LoopInfo.cpp revision 204961
1//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  Note that the
12// loops identified may actually be several natural loops that share the same
13// header node... not just a single natural loop.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/Constants.h"
19#include "llvm/Instructions.h"
20#include "llvm/Analysis/Dominators.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/Support/CFG.h"
23#include "llvm/Support/CommandLine.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/ADT/DepthFirstIterator.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include <algorithm>
28using namespace llvm;
29
30// Always verify loopinfo if expensive checking is enabled.
31#ifdef XDEBUG
32bool VerifyLoopInfo = true;
33#else
34bool VerifyLoopInfo = false;
35#endif
36static cl::opt<bool,true>
37VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
38                cl::desc("Verify loop info (time consuming)"));
39
40char LoopInfo::ID = 0;
41static RegisterPass<LoopInfo>
42X("loops", "Natural Loop Information", true, true);
43
44//===----------------------------------------------------------------------===//
45// Loop implementation
46//
47
48/// isLoopInvariant - Return true if the specified value is loop invariant
49///
50bool Loop::isLoopInvariant(Value *V) const {
51  if (Instruction *I = dyn_cast<Instruction>(V))
52    return isLoopInvariant(I);
53  return true;  // All non-instructions are loop invariant
54}
55
56/// isLoopInvariant - Return true if the specified instruction is
57/// loop-invariant.
58///
59bool Loop::isLoopInvariant(Instruction *I) const {
60  return !contains(I);
61}
62
63/// makeLoopInvariant - If the given value is an instruciton inside of the
64/// loop and it can be hoisted, do so to make it trivially loop-invariant.
65/// Return true if the value after any hoisting is loop invariant. This
66/// function can be used as a slightly more aggressive replacement for
67/// isLoopInvariant.
68///
69/// If InsertPt is specified, it is the point to hoist instructions to.
70/// If null, the terminator of the loop preheader is used.
71///
72bool Loop::makeLoopInvariant(Value *V, bool &Changed,
73                             Instruction *InsertPt) const {
74  if (Instruction *I = dyn_cast<Instruction>(V))
75    return makeLoopInvariant(I, Changed, InsertPt);
76  return true;  // All non-instructions are loop-invariant.
77}
78
79/// makeLoopInvariant - If the given instruction is inside of the
80/// loop and it can be hoisted, do so to make it trivially loop-invariant.
81/// Return true if the instruction after any hoisting is loop invariant. This
82/// function can be used as a slightly more aggressive replacement for
83/// isLoopInvariant.
84///
85/// If InsertPt is specified, it is the point to hoist instructions to.
86/// If null, the terminator of the loop preheader is used.
87///
88bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
89                             Instruction *InsertPt) const {
90  // Test if the value is already loop-invariant.
91  if (isLoopInvariant(I))
92    return true;
93  if (!I->isSafeToSpeculativelyExecute())
94    return false;
95  if (I->mayReadFromMemory())
96    return false;
97  // Determine the insertion point, unless one was given.
98  if (!InsertPt) {
99    BasicBlock *Preheader = getLoopPreheader();
100    // Without a preheader, hoisting is not feasible.
101    if (!Preheader)
102      return false;
103    InsertPt = Preheader->getTerminator();
104  }
105  // Don't hoist instructions with loop-variant operands.
106  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
107    if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
108      return false;
109  // Hoist.
110  I->moveBefore(InsertPt);
111  Changed = true;
112  return true;
113}
114
115/// getCanonicalInductionVariable - Check to see if the loop has a canonical
116/// induction variable: an integer recurrence that starts at 0 and increments
117/// by one each time through the loop.  If so, return the phi node that
118/// corresponds to it.
119///
120/// The IndVarSimplify pass transforms loops to have a canonical induction
121/// variable.
122///
123PHINode *Loop::getCanonicalInductionVariable() const {
124  BasicBlock *H = getHeader();
125
126  BasicBlock *Incoming = 0, *Backedge = 0;
127  typedef GraphTraits<Inverse<BasicBlock*> > InvBlockTraits;
128  InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(H);
129  assert(PI != InvBlockTraits::child_end(H) &&
130         "Loop must have at least one backedge!");
131  Backedge = *PI++;
132  if (PI == InvBlockTraits::child_end(H)) return 0;  // dead loop
133  Incoming = *PI++;
134  if (PI != InvBlockTraits::child_end(H)) return 0;  // multiple backedges?
135
136  if (contains(Incoming)) {
137    if (contains(Backedge))
138      return 0;
139    std::swap(Incoming, Backedge);
140  } else if (!contains(Backedge))
141    return 0;
142
143  // Loop over all of the PHI nodes, looking for a canonical indvar.
144  for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
145    PHINode *PN = cast<PHINode>(I);
146    if (ConstantInt *CI =
147        dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
148      if (CI->isNullValue())
149        if (Instruction *Inc =
150            dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
151          if (Inc->getOpcode() == Instruction::Add &&
152                Inc->getOperand(0) == PN)
153            if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
154              if (CI->equalsInt(1))
155                return PN;
156  }
157  return 0;
158}
159
160/// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
161/// the canonical induction variable value for the "next" iteration of the
162/// loop.  This always succeeds if getCanonicalInductionVariable succeeds.
163///
164Instruction *Loop::getCanonicalInductionVariableIncrement() const {
165  if (PHINode *PN = getCanonicalInductionVariable()) {
166    bool P1InLoop = contains(PN->getIncomingBlock(1));
167    return cast<Instruction>(PN->getIncomingValue(P1InLoop));
168  }
169  return 0;
170}
171
172/// getTripCount - Return a loop-invariant LLVM value indicating the number of
173/// times the loop will be executed.  Note that this means that the backedge
174/// of the loop executes N-1 times.  If the trip-count cannot be determined,
175/// this returns null.
176///
177/// The IndVarSimplify pass transforms loops to have a form that this
178/// function easily understands.
179///
180Value *Loop::getTripCount() const {
181  // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
182  // canonical induction variable and V is the trip count of the loop.
183  Instruction *Inc = getCanonicalInductionVariableIncrement();
184  if (Inc == 0) return 0;
185  PHINode *IV = cast<PHINode>(Inc->getOperand(0));
186
187  BasicBlock *BackedgeBlock =
188    IV->getIncomingBlock(contains(IV->getIncomingBlock(1)));
189
190  if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
191    if (BI->isConditional()) {
192      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
193        if (ICI->getOperand(0) == Inc) {
194          if (BI->getSuccessor(0) == getHeader()) {
195            if (ICI->getPredicate() == ICmpInst::ICMP_NE)
196              return ICI->getOperand(1);
197          } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
198            return ICI->getOperand(1);
199          }
200        }
201      }
202    }
203
204  return 0;
205}
206
207/// getSmallConstantTripCount - Returns the trip count of this loop as a
208/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
209/// of not constant. Will also return 0 if the trip count is very large
210/// (>= 2^32)
211unsigned Loop::getSmallConstantTripCount() const {
212  Value* TripCount = this->getTripCount();
213  if (TripCount) {
214    if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
215      // Guard against huge trip counts.
216      if (TripCountC->getValue().getActiveBits() <= 32) {
217        return (unsigned)TripCountC->getZExtValue();
218      }
219    }
220  }
221  return 0;
222}
223
224/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
225/// trip count of this loop as a normal unsigned value, if possible. This
226/// means that the actual trip count is always a multiple of the returned
227/// value (don't forget the trip count could very well be zero as well!).
228///
229/// Returns 1 if the trip count is unknown or not guaranteed to be the
230/// multiple of a constant (which is also the case if the trip count is simply
231/// constant, use getSmallConstantTripCount for that case), Will also return 1
232/// if the trip count is very large (>= 2^32).
233unsigned Loop::getSmallConstantTripMultiple() const {
234  Value* TripCount = this->getTripCount();
235  // This will hold the ConstantInt result, if any
236  ConstantInt *Result = NULL;
237  if (TripCount) {
238    // See if the trip count is constant itself
239    Result = dyn_cast<ConstantInt>(TripCount);
240    // if not, see if it is a multiplication
241    if (!Result)
242      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
243        switch (BO->getOpcode()) {
244        case BinaryOperator::Mul:
245          Result = dyn_cast<ConstantInt>(BO->getOperand(1));
246          break;
247        case BinaryOperator::Shl:
248          if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
249            if (CI->getValue().getActiveBits() <= 5)
250              return 1u << CI->getZExtValue();
251          break;
252        default:
253          break;
254        }
255      }
256  }
257  // Guard against huge trip counts.
258  if (Result && Result->getValue().getActiveBits() <= 32) {
259    return (unsigned)Result->getZExtValue();
260  } else {
261    return 1;
262  }
263}
264
265/// isLCSSAForm - Return true if the Loop is in LCSSA form
266bool Loop::isLCSSAForm() const {
267  // Collect all the reachable blocks in the function, for fast lookups.
268  SmallPtrSet<BasicBlock *, 32> ReachableBBs;
269  BasicBlock *EntryBB = getHeader()->getParent()->begin();
270  for (df_iterator<BasicBlock *> NI = df_begin(EntryBB),
271       NE = df_end(EntryBB); NI != NE; ++NI)
272    ReachableBBs.insert(*NI);
273
274  // Sort the blocks vector so that we can use binary search to do quick
275  // lookups.
276  SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
277
278  for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
279    BasicBlock *BB = *BI;
280    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
281      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
282           ++UI) {
283        BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
284        if (PHINode *P = dyn_cast<PHINode>(*UI))
285          UserBB = P->getIncomingBlock(UI);
286
287        // Check the current block, as a fast-path, before checking whether
288        // the use is anywhere in the loop.  Most values are used in the same
289        // block they are defined in.  Also, blocks not reachable from the
290        // entry are special; uses in them don't need to go through PHIs.
291        if (UserBB != BB &&
292            !LoopBBs.count(UserBB) &&
293            ReachableBBs.count(UserBB))
294          return false;
295      }
296  }
297
298  return true;
299}
300
301/// isLoopSimplifyForm - Return true if the Loop is in the form that
302/// the LoopSimplify form transforms loops to, which is sometimes called
303/// normal form.
304bool Loop::isLoopSimplifyForm() const {
305  // Normal-form loops have a preheader, a single backedge, and all of their
306  // exits have all their predecessors inside the loop.
307  return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
308}
309
310/// hasDedicatedExits - Return true if no exit block for the loop
311/// has a predecessor that is outside the loop.
312bool Loop::hasDedicatedExits() const {
313  // Sort the blocks vector so that we can use binary search to do quick
314  // lookups.
315  SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
316  // Each predecessor of each exit block of a normal loop is contained
317  // within the loop.
318  SmallVector<BasicBlock *, 4> ExitBlocks;
319  getExitBlocks(ExitBlocks);
320  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
321    for (pred_iterator PI = pred_begin(ExitBlocks[i]),
322         PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
323      if (!LoopBBs.count(*PI))
324        return false;
325  // All the requirements are met.
326  return true;
327}
328
329/// getUniqueExitBlocks - Return all unique successor blocks of this loop.
330/// These are the blocks _outside of the current loop_ which are branched to.
331/// This assumes that loop exits are in canonical form.
332///
333void
334Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
335  assert(hasDedicatedExits() &&
336         "getUniqueExitBlocks assumes the loop has canonical form exits!");
337
338  // Sort the blocks vector so that we can use binary search to do quick
339  // lookups.
340  SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end());
341  std::sort(LoopBBs.begin(), LoopBBs.end());
342
343  SmallVector<BasicBlock *, 32> switchExitBlocks;
344
345  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
346
347    BasicBlock *current = *BI;
348    switchExitBlocks.clear();
349
350    typedef GraphTraits<BasicBlock *> BlockTraits;
351    typedef GraphTraits<Inverse<BasicBlock *> > InvBlockTraits;
352    for (BlockTraits::ChildIteratorType I =
353         BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
354         I != E; ++I) {
355      // If block is inside the loop then it is not a exit block.
356      if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
357        continue;
358
359      InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(*I);
360      BasicBlock *firstPred = *PI;
361
362      // If current basic block is this exit block's first predecessor
363      // then only insert exit block in to the output ExitBlocks vector.
364      // This ensures that same exit block is not inserted twice into
365      // ExitBlocks vector.
366      if (current != firstPred)
367        continue;
368
369      // If a terminator has more then two successors, for example SwitchInst,
370      // then it is possible that there are multiple edges from current block
371      // to one exit block.
372      if (std::distance(BlockTraits::child_begin(current),
373                        BlockTraits::child_end(current)) <= 2) {
374        ExitBlocks.push_back(*I);
375        continue;
376      }
377
378      // In case of multiple edges from current block to exit block, collect
379      // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
380      // duplicate edges.
381      if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
382          == switchExitBlocks.end()) {
383        switchExitBlocks.push_back(*I);
384        ExitBlocks.push_back(*I);
385      }
386    }
387  }
388}
389
390/// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
391/// block, return that block. Otherwise return null.
392BasicBlock *Loop::getUniqueExitBlock() const {
393  SmallVector<BasicBlock *, 8> UniqueExitBlocks;
394  getUniqueExitBlocks(UniqueExitBlocks);
395  if (UniqueExitBlocks.size() == 1)
396    return UniqueExitBlocks[0];
397  return 0;
398}
399
400void Loop::dump() const {
401  print(dbgs());
402}
403
404//===----------------------------------------------------------------------===//
405// LoopInfo implementation
406//
407bool LoopInfo::runOnFunction(Function &) {
408  releaseMemory();
409  LI.Calculate(getAnalysis<DominatorTree>().getBase());    // Update
410  return false;
411}
412
413void LoopInfo::verifyAnalysis() const {
414  // LoopInfo is a FunctionPass, but verifying every loop in the function
415  // each time verifyAnalysis is called is very expensive. The
416  // -verify-loop-info option can enable this. In order to perform some
417  // checking by default, LoopPass has been taught to call verifyLoop
418  // manually during loop pass sequences.
419
420  if (!VerifyLoopInfo) return;
421
422  for (iterator I = begin(), E = end(); I != E; ++I) {
423    assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
424    (*I)->verifyLoopNest();
425  }
426
427  // TODO: check BBMap consistency.
428}
429
430void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
431  AU.setPreservesAll();
432  AU.addRequired<DominatorTree>();
433}
434
435void LoopInfo::print(raw_ostream &OS, const Module*) const {
436  LI.print(OS);
437}
438
439