LoopInfo.cpp revision 288943
1//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  Note that the
12// loops identified may actually be several natural loops that share the same
13// header node... not just a single natural loop.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/ADT/DepthFirstIterator.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/Analysis/LoopInfoImpl.h"
21#include "llvm/Analysis/LoopIterator.h"
22#include "llvm/Analysis/ValueTracking.h"
23#include "llvm/IR/CFG.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/Dominators.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/LLVMContext.h"
28#include "llvm/IR/Metadata.h"
29#include "llvm/IR/PassManager.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/raw_ostream.h"
33#include <algorithm>
34using namespace llvm;
35
36// Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
37template class llvm::LoopBase<BasicBlock, Loop>;
38template class llvm::LoopInfoBase<BasicBlock, Loop>;
39
40// Always verify loopinfo if expensive checking is enabled.
41#ifdef XDEBUG
42static bool VerifyLoopInfo = true;
43#else
44static bool VerifyLoopInfo = false;
45#endif
46static cl::opt<bool,true>
47VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
48                cl::desc("Verify loop info (time consuming)"));
49
50// Loop identifier metadata name.
51static const char *const LoopMDName = "llvm.loop";
52
53//===----------------------------------------------------------------------===//
54// Loop implementation
55//
56
57/// isLoopInvariant - Return true if the specified value is loop invariant
58///
59bool Loop::isLoopInvariant(const Value *V) const {
60  if (const Instruction *I = dyn_cast<Instruction>(V))
61    return !contains(I);
62  return true;  // All non-instructions are loop invariant
63}
64
65/// hasLoopInvariantOperands - Return true if all the operands of the
66/// specified instruction are loop invariant.
67bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
68  return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
69}
70
71/// makeLoopInvariant - If the given value is an instruciton inside of the
72/// loop and it can be hoisted, do so to make it trivially loop-invariant.
73/// Return true if the value after any hoisting is loop invariant. This
74/// function can be used as a slightly more aggressive replacement for
75/// isLoopInvariant.
76///
77/// If InsertPt is specified, it is the point to hoist instructions to.
78/// If null, the terminator of the loop preheader is used.
79///
80bool Loop::makeLoopInvariant(Value *V, bool &Changed,
81                             Instruction *InsertPt) const {
82  if (Instruction *I = dyn_cast<Instruction>(V))
83    return makeLoopInvariant(I, Changed, InsertPt);
84  return true;  // All non-instructions are loop-invariant.
85}
86
87/// makeLoopInvariant - If the given instruction is inside of the
88/// loop and it can be hoisted, do so to make it trivially loop-invariant.
89/// Return true if the instruction after any hoisting is loop invariant. This
90/// function can be used as a slightly more aggressive replacement for
91/// isLoopInvariant.
92///
93/// If InsertPt is specified, it is the point to hoist instructions to.
94/// If null, the terminator of the loop preheader is used.
95///
96bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
97                             Instruction *InsertPt) const {
98  // Test if the value is already loop-invariant.
99  if (isLoopInvariant(I))
100    return true;
101  if (!isSafeToSpeculativelyExecute(I))
102    return false;
103  if (I->mayReadFromMemory())
104    return false;
105  // The landingpad instruction is immobile.
106  if (isa<LandingPadInst>(I))
107    return false;
108  // Determine the insertion point, unless one was given.
109  if (!InsertPt) {
110    BasicBlock *Preheader = getLoopPreheader();
111    // Without a preheader, hoisting is not feasible.
112    if (!Preheader)
113      return false;
114    InsertPt = Preheader->getTerminator();
115  }
116  // Don't hoist instructions with loop-variant operands.
117  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
118    if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
119      return false;
120
121  // Hoist.
122  I->moveBefore(InsertPt);
123  Changed = true;
124  return true;
125}
126
127/// getCanonicalInductionVariable - Check to see if the loop has a canonical
128/// induction variable: an integer recurrence that starts at 0 and increments
129/// by one each time through the loop.  If so, return the phi node that
130/// corresponds to it.
131///
132/// The IndVarSimplify pass transforms loops to have a canonical induction
133/// variable.
134///
135PHINode *Loop::getCanonicalInductionVariable() const {
136  BasicBlock *H = getHeader();
137
138  BasicBlock *Incoming = nullptr, *Backedge = nullptr;
139  pred_iterator PI = pred_begin(H);
140  assert(PI != pred_end(H) &&
141         "Loop must have at least one backedge!");
142  Backedge = *PI++;
143  if (PI == pred_end(H)) return nullptr;  // dead loop
144  Incoming = *PI++;
145  if (PI != pred_end(H)) return nullptr;  // multiple backedges?
146
147  if (contains(Incoming)) {
148    if (contains(Backedge))
149      return nullptr;
150    std::swap(Incoming, Backedge);
151  } else if (!contains(Backedge))
152    return nullptr;
153
154  // Loop over all of the PHI nodes, looking for a canonical indvar.
155  for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
156    PHINode *PN = cast<PHINode>(I);
157    if (ConstantInt *CI =
158        dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
159      if (CI->isNullValue())
160        if (Instruction *Inc =
161            dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
162          if (Inc->getOpcode() == Instruction::Add &&
163                Inc->getOperand(0) == PN)
164            if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
165              if (CI->equalsInt(1))
166                return PN;
167  }
168  return nullptr;
169}
170
171/// isLCSSAForm - Return true if the Loop is in LCSSA form
172bool Loop::isLCSSAForm(DominatorTree &DT) const {
173  for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
174    BasicBlock *BB = *BI;
175    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
176      for (Use &U : I->uses()) {
177        Instruction *UI = cast<Instruction>(U.getUser());
178        BasicBlock *UserBB = UI->getParent();
179        if (PHINode *P = dyn_cast<PHINode>(UI))
180          UserBB = P->getIncomingBlock(U);
181
182        // Check the current block, as a fast-path, before checking whether
183        // the use is anywhere in the loop.  Most values are used in the same
184        // block they are defined in.  Also, blocks not reachable from the
185        // entry are special; uses in them don't need to go through PHIs.
186        if (UserBB != BB &&
187            !contains(UserBB) &&
188            DT.isReachableFromEntry(UserBB))
189          return false;
190      }
191  }
192
193  return true;
194}
195
196/// isLoopSimplifyForm - Return true if the Loop is in the form that
197/// the LoopSimplify form transforms loops to, which is sometimes called
198/// normal form.
199bool Loop::isLoopSimplifyForm() const {
200  // Normal-form loops have a preheader, a single backedge, and all of their
201  // exits have all their predecessors inside the loop.
202  return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
203}
204
205/// isSafeToClone - Return true if the loop body is safe to clone in practice.
206/// Routines that reform the loop CFG and split edges often fail on indirectbr.
207bool Loop::isSafeToClone() const {
208  // Return false if any loop blocks contain indirectbrs, or there are any calls
209  // to noduplicate functions.
210  for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
211    if (isa<IndirectBrInst>((*I)->getTerminator()))
212      return false;
213
214    if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator()))
215      if (II->cannotDuplicate())
216        return false;
217
218    for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) {
219      if (const CallInst *CI = dyn_cast<CallInst>(BI)) {
220        if (CI->cannotDuplicate())
221          return false;
222      }
223    }
224  }
225  return true;
226}
227
228MDNode *Loop::getLoopID() const {
229  MDNode *LoopID = nullptr;
230  if (isLoopSimplifyForm()) {
231    LoopID = getLoopLatch()->getTerminator()->getMetadata(LoopMDName);
232  } else {
233    // Go through each predecessor of the loop header and check the
234    // terminator for the metadata.
235    BasicBlock *H = getHeader();
236    for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
237      TerminatorInst *TI = (*I)->getTerminator();
238      MDNode *MD = nullptr;
239
240      // Check if this terminator branches to the loop header.
241      for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
242        if (TI->getSuccessor(i) == H) {
243          MD = TI->getMetadata(LoopMDName);
244          break;
245        }
246      }
247      if (!MD)
248        return nullptr;
249
250      if (!LoopID)
251        LoopID = MD;
252      else if (MD != LoopID)
253        return nullptr;
254    }
255  }
256  if (!LoopID || LoopID->getNumOperands() == 0 ||
257      LoopID->getOperand(0) != LoopID)
258    return nullptr;
259  return LoopID;
260}
261
262void Loop::setLoopID(MDNode *LoopID) const {
263  assert(LoopID && "Loop ID should not be null");
264  assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand");
265  assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself");
266
267  if (isLoopSimplifyForm()) {
268    getLoopLatch()->getTerminator()->setMetadata(LoopMDName, LoopID);
269    return;
270  }
271
272  BasicBlock *H = getHeader();
273  for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
274    TerminatorInst *TI = (*I)->getTerminator();
275    for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
276      if (TI->getSuccessor(i) == H)
277        TI->setMetadata(LoopMDName, LoopID);
278    }
279  }
280}
281
282bool Loop::isAnnotatedParallel() const {
283  MDNode *desiredLoopIdMetadata = getLoopID();
284
285  if (!desiredLoopIdMetadata)
286      return false;
287
288  // The loop branch contains the parallel loop metadata. In order to ensure
289  // that any parallel-loop-unaware optimization pass hasn't added loop-carried
290  // dependencies (thus converted the loop back to a sequential loop), check
291  // that all the memory instructions in the loop contain parallelism metadata
292  // that point to the same unique "loop id metadata" the loop branch does.
293  for (block_iterator BB = block_begin(), BE = block_end(); BB != BE; ++BB) {
294    for (BasicBlock::iterator II = (*BB)->begin(), EE = (*BB)->end();
295         II != EE; II++) {
296
297      if (!II->mayReadOrWriteMemory())
298        continue;
299
300      // The memory instruction can refer to the loop identifier metadata
301      // directly or indirectly through another list metadata (in case of
302      // nested parallel loops). The loop identifier metadata refers to
303      // itself so we can check both cases with the same routine.
304      MDNode *loopIdMD =
305          II->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
306
307      if (!loopIdMD)
308        return false;
309
310      bool loopIdMDFound = false;
311      for (unsigned i = 0, e = loopIdMD->getNumOperands(); i < e; ++i) {
312        if (loopIdMD->getOperand(i) == desiredLoopIdMetadata) {
313          loopIdMDFound = true;
314          break;
315        }
316      }
317
318      if (!loopIdMDFound)
319        return false;
320    }
321  }
322  return true;
323}
324
325
326/// hasDedicatedExits - Return true if no exit block for the loop
327/// has a predecessor that is outside the loop.
328bool Loop::hasDedicatedExits() const {
329  // Each predecessor of each exit block of a normal loop is contained
330  // within the loop.
331  SmallVector<BasicBlock *, 4> ExitBlocks;
332  getExitBlocks(ExitBlocks);
333  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
334    for (pred_iterator PI = pred_begin(ExitBlocks[i]),
335         PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
336      if (!contains(*PI))
337        return false;
338  // All the requirements are met.
339  return true;
340}
341
342/// getUniqueExitBlocks - Return all unique successor blocks of this loop.
343/// These are the blocks _outside of the current loop_ which are branched to.
344/// This assumes that loop exits are in canonical form.
345///
346void
347Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
348  assert(hasDedicatedExits() &&
349         "getUniqueExitBlocks assumes the loop has canonical form exits!");
350
351  SmallVector<BasicBlock *, 32> switchExitBlocks;
352
353  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
354
355    BasicBlock *current = *BI;
356    switchExitBlocks.clear();
357
358    for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
359      // If block is inside the loop then it is not a exit block.
360      if (contains(*I))
361        continue;
362
363      pred_iterator PI = pred_begin(*I);
364      BasicBlock *firstPred = *PI;
365
366      // If current basic block is this exit block's first predecessor
367      // then only insert exit block in to the output ExitBlocks vector.
368      // This ensures that same exit block is not inserted twice into
369      // ExitBlocks vector.
370      if (current != firstPred)
371        continue;
372
373      // If a terminator has more then two successors, for example SwitchInst,
374      // then it is possible that there are multiple edges from current block
375      // to one exit block.
376      if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
377        ExitBlocks.push_back(*I);
378        continue;
379      }
380
381      // In case of multiple edges from current block to exit block, collect
382      // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
383      // duplicate edges.
384      if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
385          == switchExitBlocks.end()) {
386        switchExitBlocks.push_back(*I);
387        ExitBlocks.push_back(*I);
388      }
389    }
390  }
391}
392
393/// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
394/// block, return that block. Otherwise return null.
395BasicBlock *Loop::getUniqueExitBlock() const {
396  SmallVector<BasicBlock *, 8> UniqueExitBlocks;
397  getUniqueExitBlocks(UniqueExitBlocks);
398  if (UniqueExitBlocks.size() == 1)
399    return UniqueExitBlocks[0];
400  return nullptr;
401}
402
403#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
404void Loop::dump() const {
405  print(dbgs());
406}
407#endif
408
409//===----------------------------------------------------------------------===//
410// UnloopUpdater implementation
411//
412
413namespace {
414/// Find the new parent loop for all blocks within the "unloop" whose last
415/// backedges has just been removed.
416class UnloopUpdater {
417  Loop *Unloop;
418  LoopInfo *LI;
419
420  LoopBlocksDFS DFS;
421
422  // Map unloop's immediate subloops to their nearest reachable parents. Nested
423  // loops within these subloops will not change parents. However, an immediate
424  // subloop's new parent will be the nearest loop reachable from either its own
425  // exits *or* any of its nested loop's exits.
426  DenseMap<Loop*, Loop*> SubloopParents;
427
428  // Flag the presence of an irreducible backedge whose destination is a block
429  // directly contained by the original unloop.
430  bool FoundIB;
431
432public:
433  UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
434    Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}
435
436  void updateBlockParents();
437
438  void removeBlocksFromAncestors();
439
440  void updateSubloopParents();
441
442protected:
443  Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
444};
445} // end anonymous namespace
446
447/// updateBlockParents - Update the parent loop for all blocks that are directly
448/// contained within the original "unloop".
449void UnloopUpdater::updateBlockParents() {
450  if (Unloop->getNumBlocks()) {
451    // Perform a post order CFG traversal of all blocks within this loop,
452    // propagating the nearest loop from sucessors to predecessors.
453    LoopBlocksTraversal Traversal(DFS, LI);
454    for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
455           POE = Traversal.end(); POI != POE; ++POI) {
456
457      Loop *L = LI->getLoopFor(*POI);
458      Loop *NL = getNearestLoop(*POI, L);
459
460      if (NL != L) {
461        // For reducible loops, NL is now an ancestor of Unloop.
462        assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
463               "uninitialized successor");
464        LI->changeLoopFor(*POI, NL);
465      }
466      else {
467        // Or the current block is part of a subloop, in which case its parent
468        // is unchanged.
469        assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
470      }
471    }
472  }
473  // Each irreducible loop within the unloop induces a round of iteration using
474  // the DFS result cached by Traversal.
475  bool Changed = FoundIB;
476  for (unsigned NIters = 0; Changed; ++NIters) {
477    assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");
478
479    // Iterate over the postorder list of blocks, propagating the nearest loop
480    // from successors to predecessors as before.
481    Changed = false;
482    for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
483           POE = DFS.endPostorder(); POI != POE; ++POI) {
484
485      Loop *L = LI->getLoopFor(*POI);
486      Loop *NL = getNearestLoop(*POI, L);
487      if (NL != L) {
488        assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
489               "uninitialized successor");
490        LI->changeLoopFor(*POI, NL);
491        Changed = true;
492      }
493    }
494  }
495}
496
497/// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below
498/// their new parents.
499void UnloopUpdater::removeBlocksFromAncestors() {
500  // Remove all unloop's blocks (including those in nested subloops) from
501  // ancestors below the new parent loop.
502  for (Loop::block_iterator BI = Unloop->block_begin(),
503         BE = Unloop->block_end(); BI != BE; ++BI) {
504    Loop *OuterParent = LI->getLoopFor(*BI);
505    if (Unloop->contains(OuterParent)) {
506      while (OuterParent->getParentLoop() != Unloop)
507        OuterParent = OuterParent->getParentLoop();
508      OuterParent = SubloopParents[OuterParent];
509    }
510    // Remove blocks from former Ancestors except Unloop itself which will be
511    // deleted.
512    for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent;
513         OldParent = OldParent->getParentLoop()) {
514      assert(OldParent && "new loop is not an ancestor of the original");
515      OldParent->removeBlockFromLoop(*BI);
516    }
517  }
518}
519
520/// updateSubloopParents - Update the parent loop for all subloops directly
521/// nested within unloop.
522void UnloopUpdater::updateSubloopParents() {
523  while (!Unloop->empty()) {
524    Loop *Subloop = *std::prev(Unloop->end());
525    Unloop->removeChildLoop(std::prev(Unloop->end()));
526
527    assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
528    if (Loop *Parent = SubloopParents[Subloop])
529      Parent->addChildLoop(Subloop);
530    else
531      LI->addTopLevelLoop(Subloop);
532  }
533}
534
535/// getNearestLoop - Return the nearest parent loop among this block's
536/// successors. If a successor is a subloop header, consider its parent to be
537/// the nearest parent of the subloop's exits.
538///
539/// For subloop blocks, simply update SubloopParents and return NULL.
540Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
541
542  // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
543  // is considered uninitialized.
544  Loop *NearLoop = BBLoop;
545
546  Loop *Subloop = nullptr;
547  if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
548    Subloop = NearLoop;
549    // Find the subloop ancestor that is directly contained within Unloop.
550    while (Subloop->getParentLoop() != Unloop) {
551      Subloop = Subloop->getParentLoop();
552      assert(Subloop && "subloop is not an ancestor of the original loop");
553    }
554    // Get the current nearest parent of the Subloop exits, initially Unloop.
555    NearLoop =
556      SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second;
557  }
558
559  succ_iterator I = succ_begin(BB), E = succ_end(BB);
560  if (I == E) {
561    assert(!Subloop && "subloop blocks must have a successor");
562    NearLoop = nullptr; // unloop blocks may now exit the function.
563  }
564  for (; I != E; ++I) {
565    if (*I == BB)
566      continue; // self loops are uninteresting
567
568    Loop *L = LI->getLoopFor(*I);
569    if (L == Unloop) {
570      // This successor has not been processed. This path must lead to an
571      // irreducible backedge.
572      assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
573      FoundIB = true;
574    }
575    if (L != Unloop && Unloop->contains(L)) {
576      // Successor is in a subloop.
577      if (Subloop)
578        continue; // Branching within subloops. Ignore it.
579
580      // BB branches from the original into a subloop header.
581      assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");
582
583      // Get the current nearest parent of the Subloop's exits.
584      L = SubloopParents[L];
585      // L could be Unloop if the only exit was an irreducible backedge.
586    }
587    if (L == Unloop) {
588      continue;
589    }
590    // Handle critical edges from Unloop into a sibling loop.
591    if (L && !L->contains(Unloop)) {
592      L = L->getParentLoop();
593    }
594    // Remember the nearest parent loop among successors or subloop exits.
595    if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
596      NearLoop = L;
597  }
598  if (Subloop) {
599    SubloopParents[Subloop] = NearLoop;
600    return BBLoop;
601  }
602  return NearLoop;
603}
604
605/// updateUnloop - The last backedge has been removed from a loop--now the
606/// "unloop". Find a new parent for the blocks contained within unloop and
607/// update the loop tree. We don't necessarily have valid dominators at this
608/// point, but LoopInfo is still valid except for the removal of this loop.
609///
610/// Note that Unloop may now be an empty loop. Calling Loop::getHeader without
611/// checking first is illegal.
612void LoopInfo::updateUnloop(Loop *Unloop) {
613
614  // First handle the special case of no parent loop to simplify the algorithm.
615  if (!Unloop->getParentLoop()) {
616    // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
617    for (Loop::block_iterator I = Unloop->block_begin(),
618                              E = Unloop->block_end();
619         I != E; ++I) {
620
621      // Don't reparent blocks in subloops.
622      if (getLoopFor(*I) != Unloop)
623        continue;
624
625      // Blocks no longer have a parent but are still referenced by Unloop until
626      // the Unloop object is deleted.
627      changeLoopFor(*I, nullptr);
628    }
629
630    // Remove the loop from the top-level LoopInfo object.
631    for (iterator I = begin();; ++I) {
632      assert(I != end() && "Couldn't find loop");
633      if (*I == Unloop) {
634        removeLoop(I);
635        break;
636      }
637    }
638
639    // Move all of the subloops to the top-level.
640    while (!Unloop->empty())
641      addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
642
643    return;
644  }
645
646  // Update the parent loop for all blocks within the loop. Blocks within
647  // subloops will not change parents.
648  UnloopUpdater Updater(Unloop, this);
649  Updater.updateBlockParents();
650
651  // Remove blocks from former ancestor loops.
652  Updater.removeBlocksFromAncestors();
653
654  // Add direct subloops as children in their new parent loop.
655  Updater.updateSubloopParents();
656
657  // Remove unloop from its parent loop.
658  Loop *ParentLoop = Unloop->getParentLoop();
659  for (Loop::iterator I = ParentLoop->begin();; ++I) {
660    assert(I != ParentLoop->end() && "Couldn't find loop");
661    if (*I == Unloop) {
662      ParentLoop->removeChildLoop(I);
663      break;
664    }
665  }
666}
667
668char LoopAnalysis::PassID;
669
670LoopInfo LoopAnalysis::run(Function &F, AnalysisManager<Function> *AM) {
671  // FIXME: Currently we create a LoopInfo from scratch for every function.
672  // This may prove to be too wasteful due to deallocating and re-allocating
673  // memory each time for the underlying map and vector datastructures. At some
674  // point it may prove worthwhile to use a freelist and recycle LoopInfo
675  // objects. I don't want to add that kind of complexity until the scope of
676  // the problem is better understood.
677  LoopInfo LI;
678  LI.Analyze(AM->getResult<DominatorTreeAnalysis>(F));
679  return LI;
680}
681
682PreservedAnalyses LoopPrinterPass::run(Function &F,
683                                       AnalysisManager<Function> *AM) {
684  AM->getResult<LoopAnalysis>(F).print(OS);
685  return PreservedAnalyses::all();
686}
687
688//===----------------------------------------------------------------------===//
689// LoopInfo implementation
690//
691
692char LoopInfoWrapperPass::ID = 0;
693INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
694                      true, true)
695INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
696INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
697                    true, true)
698
699bool LoopInfoWrapperPass::runOnFunction(Function &) {
700  releaseMemory();
701  LI.Analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
702  return false;
703}
704
705void LoopInfoWrapperPass::verifyAnalysis() const {
706  // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
707  // function each time verifyAnalysis is called is very expensive. The
708  // -verify-loop-info option can enable this. In order to perform some
709  // checking by default, LoopPass has been taught to call verifyLoop manually
710  // during loop pass sequences.
711  if (VerifyLoopInfo)
712    LI.verify();
713}
714
715void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
716  AU.setPreservesAll();
717  AU.addRequired<DominatorTreeWrapperPass>();
718}
719
720void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
721  LI.print(OS);
722}
723
724//===----------------------------------------------------------------------===//
725// LoopBlocksDFS implementation
726//
727
728/// Traverse the loop blocks and store the DFS result.
729/// Useful for clients that just want the final DFS result and don't need to
730/// visit blocks during the initial traversal.
731void LoopBlocksDFS::perform(LoopInfo *LI) {
732  LoopBlocksTraversal Traversal(*this, LI);
733  for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
734         POE = Traversal.end(); POI != POE; ++POI) ;
735}
736