1//===- SSAUpdaterImpl.h - SSA Updater Implementation ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides a template that implements the core algorithm for the
10// SSAUpdater and MachineSSAUpdater.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
15#define LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
16
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/Support/Allocator.h"
20#include "llvm/Support/Debug.h"
21#include "llvm/Support/raw_ostream.h"
22
23#define DEBUG_TYPE "ssaupdater"
24
25namespace llvm {
26
27template<typename T> class SSAUpdaterTraits;
28
29template<typename UpdaterT>
30class SSAUpdaterImpl {
31private:
32  UpdaterT *Updater;
33
34  using Traits = SSAUpdaterTraits<UpdaterT>;
35  using BlkT = typename Traits::BlkT;
36  using ValT = typename Traits::ValT;
37  using PhiT = typename Traits::PhiT;
38
39  /// BBInfo - Per-basic block information used internally by SSAUpdaterImpl.
40  /// The predecessors of each block are cached here since pred_iterator is
41  /// slow and we need to iterate over the blocks at least a few times.
42  class BBInfo {
43  public:
44    // Back-pointer to the corresponding block.
45    BlkT *BB;
46
47    // Value to use in this block.
48    ValT AvailableVal;
49
50    // Block that defines the available value.
51    BBInfo *DefBB;
52
53    // Postorder number.
54    int BlkNum = 0;
55
56    // Immediate dominator.
57    BBInfo *IDom = nullptr;
58
59    // Number of predecessor blocks.
60    unsigned NumPreds = 0;
61
62    // Array[NumPreds] of predecessor blocks.
63    BBInfo **Preds = nullptr;
64
65    // Marker for existing PHIs that match.
66    PhiT *PHITag = nullptr;
67
68    BBInfo(BlkT *ThisBB, ValT V)
69      : BB(ThisBB), AvailableVal(V), DefBB(V ? this : nullptr) {}
70  };
71
72  using AvailableValsTy = DenseMap<BlkT *, ValT>;
73
74  AvailableValsTy *AvailableVals;
75
76  SmallVectorImpl<PhiT *> *InsertedPHIs;
77
78  using BlockListTy = SmallVectorImpl<BBInfo *>;
79  using BBMapTy = DenseMap<BlkT *, BBInfo *>;
80
81  BBMapTy BBMap;
82  BumpPtrAllocator Allocator;
83
84public:
85  explicit SSAUpdaterImpl(UpdaterT *U, AvailableValsTy *A,
86                          SmallVectorImpl<PhiT *> *Ins) :
87    Updater(U), AvailableVals(A), InsertedPHIs(Ins) {}
88
89  /// GetValue - Check to see if AvailableVals has an entry for the specified
90  /// BB and if so, return it.  If not, construct SSA form by first
91  /// calculating the required placement of PHIs and then inserting new PHIs
92  /// where needed.
93  ValT GetValue(BlkT *BB) {
94    SmallVector<BBInfo *, 100> BlockList;
95    BBInfo *PseudoEntry = BuildBlockList(BB, &BlockList);
96
97    // Special case: bail out if BB is unreachable.
98    if (BlockList.size() == 0) {
99      ValT V = Traits::GetUndefVal(BB, Updater);
100      (*AvailableVals)[BB] = V;
101      return V;
102    }
103
104    FindDominators(&BlockList, PseudoEntry);
105    FindPHIPlacement(&BlockList);
106    FindAvailableVals(&BlockList);
107
108    return BBMap[BB]->DefBB->AvailableVal;
109  }
110
111  /// BuildBlockList - Starting from the specified basic block, traverse back
112  /// through its predecessors until reaching blocks with known values.
113  /// Create BBInfo structures for the blocks and append them to the block
114  /// list.
115  BBInfo *BuildBlockList(BlkT *BB, BlockListTy *BlockList) {
116    SmallVector<BBInfo *, 10> RootList;
117    SmallVector<BBInfo *, 64> WorkList;
118
119    BBInfo *Info = new (Allocator) BBInfo(BB, 0);
120    BBMap[BB] = Info;
121    WorkList.push_back(Info);
122
123    // Search backward from BB, creating BBInfos along the way and stopping
124    // when reaching blocks that define the value.  Record those defining
125    // blocks on the RootList.
126    SmallVector<BlkT *, 10> Preds;
127    while (!WorkList.empty()) {
128      Info = WorkList.pop_back_val();
129      Preds.clear();
130      Traits::FindPredecessorBlocks(Info->BB, &Preds);
131      Info->NumPreds = Preds.size();
132      if (Info->NumPreds == 0)
133        Info->Preds = nullptr;
134      else
135        Info->Preds = static_cast<BBInfo **>(Allocator.Allocate(
136            Info->NumPreds * sizeof(BBInfo *), alignof(BBInfo *)));
137
138      for (unsigned p = 0; p != Info->NumPreds; ++p) {
139        BlkT *Pred = Preds[p];
140        // Check if BBMap already has a BBInfo for the predecessor block.
141        typename BBMapTy::value_type &BBMapBucket =
142          BBMap.FindAndConstruct(Pred);
143        if (BBMapBucket.second) {
144          Info->Preds[p] = BBMapBucket.second;
145          continue;
146        }
147
148        // Create a new BBInfo for the predecessor.
149        ValT PredVal = AvailableVals->lookup(Pred);
150        BBInfo *PredInfo = new (Allocator) BBInfo(Pred, PredVal);
151        BBMapBucket.second = PredInfo;
152        Info->Preds[p] = PredInfo;
153
154        if (PredInfo->AvailableVal) {
155          RootList.push_back(PredInfo);
156          continue;
157        }
158        WorkList.push_back(PredInfo);
159      }
160    }
161
162    // Now that we know what blocks are backwards-reachable from the starting
163    // block, do a forward depth-first traversal to assign postorder numbers
164    // to those blocks.
165    BBInfo *PseudoEntry = new (Allocator) BBInfo(nullptr, 0);
166    unsigned BlkNum = 1;
167
168    // Initialize the worklist with the roots from the backward traversal.
169    while (!RootList.empty()) {
170      Info = RootList.pop_back_val();
171      Info->IDom = PseudoEntry;
172      Info->BlkNum = -1;
173      WorkList.push_back(Info);
174    }
175
176    while (!WorkList.empty()) {
177      Info = WorkList.back();
178
179      if (Info->BlkNum == -2) {
180        // All the successors have been handled; assign the postorder number.
181        Info->BlkNum = BlkNum++;
182        // If not a root, put it on the BlockList.
183        if (!Info->AvailableVal)
184          BlockList->push_back(Info);
185        WorkList.pop_back();
186        continue;
187      }
188
189      // Leave this entry on the worklist, but set its BlkNum to mark that its
190      // successors have been put on the worklist.  When it returns to the top
191      // the list, after handling its successors, it will be assigned a
192      // number.
193      Info->BlkNum = -2;
194
195      // Add unvisited successors to the work list.
196      for (typename Traits::BlkSucc_iterator SI =
197             Traits::BlkSucc_begin(Info->BB),
198             E = Traits::BlkSucc_end(Info->BB); SI != E; ++SI) {
199        BBInfo *SuccInfo = BBMap[*SI];
200        if (!SuccInfo || SuccInfo->BlkNum)
201          continue;
202        SuccInfo->BlkNum = -1;
203        WorkList.push_back(SuccInfo);
204      }
205    }
206    PseudoEntry->BlkNum = BlkNum;
207    return PseudoEntry;
208  }
209
210  /// IntersectDominators - This is the dataflow lattice "meet" operation for
211  /// finding dominators.  Given two basic blocks, it walks up the dominator
212  /// tree until it finds a common dominator of both.  It uses the postorder
213  /// number of the blocks to determine how to do that.
214  BBInfo *IntersectDominators(BBInfo *Blk1, BBInfo *Blk2) {
215    while (Blk1 != Blk2) {
216      while (Blk1->BlkNum < Blk2->BlkNum) {
217        Blk1 = Blk1->IDom;
218        if (!Blk1)
219          return Blk2;
220      }
221      while (Blk2->BlkNum < Blk1->BlkNum) {
222        Blk2 = Blk2->IDom;
223        if (!Blk2)
224          return Blk1;
225      }
226    }
227    return Blk1;
228  }
229
230  /// FindDominators - Calculate the dominator tree for the subset of the CFG
231  /// corresponding to the basic blocks on the BlockList.  This uses the
232  /// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey
233  /// and Kennedy, published in Software--Practice and Experience, 2001,
234  /// 4:1-10.  Because the CFG subset does not include any edges leading into
235  /// blocks that define the value, the results are not the usual dominator
236  /// tree.  The CFG subset has a single pseudo-entry node with edges to a set
237  /// of root nodes for blocks that define the value.  The dominators for this
238  /// subset CFG are not the standard dominators but they are adequate for
239  /// placing PHIs within the subset CFG.
240  void FindDominators(BlockListTy *BlockList, BBInfo *PseudoEntry) {
241    bool Changed;
242    do {
243      Changed = false;
244      // Iterate over the list in reverse order, i.e., forward on CFG edges.
245      for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
246             E = BlockList->rend(); I != E; ++I) {
247        BBInfo *Info = *I;
248        BBInfo *NewIDom = nullptr;
249
250        // Iterate through the block's predecessors.
251        for (unsigned p = 0; p != Info->NumPreds; ++p) {
252          BBInfo *Pred = Info->Preds[p];
253
254          // Treat an unreachable predecessor as a definition with 'undef'.
255          if (Pred->BlkNum == 0) {
256            Pred->AvailableVal = Traits::GetUndefVal(Pred->BB, Updater);
257            (*AvailableVals)[Pred->BB] = Pred->AvailableVal;
258            Pred->DefBB = Pred;
259            Pred->BlkNum = PseudoEntry->BlkNum;
260            PseudoEntry->BlkNum++;
261          }
262
263          if (!NewIDom)
264            NewIDom = Pred;
265          else
266            NewIDom = IntersectDominators(NewIDom, Pred);
267        }
268
269        // Check if the IDom value has changed.
270        if (NewIDom && NewIDom != Info->IDom) {
271          Info->IDom = NewIDom;
272          Changed = true;
273        }
274      }
275    } while (Changed);
276  }
277
278  /// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for
279  /// any blocks containing definitions of the value.  If one is found, then
280  /// the successor of Pred is in the dominance frontier for the definition,
281  /// and this function returns true.
282  bool IsDefInDomFrontier(const BBInfo *Pred, const BBInfo *IDom) {
283    for (; Pred != IDom; Pred = Pred->IDom) {
284      if (Pred->DefBB == Pred)
285        return true;
286    }
287    return false;
288  }
289
290  /// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers
291  /// of the known definitions.  Iteratively add PHIs in the dom frontiers
292  /// until nothing changes.  Along the way, keep track of the nearest
293  /// dominating definitions for non-PHI blocks.
294  void FindPHIPlacement(BlockListTy *BlockList) {
295    bool Changed;
296    do {
297      Changed = false;
298      // Iterate over the list in reverse order, i.e., forward on CFG edges.
299      for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
300             E = BlockList->rend(); I != E; ++I) {
301        BBInfo *Info = *I;
302
303        // If this block already needs a PHI, there is nothing to do here.
304        if (Info->DefBB == Info)
305          continue;
306
307        // Default to use the same def as the immediate dominator.
308        BBInfo *NewDefBB = Info->IDom->DefBB;
309        for (unsigned p = 0; p != Info->NumPreds; ++p) {
310          if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) {
311            // Need a PHI here.
312            NewDefBB = Info;
313            break;
314          }
315        }
316
317        // Check if anything changed.
318        if (NewDefBB != Info->DefBB) {
319          Info->DefBB = NewDefBB;
320          Changed = true;
321        }
322      }
323    } while (Changed);
324  }
325
326  /// FindAvailableVal - If this block requires a PHI, first check if an
327  /// existing PHI matches the PHI placement and reaching definitions computed
328  /// earlier, and if not, create a new PHI.  Visit all the block's
329  /// predecessors to calculate the available value for each one and fill in
330  /// the incoming values for a new PHI.
331  void FindAvailableVals(BlockListTy *BlockList) {
332    // Go through the worklist in forward order (i.e., backward through the CFG)
333    // and check if existing PHIs can be used.  If not, create empty PHIs where
334    // they are needed.
335    for (typename BlockListTy::iterator I = BlockList->begin(),
336           E = BlockList->end(); I != E; ++I) {
337      BBInfo *Info = *I;
338      // Check if there needs to be a PHI in BB.
339      if (Info->DefBB != Info)
340        continue;
341
342      // Look for an existing PHI.
343      FindExistingPHI(Info->BB, BlockList);
344      if (Info->AvailableVal)
345        continue;
346
347      ValT PHI = Traits::CreateEmptyPHI(Info->BB, Info->NumPreds, Updater);
348      Info->AvailableVal = PHI;
349      (*AvailableVals)[Info->BB] = PHI;
350    }
351
352    // Now go back through the worklist in reverse order to fill in the
353    // arguments for any new PHIs added in the forward traversal.
354    for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
355           E = BlockList->rend(); I != E; ++I) {
356      BBInfo *Info = *I;
357
358      if (Info->DefBB != Info) {
359        // Record the available value to speed up subsequent uses of this
360        // SSAUpdater for the same value.
361        (*AvailableVals)[Info->BB] = Info->DefBB->AvailableVal;
362        continue;
363      }
364
365      // Check if this block contains a newly added PHI.
366      PhiT *PHI = Traits::ValueIsNewPHI(Info->AvailableVal, Updater);
367      if (!PHI)
368        continue;
369
370      // Iterate through the block's predecessors.
371      for (unsigned p = 0; p != Info->NumPreds; ++p) {
372        BBInfo *PredInfo = Info->Preds[p];
373        BlkT *Pred = PredInfo->BB;
374        // Skip to the nearest preceding definition.
375        if (PredInfo->DefBB != PredInfo)
376          PredInfo = PredInfo->DefBB;
377        Traits::AddPHIOperand(PHI, PredInfo->AvailableVal, Pred);
378      }
379
380      LLVM_DEBUG(dbgs() << "  Inserted PHI: " << *PHI << "\n");
381
382      // If the client wants to know about all new instructions, tell it.
383      if (InsertedPHIs) InsertedPHIs->push_back(PHI);
384    }
385  }
386
387  /// FindExistingPHI - Look through the PHI nodes in a block to see if any of
388  /// them match what is needed.
389  void FindExistingPHI(BlkT *BB, BlockListTy *BlockList) {
390    for (auto &SomePHI : BB->phis()) {
391      if (CheckIfPHIMatches(&SomePHI)) {
392        RecordMatchingPHIs(BlockList);
393        break;
394      }
395      // Match failed: clear all the PHITag values.
396      for (typename BlockListTy::iterator I = BlockList->begin(),
397             E = BlockList->end(); I != E; ++I)
398        (*I)->PHITag = nullptr;
399    }
400  }
401
402  /// CheckIfPHIMatches - Check if a PHI node matches the placement and values
403  /// in the BBMap.
404  bool CheckIfPHIMatches(PhiT *PHI) {
405    SmallVector<PhiT *, 20> WorkList;
406    WorkList.push_back(PHI);
407
408    // Mark that the block containing this PHI has been visited.
409    BBMap[PHI->getParent()]->PHITag = PHI;
410
411    while (!WorkList.empty()) {
412      PHI = WorkList.pop_back_val();
413
414      // Iterate through the PHI's incoming values.
415      for (typename Traits::PHI_iterator I = Traits::PHI_begin(PHI),
416             E = Traits::PHI_end(PHI); I != E; ++I) {
417        ValT IncomingVal = I.getIncomingValue();
418        BBInfo *PredInfo = BBMap[I.getIncomingBlock()];
419        // Skip to the nearest preceding definition.
420        if (PredInfo->DefBB != PredInfo)
421          PredInfo = PredInfo->DefBB;
422
423        // Check if it matches the expected value.
424        if (PredInfo->AvailableVal) {
425          if (IncomingVal == PredInfo->AvailableVal)
426            continue;
427          return false;
428        }
429
430        // Check if the value is a PHI in the correct block.
431        PhiT *IncomingPHIVal = Traits::ValueIsPHI(IncomingVal, Updater);
432        if (!IncomingPHIVal || IncomingPHIVal->getParent() != PredInfo->BB)
433          return false;
434
435        // If this block has already been visited, check if this PHI matches.
436        if (PredInfo->PHITag) {
437          if (IncomingPHIVal == PredInfo->PHITag)
438            continue;
439          return false;
440        }
441        PredInfo->PHITag = IncomingPHIVal;
442
443        WorkList.push_back(IncomingPHIVal);
444      }
445    }
446    return true;
447  }
448
449  /// RecordMatchingPHIs - For each PHI node that matches, record it in both
450  /// the BBMap and the AvailableVals mapping.
451  void RecordMatchingPHIs(BlockListTy *BlockList) {
452    for (typename BlockListTy::iterator I = BlockList->begin(),
453           E = BlockList->end(); I != E; ++I)
454      if (PhiT *PHI = (*I)->PHITag) {
455        BlkT *BB = PHI->getParent();
456        ValT PHIVal = Traits::GetPHIValue(PHI);
457        (*AvailableVals)[BB] = PHIVal;
458        BBMap[BB]->AvailableVal = PHIVal;
459      }
460  }
461};
462
463} // end namespace llvm
464
465#undef DEBUG_TYPE // "ssaupdater"
466
467#endif // LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
468