LoopCacheAnalysis.cpp revision 360784
1//===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
6// See https://llvm.org/LICENSE.txt for license information.
7// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
8//
9//===----------------------------------------------------------------------===//
10///
11/// \file
12/// This file defines the implementation for the loop cache analysis.
13/// The implementation is largely based on the following paper:
14///
15///       Compiler Optimizations for Improving Data Locality
16///       By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng
17///       http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf
18///
19/// The general approach taken to estimate the number of cache lines used by the
20/// memory references in an inner loop is:
21///    1. Partition memory references that exhibit temporal or spacial reuse
22///       into reference groups.
23///    2. For each loop L in the a loop nest LN:
24///       a. Compute the cost of the reference group
25///       b. Compute the loop cost by summing up the reference groups costs
26//===----------------------------------------------------------------------===//
27
28#include "llvm/Analysis/LoopCacheAnalysis.h"
29#include "llvm/ADT/BreadthFirstIterator.h"
30#include "llvm/ADT/Sequence.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34
35using namespace llvm;
36
37#define DEBUG_TYPE "loop-cache-cost"
38
39static cl::opt<unsigned> DefaultTripCount(
40    "default-trip-count", cl::init(100), cl::Hidden,
41    cl::desc("Use this to specify the default trip count of a loop"));
42
43// In this analysis two array references are considered to exhibit temporal
44// reuse if they access either the same memory location, or a memory location
45// with distance smaller than a configurable threshold.
46static cl::opt<unsigned> TemporalReuseThreshold(
47    "temporal-reuse-threshold", cl::init(2), cl::Hidden,
48    cl::desc("Use this to specify the max. distance between array elements "
49             "accessed in a loop so that the elements are classified to have "
50             "temporal reuse"));
51
52/// Retrieve the innermost loop in the given loop nest \p Loops. It returns a
53/// nullptr if any loops in the loop vector supplied has more than one sibling.
54/// The loop vector is expected to contain loops collected in breadth-first
55/// order.
56static Loop *getInnerMostLoop(const LoopVectorTy &Loops) {
57  assert(!Loops.empty() && "Expecting a non-empy loop vector");
58
59  Loop *LastLoop = Loops.back();
60  Loop *ParentLoop = LastLoop->getParentLoop();
61
62  if (ParentLoop == nullptr) {
63    assert(Loops.size() == 1 && "Expecting a single loop");
64    return LastLoop;
65  }
66
67  return (std::is_sorted(Loops.begin(), Loops.end(),
68                         [](const Loop *L1, const Loop *L2) {
69                           return L1->getLoopDepth() < L2->getLoopDepth();
70                         }))
71             ? LastLoop
72             : nullptr;
73}
74
75static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize,
76                                  const Loop &L, ScalarEvolution &SE) {
77  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&AccessFn);
78  if (!AR || !AR->isAffine())
79    return false;
80
81  assert(AR->getLoop() && "AR should have a loop");
82
83  // Check that start and increment are not add recurrences.
84  const SCEV *Start = AR->getStart();
85  const SCEV *Step = AR->getStepRecurrence(SE);
86  if (isa<SCEVAddRecExpr>(Start) || isa<SCEVAddRecExpr>(Step))
87    return false;
88
89  // Check that start and increment are both invariant in the loop.
90  if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
91    return false;
92
93  return AR->getStepRecurrence(SE) == &ElemSize;
94}
95
96/// Compute the trip count for the given loop \p L. Return the SCEV expression
97/// for the trip count or nullptr if it cannot be computed.
98static const SCEV *computeTripCount(const Loop &L, ScalarEvolution &SE) {
99  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L);
100  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
101      !isa<SCEVConstant>(BackedgeTakenCount))
102    return nullptr;
103
104  return SE.getAddExpr(BackedgeTakenCount,
105                       SE.getOne(BackedgeTakenCount->getType()));
106}
107
108//===----------------------------------------------------------------------===//
109// IndexedReference implementation
110//
111raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) {
112  if (!R.IsValid) {
113    OS << R.StoreOrLoadInst;
114    OS << ", IsValid=false.";
115    return OS;
116  }
117
118  OS << *R.BasePointer;
119  for (const SCEV *Subscript : R.Subscripts)
120    OS << "[" << *Subscript << "]";
121
122  OS << ", Sizes: ";
123  for (const SCEV *Size : R.Sizes)
124    OS << "[" << *Size << "]";
125
126  return OS;
127}
128
129IndexedReference::IndexedReference(Instruction &StoreOrLoadInst,
130                                   const LoopInfo &LI, ScalarEvolution &SE)
131    : StoreOrLoadInst(StoreOrLoadInst), SE(SE) {
132  assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) &&
133         "Expecting a load or store instruction");
134
135  IsValid = delinearize(LI);
136  if (IsValid)
137    LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this
138                                << "\n");
139}
140
141Optional<bool> IndexedReference::hasSpacialReuse(const IndexedReference &Other,
142                                                 unsigned CLS,
143                                                 AliasAnalysis &AA) const {
144  assert(IsValid && "Expecting a valid reference");
145
146  if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) {
147    LLVM_DEBUG(dbgs().indent(2)
148               << "No spacial reuse: different base pointers\n");
149    return false;
150  }
151
152  unsigned NumSubscripts = getNumSubscripts();
153  if (NumSubscripts != Other.getNumSubscripts()) {
154    LLVM_DEBUG(dbgs().indent(2)
155               << "No spacial reuse: different number of subscripts\n");
156    return false;
157  }
158
159  // all subscripts must be equal, except the leftmost one (the last one).
160  for (auto SubNum : seq<unsigned>(0, NumSubscripts - 1)) {
161    if (getSubscript(SubNum) != Other.getSubscript(SubNum)) {
162      LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: "
163                                  << "\n\t" << *getSubscript(SubNum) << "\n\t"
164                                  << *Other.getSubscript(SubNum) << "\n");
165      return false;
166    }
167  }
168
169  // the difference between the last subscripts must be less than the cache line
170  // size.
171  const SCEV *LastSubscript = getLastSubscript();
172  const SCEV *OtherLastSubscript = Other.getLastSubscript();
173  const SCEVConstant *Diff = dyn_cast<SCEVConstant>(
174      SE.getMinusSCEV(LastSubscript, OtherLastSubscript));
175
176  if (Diff == nullptr) {
177    LLVM_DEBUG(dbgs().indent(2)
178               << "No spacial reuse, difference between subscript:\n\t"
179               << *LastSubscript << "\n\t" << OtherLastSubscript
180               << "\nis not constant.\n");
181    return None;
182  }
183
184  bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS);
185
186  LLVM_DEBUG({
187    if (InSameCacheLine)
188      dbgs().indent(2) << "Found spacial reuse.\n";
189    else
190      dbgs().indent(2) << "No spacial reuse.\n";
191  });
192
193  return InSameCacheLine;
194}
195
196Optional<bool> IndexedReference::hasTemporalReuse(const IndexedReference &Other,
197                                                  unsigned MaxDistance,
198                                                  const Loop &L,
199                                                  DependenceInfo &DI,
200                                                  AliasAnalysis &AA) const {
201  assert(IsValid && "Expecting a valid reference");
202
203  if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) {
204    LLVM_DEBUG(dbgs().indent(2)
205               << "No temporal reuse: different base pointer\n");
206    return false;
207  }
208
209  std::unique_ptr<Dependence> D =
210      DI.depends(&StoreOrLoadInst, &Other.StoreOrLoadInst, true);
211
212  if (D == nullptr) {
213    LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n");
214    return false;
215  }
216
217  if (D->isLoopIndependent()) {
218    LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
219    return true;
220  }
221
222  // Check the dependence distance at every loop level. There is temporal reuse
223  // if the distance at the given loop's depth is small (|d| <= MaxDistance) and
224  // it is zero at every other loop level.
225  int LoopDepth = L.getLoopDepth();
226  int Levels = D->getLevels();
227  for (int Level = 1; Level <= Levels; ++Level) {
228    const SCEV *Distance = D->getDistance(Level);
229    const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Distance);
230
231    if (SCEVConst == nullptr) {
232      LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n");
233      return None;
234    }
235
236    const ConstantInt &CI = *SCEVConst->getValue();
237    if (Level != LoopDepth && !CI.isZero()) {
238      LLVM_DEBUG(dbgs().indent(2)
239                 << "No temporal reuse: distance is not zero at depth=" << Level
240                 << "\n");
241      return false;
242    } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) {
243      LLVM_DEBUG(
244          dbgs().indent(2)
245          << "No temporal reuse: distance is greater than MaxDistance at depth="
246          << Level << "\n");
247      return false;
248    }
249  }
250
251  LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
252  return true;
253}
254
255CacheCostTy IndexedReference::computeRefCost(const Loop &L,
256                                             unsigned CLS) const {
257  assert(IsValid && "Expecting a valid reference");
258  LLVM_DEBUG({
259    dbgs().indent(2) << "Computing cache cost for:\n";
260    dbgs().indent(4) << *this << "\n";
261  });
262
263  // If the indexed reference is loop invariant the cost is one.
264  if (isLoopInvariant(L)) {
265    LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n");
266    return 1;
267  }
268
269  const SCEV *TripCount = computeTripCount(L, SE);
270  if (!TripCount) {
271    LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName()
272                      << " could not be computed, using DefaultTripCount\n");
273    const SCEV *ElemSize = Sizes.back();
274    TripCount = SE.getConstant(ElemSize->getType(), DefaultTripCount);
275  }
276  LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n");
277
278  // If the indexed reference is 'consecutive' the cost is
279  // (TripCount*Stride)/CLS, otherwise the cost is TripCount.
280  const SCEV *RefCost = TripCount;
281
282  if (isConsecutive(L, CLS)) {
283    const SCEV *Coeff = getLastCoefficient();
284    const SCEV *ElemSize = Sizes.back();
285    const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize);
286    const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS);
287    Type *WiderType = SE.getWiderType(Stride->getType(), TripCount->getType());
288    Stride = SE.getNoopOrSignExtend(Stride, WiderType);
289    TripCount = SE.getNoopOrAnyExtend(TripCount, WiderType);
290    const SCEV *Numerator = SE.getMulExpr(Stride, TripCount);
291    RefCost = SE.getUDivExpr(Numerator, CacheLineSize);
292    LLVM_DEBUG(dbgs().indent(4)
293               << "Access is consecutive: RefCost=(TripCount*Stride)/CLS="
294               << *RefCost << "\n");
295  } else
296    LLVM_DEBUG(dbgs().indent(4)
297               << "Access is not consecutive: RefCost=TripCount=" << *RefCost
298               << "\n");
299
300  // Attempt to fold RefCost into a constant.
301  if (auto ConstantCost = dyn_cast<SCEVConstant>(RefCost))
302    return ConstantCost->getValue()->getSExtValue();
303
304  LLVM_DEBUG(dbgs().indent(4)
305             << "RefCost is not a constant! Setting to RefCost=InvalidCost "
306                "(invalid value).\n");
307
308  return CacheCost::InvalidCost;
309}
310
311bool IndexedReference::delinearize(const LoopInfo &LI) {
312  assert(Subscripts.empty() && "Subscripts should be empty");
313  assert(Sizes.empty() && "Sizes should be empty");
314  assert(!IsValid && "Should be called once from the constructor");
315  LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n");
316
317  const SCEV *ElemSize = SE.getElementSize(&StoreOrLoadInst);
318  const BasicBlock *BB = StoreOrLoadInst.getParent();
319
320  if (Loop *L = LI.getLoopFor(BB)) {
321    const SCEV *AccessFn =
322        SE.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst), L);
323
324    BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFn));
325    if (BasePointer == nullptr) {
326      LLVM_DEBUG(
327          dbgs().indent(2)
328          << "ERROR: failed to delinearize, can't identify base pointer\n");
329      return false;
330    }
331
332    AccessFn = SE.getMinusSCEV(AccessFn, BasePointer);
333
334    LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName()
335                                << "', AccessFn: " << *AccessFn << "\n");
336
337    SE.delinearize(AccessFn, Subscripts, Sizes,
338                   SE.getElementSize(&StoreOrLoadInst));
339
340    if (Subscripts.empty() || Sizes.empty() ||
341        Subscripts.size() != Sizes.size()) {
342      // Attempt to determine whether we have a single dimensional array access.
343      // before giving up.
344      if (!isOneDimensionalArray(*AccessFn, *ElemSize, *L, SE)) {
345        LLVM_DEBUG(dbgs().indent(2)
346                   << "ERROR: failed to delinearize reference\n");
347        Subscripts.clear();
348        Sizes.clear();
349        return false;
350      }
351
352      const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize);
353      Subscripts.push_back(Div);
354      Sizes.push_back(ElemSize);
355    }
356
357    return all_of(Subscripts, [&](const SCEV *Subscript) {
358      return isSimpleAddRecurrence(*Subscript, *L);
359    });
360  }
361
362  return false;
363}
364
365bool IndexedReference::isLoopInvariant(const Loop &L) const {
366  Value *Addr = getPointerOperand(&StoreOrLoadInst);
367  assert(Addr != nullptr && "Expecting either a load or a store instruction");
368  assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable");
369
370  if (SE.isLoopInvariant(SE.getSCEV(Addr), &L))
371    return true;
372
373  // The indexed reference is loop invariant if none of the coefficients use
374  // the loop induction variable.
375  bool allCoeffForLoopAreZero = all_of(Subscripts, [&](const SCEV *Subscript) {
376    return isCoeffForLoopZeroOrInvariant(*Subscript, L);
377  });
378
379  return allCoeffForLoopAreZero;
380}
381
382bool IndexedReference::isConsecutive(const Loop &L, unsigned CLS) const {
383  // The indexed reference is 'consecutive' if the only coefficient that uses
384  // the loop induction variable is the last one...
385  const SCEV *LastSubscript = Subscripts.back();
386  for (const SCEV *Subscript : Subscripts) {
387    if (Subscript == LastSubscript)
388      continue;
389    if (!isCoeffForLoopZeroOrInvariant(*Subscript, L))
390      return false;
391  }
392
393  // ...and the access stride is less than the cache line size.
394  const SCEV *Coeff = getLastCoefficient();
395  const SCEV *ElemSize = Sizes.back();
396  const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize);
397  const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS);
398
399  return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize);
400}
401
402const SCEV *IndexedReference::getLastCoefficient() const {
403  const SCEV *LastSubscript = getLastSubscript();
404  assert(isa<SCEVAddRecExpr>(LastSubscript) &&
405         "Expecting a SCEV add recurrence expression");
406  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LastSubscript);
407  return AR->getStepRecurrence(SE);
408}
409
410bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript,
411                                                     const Loop &L) const {
412  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&Subscript);
413  return (AR != nullptr) ? AR->getLoop() != &L
414                         : SE.isLoopInvariant(&Subscript, &L);
415}
416
417bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript,
418                                             const Loop &L) const {
419  if (!isa<SCEVAddRecExpr>(Subscript))
420    return false;
421
422  const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(&Subscript);
423  assert(AR->getLoop() && "AR should have a loop");
424
425  if (!AR->isAffine())
426    return false;
427
428  const SCEV *Start = AR->getStart();
429  const SCEV *Step = AR->getStepRecurrence(SE);
430
431  if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
432    return false;
433
434  return true;
435}
436
437bool IndexedReference::isAliased(const IndexedReference &Other,
438                                 AliasAnalysis &AA) const {
439  const auto &Loc1 = MemoryLocation::get(&StoreOrLoadInst);
440  const auto &Loc2 = MemoryLocation::get(&Other.StoreOrLoadInst);
441  return AA.isMustAlias(Loc1, Loc2);
442}
443
444//===----------------------------------------------------------------------===//
445// CacheCost implementation
446//
447raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) {
448  for (const auto &LC : CC.LoopCosts) {
449    const Loop *L = LC.first;
450    OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n";
451  }
452  return OS;
453}
454
455CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI,
456                     ScalarEvolution &SE, TargetTransformInfo &TTI,
457                     AliasAnalysis &AA, DependenceInfo &DI,
458                     Optional<unsigned> TRT)
459    : Loops(Loops), TripCounts(), LoopCosts(),
460      TRT((TRT == None) ? Optional<unsigned>(TemporalReuseThreshold) : TRT),
461      LI(LI), SE(SE), TTI(TTI), AA(AA), DI(DI) {
462  assert(!Loops.empty() && "Expecting a non-empty loop vector.");
463
464  for (const Loop *L : Loops) {
465    unsigned TripCount = SE.getSmallConstantTripCount(L);
466    TripCount = (TripCount == 0) ? DefaultTripCount : TripCount;
467    TripCounts.push_back({L, TripCount});
468  }
469
470  calculateCacheFootprint();
471}
472
473std::unique_ptr<CacheCost>
474CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR,
475                        DependenceInfo &DI, Optional<unsigned> TRT) {
476  if (Root.getParentLoop()) {
477    LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n");
478    return nullptr;
479  }
480
481  LoopVectorTy Loops;
482  for (Loop *L : breadth_first(&Root))
483    Loops.push_back(L);
484
485  if (!getInnerMostLoop(Loops)) {
486    LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more "
487                         "than one innermost loop\n");
488    return nullptr;
489  }
490
491  return std::make_unique<CacheCost>(Loops, AR.LI, AR.SE, AR.TTI, AR.AA, DI, TRT);
492}
493
494void CacheCost::calculateCacheFootprint() {
495  LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n");
496  ReferenceGroupsTy RefGroups;
497  if (!populateReferenceGroups(RefGroups))
498    return;
499
500  LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n");
501  for (const Loop *L : Loops) {
502    assert((std::find_if(LoopCosts.begin(), LoopCosts.end(),
503                         [L](const LoopCacheCostTy &LCC) {
504                           return LCC.first == L;
505                         }) == LoopCosts.end()) &&
506           "Should not add duplicate element");
507    CacheCostTy LoopCost = computeLoopCacheCost(*L, RefGroups);
508    LoopCosts.push_back(std::make_pair(L, LoopCost));
509  }
510
511  sortLoopCosts();
512  RefGroups.clear();
513}
514
515bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const {
516  assert(RefGroups.empty() && "Reference groups should be empty");
517
518  unsigned CLS = TTI.getCacheLineSize();
519  Loop *InnerMostLoop = getInnerMostLoop(Loops);
520  assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop");
521
522  for (BasicBlock *BB : InnerMostLoop->getBlocks()) {
523    for (Instruction &I : *BB) {
524      if (!isa<StoreInst>(I) && !isa<LoadInst>(I))
525        continue;
526
527      std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE));
528      if (!R->isValid())
529        continue;
530
531      bool Added = false;
532      for (ReferenceGroupTy &RefGroup : RefGroups) {
533        const IndexedReference &Representative = *RefGroup.front().get();
534        LLVM_DEBUG({
535          dbgs() << "References:\n";
536          dbgs().indent(2) << *R << "\n";
537          dbgs().indent(2) << Representative << "\n";
538        });
539
540        Optional<bool> HasTemporalReuse =
541            R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA);
542        Optional<bool> HasSpacialReuse =
543            R->hasSpacialReuse(Representative, CLS, AA);
544
545        if ((HasTemporalReuse.hasValue() && *HasTemporalReuse) ||
546            (HasSpacialReuse.hasValue() && *HasSpacialReuse)) {
547          RefGroup.push_back(std::move(R));
548          Added = true;
549          break;
550        }
551      }
552
553      if (!Added) {
554        ReferenceGroupTy RG;
555        RG.push_back(std::move(R));
556        RefGroups.push_back(std::move(RG));
557      }
558    }
559  }
560
561  if (RefGroups.empty())
562    return false;
563
564  LLVM_DEBUG({
565    dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n";
566    int n = 1;
567    for (const ReferenceGroupTy &RG : RefGroups) {
568      dbgs().indent(2) << "RefGroup " << n << ":\n";
569      for (const auto &IR : RG)
570        dbgs().indent(4) << *IR << "\n";
571      n++;
572    }
573    dbgs() << "\n";
574  });
575
576  return true;
577}
578
579CacheCostTy
580CacheCost::computeLoopCacheCost(const Loop &L,
581                                const ReferenceGroupsTy &RefGroups) const {
582  if (!L.isLoopSimplifyForm())
583    return InvalidCost;
584
585  LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName()
586                    << "' as innermost loop.\n");
587
588  // Compute the product of the trip counts of each other loop in the nest.
589  CacheCostTy TripCountsProduct = 1;
590  for (const auto &TC : TripCounts) {
591    if (TC.first == &L)
592      continue;
593    TripCountsProduct *= TC.second;
594  }
595
596  CacheCostTy LoopCost = 0;
597  for (const ReferenceGroupTy &RG : RefGroups) {
598    CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L);
599    LoopCost += RefGroupCost * TripCountsProduct;
600  }
601
602  LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName()
603                              << "' has cost=" << LoopCost << "\n");
604
605  return LoopCost;
606}
607
608CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG,
609                                                const Loop &L) const {
610  assert(!RG.empty() && "Reference group should have at least one member.");
611
612  const IndexedReference *Representative = RG.front().get();
613  return Representative->computeRefCost(L, TTI.getCacheLineSize());
614}
615
616//===----------------------------------------------------------------------===//
617// LoopCachePrinterPass implementation
618//
619PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM,
620                                            LoopStandardAnalysisResults &AR,
621                                            LPMUpdater &U) {
622  Function *F = L.getHeader()->getParent();
623  DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI);
624
625  if (auto CC = CacheCost::getCacheCost(L, AR, DI))
626    OS << *CC;
627
628  return PreservedAnalyses::all();
629}
630