    }
1430  } else {
1431    Accesses->push_back(NewAccess);
1432    if (!isa<MemoryUse>(NewAccess)) {
1433      auto *Defs = getOrCreateDefsList(BB);
1434      Defs->push_back(*NewAccess);
1435    }
1436  }
1437  BlockNumberingValid.erase(BB);
1438}
1439
1440void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1441                                      AccessList::iterator InsertPt) {
1442  auto *Accesses = getWritableBlockAccesses(BB);
1443  bool WasEnd = InsertPt == Accesses->end();
1444  Accesses->insert(AccessList::iterator(InsertPt), What);
1445  if (!isa<MemoryUse>(What)) {
1446    auto *Defs = getOrCreateDefsList(BB);
1447    // If we got asked to insert at the end, we have an easy job, just shove it
1448    // at the end. If we got asked to insert before an existing def, we also get
1449    // an iterator. If we got asked to insert before a use, we have to hunt for
1450    // the next def.
1451    if (WasEnd) {
1452      Defs->push_back(*What);
1453    } else if (isa<MemoryDef>(InsertPt)) {
1454      Defs->insert(InsertPt->getDefsIterator(), *What);
1455    } else {
1456      while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1457        ++InsertPt;
1458      // Either we found a def, or we are inserting at the end
1459      if (InsertPt == Accesses->end())
1460        Defs->push_back(*What);
1461      else
1462        Defs->insert(InsertPt->getDefsIterator(), *What);
1463    }
1464  }
1465  BlockNumberingValid.erase(BB);
1466}
1467
1468// Move What before Where in the IR.  The end result is that What will belong to
1469// the right lists and have the right Block set, but will not otherwise be
1470// correct. It will not have the right defining access, and if it is a def,
1471// things below it will not properly be updated.
1472void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1473                       AccessList::iterator Where) {
1474  // Keep it in the lookup tables, remove from the lists
1475  removeFromLists(What, false);
1476  What->setBlock(BB);
1477  insertIntoListsBefore(What, BB, Where);
1478}
1479
1480void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
1481                       InsertionPlace Point) {
1482  if (isa<MemoryPhi>(What)) {
1483    assert(Point == Beginning &&
1484           "Can only move a Phi at the beginning of the block");
1485    // Update lookup table entry
1486    ValueToMemoryAccess.erase(What->getBlock());
1487    bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1488    (void)Inserted;
1489    assert(Inserted && "Cannot move a Phi to a block that already has one");
1490  }
1491
1492  removeFromLists(What, false);
1493  What->setBlock(BB);
1494  insertIntoListsForBlock(What, BB, Point);
1495}
1496
1497MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1498  assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
1499  MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
1500  // Phi's always are placed at the front of the block.
1501  insertIntoListsForBlock(Phi, BB, Beginning);
1502  ValueToMemoryAccess[BB] = Phi;
1503  return Phi;
1504}
1505
1506MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1507                                               MemoryAccess *Definition) {
1508  assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1509  MemoryUseOrDef *NewAccess = createNewAccess(I);
1510  assert(
1511      NewAccess != nullptr &&
1512      "Tried to create a memory access for a non-memory touching instruction");
1513  NewAccess->setDefiningAccess(Definition);
1514  return NewAccess;
1515}
1516
1517// Return true if the instruction has ordering constraints.
1518// Note specifically that this only considers stores and loads
1519// because others are still considered ModRef by getModRefInfo.
1520static inline bool isOrdered(const Instruction *I) {
1521  if (auto *SI = dyn_cast<StoreInst>(I)) {
1522    if (!SI->isUnordered())
1523      return true;
1524  } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1525    if (!LI->isUnordered())
1526      return true;
1527  }
1528  return false;
1529}
1530
1531/// Helper function to create new memory accesses
1532MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) {
1533  // The assume intrinsic has a control dependency which we model by claiming
1534  // that it writes arbitrarily. Ignore that fake memory dependency here.
1535  // FIXME: Replace this special casing with a more accurate modelling of
1536  // assume's control dependency.
1537  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1538    if (II->getIntrinsicID() == Intrinsic::assume)
1539      return nullptr;
1540
1541  // Find out what affect this instruction has on memory.
1542  ModRefInfo ModRef = AA->getModRefInfo(I, None);
1543  // The isOrdered check is used to ensure that volatiles end up as defs
1544  // (atomics end up as ModRef right now anyway).  Until we separate the
1545  // ordering chain from the memory chain, this enables people to see at least
1546  // some relative ordering to volatiles.  Note that getClobberingMemoryAccess
1547  // will still give an answer that bypasses other volatile loads.  TODO:
1548  // Separate memory aliasing and ordering into two different chains so that we
1549  // can precisely represent both "what memory will this read/write/is clobbered
1550  // by" and "what instructions can I move this past".
1551  bool Def = isModSet(ModRef) || isOrdered(I);
1552  bool Use = isRefSet(ModRef);
1553
1554  // It's possible for an instruction to not modify memory at all. During
1555  // construction, we ignore them.
1556  if (!Def && !Use)
1557    return nullptr;
1558
1559  MemoryUseOrDef *MUD;
1560  if (Def)
1561    MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
1562  else
1563    MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
1564  ValueToMemoryAccess[I] = MUD;
1565  return MUD;
1566}
1567
1568/// Returns true if \p Replacer dominates \p Replacee .
1569bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1570                             const MemoryAccess *Replacee) const {
1571  if (isa<MemoryUseOrDef>(Replacee))
1572    return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1573  const auto *MP = cast<MemoryPhi>(Replacee);
1574  // For a phi node, the use occurs in the predecessor block of the phi node.
1575  // Since we may occur multiple times in the phi node, we have to check each
1576  // operand to ensure Replacer dominates each operand where Replacee occurs.
1577  for (const Use &Arg : MP->operands()) {
1578    if (Arg.get() != Replacee &&
1579        !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1580      return false;
1581  }
1582  return true;
1583}
1584
1585/// Properly remove \p MA from all of MemorySSA's lookup tables.
1586void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1587  assert(MA->use_empty() &&
1588         "Trying to remove memory access that still has uses");
1589  BlockNumbering.erase(MA);
1590  if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1591    MUD->setDefiningAccess(nullptr);
1592  // Invalidate our walker's cache if necessary
1593  if (!isa<MemoryUse>(MA))
1594    Walker->invalidateInfo(MA);
1595
1596  Value *MemoryInst;
1597  if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1598    MemoryInst = MUD->getMemoryInst();
1599  else
1600    MemoryInst = MA->getBlock();
1601
1602  auto VMA = ValueToMemoryAccess.find(MemoryInst);
1603  if (VMA->second == MA)
1604    ValueToMemoryAccess.erase(VMA);
1605}
1606
1607/// Properly remove \p MA from all of MemorySSA's lists.
1608///
1609/// Because of the way the intrusive list and use lists work, it is important to
1610/// do removal in the right order.
1611/// ShouldDelete defaults to true, and will cause the memory access to also be
1612/// deleted, not just removed.
1613void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
1614  BasicBlock *BB = MA->getBlock();
1615  // The access list owns the reference, so we erase it from the non-owning list
1616  // first.
1617  if (!isa<MemoryUse>(MA)) {
1618    auto DefsIt = PerBlockDefs.find(BB);
1619    std::unique_ptr<DefsList> &Defs = DefsIt->second;
1620    Defs->remove(*MA);
1621    if (Defs->empty())
1622      PerBlockDefs.erase(DefsIt);
1623  }
1624
1625  // The erase call here will delete it. If we don't want it deleted, we call
1626  // remove instead.
1627  auto AccessIt = PerBlockAccesses.find(BB);
1628  std::unique_ptr<AccessList> &Accesses = AccessIt->second;
1629  if (ShouldDelete)
1630    Accesses->erase(MA);
1631  else
1632    Accesses->remove(MA);
1633
1634  if (Accesses->empty()) {
1635    PerBlockAccesses.erase(AccessIt);
1636    BlockNumberingValid.erase(BB);
1637  }
1638}
1639
1640void MemorySSA::print(raw_ostream &OS) const {
1641  MemorySSAAnnotatedWriter Writer(this);
1642  F.print(OS, &Writer);
1643}
1644
1645#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1646LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
1647#endif
1648
1649void MemorySSA::verifyMemorySSA() const {
1650  verifyDefUses(F);
1651  verifyDomination(F);
1652  verifyOrdering(F);
1653  verifyDominationNumbers(F);
1654  Walker->verify(this);
1655}
1656
1657/// Verify that all of the blocks we believe to have valid domination numbers
1658/// actually have valid domination numbers.
1659void MemorySSA::verifyDominationNumbers(const Function &F) const {
1660#ifndef NDEBUG
1661  if (BlockNumberingValid.empty())
1662    return;
1663
1664  SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1665  for (const BasicBlock &BB : F) {
1666    if (!ValidBlocks.count(&BB))
1667      continue;
1668
1669    ValidBlocks.erase(&BB);
1670
1671    const AccessList *Accesses = getBlockAccesses(&BB);
1672    // It's correct to say an empty block has valid numbering.
1673    if (!Accesses)
1674      continue;
1675
1676    // Block numbering starts at 1.
1677    unsigned long LastNumber = 0;
1678    for (const MemoryAccess &MA : *Accesses) {
1679      auto ThisNumberIter = BlockNumbering.find(&MA);
1680      assert(ThisNumberIter != BlockNumbering.end() &&
1681             "MemoryAccess has no domination number in a valid block!");
1682
1683      unsigned long ThisNumber = ThisNumberIter->second;
1684      assert(ThisNumber > LastNumber &&
1685             "Domination numbers should be strictly increasing!");
1686      LastNumber = ThisNumber;
1687    }
1688  }
1689
1690  assert(ValidBlocks.empty() &&
1691         "All valid BasicBlocks should exist in F -- dangling pointers?");
1692#endif
1693}
1694
1695/// Verify that the order and existence of MemoryAccesses matches the
1696/// order and existence of memory affecting instructions.
1697void MemorySSA::verifyOrdering(Function &F) const {
1698  // Walk all the blocks, comparing what the lookups think and what the access
1699  // lists think, as well as the order in the blocks vs the order in the access
1700  // lists.
1701  SmallVector<MemoryAccess *, 32> ActualAccesses;
1702  SmallVector<MemoryAccess *, 32> ActualDefs;
1703  for (BasicBlock &B : F) {
1704    const AccessList *AL = getBlockAccesses(&B);
1705    const auto *DL = getBlockDefs(&B);
1706    MemoryAccess *Phi = getMemoryAccess(&B);
1707    if (Phi) {
1708      ActualAccesses.push_back(Phi);
1709      ActualDefs.push_back(Phi);
1710    }
1711
1712    for (Instruction &I : B) {
1713      MemoryAccess *MA = getMemoryAccess(&I);
1714      assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1715             "We have memory affecting instructions "
1716             "in this block but they are not in the "
1717             "access list or defs list");
1718      if (MA) {
1719        ActualAccesses.push_back(MA);
1720        if (isa<MemoryDef>(MA))
1721          ActualDefs.push_back(MA);
1722      }
1723    }
1724    // Either we hit the assert, really have no accesses, or we have both
1725    // accesses and an access list.
1726    // Same with defs.
1727    if (!AL && !DL)
1728      continue;
1729    assert(AL->size() == ActualAccesses.size() &&
1730           "We don't have the same number of accesses in the block as on the "
1731           "access list");
1732    assert((DL || ActualDefs.size() == 0) &&
1733           "Either we should have a defs list, or we should have no defs");
1734    assert((!DL || DL->size() == ActualDefs.size()) &&
1735           "We don't have the same number of defs in the block as on the "
1736           "def list");
1737    auto ALI = AL->begin();
1738    auto AAI = ActualAccesses.begin();
1739    while (ALI != AL->end() && AAI != ActualAccesses.end()) {
1740      assert(&*ALI == *AAI && "Not the same accesses in the same order");
1741      ++ALI;
1742      ++AAI;
1743    }
1744    ActualAccesses.clear();
1745    if (DL) {
1746      auto DLI = DL->begin();
1747      auto ADI = ActualDefs.begin();
1748      while (DLI != DL->end() && ADI != ActualDefs.end()) {
1749        assert(&*DLI == *ADI && "Not the same defs in the same order");
1750        ++DLI;
1751        ++ADI;
1752      }
1753    }
1754    ActualDefs.clear();
1755  }
1756}
1757
1758/// Verify the domination properties of MemorySSA by checking that each
1759/// definition dominates all of its uses.
1760void MemorySSA::verifyDomination(Function &F) const {
1761#ifndef NDEBUG
1762  for (BasicBlock &B : F) {
1763    // Phi nodes are attached to basic blocks
1764    if (MemoryPhi *MP = getMemoryAccess(&B))
1765      for (const Use &U : MP->uses())
1766        assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
1767
1768    for (Instruction &I : B) {
1769      MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
1770      if (!MD)
1771        continue;
1772
1773      for (const Use &U : MD->uses())
1774        assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
1775    }
1776  }
1777#endif
1778}
1779
1780/// Verify the def-use lists in MemorySSA, by verifying that \p Use
1781/// appears in the use list of \p Def.
1782void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
1783#ifndef NDEBUG
1784  // The live on entry use may cause us to get a NULL def here
1785  if (!Def)
1786    assert(isLiveOnEntryDef(Use) &&
1787           "Null def but use not point to live on entry def");
1788  else
1789    assert(is_contained(Def->users(), Use) &&
1790           "Did not find use in def's use list");
1791#endif
1792}
1793
1794/// Verify the immediate use information, by walking all the memory
1795/// accesses and verifying that, for each use, it appears in the
1796/// appropriate def's use list
1797void MemorySSA::verifyDefUses(Function &F) const {
1798  for (BasicBlock &B : F) {
1799    // Phi nodes are attached to basic blocks
1800    if (MemoryPhi *Phi = getMemoryAccess(&B)) {
1801      assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1802                                          pred_begin(&B), pred_end(&B))) &&
1803             "Incomplete MemoryPhi Node");
1804      for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1805        verifyUseInDefs(Phi->getIncomingValue(I), Phi);
1806        assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
1807                   pred_end(&B) &&
1808               "Incoming phi block not a block predecessor");
1809      }
1810    }
1811
1812    for (Instruction &I : B) {
1813      if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
1814        verifyUseInDefs(MA->getDefiningAccess(), MA);
1815      }
1816    }
1817  }
1818}
1819
1820MemoryUseOrDef *MemorySSA::getMemoryAccess(const Instruction *I) const {
1821  return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I));
1822}
1823
1824MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const {
1825  return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB)));
1826}
1827
1828/// Perform a local numbering on blocks so that instruction ordering can be
1829/// determined in constant time.
1830/// TODO: We currently just number in order.  If we numbered by N, we could
1831/// allow at least N-1 sequences of insertBefore or insertAfter (and at least
1832/// log2(N) sequences of mixed before and after) without needing to invalidate
1833/// the numbering.
1834void MemorySSA::renumberBlock(const BasicBlock *B) const {
1835  // The pre-increment ensures the numbers really start at 1.
1836  unsigned long CurrentNumber = 0;
1837  const AccessList *AL = getBlockAccesses(B);
1838  assert(AL != nullptr && "Asking to renumber an empty block");
1839  for (const auto &I : *AL)
1840    BlockNumbering[&I] = ++CurrentNumber;
1841  BlockNumberingValid.insert(B);
1842}
1843
1844/// Determine, for two memory accesses in the same block,
1845/// whether \p Dominator dominates \p Dominatee.
1846/// \returns True if \p Dominator dominates \p Dominatee.
1847bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
1848                                 const MemoryAccess *Dominatee) const {
1849  const BasicBlock *DominatorBlock = Dominator->getBlock();
1850
1851  assert((DominatorBlock == Dominatee->getBlock()) &&
1852         "Asking for local domination when accesses are in different blocks!");
1853  // A node dominates itself.
1854  if (Dominatee == Dominator)
1855    return true;
1856
1857  // When Dominatee is defined on function entry, it is not dominated by another
1858  // memory access.
1859  if (isLiveOnEntryDef(Dominatee))
1860    return false;
1861
1862  // When Dominator is defined on function entry, it dominates the other memory
1863  // access.
1864  if (isLiveOnEntryDef(Dominator))
1865    return true;
1866
1867  if (!BlockNumberingValid.count(DominatorBlock))
1868    renumberBlock(DominatorBlock);
1869
1870  unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
1871  // All numbers start with 1
1872  assert(DominatorNum != 0 && "Block was not numbered properly");
1873  unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
1874  assert(DominateeNum != 0 && "Block was not numbered properly");
1875  return DominatorNum < DominateeNum;
1876}
1877
1878bool MemorySSA::dominates(const MemoryAccess *Dominator,
1879                          const MemoryAccess *Dominatee) const {
1880  if (Dominator == Dominatee)
1881    return true;
1882
1883  if (isLiveOnEntryDef(Dominatee))
1884    return false;
1885
1886  if (Dominator->getBlock() != Dominatee->getBlock())
1887    return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
1888  return locallyDominates(Dominator, Dominatee);
1889}
1890
1891bool MemorySSA::dominates(const MemoryAccess *Dominator,
1892                          const Use &Dominatee) const {
1893  if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
1894    BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
1895    // The def must dominate the incoming block of the phi.
1896    if (UseBB != Dominator->getBlock())
1897      return DT->dominates(Dominator->getBlock(), UseBB);
1898    // If the UseBB and the DefBB are the same, compare locally.
1899    return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
1900  }
1901  // If it's not a PHI node use, the normal dominates can already handle it.
1902  return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
1903}
1904
1905const static char LiveOnEntryStr[] = "liveOnEntry";
1906
1907void MemoryAccess::print(raw_ostream &OS) const {
1908  switch (getValueID()) {
1909  case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
1910  case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
1911  case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
1912  }
1913  llvm_unreachable("invalid value id");
1914}
1915
1916void MemoryDef::print(raw_ostream &OS) const {
1917  MemoryAccess *UO = getDefiningAccess();
1918
1919  auto printID = [&OS](MemoryAccess *A) {
1920    if (A && A->getID())
1921      OS << A->getID();
1922    else
1923      OS << LiveOnEntryStr;
1924  };
1925
1926  OS << getID() << " = MemoryDef(";
1927  printID(UO);
1928  OS << ")";
1929
1930  if (isOptimized()) {
1931    OS << "->";
1932    printID(getOptimized());
1933
1934    if (Optional<AliasResult> AR = getOptimizedAccessType())
1935      OS << " " << *AR;
1936  }
1937}
1938
1939void MemoryPhi::print(raw_ostream &OS) const {
1940  bool First = true;
1941  OS << getID() << " = MemoryPhi(";
1942  for (const auto &Op : operands()) {
1943    BasicBlock *BB = getIncomingBlock(Op);
1944    MemoryAccess *MA = cast<MemoryAccess>(Op);
1945    if (!First)
1946      OS << ',';
1947    else
1948      First = false;
1949
1950    OS << '{';
1951    if (BB->hasName())
1952      OS << BB->getName();
1953    else
1954      BB->printAsOperand(OS, false);
1955    OS << ',';
1956    if (unsigned ID = MA->getID())
1957      OS << ID;
1958    else
1959      OS << LiveOnEntryStr;
1960    OS << '}';
1961  }
1962  OS << ')';
1963}
1964
1965void MemoryUse::print(raw_ostream &OS) const {
1966  MemoryAccess *UO = getDefiningAccess();
1967  OS << "MemoryUse(";
1968  if (UO && UO->getID())
1969    OS << UO->getID();
1970  else
1971    OS << LiveOnEntryStr;
1972  OS << ')';
1973
1974  if (Optional<AliasResult> AR = getOptimizedAccessType())
1975    OS << " " << *AR;
1976}
1977
1978void MemoryAccess::dump() const {
1979// Cannot completely remove virtual function even in release mode.
1980#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1981  print(dbgs());
1982  dbgs() << "\n";
1983#endif
1984}
1985
1986char MemorySSAPrinterLegacyPass::ID = 0;
1987
1988MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
1989  initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
1990}
1991
1992void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
1993  AU.setPreservesAll();
1994  AU.addRequired<MemorySSAWrapperPass>();
1995}
1996
1997bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
1998  auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
1999  MSSA.print(dbgs());
2000  if (VerifyMemorySSA)
2001    MSSA.verifyMemorySSA();
2002  return false;
2003}
2004
2005AnalysisKey MemorySSAAnalysis::Key;
2006
2007MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2008                                                 FunctionAnalysisManager &AM) {
2009  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2010  auto &AA = AM.getResult<AAManager>(F);
2011  return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
2012}
2013
2014PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2015                                            FunctionAnalysisManager &AM) {
2016  OS << "MemorySSA for function: " << F.getName() << "\n";
2017  AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
2018
2019  return PreservedAnalyses::all();
2020}
2021
2022PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2023                                             FunctionAnalysisManager &AM) {
2024  AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
2025
2026  return PreservedAnalyses::all();
2027}
2028
2029char MemorySSAWrapperPass::ID = 0;
2030
2031MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2032  initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2033}
2034
2035void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2036
2037void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2038  AU.setPreservesAll();
2039  AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2040  AU.addRequiredTransitive<AAResultsWrapperPass>();
2041}
2042
2043bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2044  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2045  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2046  MSSA.reset(new MemorySSA(F, &AA, &DT));
2047  return false;
2048}
2049
2050void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
2051
2052void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
2053  MSSA->print(OS);
2054}
2055
2056MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2057
2058MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A,
2059                                        DominatorTree *D)
2060    : MemorySSAWalker(M), Walker(*M, *A, *D) {}
2061
2062void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) {
2063  if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
2064    MUD->resetOptimized();
2065}
2066
2067/// Walk the use-def chains starting at \p MA and find
2068/// the MemoryAccess that actually clobbers Loc.
2069///
2070/// \returns our clobbering memory access
2071MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
2072    MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) {
2073  return Walker.findClobber(StartingAccess, Q);
2074}
2075
2076MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
2077    MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
2078  if (isa<MemoryPhi>(StartingAccess))
2079    return StartingAccess;
2080
2081  auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2082  if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2083    return StartingUseOrDef;
2084
2085  Instruction *I = StartingUseOrDef->getMemoryInst();
2086
2087  // Conservatively, fences are always clobbers, so don't perform the walk if we
2088  // hit a fence.
2089  if (!ImmutableCallSite(I) && I->isFenceLike())
2090    return StartingUseOrDef;
2091
2092  UpwardsMemoryQuery Q;
2093  Q.OriginalAccess = StartingUseOrDef;
2094  Q.StartingLoc = Loc;
2095  Q.Inst = I;
2096  Q.IsCall = false;
2097
2098  // Unlike the other function, do not walk to the def of a def, because we are
2099  // handed something we already believe is the clobbering access.
2100  MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2101                                     ? StartingUseOrDef->getDefiningAccess()
2102                                     : StartingUseOrDef;
2103
2104  MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
2105  LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2106  LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
2107  LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2108  LLVM_DEBUG(dbgs() << *Clobber << "\n");
2109  return Clobber;
2110}
2111
2112MemoryAccess *
2113MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2114  auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2115  // If this is a MemoryPhi, we can't do anything.
2116  if (!StartingAccess)
2117    return MA;
2118
2119  // If this is an already optimized use or def, return the optimized result.
2120  // Note: Currently, we store the optimized def result in a separate field,
2121  // since we can't use the defining access.
2122  if (StartingAccess->isOptimized())
2123    return StartingAccess->getOptimized();
2124
2125  const Instruction *I = StartingAccess->getMemoryInst();
2126  UpwardsMemoryQuery Q(I, StartingAccess);
2127  // We can't sanely do anything with a fence, since they conservatively clobber
2128  // all memory, and have no locations to get pointers from to try to
2129  // disambiguate.
2130  if (!Q.IsCall && I->isFenceLike())
2131    return StartingAccess;
2132
2133  if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
2134    MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
2135    StartingAccess->setOptimized(LiveOnEntry);
2136    StartingAccess->setOptimizedAccessType(None);
2137    return LiveOnEntry;
2138  }
2139
2140  // Start with the thing we already think clobbers this location
2141  MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2142
2143  // At this point, DefiningAccess may be the live on entry def.
2144  // If it is, we will not get a better result.
2145  if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
2146    StartingAccess->setOptimized(DefiningAccess);
2147    StartingAccess->setOptimizedAccessType(None);
2148    return DefiningAccess;
2149  }
2150
2151  MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
2152  LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2153  LLVM_DEBUG(dbgs() << *DefiningAccess << "\n");
2154  LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2155  LLVM_DEBUG(dbgs() << *Result << "\n");
2156
2157  StartingAccess->setOptimized(Result);
2158  if (MSSA->isLiveOnEntryDef(Result))
2159    StartingAccess->setOptimizedAccessType(None);
2160  else if (Q.AR == MustAlias)
2161    StartingAccess->setOptimizedAccessType(MustAlias);
2162
2163  return Result;
2164}
2165
2166MemoryAccess *
2167DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2168  if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2169    return Use->getDefiningAccess();
2170  return MA;
2171}
2172
2173MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2174    MemoryAccess *StartingAccess, const MemoryLocation &) {
2175  if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2176    return Use->getDefiningAccess();
2177  return StartingAccess;
2178}
2179
2180void MemoryPhi::deleteMe(DerivedUser *Self) {
2181  delete static_cast<MemoryPhi *>(Self);
2182}
2183
2184void MemoryDef::deleteMe(DerivedUser *Self) {
2185  delete static_cast<MemoryDef *>(Self);
2186}
2187
2188void MemoryUse::deleteMe(DerivedUser *Self) {
2189  delete static_cast<MemoryUse *>(Self);
2190}
2191