LowerTypeTests.h revision 360784
179697Snon//===- LowerTypeTests.h - type metadata lowering pass -----------*- C++ -*-===//
267468Snon//
367468Snon// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
467468Snon// See https://llvm.org/LICENSE.txt for license information.
567468Snon// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
679697Snon//
767468Snon//===----------------------------------------------------------------------===//
8139749Simp//
967468Snon// This file defines parts of the type test lowering pass implementation that
1079697Snon// may be usefully unit tested.
1167468Snon//
1279697Snon//===----------------------------------------------------------------------===//
1367468Snon
1467468Snon#ifndef LLVM_TRANSFORMS_IPO_LOWERTYPETESTS_H
1567468Snon#define LLVM_TRANSFORMS_IPO_LOWERTYPETESTS_H
1667468Snon
1767468Snon#include "llvm/ADT/SmallVector.h"
1867468Snon#include "llvm/IR/PassManager.h"
1967468Snon#include <cstdint>
2067468Snon#include <cstring>
2167468Snon#include <limits>
2267468Snon#include <set>
2367468Snon#include <vector>
2467468Snon
2567468Snonnamespace llvm {
2667468Snon
2767468Snonclass Module;
2867468Snonclass ModuleSummaryIndex;
2967468Snonclass raw_ostream;
3067468Snon
3167468Snonnamespace lowertypetests {
3267468Snon
3367468Snonstruct BitSetInfo {
3467468Snon  // The indices of the set bits in the bitset.
3567468Snon  std::set<uint64_t> Bits;
3667468Snon
3767468Snon  // The byte offset into the combined global represented by the bitset.
3867468Snon  uint64_t ByteOffset;
3967468Snon
40119420Sobrien  // The size of the bitset in bits.
41119420Sobrien  uint64_t BitSize;
42119420Sobrien
4367468Snon  // Log2 alignment of the bit set relative to the combined global.
4467468Snon  // For example, a log2 alignment of 3 means that bits in the bitset
4567468Snon  // represent addresses 8 bytes apart.
4667468Snon  unsigned AlignLog2;
4767468Snon
4867468Snon  bool isSingleOffset() const {
4967468Snon    return Bits.size() == 1;
5067468Snon  }
5167468Snon
52274760Sjhb  bool isAllOnes() const {
5367468Snon    return Bits.size() == BitSize;
5467468Snon  }
5567468Snon
5667468Snon  bool containsGlobalOffset(uint64_t Offset) const;
5767468Snon
5867468Snon  void print(raw_ostream &OS) const;
5967468Snon};
6067468Snon
6167468Snonstruct BitSetBuilder {
6267468Snon  SmallVector<uint64_t, 16> Offsets;
6367468Snon  uint64_t Min = std::numeric_limits<uint64_t>::max();
6467468Snon  uint64_t Max = 0;
6567468Snon
66250460Seadler  BitSetBuilder() = default;
6767468Snon
6867468Snon  void addOffset(uint64_t Offset) {
6967468Snon    if (Min > Offset)
7067468Snon      Min = Offset;
7167468Snon    if (Max < Offset)
7267468Snon      Max = Offset;
7367468Snon
7467468Snon    Offsets.push_back(Offset);
7579697Snon  }
7667468Snon
7779697Snon  BitSetInfo build();
7867468Snon};
7979697Snon
8079697Snon/// This class implements a layout algorithm for globals referenced by bit sets
8179697Snon/// that tries to keep members of small bit sets together. This can
8279697Snon/// significantly reduce bit set sizes in many cases.
8379697Snon///
8467468Snon/// It works by assembling fragments of layout from sets of referenced globals.
8567468Snon/// Each set of referenced globals causes the algorithm to create a new
8667468Snon/// fragment, which is assembled by appending each referenced global in the set
8767468Snon/// into the fragment. If a referenced global has already been referenced by an
8867468Snon/// fragment created earlier, we instead delete that fragment and append its
8967468Snon/// contents into the fragment we are assembling.
9067468Snon///
9167468Snon/// By starting with the smallest fragments, we minimize the size of the
9267468Snon/// fragments that are copied into larger fragments. This is most intuitively
9367468Snon/// thought about when considering the case where the globals are virtual tables
9489093Smsmith/// and the bit sets represent their derived classes: in a single inheritance
9567468Snon/// hierarchy, the optimum layout would involve a depth-first search of the
9667468Snon/// class hierarchy (and in fact the computed layout ends up looking a lot like
9767468Snon/// a DFS), but a naive DFS would not work well in the presence of multiple
9889093Smsmith/// inheritance. This aspect of the algorithm ends up fitting smaller
9979697Snon/// hierarchies inside larger ones where that would be beneficial.
10079697Snon///
10167468Snon/// For example, consider this class hierarchy:
10267468Snon///
10379697Snon/// A       B
10467468Snon///   \   / | \
10567468Snon///     C   D   E
10667468Snon///
10779697Snon/// We have five bit sets: bsA (A, C), bsB (B, C, D, E), bsC (C), bsD (D) and
10867468Snon/// bsE (E). If we laid out our objects by DFS traversing B followed by A, our
10979697Snon/// layout would be {B, C, D, E, A}. This is optimal for bsB as it needs to
11079697Snon/// cover the only 4 objects in its hierarchy, but not for bsA as it needs to
11179697Snon/// cover 5 objects, i.e. the entire layout. Our algorithm proceeds as follows:
11279697Snon///
11379697Snon/// Add bsC, fragments {{C}}
11479697Snon/// Add bsD, fragments {{C}, {D}}
11579697Snon/// Add bsE, fragments {{C}, {D}, {E}}
11679697Snon/// Add bsA, fragments {{A, C}, {D}, {E}}
11767468Snon/// Add bsB, fragments {{B, A, C, D, E}}
11867468Snon///
11967468Snon/// This layout is optimal for bsA, as it now only needs to cover two (i.e. 3
12067468Snon/// fewer) objects, at the cost of bsB needing to cover 1 more object.
12167468Snon///
12267468Snon/// The bit set lowering pass assigns an object index to each object that needs
12392739Salfred/// to be laid out, and calls addFragment for each bit set passing the object
12492739Salfred/// indices of its referenced globals. It then assembles a layout from the
12592739Salfred/// computed layout in the Fragments field.
12692739Salfredstruct GlobalLayoutBuilder {
12792739Salfred  /// The computed layout. Each element of this vector contains a fragment of
12892739Salfred  /// layout (which may be empty) consisting of object indices.
12992739Salfred  std::vector<std::vector<uint64_t>> Fragments;
13092739Salfred
13192739Salfred  /// Mapping from object index to fragment index.
13292739Salfred  std::vector<uint64_t> FragmentMap;
13392739Salfred
13492739Salfred  GlobalLayoutBuilder(uint64_t NumObjects)
13592739Salfred      : Fragments(1), FragmentMap(NumObjects) {}
13692739Salfred
13792739Salfred  /// Add F to the layout while trying to keep its indices contiguous.
13892739Salfred  /// If a previously seen fragment uses any of F's indices, that
13992739Salfred  /// fragment will be laid out inside F.
14092739Salfred  void addFragment(const std::set<uint64_t> &F);
14192739Salfred};
14292739Salfred
14392739Salfred/// This class is used to build a byte array containing overlapping bit sets. By
14492739Salfred/// loading from indexed offsets into the byte array and applying a mask, a
14592739Salfred/// program can test bits from the bit set with a relatively short instruction
14667468Snon/// sequence. For example, suppose we have 15 bit sets to lay out:
14767468Snon///
14867468Snon/// A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
14967468Snon/// F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
15073025Snon/// L (4 bits), M (3 bits), N (2 bits), O (1 bit)
15179697Snon///
15267468Snon/// These bits can be laid out in a 16-byte array like this:
15367468Snon///
15479697Snon///       Byte Offset
15579697Snon///     0123456789ABCDEF
15667468Snon/// Bit
15767468Snon///   7 HHHHHHHHHIIIIIII
15867468Snon///   6 GGGGGGGGGGJJJJJJ
15967468Snon///   5 FFFFFFFFFFFKKKKK
16079697Snon///   4 EEEEEEEEEEEELLLL
16167468Snon///   3 DDDDDDDDDDDDDMMM
16267468Snon///   2 CCCCCCCCCCCCCCNN
16367468Snon///   1 BBBBBBBBBBBBBBBO
16467468Snon///   0 AAAAAAAAAAAAAAAA
16567468Snon///
16667468Snon/// For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
16779697Snon/// test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
16867468Snon/// in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
16967468Snon///
170189004Srdivacky/// This is a byte array, rather than (say) a 2-byte array or a 4-byte array,
17167468Snon/// because for one thing it gives us better packing (the more bins there are,
17267468Snon/// the less evenly they will be filled), and for another, the instruction
173274760Sjhb/// sequences can be slightly shorter, both on x86 and ARM.
17467468Snonstruct ByteArrayBuilder {
17567468Snon  /// The byte array built so far.
17667468Snon  std::vector<uint8_t> Bytes;
17779697Snon
17879697Snon  enum { BitsPerByte = 8 };
17979697Snon
18079697Snon  /// The number of bytes allocated so far for each of the bits.
18179697Snon  uint64_t BitAllocs[BitsPerByte];
18279697Snon
18379697Snon  ByteArrayBuilder() {
18479697Snon    memset(BitAllocs, 0, sizeof(BitAllocs));
185274760Sjhb  }
186274760Sjhb
18779697Snon  /// Allocate BitSize bits in the byte array where Bits contains the bits to
18879697Snon  /// set. AllocByteOffset is set to the offset within the byte array and
18979697Snon  /// AllocMask is set to the bitmask for those bits. This uses the LPT (Longest
19079697Snon  /// Processing Time) multiprocessor scheduling algorithm to lay out the bits
19179697Snon  /// efficiently; the pass allocates bit sets in decreasing size order.
19279697Snon  void allocate(const std::set<uint64_t> &Bits, uint64_t BitSize,
19379697Snon                uint64_t &AllocByteOffset, uint8_t &AllocMask);
19479697Snon};
195274760Sjhb
19679697Snonbool isJumpTableCanonical(Function *F);
19779697Snon
19879697Snon} // end namespace lowertypetests
19979697Snon
20079697Snonclass LowerTypeTestsPass : public PassInfoMixin<LowerTypeTestsPass> {
20179697Snonpublic:
20279697Snon  ModuleSummaryIndex *ExportSummary;
20379697Snon  const ModuleSummaryIndex *ImportSummary;
20479697Snon  LowerTypeTestsPass(ModuleSummaryIndex *ExportSummary,
20579697Snon                     const ModuleSummaryIndex *ImportSummary)
20679697Snon      : ExportSummary(ExportSummary), ImportSummary(ImportSummary) {}
20779697Snon  PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
20879697Snon};
20979697Snon
21079697Snon} // end namespace llvm
21179697Snon
21279697Snon#endif // LLVM_TRANSFORMS_IPO_LOWERTYPETESTS_H
21379697Snon