CFLSteensAliasAnalysis.cpp revision 341825
1//===- CFLSteensAliasAnalysis.cpp - Unification-based Alias Analysis ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a CFL-base, summary-based alias analysis algorithm. It
11// does not depend on types. The algorithm is a mixture of the one described in
12// "Demand-driven alias analysis for C" by Xin Zheng and Radu Rugina, and "Fast
13// algorithms for Dyck-CFL-reachability with applications to Alias Analysis" by
14// Zhang Q, Lyu M R, Yuan H, and Su Z. -- to summarize the papers, we build a
15// graph of the uses of a variable, where each node is a memory location, and
16// each edge is an action that happened on that memory location.  The "actions"
17// can be one of Dereference, Reference, or Assign. The precision of this
18// analysis is roughly the same as that of an one level context-sensitive
19// Steensgaard's algorithm.
20//
21// Two variables are considered as aliasing iff you can reach one value's node
22// from the other value's node and the language formed by concatenating all of
23// the edge labels (actions) conforms to a context-free grammar.
24//
25// Because this algorithm requires a graph search on each query, we execute the
26// algorithm outlined in "Fast algorithms..." (mentioned above)
27// in order to transform the graph into sets of variables that may alias in
28// ~nlogn time (n = number of variables), which makes queries take constant
29// time.
30//===----------------------------------------------------------------------===//
31
32// N.B. AliasAnalysis as a whole is phrased as a FunctionPass at the moment, and
33// CFLSteensAA is interprocedural. This is *technically* A Bad Thing, because
34// FunctionPasses are only allowed to inspect the Function that they're being
35// run on. Realistically, this likely isn't a problem until we allow
36// FunctionPasses to run concurrently.
37
38#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
39#include "AliasAnalysisSummary.h"
40#include "CFLGraph.h"
41#include "StratifiedSets.h"
42#include "llvm/ADT/DenseMap.h"
43#include "llvm/ADT/Optional.h"
44#include "llvm/ADT/SmallVector.h"
45#include "llvm/Analysis/TargetLibraryInfo.h"
46#include "llvm/IR/Constants.h"
47#include "llvm/IR/Function.h"
48#include "llvm/IR/Type.h"
49#include "llvm/IR/Value.h"
50#include "llvm/Pass.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/Support/raw_ostream.h"
53#include <algorithm>
54#include <cassert>
55#include <limits>
56#include <memory>
57#include <utility>
58
59using namespace llvm;
60using namespace llvm::cflaa;
61
62#define DEBUG_TYPE "cfl-steens-aa"
63
64CFLSteensAAResult::CFLSteensAAResult(const TargetLibraryInfo &TLI)
65    : AAResultBase(), TLI(TLI) {}
66CFLSteensAAResult::CFLSteensAAResult(CFLSteensAAResult &&Arg)
67    : AAResultBase(std::move(Arg)), TLI(Arg.TLI) {}
68CFLSteensAAResult::~CFLSteensAAResult() = default;
69
70/// Information we have about a function and would like to keep around.
71class CFLSteensAAResult::FunctionInfo {
72  StratifiedSets<InstantiatedValue> Sets;
73  AliasSummary Summary;
74
75public:
76  FunctionInfo(Function &Fn, const SmallVectorImpl<Value *> &RetVals,
77               StratifiedSets<InstantiatedValue> S);
78
79  const StratifiedSets<InstantiatedValue> &getStratifiedSets() const {
80    return Sets;
81  }
82
83  const AliasSummary &getAliasSummary() const { return Summary; }
84};
85
86const StratifiedIndex StratifiedLink::SetSentinel =
87    std::numeric_limits<StratifiedIndex>::max();
88
89//===----------------------------------------------------------------------===//
90// Function declarations that require types defined in the namespace above
91//===----------------------------------------------------------------------===//
92
93/// Determines whether it would be pointless to add the given Value to our sets.
94static bool canSkipAddingToSets(Value *Val) {
95  // Constants can share instances, which may falsely unify multiple
96  // sets, e.g. in
97  // store i32* null, i32** %ptr1
98  // store i32* null, i32** %ptr2
99  // clearly ptr1 and ptr2 should not be unified into the same set, so
100  // we should filter out the (potentially shared) instance to
101  // i32* null.
102  if (isa<Constant>(Val)) {
103    // TODO: Because all of these things are constant, we can determine whether
104    // the data is *actually* mutable at graph building time. This will probably
105    // come for free/cheap with offset awareness.
106    bool CanStoreMutableData = isa<GlobalValue>(Val) ||
107                               isa<ConstantExpr>(Val) ||
108                               isa<ConstantAggregate>(Val);
109    return !CanStoreMutableData;
110  }
111
112  return false;
113}
114
115CFLSteensAAResult::FunctionInfo::FunctionInfo(
116    Function &Fn, const SmallVectorImpl<Value *> &RetVals,
117    StratifiedSets<InstantiatedValue> S)
118    : Sets(std::move(S)) {
119  // Historically, an arbitrary upper-bound of 50 args was selected. We may want
120  // to remove this if it doesn't really matter in practice.
121  if (Fn.arg_size() > MaxSupportedArgsInSummary)
122    return;
123
124  DenseMap<StratifiedIndex, InterfaceValue> InterfaceMap;
125
126  // Our intention here is to record all InterfaceValues that share the same
127  // StratifiedIndex in RetParamRelations. For each valid InterfaceValue, we
128  // have its StratifiedIndex scanned here and check if the index is presented
129  // in InterfaceMap: if it is not, we add the correspondence to the map;
130  // otherwise, an aliasing relation is found and we add it to
131  // RetParamRelations.
132
133  auto AddToRetParamRelations = [&](unsigned InterfaceIndex,
134                                    StratifiedIndex SetIndex) {
135    unsigned Level = 0;
136    while (true) {
137      InterfaceValue CurrValue{InterfaceIndex, Level};
138
139      auto Itr = InterfaceMap.find(SetIndex);
140      if (Itr != InterfaceMap.end()) {
141        if (CurrValue != Itr->second)
142          Summary.RetParamRelations.push_back(
143              ExternalRelation{CurrValue, Itr->second, UnknownOffset});
144        break;
145      }
146
147      auto &Link = Sets.getLink(SetIndex);
148      InterfaceMap.insert(std::make_pair(SetIndex, CurrValue));
149      auto ExternalAttrs = getExternallyVisibleAttrs(Link.Attrs);
150      if (ExternalAttrs.any())
151        Summary.RetParamAttributes.push_back(
152            ExternalAttribute{CurrValue, ExternalAttrs});
153
154      if (!Link.hasBelow())
155        break;
156
157      ++Level;
158      SetIndex = Link.Below;
159    }
160  };
161
162  // Populate RetParamRelations for return values
163  for (auto *RetVal : RetVals) {
164    assert(RetVal != nullptr);
165    assert(RetVal->getType()->isPointerTy());
166    auto RetInfo = Sets.find(InstantiatedValue{RetVal, 0});
167    if (RetInfo.hasValue())
168      AddToRetParamRelations(0, RetInfo->Index);
169  }
170
171  // Populate RetParamRelations for parameters
172  unsigned I = 0;
173  for (auto &Param : Fn.args()) {
174    if (Param.getType()->isPointerTy()) {
175      auto ParamInfo = Sets.find(InstantiatedValue{&Param, 0});
176      if (ParamInfo.hasValue())
177        AddToRetParamRelations(I + 1, ParamInfo->Index);
178    }
179    ++I;
180  }
181}
182
183// Builds the graph + StratifiedSets for a function.
184CFLSteensAAResult::FunctionInfo CFLSteensAAResult::buildSetsFrom(Function *Fn) {
185  CFLGraphBuilder<CFLSteensAAResult> GraphBuilder(*this, TLI, *Fn);
186  StratifiedSetsBuilder<InstantiatedValue> SetBuilder;
187
188  // Add all CFLGraph nodes and all Dereference edges to StratifiedSets
189  auto &Graph = GraphBuilder.getCFLGraph();
190  for (const auto &Mapping : Graph.value_mappings()) {
191    auto Val = Mapping.first;
192    if (canSkipAddingToSets(Val))
193      continue;
194    auto &ValueInfo = Mapping.second;
195
196    assert(ValueInfo.getNumLevels() > 0);
197    SetBuilder.add(InstantiatedValue{Val, 0});
198    SetBuilder.noteAttributes(InstantiatedValue{Val, 0},
199                              ValueInfo.getNodeInfoAtLevel(0).Attr);
200    for (unsigned I = 0, E = ValueInfo.getNumLevels() - 1; I < E; ++I) {
201      SetBuilder.add(InstantiatedValue{Val, I + 1});
202      SetBuilder.noteAttributes(InstantiatedValue{Val, I + 1},
203                                ValueInfo.getNodeInfoAtLevel(I + 1).Attr);
204      SetBuilder.addBelow(InstantiatedValue{Val, I},
205                          InstantiatedValue{Val, I + 1});
206    }
207  }
208
209  // Add all assign edges to StratifiedSets
210  for (const auto &Mapping : Graph.value_mappings()) {
211    auto Val = Mapping.first;
212    if (canSkipAddingToSets(Val))
213      continue;
214    auto &ValueInfo = Mapping.second;
215
216    for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) {
217      auto Src = InstantiatedValue{Val, I};
218      for (auto &Edge : ValueInfo.getNodeInfoAtLevel(I).Edges)
219        SetBuilder.addWith(Src, Edge.Other);
220    }
221  }
222
223  return FunctionInfo(*Fn, GraphBuilder.getReturnValues(), SetBuilder.build());
224}
225
226void CFLSteensAAResult::scan(Function *Fn) {
227  auto InsertPair = Cache.insert(std::make_pair(Fn, Optional<FunctionInfo>()));
228  (void)InsertPair;
229  assert(InsertPair.second &&
230         "Trying to scan a function that has already been cached");
231
232  // Note that we can't do Cache[Fn] = buildSetsFrom(Fn) here: the function call
233  // may get evaluated after operator[], potentially triggering a DenseMap
234  // resize and invalidating the reference returned by operator[]
235  auto FunInfo = buildSetsFrom(Fn);
236  Cache[Fn] = std::move(FunInfo);
237
238  Handles.emplace_front(Fn, this);
239}
240
241void CFLSteensAAResult::evict(Function *Fn) { Cache.erase(Fn); }
242
243/// Ensures that the given function is available in the cache, and returns the
244/// entry.
245const Optional<CFLSteensAAResult::FunctionInfo> &
246CFLSteensAAResult::ensureCached(Function *Fn) {
247  auto Iter = Cache.find(Fn);
248  if (Iter == Cache.end()) {
249    scan(Fn);
250    Iter = Cache.find(Fn);
251    assert(Iter != Cache.end());
252    assert(Iter->second.hasValue());
253  }
254  return Iter->second;
255}
256
257const AliasSummary *CFLSteensAAResult::getAliasSummary(Function &Fn) {
258  auto &FunInfo = ensureCached(&Fn);
259  if (FunInfo.hasValue())
260    return &FunInfo->getAliasSummary();
261  else
262    return nullptr;
263}
264
265AliasResult CFLSteensAAResult::query(const MemoryLocation &LocA,
266                                     const MemoryLocation &LocB) {
267  auto *ValA = const_cast<Value *>(LocA.Ptr);
268  auto *ValB = const_cast<Value *>(LocB.Ptr);
269
270  if (!ValA->getType()->isPointerTy() || !ValB->getType()->isPointerTy())
271    return NoAlias;
272
273  Function *Fn = nullptr;
274  Function *MaybeFnA = const_cast<Function *>(parentFunctionOfValue(ValA));
275  Function *MaybeFnB = const_cast<Function *>(parentFunctionOfValue(ValB));
276  if (!MaybeFnA && !MaybeFnB) {
277    // The only times this is known to happen are when globals + InlineAsm are
278    // involved
279    LLVM_DEBUG(
280        dbgs()
281        << "CFLSteensAA: could not extract parent function information.\n");
282    return MayAlias;
283  }
284
285  if (MaybeFnA) {
286    Fn = MaybeFnA;
287    assert((!MaybeFnB || MaybeFnB == MaybeFnA) &&
288           "Interprocedural queries not supported");
289  } else {
290    Fn = MaybeFnB;
291  }
292
293  assert(Fn != nullptr);
294  auto &MaybeInfo = ensureCached(Fn);
295  assert(MaybeInfo.hasValue());
296
297  auto &Sets = MaybeInfo->getStratifiedSets();
298  auto MaybeA = Sets.find(InstantiatedValue{ValA, 0});
299  if (!MaybeA.hasValue())
300    return MayAlias;
301
302  auto MaybeB = Sets.find(InstantiatedValue{ValB, 0});
303  if (!MaybeB.hasValue())
304    return MayAlias;
305
306  auto SetA = *MaybeA;
307  auto SetB = *MaybeB;
308  auto AttrsA = Sets.getLink(SetA.Index).Attrs;
309  auto AttrsB = Sets.getLink(SetB.Index).Attrs;
310
311  // If both values are local (meaning the corresponding set has attribute
312  // AttrNone or AttrEscaped), then we know that CFLSteensAA fully models them:
313  // they may-alias each other if and only if they are in the same set.
314  // If at least one value is non-local (meaning it either is global/argument or
315  // it comes from unknown sources like integer cast), the situation becomes a
316  // bit more interesting. We follow three general rules described below:
317  // - Non-local values may alias each other
318  // - AttrNone values do not alias any non-local values
319  // - AttrEscaped do not alias globals/arguments, but they may alias
320  // AttrUnknown values
321  if (SetA.Index == SetB.Index)
322    return MayAlias;
323  if (AttrsA.none() || AttrsB.none())
324    return NoAlias;
325  if (hasUnknownOrCallerAttr(AttrsA) || hasUnknownOrCallerAttr(AttrsB))
326    return MayAlias;
327  if (isGlobalOrArgAttr(AttrsA) && isGlobalOrArgAttr(AttrsB))
328    return MayAlias;
329  return NoAlias;
330}
331
332AnalysisKey CFLSteensAA::Key;
333
334CFLSteensAAResult CFLSteensAA::run(Function &F, FunctionAnalysisManager &AM) {
335  return CFLSteensAAResult(AM.getResult<TargetLibraryAnalysis>(F));
336}
337
338char CFLSteensAAWrapperPass::ID = 0;
339INITIALIZE_PASS(CFLSteensAAWrapperPass, "cfl-steens-aa",
340                "Unification-Based CFL Alias Analysis", false, true)
341
342ImmutablePass *llvm::createCFLSteensAAWrapperPass() {
343  return new CFLSteensAAWrapperPass();
344}
345
346CFLSteensAAWrapperPass::CFLSteensAAWrapperPass() : ImmutablePass(ID) {
347  initializeCFLSteensAAWrapperPassPass(*PassRegistry::getPassRegistry());
348}
349
350void CFLSteensAAWrapperPass::initializePass() {
351  auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
352  Result.reset(new CFLSteensAAResult(TLIWP.getTLI()));
353}
354
355void CFLSteensAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
356  AU.setPreservesAll();
357  AU.addRequired<TargetLibraryInfoWrapperPass>();
358}
359