AliasAnalysis.cpp revision 353358
1//==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the generic AliasAnalysis interface which is used as the
10// common interface used by all clients and implementations of alias analysis.
11//
12// This file also implements the default version of the AliasAnalysis interface
13// that is to be used when no other implementation is specified.  This does some
14// simple tests that detect obvious cases: two different global pointers cannot
15// alias, a global cannot alias a malloc, two different mallocs cannot alias,
16// etc.
17//
18// This alias analysis implementation really isn't very good for anything, but
19// it is very fast, and makes a nice clean default implementation.  Because it
20// handles lots of little corner cases, other, more complex, alias analysis
21// implementations may choose to rely on this pass to resolve these simple and
22// easy cases.
23//
24//===----------------------------------------------------------------------===//
25
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Analysis/BasicAliasAnalysis.h"
28#include "llvm/Analysis/CFLAndersAliasAnalysis.h"
29#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
30#include "llvm/Analysis/CaptureTracking.h"
31#include "llvm/Analysis/GlobalsModRef.h"
32#include "llvm/Analysis/MemoryLocation.h"
33#include "llvm/Analysis/ObjCARCAliasAnalysis.h"
34#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
35#include "llvm/Analysis/ScopedNoAliasAA.h"
36#include "llvm/Analysis/TargetLibraryInfo.h"
37#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
38#include "llvm/Analysis/ValueTracking.h"
39#include "llvm/IR/Argument.h"
40#include "llvm/IR/Attributes.h"
41#include "llvm/IR/BasicBlock.h"
42#include "llvm/IR/Instruction.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/Module.h"
45#include "llvm/IR/Type.h"
46#include "llvm/IR/Value.h"
47#include "llvm/Pass.h"
48#include "llvm/Support/AtomicOrdering.h"
49#include "llvm/Support/Casting.h"
50#include "llvm/Support/CommandLine.h"
51#include <algorithm>
52#include <cassert>
53#include <functional>
54#include <iterator>
55
56using namespace llvm;
57
58/// Allow disabling BasicAA from the AA results. This is particularly useful
59/// when testing to isolate a single AA implementation.
60static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
61                                    cl::init(false));
62
63AAResults::AAResults(AAResults &&Arg)
64    : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {
65  for (auto &AA : AAs)
66    AA->setAAResults(this);
67}
68
69AAResults::~AAResults() {
70// FIXME; It would be nice to at least clear out the pointers back to this
71// aggregation here, but we end up with non-nesting lifetimes in the legacy
72// pass manager that prevent this from working. In the legacy pass manager
73// we'll end up with dangling references here in some cases.
74#if 0
75  for (auto &AA : AAs)
76    AA->setAAResults(nullptr);
77#endif
78}
79
80bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
81                           FunctionAnalysisManager::Invalidator &Inv) {
82  // AAResults preserves the AAManager by default, due to the stateless nature
83  // of AliasAnalysis. There is no need to check whether it has been preserved
84  // explicitly. Check if any module dependency was invalidated and caused the
85  // AAManager to be invalidated. Invalidate ourselves in that case.
86  auto PAC = PA.getChecker<AAManager>();
87  if (!PAC.preservedWhenStateless())
88    return true;
89
90  // Check if any of the function dependencies were invalidated, and invalidate
91  // ourselves in that case.
92  for (AnalysisKey *ID : AADeps)
93    if (Inv.invalidate(ID, F, PA))
94      return true;
95
96  // Everything we depend on is still fine, so are we. Nothing to invalidate.
97  return false;
98}
99
100//===----------------------------------------------------------------------===//
101// Default chaining methods
102//===----------------------------------------------------------------------===//
103
104AliasResult AAResults::alias(const MemoryLocation &LocA,
105                             const MemoryLocation &LocB) {
106  AAQueryInfo AAQIP;
107  return alias(LocA, LocB, AAQIP);
108}
109
110AliasResult AAResults::alias(const MemoryLocation &LocA,
111                             const MemoryLocation &LocB, AAQueryInfo &AAQI) {
112  for (const auto &AA : AAs) {
113    auto Result = AA->alias(LocA, LocB, AAQI);
114    if (Result != MayAlias)
115      return Result;
116  }
117  return MayAlias;
118}
119
120bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
121                                       bool OrLocal) {
122  AAQueryInfo AAQIP;
123  return pointsToConstantMemory(Loc, AAQIP, OrLocal);
124}
125
126bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
127                                       AAQueryInfo &AAQI, bool OrLocal) {
128  for (const auto &AA : AAs)
129    if (AA->pointsToConstantMemory(Loc, AAQI, OrLocal))
130      return true;
131
132  return false;
133}
134
135ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
136  ModRefInfo Result = ModRefInfo::ModRef;
137
138  for (const auto &AA : AAs) {
139    Result = intersectModRef(Result, AA->getArgModRefInfo(Call, ArgIdx));
140
141    // Early-exit the moment we reach the bottom of the lattice.
142    if (isNoModRef(Result))
143      return ModRefInfo::NoModRef;
144  }
145
146  return Result;
147}
148
149ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2) {
150  AAQueryInfo AAQIP;
151  return getModRefInfo(I, Call2, AAQIP);
152}
153
154ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2,
155                                    AAQueryInfo &AAQI) {
156  // We may have two calls.
157  if (const auto *Call1 = dyn_cast<CallBase>(I)) {
158    // Check if the two calls modify the same memory.
159    return getModRefInfo(Call1, Call2, AAQI);
160  } else if (I->isFenceLike()) {
161    // If this is a fence, just return ModRef.
162    return ModRefInfo::ModRef;
163  } else {
164    // Otherwise, check if the call modifies or references the
165    // location this memory access defines.  The best we can say
166    // is that if the call references what this instruction
167    // defines, it must be clobbered by this location.
168    const MemoryLocation DefLoc = MemoryLocation::get(I);
169    ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI);
170    if (isModOrRefSet(MR))
171      return setModAndRef(MR);
172  }
173  return ModRefInfo::NoModRef;
174}
175
176ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
177                                    const MemoryLocation &Loc) {
178  AAQueryInfo AAQIP;
179  return getModRefInfo(Call, Loc, AAQIP);
180}
181
182ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
183                                    const MemoryLocation &Loc,
184                                    AAQueryInfo &AAQI) {
185  ModRefInfo Result = ModRefInfo::ModRef;
186
187  for (const auto &AA : AAs) {
188    Result = intersectModRef(Result, AA->getModRefInfo(Call, Loc, AAQI));
189
190    // Early-exit the moment we reach the bottom of the lattice.
191    if (isNoModRef(Result))
192      return ModRefInfo::NoModRef;
193  }
194
195  // Try to refine the mod-ref info further using other API entry points to the
196  // aggregate set of AA results.
197  auto MRB = getModRefBehavior(Call);
198  if (MRB == FMRB_DoesNotAccessMemory ||
199      MRB == FMRB_OnlyAccessesInaccessibleMem)
200    return ModRefInfo::NoModRef;
201
202  if (onlyReadsMemory(MRB))
203    Result = clearMod(Result);
204  else if (doesNotReadMemory(MRB))
205    Result = clearRef(Result);
206
207  if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) {
208    bool IsMustAlias = true;
209    ModRefInfo AllArgsMask = ModRefInfo::NoModRef;
210    if (doesAccessArgPointees(MRB)) {
211      for (auto AI = Call->arg_begin(), AE = Call->arg_end(); AI != AE; ++AI) {
212        const Value *Arg = *AI;
213        if (!Arg->getType()->isPointerTy())
214          continue;
215        unsigned ArgIdx = std::distance(Call->arg_begin(), AI);
216        MemoryLocation ArgLoc =
217            MemoryLocation::getForArgument(Call, ArgIdx, TLI);
218        AliasResult ArgAlias = alias(ArgLoc, Loc);
219        if (ArgAlias != NoAlias) {
220          ModRefInfo ArgMask = getArgModRefInfo(Call, ArgIdx);
221          AllArgsMask = unionModRef(AllArgsMask, ArgMask);
222        }
223        // Conservatively clear IsMustAlias unless only MustAlias is found.
224        IsMustAlias &= (ArgAlias == MustAlias);
225      }
226    }
227    // Return NoModRef if no alias found with any argument.
228    if (isNoModRef(AllArgsMask))
229      return ModRefInfo::NoModRef;
230    // Logical & between other AA analyses and argument analysis.
231    Result = intersectModRef(Result, AllArgsMask);
232    // If only MustAlias found above, set Must bit.
233    Result = IsMustAlias ? setMust(Result) : clearMust(Result);
234  }
235
236  // If Loc is a constant memory location, the call definitely could not
237  // modify the memory location.
238  if (isModSet(Result) && pointsToConstantMemory(Loc, /*OrLocal*/ false))
239    Result = clearMod(Result);
240
241  return Result;
242}
243
244ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
245                                    const CallBase *Call2) {
246  AAQueryInfo AAQIP;
247  return getModRefInfo(Call1, Call2, AAQIP);
248}
249
250ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
251                                    const CallBase *Call2, AAQueryInfo &AAQI) {
252  ModRefInfo Result = ModRefInfo::ModRef;
253
254  for (const auto &AA : AAs) {
255    Result = intersectModRef(Result, AA->getModRefInfo(Call1, Call2, AAQI));
256
257    // Early-exit the moment we reach the bottom of the lattice.
258    if (isNoModRef(Result))
259      return ModRefInfo::NoModRef;
260  }
261
262  // Try to refine the mod-ref info further using other API entry points to the
263  // aggregate set of AA results.
264
265  // If Call1 or Call2 are readnone, they don't interact.
266  auto Call1B = getModRefBehavior(Call1);
267  if (Call1B == FMRB_DoesNotAccessMemory)
268    return ModRefInfo::NoModRef;
269
270  auto Call2B = getModRefBehavior(Call2);
271  if (Call2B == FMRB_DoesNotAccessMemory)
272    return ModRefInfo::NoModRef;
273
274  // If they both only read from memory, there is no dependence.
275  if (onlyReadsMemory(Call1B) && onlyReadsMemory(Call2B))
276    return ModRefInfo::NoModRef;
277
278  // If Call1 only reads memory, the only dependence on Call2 can be
279  // from Call1 reading memory written by Call2.
280  if (onlyReadsMemory(Call1B))
281    Result = clearMod(Result);
282  else if (doesNotReadMemory(Call1B))
283    Result = clearRef(Result);
284
285  // If Call2 only access memory through arguments, accumulate the mod/ref
286  // information from Call1's references to the memory referenced by
287  // Call2's arguments.
288  if (onlyAccessesArgPointees(Call2B)) {
289    if (!doesAccessArgPointees(Call2B))
290      return ModRefInfo::NoModRef;
291    ModRefInfo R = ModRefInfo::NoModRef;
292    bool IsMustAlias = true;
293    for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) {
294      const Value *Arg = *I;
295      if (!Arg->getType()->isPointerTy())
296        continue;
297      unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I);
298      auto Call2ArgLoc =
299          MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI);
300
301      // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the
302      // dependence of Call1 on that location is the inverse:
303      // - If Call2 modifies location, dependence exists if Call1 reads or
304      //   writes.
305      // - If Call2 only reads location, dependence exists if Call1 writes.
306      ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx);
307      ModRefInfo ArgMask = ModRefInfo::NoModRef;
308      if (isModSet(ArgModRefC2))
309        ArgMask = ModRefInfo::ModRef;
310      else if (isRefSet(ArgModRefC2))
311        ArgMask = ModRefInfo::Mod;
312
313      // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use
314      // above ArgMask to update dependence info.
315      ModRefInfo ModRefC1 = getModRefInfo(Call1, Call2ArgLoc);
316      ArgMask = intersectModRef(ArgMask, ModRefC1);
317
318      // Conservatively clear IsMustAlias unless only MustAlias is found.
319      IsMustAlias &= isMustSet(ModRefC1);
320
321      R = intersectModRef(unionModRef(R, ArgMask), Result);
322      if (R == Result) {
323        // On early exit, not all args were checked, cannot set Must.
324        if (I + 1 != E)
325          IsMustAlias = false;
326        break;
327      }
328    }
329
330    if (isNoModRef(R))
331      return ModRefInfo::NoModRef;
332
333    // If MustAlias found above, set Must bit.
334    return IsMustAlias ? setMust(R) : clearMust(R);
335  }
336
337  // If Call1 only accesses memory through arguments, check if Call2 references
338  // any of the memory referenced by Call1's arguments. If not, return NoModRef.
339  if (onlyAccessesArgPointees(Call1B)) {
340    if (!doesAccessArgPointees(Call1B))
341      return ModRefInfo::NoModRef;
342    ModRefInfo R = ModRefInfo::NoModRef;
343    bool IsMustAlias = true;
344    for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) {
345      const Value *Arg = *I;
346      if (!Arg->getType()->isPointerTy())
347        continue;
348      unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I);
349      auto Call1ArgLoc =
350          MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI);
351
352      // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1
353      // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by
354      // Call2. If Call1 might Ref, then we care only about a Mod by Call2.
355      ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx);
356      ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc);
357      if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) ||
358          (isRefSet(ArgModRefC1) && isModSet(ModRefC2)))
359        R = intersectModRef(unionModRef(R, ArgModRefC1), Result);
360
361      // Conservatively clear IsMustAlias unless only MustAlias is found.
362      IsMustAlias &= isMustSet(ModRefC2);
363
364      if (R == Result) {
365        // On early exit, not all args were checked, cannot set Must.
366        if (I + 1 != E)
367          IsMustAlias = false;
368        break;
369      }
370    }
371
372    if (isNoModRef(R))
373      return ModRefInfo::NoModRef;
374
375    // If MustAlias found above, set Must bit.
376    return IsMustAlias ? setMust(R) : clearMust(R);
377  }
378
379  return Result;
380}
381
382FunctionModRefBehavior AAResults::getModRefBehavior(const CallBase *Call) {
383  FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
384
385  for (const auto &AA : AAs) {
386    Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(Call));
387
388    // Early-exit the moment we reach the bottom of the lattice.
389    if (Result == FMRB_DoesNotAccessMemory)
390      return Result;
391  }
392
393  return Result;
394}
395
396FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
397  FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
398
399  for (const auto &AA : AAs) {
400    Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
401
402    // Early-exit the moment we reach the bottom of the lattice.
403    if (Result == FMRB_DoesNotAccessMemory)
404      return Result;
405  }
406
407  return Result;
408}
409
410raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) {
411  switch (AR) {
412  case NoAlias:
413    OS << "NoAlias";
414    break;
415  case MustAlias:
416    OS << "MustAlias";
417    break;
418  case MayAlias:
419    OS << "MayAlias";
420    break;
421  case PartialAlias:
422    OS << "PartialAlias";
423    break;
424  }
425  return OS;
426}
427
428//===----------------------------------------------------------------------===//
429// Helper method implementation
430//===----------------------------------------------------------------------===//
431
432ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
433                                    const MemoryLocation &Loc) {
434  AAQueryInfo AAQIP;
435  return getModRefInfo(L, Loc, AAQIP);
436}
437ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
438                                    const MemoryLocation &Loc,
439                                    AAQueryInfo &AAQI) {
440  // Be conservative in the face of atomic.
441  if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
442    return ModRefInfo::ModRef;
443
444  // If the load address doesn't alias the given address, it doesn't read
445  // or write the specified memory.
446  if (Loc.Ptr) {
447    AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI);
448    if (AR == NoAlias)
449      return ModRefInfo::NoModRef;
450    if (AR == MustAlias)
451      return ModRefInfo::MustRef;
452  }
453  // Otherwise, a load just reads.
454  return ModRefInfo::Ref;
455}
456
457ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
458                                    const MemoryLocation &Loc) {
459  AAQueryInfo AAQIP;
460  return getModRefInfo(S, Loc, AAQIP);
461}
462ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
463                                    const MemoryLocation &Loc,
464                                    AAQueryInfo &AAQI) {
465  // Be conservative in the face of atomic.
466  if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
467    return ModRefInfo::ModRef;
468
469  if (Loc.Ptr) {
470    AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI);
471    // If the store address cannot alias the pointer in question, then the
472    // specified memory cannot be modified by the store.
473    if (AR == NoAlias)
474      return ModRefInfo::NoModRef;
475
476    // If the pointer is a pointer to constant memory, then it could not have
477    // been modified by this store.
478    if (pointsToConstantMemory(Loc, AAQI))
479      return ModRefInfo::NoModRef;
480
481    // If the store address aliases the pointer as must alias, set Must.
482    if (AR == MustAlias)
483      return ModRefInfo::MustMod;
484  }
485
486  // Otherwise, a store just writes.
487  return ModRefInfo::Mod;
488}
489
490ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
491  AAQueryInfo AAQIP;
492  return getModRefInfo(S, Loc, AAQIP);
493}
494
495ModRefInfo AAResults::getModRefInfo(const FenceInst *S,
496                                    const MemoryLocation &Loc,
497                                    AAQueryInfo &AAQI) {
498  // If we know that the location is a constant memory location, the fence
499  // cannot modify this location.
500  if (Loc.Ptr && pointsToConstantMemory(Loc, AAQI))
501    return ModRefInfo::Ref;
502  return ModRefInfo::ModRef;
503}
504
505ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
506                                    const MemoryLocation &Loc) {
507  AAQueryInfo AAQIP;
508  return getModRefInfo(V, Loc, AAQIP);
509}
510
511ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
512                                    const MemoryLocation &Loc,
513                                    AAQueryInfo &AAQI) {
514  if (Loc.Ptr) {
515    AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI);
516    // If the va_arg address cannot alias the pointer in question, then the
517    // specified memory cannot be accessed by the va_arg.
518    if (AR == NoAlias)
519      return ModRefInfo::NoModRef;
520
521    // If the pointer is a pointer to constant memory, then it could not have
522    // been modified by this va_arg.
523    if (pointsToConstantMemory(Loc, AAQI))
524      return ModRefInfo::NoModRef;
525
526    // If the va_arg aliases the pointer as must alias, set Must.
527    if (AR == MustAlias)
528      return ModRefInfo::MustModRef;
529  }
530
531  // Otherwise, a va_arg reads and writes.
532  return ModRefInfo::ModRef;
533}
534
535ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
536                                    const MemoryLocation &Loc) {
537  AAQueryInfo AAQIP;
538  return getModRefInfo(CatchPad, Loc, AAQIP);
539}
540
541ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
542                                    const MemoryLocation &Loc,
543                                    AAQueryInfo &AAQI) {
544  if (Loc.Ptr) {
545    // If the pointer is a pointer to constant memory,
546    // then it could not have been modified by this catchpad.
547    if (pointsToConstantMemory(Loc, AAQI))
548      return ModRefInfo::NoModRef;
549  }
550
551  // Otherwise, a catchpad reads and writes.
552  return ModRefInfo::ModRef;
553}
554
555ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
556                                    const MemoryLocation &Loc) {
557  AAQueryInfo AAQIP;
558  return getModRefInfo(CatchRet, Loc, AAQIP);
559}
560
561ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
562                                    const MemoryLocation &Loc,
563                                    AAQueryInfo &AAQI) {
564  if (Loc.Ptr) {
565    // If the pointer is a pointer to constant memory,
566    // then it could not have been modified by this catchpad.
567    if (pointsToConstantMemory(Loc, AAQI))
568      return ModRefInfo::NoModRef;
569  }
570
571  // Otherwise, a catchret reads and writes.
572  return ModRefInfo::ModRef;
573}
574
575ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
576                                    const MemoryLocation &Loc) {
577  AAQueryInfo AAQIP;
578  return getModRefInfo(CX, Loc, AAQIP);
579}
580
581ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
582                                    const MemoryLocation &Loc,
583                                    AAQueryInfo &AAQI) {
584  // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
585  if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
586    return ModRefInfo::ModRef;
587
588  if (Loc.Ptr) {
589    AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI);
590    // If the cmpxchg address does not alias the location, it does not access
591    // it.
592    if (AR == NoAlias)
593      return ModRefInfo::NoModRef;
594
595    // If the cmpxchg address aliases the pointer as must alias, set Must.
596    if (AR == MustAlias)
597      return ModRefInfo::MustModRef;
598  }
599
600  return ModRefInfo::ModRef;
601}
602
603ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
604                                    const MemoryLocation &Loc) {
605  AAQueryInfo AAQIP;
606  return getModRefInfo(RMW, Loc, AAQIP);
607}
608
609ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
610                                    const MemoryLocation &Loc,
611                                    AAQueryInfo &AAQI) {
612  // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
613  if (isStrongerThanMonotonic(RMW->getOrdering()))
614    return ModRefInfo::ModRef;
615
616  if (Loc.Ptr) {
617    AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI);
618    // If the atomicrmw address does not alias the location, it does not access
619    // it.
620    if (AR == NoAlias)
621      return ModRefInfo::NoModRef;
622
623    // If the atomicrmw address aliases the pointer as must alias, set Must.
624    if (AR == MustAlias)
625      return ModRefInfo::MustModRef;
626  }
627
628  return ModRefInfo::ModRef;
629}
630
631/// Return information about whether a particular call site modifies
632/// or reads the specified memory location \p MemLoc before instruction \p I
633/// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
634/// instruction-ordering queries inside the BasicBlock containing \p I.
635/// FIXME: this is really just shoring-up a deficiency in alias analysis.
636/// BasicAA isn't willing to spend linear time determining whether an alloca
637/// was captured before or after this particular call, while we are. However,
638/// with a smarter AA in place, this test is just wasting compile time.
639ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
640                                         const MemoryLocation &MemLoc,
641                                         DominatorTree *DT,
642                                         OrderedBasicBlock *OBB) {
643  if (!DT)
644    return ModRefInfo::ModRef;
645
646  const Value *Object =
647      GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
648  if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
649      isa<Constant>(Object))
650    return ModRefInfo::ModRef;
651
652  const auto *Call = dyn_cast<CallBase>(I);
653  if (!Call || Call == Object)
654    return ModRefInfo::ModRef;
655
656  if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
657                                 /* StoreCaptures */ true, I, DT,
658                                 /* include Object */ true,
659                                 /* OrderedBasicBlock */ OBB))
660    return ModRefInfo::ModRef;
661
662  unsigned ArgNo = 0;
663  ModRefInfo R = ModRefInfo::NoModRef;
664  bool IsMustAlias = true;
665  // Set flag only if no May found and all operands processed.
666  for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
667       CI != CE; ++CI, ++ArgNo) {
668    // Only look at the no-capture or byval pointer arguments.  If this
669    // pointer were passed to arguments that were neither of these, then it
670    // couldn't be no-capture.
671    if (!(*CI)->getType()->isPointerTy() ||
672        (!Call->doesNotCapture(ArgNo) && ArgNo < Call->getNumArgOperands() &&
673         !Call->isByValArgument(ArgNo)))
674      continue;
675
676    AliasResult AR = alias(MemoryLocation(*CI), MemoryLocation(Object));
677    // If this is a no-capture pointer argument, see if we can tell that it
678    // is impossible to alias the pointer we're checking.  If not, we have to
679    // assume that the call could touch the pointer, even though it doesn't
680    // escape.
681    if (AR != MustAlias)
682      IsMustAlias = false;
683    if (AR == NoAlias)
684      continue;
685    if (Call->doesNotAccessMemory(ArgNo))
686      continue;
687    if (Call->onlyReadsMemory(ArgNo)) {
688      R = ModRefInfo::Ref;
689      continue;
690    }
691    // Not returning MustModRef since we have not seen all the arguments.
692    return ModRefInfo::ModRef;
693  }
694  return IsMustAlias ? setMust(R) : clearMust(R);
695}
696
697/// canBasicBlockModify - Return true if it is possible for execution of the
698/// specified basic block to modify the location Loc.
699///
700bool AAResults::canBasicBlockModify(const BasicBlock &BB,
701                                    const MemoryLocation &Loc) {
702  return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod);
703}
704
705/// canInstructionRangeModRef - Return true if it is possible for the
706/// execution of the specified instructions to mod\ref (according to the
707/// mode) the location Loc. The instructions to consider are all
708/// of the instructions in the range of [I1,I2] INCLUSIVE.
709/// I1 and I2 must be in the same basic block.
710bool AAResults::canInstructionRangeModRef(const Instruction &I1,
711                                          const Instruction &I2,
712                                          const MemoryLocation &Loc,
713                                          const ModRefInfo Mode) {
714  assert(I1.getParent() == I2.getParent() &&
715         "Instructions not in same basic block!");
716  BasicBlock::const_iterator I = I1.getIterator();
717  BasicBlock::const_iterator E = I2.getIterator();
718  ++E;  // Convert from inclusive to exclusive range.
719
720  for (; I != E; ++I) // Check every instruction in range
721    if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode)))
722      return true;
723  return false;
724}
725
726// Provide a definition for the root virtual destructor.
727AAResults::Concept::~Concept() = default;
728
729// Provide a definition for the static object used to identify passes.
730AnalysisKey AAManager::Key;
731
732namespace {
733
734
735} // end anonymous namespace
736
737char ExternalAAWrapperPass::ID = 0;
738
739INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
740                false, true)
741
742ImmutablePass *
743llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
744  return new ExternalAAWrapperPass(std::move(Callback));
745}
746
747AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
748  initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
749}
750
751char AAResultsWrapperPass::ID = 0;
752
753INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
754                      "Function Alias Analysis Results", false, true)
755INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
756INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass)
757INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass)
758INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
759INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
760INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
761INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
762INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
763INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
764INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
765                    "Function Alias Analysis Results", false, true)
766
767FunctionPass *llvm::createAAResultsWrapperPass() {
768  return new AAResultsWrapperPass();
769}
770
771/// Run the wrapper pass to rebuild an aggregation over known AA passes.
772///
773/// This is the legacy pass manager's interface to the new-style AA results
774/// aggregation object. Because this is somewhat shoe-horned into the legacy
775/// pass manager, we hard code all the specific alias analyses available into
776/// it. While the particular set enabled is configured via commandline flags,
777/// adding a new alias analysis to LLVM will require adding support for it to
778/// this list.
779bool AAResultsWrapperPass::runOnFunction(Function &F) {
780  // NB! This *must* be reset before adding new AA results to the new
781  // AAResults object because in the legacy pass manager, each instance
782  // of these will refer to the *same* immutable analyses, registering and
783  // unregistering themselves with them. We need to carefully tear down the
784  // previous object first, in this case replacing it with an empty one, before
785  // registering new results.
786  AAR.reset(
787      new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));
788
789  // BasicAA is always available for function analyses. Also, we add it first
790  // so that it can trump TBAA results when it proves MustAlias.
791  // FIXME: TBAA should have an explicit mode to support this and then we
792  // should reconsider the ordering here.
793  if (!DisableBasicAA)
794    AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
795
796  // Populate the results with the currently available AAs.
797  if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
798    AAR->addAAResult(WrapperPass->getResult());
799  if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
800    AAR->addAAResult(WrapperPass->getResult());
801  if (auto *WrapperPass =
802          getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
803    AAR->addAAResult(WrapperPass->getResult());
804  if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
805    AAR->addAAResult(WrapperPass->getResult());
806  if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
807    AAR->addAAResult(WrapperPass->getResult());
808  if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
809    AAR->addAAResult(WrapperPass->getResult());
810  if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
811    AAR->addAAResult(WrapperPass->getResult());
812
813  // If available, run an external AA providing callback over the results as
814  // well.
815  if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
816    if (WrapperPass->CB)
817      WrapperPass->CB(*this, F, *AAR);
818
819  // Analyses don't mutate the IR, so return false.
820  return false;
821}
822
823void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
824  AU.setPreservesAll();
825  AU.addRequired<BasicAAWrapperPass>();
826  AU.addRequired<TargetLibraryInfoWrapperPass>();
827
828  // We also need to mark all the alias analysis passes we will potentially
829  // probe in runOnFunction as used here to ensure the legacy pass manager
830  // preserves them. This hard coding of lists of alias analyses is specific to
831  // the legacy pass manager.
832  AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
833  AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
834  AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
835  AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
836  AU.addUsedIfAvailable<SCEVAAWrapperPass>();
837  AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
838  AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
839}
840
841AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
842                                        BasicAAResult &BAR) {
843  AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI());
844
845  // Add in our explicitly constructed BasicAA results.
846  if (!DisableBasicAA)
847    AAR.addAAResult(BAR);
848
849  // Populate the results with the other currently available AAs.
850  if (auto *WrapperPass =
851          P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
852    AAR.addAAResult(WrapperPass->getResult());
853  if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
854    AAR.addAAResult(WrapperPass->getResult());
855  if (auto *WrapperPass =
856          P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
857    AAR.addAAResult(WrapperPass->getResult());
858  if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
859    AAR.addAAResult(WrapperPass->getResult());
860  if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
861    AAR.addAAResult(WrapperPass->getResult());
862  if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
863    AAR.addAAResult(WrapperPass->getResult());
864
865  return AAR;
866}
867
868bool llvm::isNoAliasCall(const Value *V) {
869  if (const auto *Call = dyn_cast<CallBase>(V))
870    return Call->hasRetAttr(Attribute::NoAlias);
871  return false;
872}
873
874bool llvm::isNoAliasArgument(const Value *V) {
875  if (const Argument *A = dyn_cast<Argument>(V))
876    return A->hasNoAliasAttr();
877  return false;
878}
879
880bool llvm::isIdentifiedObject(const Value *V) {
881  if (isa<AllocaInst>(V))
882    return true;
883  if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
884    return true;
885  if (isNoAliasCall(V))
886    return true;
887  if (const Argument *A = dyn_cast<Argument>(V))
888    return A->hasNoAliasAttr() || A->hasByValAttr();
889  return false;
890}
891
892bool llvm::isIdentifiedFunctionLocal(const Value *V) {
893  return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
894}
895
896void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
897  // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
898  // more alias analyses are added to llvm::createLegacyPMAAResults, they need
899  // to be added here also.
900  AU.addRequired<TargetLibraryInfoWrapperPass>();
901  AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
902  AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
903  AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
904  AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
905  AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
906  AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
907}
908