AliasAnalysis.cpp revision 249423
1//===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic AliasAnalysis interface which is used as the
11// common interface used by all clients and implementations of alias analysis.
12//
13// This file also implements the default version of the AliasAnalysis interface
14// that is to be used when no other implementation is specified.  This does some
15// simple tests that detect obvious cases: two different global pointers cannot
16// alias, a global cannot alias a malloc, two different mallocs cannot alias,
17// etc.
18//
19// This alias analysis implementation really isn't very good for anything, but
20// it is very fast, and makes a nice clean default implementation.  Because it
21// handles lots of little corner cases, other, more complex, alias analysis
22// implementations may choose to rely on this pass to resolve these simple and
23// easy cases.
24//
25//===----------------------------------------------------------------------===//
26
27#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/Analysis/CaptureTracking.h"
29#include "llvm/Analysis/Dominators.h"
30#include "llvm/Analysis/ValueTracking.h"
31#include "llvm/IR/BasicBlock.h"
32#include "llvm/IR/DataLayout.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/IntrinsicInst.h"
36#include "llvm/IR/LLVMContext.h"
37#include "llvm/IR/Type.h"
38#include "llvm/Pass.h"
39#include "llvm/Target/TargetLibraryInfo.h"
40using namespace llvm;
41
42// Register the AliasAnalysis interface, providing a nice name to refer to.
43INITIALIZE_ANALYSIS_GROUP(AliasAnalysis, "Alias Analysis", NoAA)
44char AliasAnalysis::ID = 0;
45
46//===----------------------------------------------------------------------===//
47// Default chaining methods
48//===----------------------------------------------------------------------===//
49
50AliasAnalysis::AliasResult
51AliasAnalysis::alias(const Location &LocA, const Location &LocB) {
52  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
53  return AA->alias(LocA, LocB);
54}
55
56bool AliasAnalysis::pointsToConstantMemory(const Location &Loc,
57                                           bool OrLocal) {
58  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
59  return AA->pointsToConstantMemory(Loc, OrLocal);
60}
61
62void AliasAnalysis::deleteValue(Value *V) {
63  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
64  AA->deleteValue(V);
65}
66
67void AliasAnalysis::copyValue(Value *From, Value *To) {
68  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
69  AA->copyValue(From, To);
70}
71
72void AliasAnalysis::addEscapingUse(Use &U) {
73  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
74  AA->addEscapingUse(U);
75}
76
77
78AliasAnalysis::ModRefResult
79AliasAnalysis::getModRefInfo(ImmutableCallSite CS,
80                             const Location &Loc) {
81  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
82
83  ModRefBehavior MRB = getModRefBehavior(CS);
84  if (MRB == DoesNotAccessMemory)
85    return NoModRef;
86
87  ModRefResult Mask = ModRef;
88  if (onlyReadsMemory(MRB))
89    Mask = Ref;
90
91  if (onlyAccessesArgPointees(MRB)) {
92    bool doesAlias = false;
93    if (doesAccessArgPointees(MRB)) {
94      MDNode *CSTag = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa);
95      for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
96           AI != AE; ++AI) {
97        const Value *Arg = *AI;
98        if (!Arg->getType()->isPointerTy())
99          continue;
100        Location CSLoc(Arg, UnknownSize, CSTag);
101        if (!isNoAlias(CSLoc, Loc)) {
102          doesAlias = true;
103          break;
104        }
105      }
106    }
107    if (!doesAlias)
108      return NoModRef;
109  }
110
111  // If Loc is a constant memory location, the call definitely could not
112  // modify the memory location.
113  if ((Mask & Mod) && pointsToConstantMemory(Loc))
114    Mask = ModRefResult(Mask & ~Mod);
115
116  // If this is the end of the chain, don't forward.
117  if (!AA) return Mask;
118
119  // Otherwise, fall back to the next AA in the chain. But we can merge
120  // in any mask we've managed to compute.
121  return ModRefResult(AA->getModRefInfo(CS, Loc) & Mask);
122}
123
124AliasAnalysis::ModRefResult
125AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
126  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
127
128  // If CS1 or CS2 are readnone, they don't interact.
129  ModRefBehavior CS1B = getModRefBehavior(CS1);
130  if (CS1B == DoesNotAccessMemory) return NoModRef;
131
132  ModRefBehavior CS2B = getModRefBehavior(CS2);
133  if (CS2B == DoesNotAccessMemory) return NoModRef;
134
135  // If they both only read from memory, there is no dependence.
136  if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
137    return NoModRef;
138
139  AliasAnalysis::ModRefResult Mask = ModRef;
140
141  // If CS1 only reads memory, the only dependence on CS2 can be
142  // from CS1 reading memory written by CS2.
143  if (onlyReadsMemory(CS1B))
144    Mask = ModRefResult(Mask & Ref);
145
146  // If CS2 only access memory through arguments, accumulate the mod/ref
147  // information from CS1's references to the memory referenced by
148  // CS2's arguments.
149  if (onlyAccessesArgPointees(CS2B)) {
150    AliasAnalysis::ModRefResult R = NoModRef;
151    if (doesAccessArgPointees(CS2B)) {
152      MDNode *CS2Tag = CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa);
153      for (ImmutableCallSite::arg_iterator
154           I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
155        const Value *Arg = *I;
156        if (!Arg->getType()->isPointerTy())
157          continue;
158        Location CS2Loc(Arg, UnknownSize, CS2Tag);
159        R = ModRefResult((R | getModRefInfo(CS1, CS2Loc)) & Mask);
160        if (R == Mask)
161          break;
162      }
163    }
164    return R;
165  }
166
167  // If CS1 only accesses memory through arguments, check if CS2 references
168  // any of the memory referenced by CS1's arguments. If not, return NoModRef.
169  if (onlyAccessesArgPointees(CS1B)) {
170    AliasAnalysis::ModRefResult R = NoModRef;
171    if (doesAccessArgPointees(CS1B)) {
172      MDNode *CS1Tag = CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa);
173      for (ImmutableCallSite::arg_iterator
174           I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
175        const Value *Arg = *I;
176        if (!Arg->getType()->isPointerTy())
177          continue;
178        Location CS1Loc(Arg, UnknownSize, CS1Tag);
179        if (getModRefInfo(CS2, CS1Loc) != NoModRef) {
180          R = Mask;
181          break;
182        }
183      }
184    }
185    if (R == NoModRef)
186      return R;
187  }
188
189  // If this is the end of the chain, don't forward.
190  if (!AA) return Mask;
191
192  // Otherwise, fall back to the next AA in the chain. But we can merge
193  // in any mask we've managed to compute.
194  return ModRefResult(AA->getModRefInfo(CS1, CS2) & Mask);
195}
196
197AliasAnalysis::ModRefBehavior
198AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
199  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
200
201  ModRefBehavior Min = UnknownModRefBehavior;
202
203  // Call back into the alias analysis with the other form of getModRefBehavior
204  // to see if it can give a better response.
205  if (const Function *F = CS.getCalledFunction())
206    Min = getModRefBehavior(F);
207
208  // If this is the end of the chain, don't forward.
209  if (!AA) return Min;
210
211  // Otherwise, fall back to the next AA in the chain. But we can merge
212  // in any result we've managed to compute.
213  return ModRefBehavior(AA->getModRefBehavior(CS) & Min);
214}
215
216AliasAnalysis::ModRefBehavior
217AliasAnalysis::getModRefBehavior(const Function *F) {
218  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
219  return AA->getModRefBehavior(F);
220}
221
222//===----------------------------------------------------------------------===//
223// AliasAnalysis non-virtual helper method implementation
224//===----------------------------------------------------------------------===//
225
226AliasAnalysis::Location AliasAnalysis::getLocation(const LoadInst *LI) {
227  return Location(LI->getPointerOperand(),
228                  getTypeStoreSize(LI->getType()),
229                  LI->getMetadata(LLVMContext::MD_tbaa));
230}
231
232AliasAnalysis::Location AliasAnalysis::getLocation(const StoreInst *SI) {
233  return Location(SI->getPointerOperand(),
234                  getTypeStoreSize(SI->getValueOperand()->getType()),
235                  SI->getMetadata(LLVMContext::MD_tbaa));
236}
237
238AliasAnalysis::Location AliasAnalysis::getLocation(const VAArgInst *VI) {
239  return Location(VI->getPointerOperand(),
240                  UnknownSize,
241                  VI->getMetadata(LLVMContext::MD_tbaa));
242}
243
244AliasAnalysis::Location
245AliasAnalysis::getLocation(const AtomicCmpXchgInst *CXI) {
246  return Location(CXI->getPointerOperand(),
247                  getTypeStoreSize(CXI->getCompareOperand()->getType()),
248                  CXI->getMetadata(LLVMContext::MD_tbaa));
249}
250
251AliasAnalysis::Location
252AliasAnalysis::getLocation(const AtomicRMWInst *RMWI) {
253  return Location(RMWI->getPointerOperand(),
254                  getTypeStoreSize(RMWI->getValOperand()->getType()),
255                  RMWI->getMetadata(LLVMContext::MD_tbaa));
256}
257
258AliasAnalysis::Location
259AliasAnalysis::getLocationForSource(const MemTransferInst *MTI) {
260  uint64_t Size = UnknownSize;
261  if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
262    Size = C->getValue().getZExtValue();
263
264  // memcpy/memmove can have TBAA tags. For memcpy, they apply
265  // to both the source and the destination.
266  MDNode *TBAATag = MTI->getMetadata(LLVMContext::MD_tbaa);
267
268  return Location(MTI->getRawSource(), Size, TBAATag);
269}
270
271AliasAnalysis::Location
272AliasAnalysis::getLocationForDest(const MemIntrinsic *MTI) {
273  uint64_t Size = UnknownSize;
274  if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
275    Size = C->getValue().getZExtValue();
276
277  // memcpy/memmove can have TBAA tags. For memcpy, they apply
278  // to both the source and the destination.
279  MDNode *TBAATag = MTI->getMetadata(LLVMContext::MD_tbaa);
280
281  return Location(MTI->getRawDest(), Size, TBAATag);
282}
283
284
285
286AliasAnalysis::ModRefResult
287AliasAnalysis::getModRefInfo(const LoadInst *L, const Location &Loc) {
288  // Be conservative in the face of volatile/atomic.
289  if (!L->isUnordered())
290    return ModRef;
291
292  // If the load address doesn't alias the given address, it doesn't read
293  // or write the specified memory.
294  if (!alias(getLocation(L), Loc))
295    return NoModRef;
296
297  // Otherwise, a load just reads.
298  return Ref;
299}
300
301AliasAnalysis::ModRefResult
302AliasAnalysis::getModRefInfo(const StoreInst *S, const Location &Loc) {
303  // Be conservative in the face of volatile/atomic.
304  if (!S->isUnordered())
305    return ModRef;
306
307  // If the store address cannot alias the pointer in question, then the
308  // specified memory cannot be modified by the store.
309  if (!alias(getLocation(S), Loc))
310    return NoModRef;
311
312  // If the pointer is a pointer to constant memory, then it could not have been
313  // modified by this store.
314  if (pointsToConstantMemory(Loc))
315    return NoModRef;
316
317  // Otherwise, a store just writes.
318  return Mod;
319}
320
321AliasAnalysis::ModRefResult
322AliasAnalysis::getModRefInfo(const VAArgInst *V, const Location &Loc) {
323  // If the va_arg address cannot alias the pointer in question, then the
324  // specified memory cannot be accessed by the va_arg.
325  if (!alias(getLocation(V), Loc))
326    return NoModRef;
327
328  // If the pointer is a pointer to constant memory, then it could not have been
329  // modified by this va_arg.
330  if (pointsToConstantMemory(Loc))
331    return NoModRef;
332
333  // Otherwise, a va_arg reads and writes.
334  return ModRef;
335}
336
337AliasAnalysis::ModRefResult
338AliasAnalysis::getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc) {
339  // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
340  if (CX->getOrdering() > Monotonic)
341    return ModRef;
342
343  // If the cmpxchg address does not alias the location, it does not access it.
344  if (!alias(getLocation(CX), Loc))
345    return NoModRef;
346
347  return ModRef;
348}
349
350AliasAnalysis::ModRefResult
351AliasAnalysis::getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc) {
352  // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
353  if (RMW->getOrdering() > Monotonic)
354    return ModRef;
355
356  // If the atomicrmw address does not alias the location, it does not access it.
357  if (!alias(getLocation(RMW), Loc))
358    return NoModRef;
359
360  return ModRef;
361}
362
363namespace {
364  // Conservatively return true. Return false, if there is a single path
365  // starting from "From" and the path does not reach "To".
366  static bool hasPath(const BasicBlock *From, const BasicBlock *To) {
367    const unsigned MaxCheck = 5;
368    const BasicBlock *Current = From;
369    for (unsigned I = 0; I < MaxCheck; I++) {
370      unsigned NumSuccs = Current->getTerminator()->getNumSuccessors();
371      if (NumSuccs > 1)
372        return true;
373      if (NumSuccs == 0)
374        return false;
375      Current = Current->getTerminator()->getSuccessor(0);
376      if (Current == To)
377        return true;
378    }
379    return true;
380  }
381
382  /// Only find pointer captures which happen before the given instruction. Uses
383  /// the dominator tree to determine whether one instruction is before another.
384  /// Only support the case where the Value is defined in the same basic block
385  /// as the given instruction and the use.
386  struct CapturesBefore : public CaptureTracker {
387    CapturesBefore(const Instruction *I, DominatorTree *DT)
388      : BeforeHere(I), DT(DT), Captured(false) {}
389
390    void tooManyUses() { Captured = true; }
391
392    bool shouldExplore(Use *U) {
393      Instruction *I = cast<Instruction>(U->getUser());
394      BasicBlock *BB = I->getParent();
395      // We explore this usage only if the usage can reach "BeforeHere".
396      // If use is not reachable from entry, there is no need to explore.
397      if (BeforeHere != I && !DT->isReachableFromEntry(BB))
398        return false;
399      // If the value is defined in the same basic block as use and BeforeHere,
400      // there is no need to explore the use if BeforeHere dominates use.
401      // Check whether there is a path from I to BeforeHere.
402      if (BeforeHere != I && DT->dominates(BeforeHere, I) &&
403          !hasPath(BB, BeforeHere->getParent()))
404        return false;
405      return true;
406    }
407
408    bool captured(Use *U) {
409      Instruction *I = cast<Instruction>(U->getUser());
410      BasicBlock *BB = I->getParent();
411      // Same logic as in shouldExplore.
412      if (BeforeHere != I && !DT->isReachableFromEntry(BB))
413        return false;
414      if (BeforeHere != I && DT->dominates(BeforeHere, I) &&
415          !hasPath(BB, BeforeHere->getParent()))
416        return false;
417      Captured = true;
418      return true;
419    }
420
421    const Instruction *BeforeHere;
422    DominatorTree *DT;
423
424    bool Captured;
425  };
426}
427
428// FIXME: this is really just shoring-up a deficiency in alias analysis.
429// BasicAA isn't willing to spend linear time determining whether an alloca
430// was captured before or after this particular call, while we are. However,
431// with a smarter AA in place, this test is just wasting compile time.
432AliasAnalysis::ModRefResult
433AliasAnalysis::callCapturesBefore(const Instruction *I,
434                                  const AliasAnalysis::Location &MemLoc,
435                                  DominatorTree *DT) {
436  if (!DT || !TD) return AliasAnalysis::ModRef;
437
438  const Value *Object = GetUnderlyingObject(MemLoc.Ptr, TD);
439  if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
440      isa<Constant>(Object))
441    return AliasAnalysis::ModRef;
442
443  ImmutableCallSite CS(I);
444  if (!CS.getInstruction() || CS.getInstruction() == Object)
445    return AliasAnalysis::ModRef;
446
447  CapturesBefore CB(I, DT);
448  llvm::PointerMayBeCaptured(Object, &CB);
449  if (CB.Captured)
450    return AliasAnalysis::ModRef;
451
452  unsigned ArgNo = 0;
453  for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
454       CI != CE; ++CI, ++ArgNo) {
455    // Only look at the no-capture or byval pointer arguments.  If this
456    // pointer were passed to arguments that were neither of these, then it
457    // couldn't be no-capture.
458    if (!(*CI)->getType()->isPointerTy() ||
459        (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
460      continue;
461
462    // If this is a no-capture pointer argument, see if we can tell that it
463    // is impossible to alias the pointer we're checking.  If not, we have to
464    // assume that the call could touch the pointer, even though it doesn't
465    // escape.
466    if (!isNoAlias(AliasAnalysis::Location(*CI),
467                   AliasAnalysis::Location(Object))) {
468      return AliasAnalysis::ModRef;
469    }
470  }
471  return AliasAnalysis::NoModRef;
472}
473
474// AliasAnalysis destructor: DO NOT move this to the header file for
475// AliasAnalysis or else clients of the AliasAnalysis class may not depend on
476// the AliasAnalysis.o file in the current .a file, causing alias analysis
477// support to not be included in the tool correctly!
478//
479AliasAnalysis::~AliasAnalysis() {}
480
481/// InitializeAliasAnalysis - Subclasses must call this method to initialize the
482/// AliasAnalysis interface before any other methods are called.
483///
484void AliasAnalysis::InitializeAliasAnalysis(Pass *P) {
485  TD = P->getAnalysisIfAvailable<DataLayout>();
486  TLI = P->getAnalysisIfAvailable<TargetLibraryInfo>();
487  AA = &P->getAnalysis<AliasAnalysis>();
488}
489
490// getAnalysisUsage - All alias analysis implementations should invoke this
491// directly (using AliasAnalysis::getAnalysisUsage(AU)).
492void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
493  AU.addRequired<AliasAnalysis>();         // All AA's chain
494}
495
496/// getTypeStoreSize - Return the DataLayout store size for the given type,
497/// if known, or a conservative value otherwise.
498///
499uint64_t AliasAnalysis::getTypeStoreSize(Type *Ty) {
500  return TD ? TD->getTypeStoreSize(Ty) : UnknownSize;
501}
502
503/// canBasicBlockModify - Return true if it is possible for execution of the
504/// specified basic block to modify the value pointed to by Ptr.
505///
506bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB,
507                                        const Location &Loc) {
508  return canInstructionRangeModify(BB.front(), BB.back(), Loc);
509}
510
511/// canInstructionRangeModify - Return true if it is possible for the execution
512/// of the specified instructions to modify the value pointed to by Ptr.  The
513/// instructions to consider are all of the instructions in the range of [I1,I2]
514/// INCLUSIVE.  I1 and I2 must be in the same basic block.
515///
516bool AliasAnalysis::canInstructionRangeModify(const Instruction &I1,
517                                              const Instruction &I2,
518                                              const Location &Loc) {
519  assert(I1.getParent() == I2.getParent() &&
520         "Instructions not in same basic block!");
521  BasicBlock::const_iterator I = &I1;
522  BasicBlock::const_iterator E = &I2;
523  ++E;  // Convert from inclusive to exclusive range.
524
525  for (; I != E; ++I) // Check every instruction in range
526    if (getModRefInfo(I, Loc) & Mod)
527      return true;
528  return false;
529}
530
531/// isNoAliasCall - Return true if this pointer is returned by a noalias
532/// function.
533bool llvm::isNoAliasCall(const Value *V) {
534  if (isa<CallInst>(V) || isa<InvokeInst>(V))
535    return ImmutableCallSite(cast<Instruction>(V))
536      .paramHasAttr(0, Attribute::NoAlias);
537  return false;
538}
539
540/// isIdentifiedObject - Return true if this pointer refers to a distinct and
541/// identifiable object.  This returns true for:
542///    Global Variables and Functions (but not Global Aliases)
543///    Allocas and Mallocs
544///    ByVal and NoAlias Arguments
545///    NoAlias returns
546///
547bool llvm::isIdentifiedObject(const Value *V) {
548  if (isa<AllocaInst>(V))
549    return true;
550  if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
551    return true;
552  if (isNoAliasCall(V))
553    return true;
554  if (const Argument *A = dyn_cast<Argument>(V))
555    return A->hasNoAliasAttr() || A->hasByValAttr();
556  return false;
557}
558