AliasAnalysis.cpp revision 344779
1//==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic AliasAnalysis interface which is used as the
11// common interface used by all clients and implementations of alias analysis.
12//
13// This file also implements the default version of the AliasAnalysis interface
14// that is to be used when no other implementation is specified.  This does some
15// simple tests that detect obvious cases: two different global pointers cannot
16// alias, a global cannot alias a malloc, two different mallocs cannot alias,
17// etc.
18//
19// This alias analysis implementation really isn't very good for anything, but
20// it is very fast, and makes a nice clean default implementation.  Because it
21// handles lots of little corner cases, other, more complex, alias analysis
22// implementations may choose to rely on this pass to resolve these simple and
23// easy cases.
24//
25//===----------------------------------------------------------------------===//
26
27#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/Analysis/BasicAliasAnalysis.h"
29#include "llvm/Analysis/CFLAndersAliasAnalysis.h"
30#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
31#include "llvm/Analysis/CaptureTracking.h"
32#include "llvm/Analysis/GlobalsModRef.h"
33#include "llvm/Analysis/MemoryLocation.h"
34#include "llvm/Analysis/ObjCARCAliasAnalysis.h"
35#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
36#include "llvm/Analysis/ScopedNoAliasAA.h"
37#include "llvm/Analysis/TargetLibraryInfo.h"
38#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
39#include "llvm/Analysis/ValueTracking.h"
40#include "llvm/IR/Argument.h"
41#include "llvm/IR/Attributes.h"
42#include "llvm/IR/BasicBlock.h"
43#include "llvm/IR/Instruction.h"
44#include "llvm/IR/Instructions.h"
45#include "llvm/IR/Module.h"
46#include "llvm/IR/Type.h"
47#include "llvm/IR/Value.h"
48#include "llvm/Pass.h"
49#include "llvm/Support/AtomicOrdering.h"
50#include "llvm/Support/Casting.h"
51#include "llvm/Support/CommandLine.h"
52#include <algorithm>
53#include <cassert>
54#include <functional>
55#include <iterator>
56
57using namespace llvm;
58
59/// Allow disabling BasicAA from the AA results. This is particularly useful
60/// when testing to isolate a single AA implementation.
61static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
62                                    cl::init(false));
63
64AAResults::AAResults(AAResults &&Arg)
65    : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {
66  for (auto &AA : AAs)
67    AA->setAAResults(this);
68}
69
70AAResults::~AAResults() {
71// FIXME; It would be nice to at least clear out the pointers back to this
72// aggregation here, but we end up with non-nesting lifetimes in the legacy
73// pass manager that prevent this from working. In the legacy pass manager
74// we'll end up with dangling references here in some cases.
75#if 0
76  for (auto &AA : AAs)
77    AA->setAAResults(nullptr);
78#endif
79}
80
81bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
82                           FunctionAnalysisManager::Invalidator &Inv) {
83  // Check if the AA manager itself has been invalidated.
84  auto PAC = PA.getChecker<AAManager>();
85  if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
86    return true; // The manager needs to be blown away, clear everything.
87
88  // Check all of the dependencies registered.
89  for (AnalysisKey *ID : AADeps)
90    if (Inv.invalidate(ID, F, PA))
91      return true;
92
93  // Everything we depend on is still fine, so are we. Nothing to invalidate.
94  return false;
95}
96
97//===----------------------------------------------------------------------===//
98// Default chaining methods
99//===----------------------------------------------------------------------===//
100
101AliasResult AAResults::alias(const MemoryLocation &LocA,
102                             const MemoryLocation &LocB) {
103  for (const auto &AA : AAs) {
104    auto Result = AA->alias(LocA, LocB);
105    if (Result != MayAlias)
106      return Result;
107  }
108  return MayAlias;
109}
110
111bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
112                                       bool OrLocal) {
113  for (const auto &AA : AAs)
114    if (AA->pointsToConstantMemory(Loc, OrLocal))
115      return true;
116
117  return false;
118}
119
120ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
121  ModRefInfo Result = ModRefInfo::ModRef;
122
123  for (const auto &AA : AAs) {
124    Result = intersectModRef(Result, AA->getArgModRefInfo(Call, ArgIdx));
125
126    // Early-exit the moment we reach the bottom of the lattice.
127    if (isNoModRef(Result))
128      return ModRefInfo::NoModRef;
129  }
130
131  return Result;
132}
133
134ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2) {
135  // We may have two calls.
136  if (const auto *Call1 = dyn_cast<CallBase>(I)) {
137    // Check if the two calls modify the same memory.
138    return getModRefInfo(Call1, Call2);
139  } else if (I->isFenceLike()) {
140    // If this is a fence, just return ModRef.
141    return ModRefInfo::ModRef;
142  } else {
143    // Otherwise, check if the call modifies or references the
144    // location this memory access defines.  The best we can say
145    // is that if the call references what this instruction
146    // defines, it must be clobbered by this location.
147    const MemoryLocation DefLoc = MemoryLocation::get(I);
148    ModRefInfo MR = getModRefInfo(Call2, DefLoc);
149    if (isModOrRefSet(MR))
150      return setModAndRef(MR);
151  }
152  return ModRefInfo::NoModRef;
153}
154
155ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
156                                    const MemoryLocation &Loc) {
157  ModRefInfo Result = ModRefInfo::ModRef;
158
159  for (const auto &AA : AAs) {
160    Result = intersectModRef(Result, AA->getModRefInfo(Call, Loc));
161
162    // Early-exit the moment we reach the bottom of the lattice.
163    if (isNoModRef(Result))
164      return ModRefInfo::NoModRef;
165  }
166
167  // Try to refine the mod-ref info further using other API entry points to the
168  // aggregate set of AA results.
169  auto MRB = getModRefBehavior(Call);
170  if (MRB == FMRB_DoesNotAccessMemory ||
171      MRB == FMRB_OnlyAccessesInaccessibleMem)
172    return ModRefInfo::NoModRef;
173
174  if (onlyReadsMemory(MRB))
175    Result = clearMod(Result);
176  else if (doesNotReadMemory(MRB))
177    Result = clearRef(Result);
178
179  if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) {
180    bool IsMustAlias = true;
181    ModRefInfo AllArgsMask = ModRefInfo::NoModRef;
182    if (doesAccessArgPointees(MRB)) {
183      for (auto AI = Call->arg_begin(), AE = Call->arg_end(); AI != AE; ++AI) {
184        const Value *Arg = *AI;
185        if (!Arg->getType()->isPointerTy())
186          continue;
187        unsigned ArgIdx = std::distance(Call->arg_begin(), AI);
188        MemoryLocation ArgLoc =
189            MemoryLocation::getForArgument(Call, ArgIdx, TLI);
190        AliasResult ArgAlias = alias(ArgLoc, Loc);
191        if (ArgAlias != NoAlias) {
192          ModRefInfo ArgMask = getArgModRefInfo(Call, ArgIdx);
193          AllArgsMask = unionModRef(AllArgsMask, ArgMask);
194        }
195        // Conservatively clear IsMustAlias unless only MustAlias is found.
196        IsMustAlias &= (ArgAlias == MustAlias);
197      }
198    }
199    // Return NoModRef if no alias found with any argument.
200    if (isNoModRef(AllArgsMask))
201      return ModRefInfo::NoModRef;
202    // Logical & between other AA analyses and argument analysis.
203    Result = intersectModRef(Result, AllArgsMask);
204    // If only MustAlias found above, set Must bit.
205    Result = IsMustAlias ? setMust(Result) : clearMust(Result);
206  }
207
208  // If Loc is a constant memory location, the call definitely could not
209  // modify the memory location.
210  if (isModSet(Result) && pointsToConstantMemory(Loc, /*OrLocal*/ false))
211    Result = clearMod(Result);
212
213  return Result;
214}
215
216ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
217                                    const CallBase *Call2) {
218  ModRefInfo Result = ModRefInfo::ModRef;
219
220  for (const auto &AA : AAs) {
221    Result = intersectModRef(Result, AA->getModRefInfo(Call1, Call2));
222
223    // Early-exit the moment we reach the bottom of the lattice.
224    if (isNoModRef(Result))
225      return ModRefInfo::NoModRef;
226  }
227
228  // Try to refine the mod-ref info further using other API entry points to the
229  // aggregate set of AA results.
230
231  // If Call1 or Call2 are readnone, they don't interact.
232  auto Call1B = getModRefBehavior(Call1);
233  if (Call1B == FMRB_DoesNotAccessMemory)
234    return ModRefInfo::NoModRef;
235
236  auto Call2B = getModRefBehavior(Call2);
237  if (Call2B == FMRB_DoesNotAccessMemory)
238    return ModRefInfo::NoModRef;
239
240  // If they both only read from memory, there is no dependence.
241  if (onlyReadsMemory(Call1B) && onlyReadsMemory(Call2B))
242    return ModRefInfo::NoModRef;
243
244  // If Call1 only reads memory, the only dependence on Call2 can be
245  // from Call1 reading memory written by Call2.
246  if (onlyReadsMemory(Call1B))
247    Result = clearMod(Result);
248  else if (doesNotReadMemory(Call1B))
249    Result = clearRef(Result);
250
251  // If Call2 only access memory through arguments, accumulate the mod/ref
252  // information from Call1's references to the memory referenced by
253  // Call2's arguments.
254  if (onlyAccessesArgPointees(Call2B)) {
255    if (!doesAccessArgPointees(Call2B))
256      return ModRefInfo::NoModRef;
257    ModRefInfo R = ModRefInfo::NoModRef;
258    bool IsMustAlias = true;
259    for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) {
260      const Value *Arg = *I;
261      if (!Arg->getType()->isPointerTy())
262        continue;
263      unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I);
264      auto Call2ArgLoc =
265          MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI);
266
267      // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the
268      // dependence of Call1 on that location is the inverse:
269      // - If Call2 modifies location, dependence exists if Call1 reads or
270      //   writes.
271      // - If Call2 only reads location, dependence exists if Call1 writes.
272      ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx);
273      ModRefInfo ArgMask = ModRefInfo::NoModRef;
274      if (isModSet(ArgModRefC2))
275        ArgMask = ModRefInfo::ModRef;
276      else if (isRefSet(ArgModRefC2))
277        ArgMask = ModRefInfo::Mod;
278
279      // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use
280      // above ArgMask to update dependence info.
281      ModRefInfo ModRefC1 = getModRefInfo(Call1, Call2ArgLoc);
282      ArgMask = intersectModRef(ArgMask, ModRefC1);
283
284      // Conservatively clear IsMustAlias unless only MustAlias is found.
285      IsMustAlias &= isMustSet(ModRefC1);
286
287      R = intersectModRef(unionModRef(R, ArgMask), Result);
288      if (R == Result) {
289        // On early exit, not all args were checked, cannot set Must.
290        if (I + 1 != E)
291          IsMustAlias = false;
292        break;
293      }
294    }
295
296    if (isNoModRef(R))
297      return ModRefInfo::NoModRef;
298
299    // If MustAlias found above, set Must bit.
300    return IsMustAlias ? setMust(R) : clearMust(R);
301  }
302
303  // If Call1 only accesses memory through arguments, check if Call2 references
304  // any of the memory referenced by Call1's arguments. If not, return NoModRef.
305  if (onlyAccessesArgPointees(Call1B)) {
306    if (!doesAccessArgPointees(Call1B))
307      return ModRefInfo::NoModRef;
308    ModRefInfo R = ModRefInfo::NoModRef;
309    bool IsMustAlias = true;
310    for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) {
311      const Value *Arg = *I;
312      if (!Arg->getType()->isPointerTy())
313        continue;
314      unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I);
315      auto Call1ArgLoc =
316          MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI);
317
318      // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1
319      // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by
320      // Call2. If Call1 might Ref, then we care only about a Mod by Call2.
321      ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx);
322      ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc);
323      if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) ||
324          (isRefSet(ArgModRefC1) && isModSet(ModRefC2)))
325        R = intersectModRef(unionModRef(R, ArgModRefC1), Result);
326
327      // Conservatively clear IsMustAlias unless only MustAlias is found.
328      IsMustAlias &= isMustSet(ModRefC2);
329
330      if (R == Result) {
331        // On early exit, not all args were checked, cannot set Must.
332        if (I + 1 != E)
333          IsMustAlias = false;
334        break;
335      }
336    }
337
338    if (isNoModRef(R))
339      return ModRefInfo::NoModRef;
340
341    // If MustAlias found above, set Must bit.
342    return IsMustAlias ? setMust(R) : clearMust(R);
343  }
344
345  return Result;
346}
347
348FunctionModRefBehavior AAResults::getModRefBehavior(const CallBase *Call) {
349  FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
350
351  for (const auto &AA : AAs) {
352    Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(Call));
353
354    // Early-exit the moment we reach the bottom of the lattice.
355    if (Result == FMRB_DoesNotAccessMemory)
356      return Result;
357  }
358
359  return Result;
360}
361
362FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
363  FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
364
365  for (const auto &AA : AAs) {
366    Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
367
368    // Early-exit the moment we reach the bottom of the lattice.
369    if (Result == FMRB_DoesNotAccessMemory)
370      return Result;
371  }
372
373  return Result;
374}
375
376raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) {
377  switch (AR) {
378  case NoAlias:
379    OS << "NoAlias";
380    break;
381  case MustAlias:
382    OS << "MustAlias";
383    break;
384  case MayAlias:
385    OS << "MayAlias";
386    break;
387  case PartialAlias:
388    OS << "PartialAlias";
389    break;
390  }
391  return OS;
392}
393
394//===----------------------------------------------------------------------===//
395// Helper method implementation
396//===----------------------------------------------------------------------===//
397
398ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
399                                    const MemoryLocation &Loc) {
400  // Be conservative in the face of atomic.
401  if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
402    return ModRefInfo::ModRef;
403
404  // If the load address doesn't alias the given address, it doesn't read
405  // or write the specified memory.
406  if (Loc.Ptr) {
407    AliasResult AR = alias(MemoryLocation::get(L), Loc);
408    if (AR == NoAlias)
409      return ModRefInfo::NoModRef;
410    if (AR == MustAlias)
411      return ModRefInfo::MustRef;
412  }
413  // Otherwise, a load just reads.
414  return ModRefInfo::Ref;
415}
416
417ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
418                                    const MemoryLocation &Loc) {
419  // Be conservative in the face of atomic.
420  if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
421    return ModRefInfo::ModRef;
422
423  if (Loc.Ptr) {
424    AliasResult AR = alias(MemoryLocation::get(S), Loc);
425    // If the store address cannot alias the pointer in question, then the
426    // specified memory cannot be modified by the store.
427    if (AR == NoAlias)
428      return ModRefInfo::NoModRef;
429
430    // If the pointer is a pointer to constant memory, then it could not have
431    // been modified by this store.
432    if (pointsToConstantMemory(Loc))
433      return ModRefInfo::NoModRef;
434
435    // If the store address aliases the pointer as must alias, set Must.
436    if (AR == MustAlias)
437      return ModRefInfo::MustMod;
438  }
439
440  // Otherwise, a store just writes.
441  return ModRefInfo::Mod;
442}
443
444ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
445  // If we know that the location is a constant memory location, the fence
446  // cannot modify this location.
447  if (Loc.Ptr && pointsToConstantMemory(Loc))
448    return ModRefInfo::Ref;
449  return ModRefInfo::ModRef;
450}
451
452ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
453                                    const MemoryLocation &Loc) {
454  if (Loc.Ptr) {
455    AliasResult AR = alias(MemoryLocation::get(V), Loc);
456    // If the va_arg address cannot alias the pointer in question, then the
457    // specified memory cannot be accessed by the va_arg.
458    if (AR == NoAlias)
459      return ModRefInfo::NoModRef;
460
461    // If the pointer is a pointer to constant memory, then it could not have
462    // been modified by this va_arg.
463    if (pointsToConstantMemory(Loc))
464      return ModRefInfo::NoModRef;
465
466    // If the va_arg aliases the pointer as must alias, set Must.
467    if (AR == MustAlias)
468      return ModRefInfo::MustModRef;
469  }
470
471  // Otherwise, a va_arg reads and writes.
472  return ModRefInfo::ModRef;
473}
474
475ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
476                                    const MemoryLocation &Loc) {
477  if (Loc.Ptr) {
478    // If the pointer is a pointer to constant memory,
479    // then it could not have been modified by this catchpad.
480    if (pointsToConstantMemory(Loc))
481      return ModRefInfo::NoModRef;
482  }
483
484  // Otherwise, a catchpad reads and writes.
485  return ModRefInfo::ModRef;
486}
487
488ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
489                                    const MemoryLocation &Loc) {
490  if (Loc.Ptr) {
491    // If the pointer is a pointer to constant memory,
492    // then it could not have been modified by this catchpad.
493    if (pointsToConstantMemory(Loc))
494      return ModRefInfo::NoModRef;
495  }
496
497  // Otherwise, a catchret reads and writes.
498  return ModRefInfo::ModRef;
499}
500
501ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
502                                    const MemoryLocation &Loc) {
503  // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
504  if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
505    return ModRefInfo::ModRef;
506
507  if (Loc.Ptr) {
508    AliasResult AR = alias(MemoryLocation::get(CX), Loc);
509    // If the cmpxchg address does not alias the location, it does not access
510    // it.
511    if (AR == NoAlias)
512      return ModRefInfo::NoModRef;
513
514    // If the cmpxchg address aliases the pointer as must alias, set Must.
515    if (AR == MustAlias)
516      return ModRefInfo::MustModRef;
517  }
518
519  return ModRefInfo::ModRef;
520}
521
522ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
523                                    const MemoryLocation &Loc) {
524  // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
525  if (isStrongerThanMonotonic(RMW->getOrdering()))
526    return ModRefInfo::ModRef;
527
528  if (Loc.Ptr) {
529    AliasResult AR = alias(MemoryLocation::get(RMW), Loc);
530    // If the atomicrmw address does not alias the location, it does not access
531    // it.
532    if (AR == NoAlias)
533      return ModRefInfo::NoModRef;
534
535    // If the atomicrmw address aliases the pointer as must alias, set Must.
536    if (AR == MustAlias)
537      return ModRefInfo::MustModRef;
538  }
539
540  return ModRefInfo::ModRef;
541}
542
543/// Return information about whether a particular call site modifies
544/// or reads the specified memory location \p MemLoc before instruction \p I
545/// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
546/// instruction-ordering queries inside the BasicBlock containing \p I.
547/// FIXME: this is really just shoring-up a deficiency in alias analysis.
548/// BasicAA isn't willing to spend linear time determining whether an alloca
549/// was captured before or after this particular call, while we are. However,
550/// with a smarter AA in place, this test is just wasting compile time.
551ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
552                                         const MemoryLocation &MemLoc,
553                                         DominatorTree *DT,
554                                         OrderedBasicBlock *OBB) {
555  if (!DT)
556    return ModRefInfo::ModRef;
557
558  const Value *Object =
559      GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
560  if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
561      isa<Constant>(Object))
562    return ModRefInfo::ModRef;
563
564  const auto *Call = dyn_cast<CallBase>(I);
565  if (!Call || Call == Object)
566    return ModRefInfo::ModRef;
567
568  if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
569                                 /* StoreCaptures */ true, I, DT,
570                                 /* include Object */ true,
571                                 /* OrderedBasicBlock */ OBB))
572    return ModRefInfo::ModRef;
573
574  unsigned ArgNo = 0;
575  ModRefInfo R = ModRefInfo::NoModRef;
576  bool IsMustAlias = true;
577  // Set flag only if no May found and all operands processed.
578  for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
579       CI != CE; ++CI, ++ArgNo) {
580    // Only look at the no-capture or byval pointer arguments.  If this
581    // pointer were passed to arguments that were neither of these, then it
582    // couldn't be no-capture.
583    if (!(*CI)->getType()->isPointerTy() ||
584        (!Call->doesNotCapture(ArgNo) && ArgNo < Call->getNumArgOperands() &&
585         !Call->isByValArgument(ArgNo)))
586      continue;
587
588    AliasResult AR = alias(MemoryLocation(*CI), MemoryLocation(Object));
589    // If this is a no-capture pointer argument, see if we can tell that it
590    // is impossible to alias the pointer we're checking.  If not, we have to
591    // assume that the call could touch the pointer, even though it doesn't
592    // escape.
593    if (AR != MustAlias)
594      IsMustAlias = false;
595    if (AR == NoAlias)
596      continue;
597    if (Call->doesNotAccessMemory(ArgNo))
598      continue;
599    if (Call->onlyReadsMemory(ArgNo)) {
600      R = ModRefInfo::Ref;
601      continue;
602    }
603    // Not returning MustModRef since we have not seen all the arguments.
604    return ModRefInfo::ModRef;
605  }
606  return IsMustAlias ? setMust(R) : clearMust(R);
607}
608
609/// canBasicBlockModify - Return true if it is possible for execution of the
610/// specified basic block to modify the location Loc.
611///
612bool AAResults::canBasicBlockModify(const BasicBlock &BB,
613                                    const MemoryLocation &Loc) {
614  return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod);
615}
616
617/// canInstructionRangeModRef - Return true if it is possible for the
618/// execution of the specified instructions to mod\ref (according to the
619/// mode) the location Loc. The instructions to consider are all
620/// of the instructions in the range of [I1,I2] INCLUSIVE.
621/// I1 and I2 must be in the same basic block.
622bool AAResults::canInstructionRangeModRef(const Instruction &I1,
623                                          const Instruction &I2,
624                                          const MemoryLocation &Loc,
625                                          const ModRefInfo Mode) {
626  assert(I1.getParent() == I2.getParent() &&
627         "Instructions not in same basic block!");
628  BasicBlock::const_iterator I = I1.getIterator();
629  BasicBlock::const_iterator E = I2.getIterator();
630  ++E;  // Convert from inclusive to exclusive range.
631
632  for (; I != E; ++I) // Check every instruction in range
633    if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode)))
634      return true;
635  return false;
636}
637
638// Provide a definition for the root virtual destructor.
639AAResults::Concept::~Concept() = default;
640
641// Provide a definition for the static object used to identify passes.
642AnalysisKey AAManager::Key;
643
644namespace {
645
646
647} // end anonymous namespace
648
649char ExternalAAWrapperPass::ID = 0;
650
651INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
652                false, true)
653
654ImmutablePass *
655llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
656  return new ExternalAAWrapperPass(std::move(Callback));
657}
658
659AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
660  initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
661}
662
663char AAResultsWrapperPass::ID = 0;
664
665INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
666                      "Function Alias Analysis Results", false, true)
667INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
668INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass)
669INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass)
670INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
671INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
672INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
673INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
674INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
675INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
676INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
677                    "Function Alias Analysis Results", false, true)
678
679FunctionPass *llvm::createAAResultsWrapperPass() {
680  return new AAResultsWrapperPass();
681}
682
683/// Run the wrapper pass to rebuild an aggregation over known AA passes.
684///
685/// This is the legacy pass manager's interface to the new-style AA results
686/// aggregation object. Because this is somewhat shoe-horned into the legacy
687/// pass manager, we hard code all the specific alias analyses available into
688/// it. While the particular set enabled is configured via commandline flags,
689/// adding a new alias analysis to LLVM will require adding support for it to
690/// this list.
691bool AAResultsWrapperPass::runOnFunction(Function &F) {
692  // NB! This *must* be reset before adding new AA results to the new
693  // AAResults object because in the legacy pass manager, each instance
694  // of these will refer to the *same* immutable analyses, registering and
695  // unregistering themselves with them. We need to carefully tear down the
696  // previous object first, in this case replacing it with an empty one, before
697  // registering new results.
698  AAR.reset(
699      new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));
700
701  // BasicAA is always available for function analyses. Also, we add it first
702  // so that it can trump TBAA results when it proves MustAlias.
703  // FIXME: TBAA should have an explicit mode to support this and then we
704  // should reconsider the ordering here.
705  if (!DisableBasicAA)
706    AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
707
708  // Populate the results with the currently available AAs.
709  if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
710    AAR->addAAResult(WrapperPass->getResult());
711  if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
712    AAR->addAAResult(WrapperPass->getResult());
713  if (auto *WrapperPass =
714          getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
715    AAR->addAAResult(WrapperPass->getResult());
716  if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
717    AAR->addAAResult(WrapperPass->getResult());
718  if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
719    AAR->addAAResult(WrapperPass->getResult());
720  if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
721    AAR->addAAResult(WrapperPass->getResult());
722  if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
723    AAR->addAAResult(WrapperPass->getResult());
724
725  // If available, run an external AA providing callback over the results as
726  // well.
727  if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
728    if (WrapperPass->CB)
729      WrapperPass->CB(*this, F, *AAR);
730
731  // Analyses don't mutate the IR, so return false.
732  return false;
733}
734
735void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
736  AU.setPreservesAll();
737  AU.addRequired<BasicAAWrapperPass>();
738  AU.addRequired<TargetLibraryInfoWrapperPass>();
739
740  // We also need to mark all the alias analysis passes we will potentially
741  // probe in runOnFunction as used here to ensure the legacy pass manager
742  // preserves them. This hard coding of lists of alias analyses is specific to
743  // the legacy pass manager.
744  AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
745  AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
746  AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
747  AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
748  AU.addUsedIfAvailable<SCEVAAWrapperPass>();
749  AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
750  AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
751}
752
753AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
754                                        BasicAAResult &BAR) {
755  AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI());
756
757  // Add in our explicitly constructed BasicAA results.
758  if (!DisableBasicAA)
759    AAR.addAAResult(BAR);
760
761  // Populate the results with the other currently available AAs.
762  if (auto *WrapperPass =
763          P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
764    AAR.addAAResult(WrapperPass->getResult());
765  if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
766    AAR.addAAResult(WrapperPass->getResult());
767  if (auto *WrapperPass =
768          P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
769    AAR.addAAResult(WrapperPass->getResult());
770  if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
771    AAR.addAAResult(WrapperPass->getResult());
772  if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
773    AAR.addAAResult(WrapperPass->getResult());
774  if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
775    AAR.addAAResult(WrapperPass->getResult());
776
777  return AAR;
778}
779
780bool llvm::isNoAliasCall(const Value *V) {
781  if (const auto *Call = dyn_cast<CallBase>(V))
782    return Call->hasRetAttr(Attribute::NoAlias);
783  return false;
784}
785
786bool llvm::isNoAliasArgument(const Value *V) {
787  if (const Argument *A = dyn_cast<Argument>(V))
788    return A->hasNoAliasAttr();
789  return false;
790}
791
792bool llvm::isIdentifiedObject(const Value *V) {
793  if (isa<AllocaInst>(V))
794    return true;
795  if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
796    return true;
797  if (isNoAliasCall(V))
798    return true;
799  if (const Argument *A = dyn_cast<Argument>(V))
800    return A->hasNoAliasAttr() || A->hasByValAttr();
801  return false;
802}
803
804bool llvm::isIdentifiedFunctionLocal(const Value *V) {
805  return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
806}
807
808void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
809  // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
810  // more alias analyses are added to llvm::createLegacyPMAAResults, they need
811  // to be added here also.
812  AU.addRequired<TargetLibraryInfoWrapperPass>();
813  AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
814  AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
815  AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
816  AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
817  AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
818  AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
819}
820